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Abstract There is considerable interest in the networking community in explicit
congestion control as it may allow the design of a fair, stable, low loss, low delay,
and high utilization network. The Rate Control Protocol (RCP) is an example of
such a congestion control protocol. The current design of RCP suggests that it
should employ two forms of feedback; i.e. rate mismatch and queue size, in order
to manage its flow control algorithms. An outstanding design question in RCP is
whether the presence of queue size feedback is useful or not, given feedback based
on rate mismatch. In this paper, we address this question using tools from control
and bifurcation theory. We linearize the actual non-linear system and analyze
the local asymptotic stability, robust stability and rate of convergence of both the
design choices, i.e., with and without queue size feedback. But such analyses do not
offer clear design recommendations on whether the queue feedback is useful or not.
This motivates a bifurcation-theoretic analysis where we have to take non-linear
terms into consideration, which helps to learn additional dynamical properties of
the RCP system. In particular, we proceed to analyze two non-linear properties,
namely, the type of Hopf bifurcation and the asymptotic stability of the bifurcating
limit cycles. Analytical results reveal that the presence of queue feedback in RCP
can induce a sub-critical Hopf bifurcation, which can lead to undesirable system
behavior.Whereas, in the absence of queue feedback, the Hopf bifurcation is always
super-critical where the bifurcating limit cycles are stable and of small amplitude.
The analysis is corroborated by numerical computations and some packet-level
simulations as well. Based on our work, the suggestion for RCP is to only include
feedback based on rate mismatch in the design of the protocol.
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1 Introduction

In recent times, most service systems provide some form of delay-related infor-
mation like waiting times, queue size to inform their users of the congestion level
of the system. These feedback aims to control the congestion and improve system
performance. However, if such feedback is time-delayed, it will have serious impacts
on the behavior and dynamics of the underlying system; for example, see [1,23,25,
30]. The presence of feedback delays makes the system infinite-dimensional, and
may pose numerous theoretical and practical challenges. In general, the stability
of a closed-loop system is sensitive to feedback delays, which normally necessitates
a detailed stability analysis. The initial, and in fact very common, style of analy-
sis for non-linear time delayed systems is to first linearize the equation and then
study the stability properties of the linearized system. Local stability analysis re-
tains only the linear component and ignores all higher order terms of the nonlinear
system before addressing the issue of stability. However, the feedback delays of a
nonlinear dynamical system may result in various complex dynamics like bifurca-
tion, chaos, etc. So, it looks appealing to have an analytical methodology which
may allow us to capture the impact of some nonlinear terms while performing a
Taylor expansion of the nonlinear system about its equilibrium. Local bifurcation
theory is one such methodology [10]. For example, see [5,20,23,28] for some stabil-
ity and bifurcation analysis of dynamical systems with feedback delays. Moreover,
without an understanding of the dynamics of the system in the unstable regime,
choosing an operating point close to the boundary of the stable region could be
risky. A comprehensive understanding of local bifurcation phenomena may help
yield insights into the behavior of the system in the unstable regime. This pa-
per employs both linear systems theory and non-linear techniques to investigate
how the feedback of queue size can impact the system dynamics in the setting of
congestion control protocols for the Internet. We consider protocols where end-
systems use feedback, which is time-delayed, from routers to adjust their rates.
There is a considerable interest in analyzing the stability and dynamical proper-
ties of fluid models for Internet congestion control algorithms [18,24,26,34,35,37].
In this study, we focus on a well-known explicit congestion control protocol called
the Rate Control Protocol (RCP) [2,6,16].

The most widely implemented congestion control algorithm in the Internet to-
day is the Transmission Control Protocol (TCP). Despite the tremendous success
of TCP, it is now well acknowledged that its performance would degrade in high
bandwidth-delay environments [14]. In the TCP protocol, endpoints implicitly es-
timate congestion from noisy information, which is essentially the single bit of
feedback provided by a dropped or marked packet. There is a continued interest in
the development of explicit congestion control algorithms that rely on explicit feed-
back from routers [3,12,13,14,16,19,21,36,40]. Rate Control Protocol (RCP) is an
explicit congestion control protocol that aims to reduce the flow completion time
by quickly assigning the flows their fair rate. Moreover, RCP continues to receive
attention not only in the currently used host-centric (IP-based) networks [3,15,31,
33], but also in the future data-centric networking architectures like Named Data
Networking (NDN) [19,22,41]. See [38] for an overview of Named Data Network-
ing. In NDN, there is no IP address, and all data are named with unique names.
Moreover, the data can be fetched from multiple sources via multiple paths which
makes the implicit signaling mechanism unreliable in NDN [29]. Therefore, re-
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searchers focus on employing rate-based RCP-style algorithms in NDN. In both
the networking architectures, the motivation for using RCP lies in its advantage
of quickly assigning a fair rate for all the flows.

RCP computes the fair rate using two forms of feedback: rate mismatch and
queue size. An important question that has not been fully addressed in the design
of RCP is whether we really need two forms of feedback. Currently, regardless of
networking architecture, RCP uses both rate mismatch and queue size feedback.
In this paper, we focus on a variant of the RCP dynamical system which was
introduced in [16]. We consider the RCP model where all the flows have a common
feedback delay, operating over a single bottleneck link.

In general, the congestion control algorithms will always have to contend with
feedback delays: the presence of propagation delays at the very least, which makes
stability an important concern. We derive necessary and sufficient conditions for
local asymptotic stability of RCP. We highlight that the RCP which uses both
rate mismatch and queue size feedback readily loses local stability via a Hopf bi-

furcation [10]. Apart from ensuring stability, another important design objective is
to make sure that the system converges quickly to a stable equilibrium. We study
the convergence rate of RCP in the presence and absence of queue size feedback.
The rate of convergence analysis can help understand any trade-off among system
parameters and could guide us in tuning the parameter values for faster conver-
gence. But, it does not provide any insights on which design choice is desirable.
Similarly, one can devise conditions for robust stability, for each of these design
choices, but such conditions do not offer clear design recommendations on whether
the queue feedback is beneficial or not. Therefore, based on the linear analysis we
are unable to distinguish between the two different design choices. This provides
motivation for non-linear analysis to study some additional dynamical properties
of the RCP system, with and without the queue size feedback. We employ a bi-
furcation theoretic style of analysis where we study the dynamics of the system as
it transits from a stable to an unstable regime. We are concerned with the loss of
local stability occurring via a Hopf bifurcation leading to the onset of limit cycles,
as a parameter crosses a critical value. The birth of limit cycles is not disastrous,
as long they are stable and of small amplitude. Thus, key concerns about the direc-
tion and the stability of the limit cycles bifurcating from the steady state are also
addressed. From a bifurcation theoretic perspective, we would like our algorithms
to always produce stable limit cycles of small amplitude. We opt for the method
of Poincarè normal forms and the center manifold theorem (see [10] for details) to
analyze the nature of Hopf bifurcation.

We need to decide which parameter will be used to violate the stability con-
dition and hence act as the bifurcation parameter. We prefer not to use any of
the system parameters as the bifurcation parameter, as varying it may change the
value of the system equilibrium. Therefore, a non-dimensional exogenous param-
eter is used to induce instability. This has various advantages. We need not be
concerned with the dimensions of the parameter, and as it is common for both the
design choices, we can compare the results fairly.

Using the analytical results from [27], we perform the requisite calculations
to investigate the nature of Hopf bifurcation both in the presence and absence of
queue feedback. We establish that, in the absence of queue feedback, the system
always undergoes a super-critical Hopf bifurcation and leads to the emergence of
stable limit cycles of small amplitude. However, if the queue feedback is included
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in the protocol, the Hopf bifurcation would be sub-critical, at high link utilization.
A sub-critical Hopf bifurcation is often undesirable for real engineering systems as
it would give rise either to the onset of large amplitude limit cycles or to unstable
limit cycles [32]. In essence, the insights of our analyses suggest the removal of
the queuing term from the definition of RCP. Some of the theoretical insights
are validated with bifurcation diagrams, numerical computations, and packet-level
simulations.

The rest of the paper is organized as follows: In Section 2, we outline the
non-linear fluid model of RCP. In Section 3, we derive the necessary and sufficient
conditions to ensure local asymptotic stability. The rate of convergence and robust
stability analysis are outlined in Sections 4 and 5. In section 6, we conduct a local
Hopf bifurcation analysis. In section 7, we present some packet-level simulations.
In Section 8, we conclude with the summary of our contributions and offer some
avenues for further research.

2 Model Description

The closed loop feedback systems with delays are often modeled as delay differen-
tial equations. The non-linear fluid model of a proportionally fair variant of RCP
[16] is governed by the following equation

Ṙj(t) =
aRj(t)

CjTj(t)

(

Cj − yj(t)− bjCjpj
(

yj(t)
)

)

, (1)

where
yj(t) =

∑

r:j∈r

xr
(

t− Trj
)

(2)

is the aggregate load arriving at link j via all the routes passing through link j.
We write j ∈ r to indicate that the route r passes through the link j. Rj(t) is the
fair rate that RCP calculates for all flows passing through link j, xr(t) is the flow
rate on route r, pj(yj) is the mean queue size at link j when the arriving load is yj,
Cj is the capacity of link j, a and bj are non-negative protocol parameters. Here,
T j(t) is the average round trip delay of packets passing through link j given by

T j(t) =

∑

r:j∈r
xr(t)Tr

∑

r:j∈r
xr(t)

, (3)

where Tr = Trj +Tjr represents the sum of the propagation delay on route r from
source to link j and the return delay from link j to source. The control equations
at RCP router periodically calculates a common fair rate to be used by all flows
traversing the bottleneck link. RCP communicates this fair rate via packet headers
to destination, which then informs the source through acknowledgement packets.
The rate information is then used by the sources to adjust their data rates, and
thereby controls the network congestion. We assume that the queuing delay can
be ignored relative to the propagation delay. The flow rate xr(t) is given by [16]

xr(t) =





∑

j∈r

Rj(t− Tjr)
−1





−1

. (4)
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The mean queue size pj(yj) is approximated as follows [16]

pj(yj) =
yjσ

2
j

2
(

Cj − yj
) , (5)

where σ2
j represents the traffic variability at link j. We can interpret that the rate

equation (1) contains two forms of feedback: rate mismatch term Cj − yj(t), and
a term based on the mean queue size. Note that the equations (2) and (4) make
proper allowance for the propagation delays, and average round-trip time (3) scales
the rate of adaption (1) at the bottleneck link.

3 Local stability analysis

In this section, we derive conditions for local asymptotic stability, and highlight
that the system loses local stability via a Hopf bifurcation. For our analysis, we
consider the network with single bottleneck link of capacityC, carrying flows with a
same feedback delay τ . We assume σ2

j = 1, which corresponds to the Poisson arrival
of packets of constant size. We use an exogenous non-dimensional parameter κ, to
push the system just into the locally unstable regime. Then the model is governed
by the following delay differential equation

d

dt
R(t) =

κaR(t)

Cτ

(

C − y(t)− bCp
(

y(t)
)

)

, (6)

where
y(t) = R (t− τ) , p(y) = y

/(

2
(

C − y
)

)

.

3.1 Without queue feedback

To model RCP which uses only rate mismatch feedback, b is set to zero in (6).
We know that the target link utilization depends on the value of the parameter b.
Now, to aim for a particular target link utilization, say a fraction γ of the actual
link capacity, C is replaced with γC. Then, the system model is given by

d

dt
R(t) =

κaR(t)

γC τ

(

γC −R(t− τ)
)

. (7)

For local stability, we only need to consider the linearized form of (7). The equi-
librium of (7) is R⋆ = γC. Linearizing (7) about R⋆, we obtain

d

dt
u(t) = −κa

τ
u (t− τ) . (8)

It is to be noted that the local stability of fixed point of (7) is given by the
stability of the trivial fixed point (u = 0) of (8). From [27], the necessary and
sufficient condition for local asymptotic stability of (8) can be written as

(

κa

τ

)

× τ <
π

2
. (9)

For κ = 1, we get the necessary and sufficient condition for local stability of (7) as

a <
π

2
(10)

and the first local Hopf bifurcation occurs at a = π/2.
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3.2 With queue feedback

In this subsection, we analyze the local stability of RCP which uses both rate
mismatch and queue size feedback. The equilibrium of (6) is

R⋆ = C

(

b+ 4−
√
b2 + 8b

4

)

. (11)

Let R(t) = R⋆ + u(t), and linearizing (6) about the equilibrium we get

d

dt
u(t) = −κã

τ
u (t− τ) , (12)

where

ã = a
(

1 + ρ⋆
)

, (13)

ρ⋆ =
R⋆

C
=

(

b+ 4−
√
b2 + 8b

4

)

(14)

is the equilibrium link utilization. Using results from [27], we obtain the necessary
and sufficient condition for local stability of (6) as

κa
(

1 + ρ⋆
)

<
π

2
, (15)

and the Hopf bifurcation occurs at κa
(

1 + ρ⋆
)

= π/2. Therefore, using (14), we
can write the critical value of the bifurcation parameter, at which the system loses
local stability, as

κc =
2π

a
(

b+ 8−
√
b2 + 8b

) . (16)

For κ = κc = 1, we obtain the necessary and sufficient condition for local stability
of (6) as

a
(

b+ 8−
√
b2 + 8b

)

4
<

π

2
. (17)

See Figure 1 for the graphical representation of (17).
From (10) and (17), we can note that the removal of queue size feedback in-

creases the range of parameter a for which the system is stable. Thus, the necessary
and sufficient conditions for stability enable us to determine the stability region in
the parameter space, and could guide us in tuning the parameter values to ensure
stable performance.

4 Rate of convergence

Rate of convergence is a key performance metric which must be considered for a
congestion control algorithm. The impact of queue feedback on the convergence
rate can be studied by conducting the rate of convergence analysis in the presence
and absence of queue size feedback.
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Fig. 1: Stability chart for the RCP system which uses both rate mismatch and
queue size feedback.

4.1 Without queue feedback

In this subsection, following the style of analysis outlined in [4], rate of convergence
analysis is performed for the RCP which uses only rate mismatch feedback. The
analytical results enables us to investigate the impact of protocol parameters on
the convergence rate. Here, we consider κ = 1, to get back the original system.
Now the characteristic equation can be written as

λ+
(

a

τ

)

e−λτ = 0. (18)

Substituting λτ = x− στ in (18) yields

(στ − x)ex − aeστ = 0. (19)

Here σ is considered to be the supremum of the solutions of (19) over (0,∞) which
guarantees that all the characteristic roots lie on the open left half of the complex
plane. Let −α < 0 be the largest real part of all the roots of (19). Then the rate at
which the system approaches stable equilibrium is given by σ = (α/τ). A necessary
and sufficient condition for all the eigenvalues of (19) to lie on the left half-plane,
stated in [11] is,

στ < 1, (20)

στ < aeστ , (21)

aeστ <
u

sin(u)
, (22)

where u is the solution of the equation

u = στ tan(u), (23)

in 0 < u < π, with u = π/2 if σ = 0. Consider the following function

g(u) =
u

sin(u)
e−u/ tan(u), (24)
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which increases monotonically in the interval u ∈ (0, π), with g(0) = 1/e, g(π/2) =
π/2 and limu→π g(u) = ∞. Now, using (23) and (24), the inequality (22) can be
rewritten as

a < g(u). (25)

As σ increases, u decreases, and hence g(u) is decreasing function of σ. Therefore,
the maximum value of σ that satisfies (25) can be obtained by solving its corre-
sponding equality. By a similar argument, the L.H.S of (20) and (21) increases
with increase in σ. Thus, the maximum σ satisfying the inequalities (20), (21) can
be determined by solving the corresponding equalities. It is to be noted that if the
solution does not exists for any of these equalities, then there is no restriction on
the value of σ. Now, the results can be summarized as follows:
Let σ1, σ2, σ3 be the solutions of

στ = 1, (26)

στe−στ = a, (27)

u = στ tan(u), g(u) = a, (28)

respectively. Consider σi = ∞, for i = 1, 2, 3 if there is no solution exists for the
corresponding equality. Then the convergence rate σ is given by

σ = min[σ1, σ2, σ3]. (29)

Now, the next step is to analyze the dependence of convergence rate on protocol
parameter a, for τ > 0. The function στe−στ has maximum of 1/e at στ = 1.
Similarly the function g(u) has minimum of 1/e at u = 0. Let a∗ = 1/e, then there
is no solution for (27) if a > a∗, and for (28) if a < a∗. Let σ2 be the solution of
(27) on 0 < a ≤ a∗. Similarly, consider σ3 be the solution of (28) on a > a∗. At
a = 0, it is obvious that the rate of convergence σ = 0.

Case 1 : a ∈ (0, a∗) Differentiating (27) with respect to a gives

dσ

da
=

eστ

τ(1− aeστ )
. (30)

Using (27), the derivative (30) can be written as

dσ

da
=

eστ

τ(1− στ)
. (31)

From (31), it can deduced that dσ2/da > 0 if σ2τ < 1. Hence σ2 < σ1 for a ∈ (0, a∗).

Case 2 : a = a∗ Substituting a = a∗ = 1/e in (27) yields

σ2τe
−σ2τ = a = 1/e. (32)

It is known that the function σ2τe
−σ2τ reaches maximum of 1/e at σ2τ = 1, thus

σ2 = σ1 = 1/τ at a = a∗.
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then decreases for a > 1/e.

Case 3 : a > a∗ For a > a∗, using (28), the following holds

g(u) =
u

sin(u)
e−u/ tan(u) > 1/e. (33)

For u ∈ (0, π) and u/ sin(u) > 1, (33) can be written as

e−u/ tan(u) > 1/e. (34)

From (34), it can be deduced that u/ tan(u) < 1, and hence σ3τ < 1, and σ3 < σ1.

To summarize, the convergence rate σ is given by

σ = min[σ1, σ2] = σ2 a ∈ (0, a∗], (35)

= min[σ1, σ3] = σ3 a > a∗, (36)

where a∗ = 1/e. Fig. 2 shows the variation of convergence rate with protocol
parameter a for various values of τ . It can observed that the rate of convergence
increases with a for a < 1/e, and decreases when a > 1/e. The convergence rate
is maximum at a = (1/e), so the optimal value of the protocol parameter for fast
convergence is a = (1/e). Also, the rate of convergence decreases with the increase
in RTT (see Fig. 2).
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4.2 With queue feedback

The characteristic equation of RCP which uses both rate mismatch and queue size
feedback is

λ+

(

ã

τ

)

e−λτ = 0. (37)

where ã = a(1 + ρ∗). As outlined in the previous subsection, we consider σ1, σ2,
σ3 be the solutions of

στ = 1, (38)

στe−στ = ã, (39)

u = στ tan(u), g(u) = ã, (40)

respectively. Following the style of analysis outlined in the previous subsection, we
can obtain the rate of convergence for various values of a and b. The results are
shown in Fig. 3.

5 Robust stability analysis

5.1 Without queue feedback

The characteristic equation for RCP without queue feedback is given by

λ+ āe−λτ = 0, (41)

where ā = a/τ .
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For systems with characteristic equation of the form (41), a sufficient condition
for robust stability is [17]

āτ < 1. (42)

Substituting the value of ā in (42), we get a sufficient condition for robust stability
of RCP which uses only rate mismatch feedback as

a < 1. (43)

5.2 With queue feedback

The corresponding characteristic equation is given by

λ+ āe−λτ = 0, (44)

where ā = a(1 + ρ∗)/τ . As explained in the previous subsection, the necessary and
sufficient condition for robust stability is

a(1 + ρ∗) < 1. (45)

Therefore, based on the results of stability and convergence analysis, we are unable
to deduce whether the queue size feedback is beneficial or not. Then, the next
natural step is to investigate the dynamical behavior of the system as it transits
from a stable to an unstable regime. In the next section, we explore the impact of
loss of local stability for both the design options, i.e., with and without queue size
feedback.

6 Local Hopf bifurcation analysis

Apart from deriving stability conditions, it is also important to analyze the conse-
quences of violating those conditions so that we feel comfortable in operating the
system close to the edge of stable regime. To that end, in this section, we conduct
a local Hopf bifurcation analysis. A Hopf bifurcation gives rise to the emergence of
limit cycles in system dynamics. A major concern in local Hopf bifurcation analy-
sis is to determine the type of the bifurcation: will the bifurcation be super-critical
or sub-critical?. For now, we will only be concerned with the first Hopf bifurca-
tion. In contrary to local stability analysis which uses only linear terms, the Hopf
bifurcation analysis uses both linear and non-linear terms to analyze the impact
of queue size feedback on the system dynamics.

6.1 Without queue feedback

The Taylor series expansion of (7) about its equilibrium is given by

d

dt
u(t) = κ(ξyu(t− τ) + ξxyu(t)u(t− τ)) (46)

where
ξy = −κa

τ
, ξxy = − κa

γCτ
. (47)
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In [35], it has been shown that (46) undergoes first local Hopf bifurcation at κ = κc,
where κca = π/2. If the Hopf condition is just violated, the system would lose local
stability via a super-critical Hopf bifurcation and the amplitude of the bifurcating
limit cycles will be proportional to

R∗

√

20π(κ− κc)

3π − 2
. (48)

Here R∗ denotes the equilibrium of (46). It is also highlighted in [35] that equation
(46) cannot undergo a sub-critical Hopf bifurcation. Therefore, the type of Hopf
bifurcation for RCP which uses only rate mismatch feedback is always super-
critical, and does not depend on any of the system parameters.

6.2 With queue feedback

We now consider the RCP model which uses both rate mismatch and queue feed-
back, and perform the requisite calculations to determine the type of Hopf bifur-
cation. The analysis relies on the linear, quadratic and cubic terms in the Taylor
series expansion, whose non-zero coefficients of (6) are tabulated in TABLE 1. On

Table 1: Coefficients of linear and higher order terms in the Taylor series expansion
of (6).

Coefficients Expressions

ξy −

a
(

1 + ρ∗
)

τ

ξxy −

a(1 + ρ∗)

Cτρ∗

ξyy −

a

Cτ(1− ρ∗)

ξxyy −

a

C2τρ∗(1 − ρ∗)

ξyyy −

a

C2τ(1 − ρ∗)2

writing the Taylor series expansion of (6) about the equilibrium up to the third
order terms, we get

d

dt
u(t) = κ(ξyu(t− τ) + ξxyu(t)u(t− τ) + ξyyu

2(t− τ) + ξxyyu(t)u
2(t− τ)

+ ξyyyu
3(t− τ)).

(49)

To analyze the type of Hopf bifurcation in RCP, we employ the following result
(obtained in [27]) about the local instability in a non-linear delay differential equa-
tion. Following the analysis in [27], we now recapitulate the result as follows.
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Result: For the following delay differential equation

d

dt
u(t) = η(−bu(t− τ) + ξxxu

2(t) + ξxyu(t)u(t− τ) + ξyyu
2(t− τ) + ξxxxu

3(t)

+ ξxxyu
2(t)u(t− τ) + ξxyyu(t)u

2(t− τ) + ξyyyu
3(t− τ)), (50)

where η, τ, b > 0.

(i) The necessary and sufficient condition for local stability is

ηbτ < π/2 (51)

and treating κ as the bifurcation parameter, the first Hopf bifurcation occurs at η = ηc,

where

ηcbτ = π/2. (52)

(ii) If the first Hopf condition is just violated, the Hopf bifurcation is super-critical

if µ2 > 0 and sub-critical if µ2 < 0, where

µ2 =
1

πb

(

ξ2xx
4(π − 9)

5b
+ ξ2xy

3π − 2

5b
+ ξ2yy

2(11π − 4)

5b
+ ξxxξxy

(7π − 18)

5b

+ ξxxξyy
2(7π − 18)

5b
+ ξxyξyy

(7π − 18)

5b
− 6ξxxx + πξxxy − 2ξxyy + 3πξyyy

)

.

(53)

In [27], the analytical tools employed to study the type of Hopf bifurcation are
the Poincaré normal forms and the center manifold theorem [10].

By comparing (49) with (50), and using (53), we obtain µ2 of (49) as

µ2 = ξ2xy
3π − 2

5πξ2y
+ ξ2yy

2(11π − 4)

5πξ2y
+ ξxyξyy

(7π − 18)

5πξ2y
+

2ξxyy
πξy

−
3ξyyy
ξy

. (54)

In [27], the Hopf bifurcation properties of a non-linear equation with a single
discrete delay was studied in some detail. The analysis allowed us to ascertain
that some non-linear terms always produced a Hopf bifurcation of certain type.
This enabled us to identify the impact of some non-linear terms on the nature of
Hopf bifurcation. So leading from the previous work [27], it might be natural to
ask if we may develop a similar understanding for the non-linear delay equation of
RCP. Such analysis can help us identify which non-linear terms may be desirable,
in the sense that they always produced a super-critical Hopf.

We first consider each of the non-linear terms in isolation, and analyze its
impact on the type of Hopf bifurcation. If we consider ξxyu(t)u(t−τ) or ξyyu2(t−τ)
in isolation, then we get

µ2 = ξ2xy
3π − 2

5ξ2y
> 0 and µ2 = ξ2yy

2(11π − 4)

5ξ2y
> 0 (55)

respectively. Therefore, the type of Hopf bifurcation is always super-critical in
both the cases. Now, we consider the combination of quadratic terms i.e. both
ξxyu(t)u(t− τ) and ξyyu

2(t− τ). Then the value of µ2 is

µ2 = ξ2xy
3π − 2

5πξ2y
+ ξ2yy

2(11π − 4)

5πξ2y
+ ξxyξyy

(7π − 18)

5πξ2y
. (56)
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Figure 4 shows the value of µ2 for various values of ξxy and ξyy. From Figure 4, we
can observe that µ2 > 0, which implies that the system undergoes a super-critical
Hopf bifurcation. Whereas, if cubic terms ξxyyu(t)u2(t− τ) and ξyyyu

3(t− τ) are
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Fig. 4: Effect of the quadratic terms ξxy and ξyy on the nature of Hopf bifurcation.
Observe that µ2 > 0 which implies that the Hopf bifurcation is super-critical.

considered in isolation, we get

µ2 =
2ξxyy
πξy

and µ2 =
−3ξyyy

ξy
(57)

respectively. In our case, from Table 1, we get ξy, ξxyy and ξyyy < 0. This implies
that the cubic terms ξxyyu(t)u

2(t− τ) and ξyyyu
3(t− τ) induces super-critical and

sub-critical Hopf respectively. In the case where we have both cubic terms, then the
criticality of Hopf bifurcation depends on the magnitude of the cubic coefficients
(see Figure 5). In summary, the quadratic terms and the cubic term ξxyyu(t)u

2(t−
τ) induce super-critical Hopf. Whereas, the cubic term ξyyyu

3(t− τ) induces sub-
critical Hopf. We now analyze what happens when we have both quadratic terms
and cubic terms, using the expressions of its corresponding coefficients from Table
1.

After substituting the values from Table 1 in (54), and simplifying, we obtain
the expression for µ2 of (49) as

µ2 =
1

C25πρ∗2
(

1− ρ∗2
)2

(

(3π − 2)ρ∗
4 − (22π − 8)ρ∗

3 − (4− π)ρ∗
2

+ (7π − 8)ρ∗ + (3π − 2)

)

. (58)

To analyze the type of the Hopf bifurcation for (49), we need to find the sign of its
corresponding µ2. From (58), we can deduce that only numerator terms determine
the sign of µ2. Hence we plot the variation in the numerator of µ2 as the equilibrium
utilization ρ∗ is varied from 0 to 1; see Figure 6. The equilibrium link utilization
depends on the value of the parameter b. We can observe from Figure 6 that µ2
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Fig. 5: Effect of the cubic terms ξxyy and ξyyy on the nature of Hopf bifurcation.
The Hopf bifurcation is super-critical if µ2 > 0, and is sub-critical if µ2 < 0. Observe
that the sign of µ2 depends on the values of both the cubic terms.

reaches zero at ρ∗ = 0.6621, and hence the type of Hopf bifurcation changes from
super-critical to sub-critical after ρ∗ = 0.6621.

It is also noteworthy that the sign of µ2 does not depend on the link capacity
(C) and round-trip time (τ).
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Fig. 6: Variation in the numerator of µ2 of RCP with queue feedback, as the equi-
librium utilization (ρ∗) changes. Observe that µ2 turns negative for ρ∗ > 0.6621.
Hence the Hopf bifurcation is super-critical for ρ∗ < 0.6621 and sub-critical for
ρ∗ > 0.6621.

We now validate the analytical results using some numerical examples.
Numerical Example 1 (Super-critical): Let us consider the RCP system with C =

10, τ = 100 and b = 0.736 which corresponds to equilibrium utilization of 55% of
link capacity i.e., ρ∗ = 0.55. For these values, using (16), we obtain a = 1.01,
for κc = 1. Substituting the values in (58), we calculate the value of µ2 as
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2.324 × 10−2 > 0, implying that the system undergoes a super-critical Hopf bi-
furcation. The bifurcation diagram drawn using the Matlab package DDE-Biftool
[7,8] is shown in Figure 7. As expected, it shows that the system loses local sta-
bility via a super-critical Hopf bifurcation, as the bifurcation parameter crosses
the critical threshold (κc = 1). To validate this, numerical simulations obtained
using XPPAUT [9] are shown in Figure 8. For κ = 0.95, and the initial condition
as R0 = 5.6, the system converges to the equilibrium rate, R∗ = 5.5 (see Figure
8(a)). Whereas, for κ = 1.05 > κc i.e. after the bifurcation, the system leads to the
emergence of stable limit cycles.
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Fig. 7: Bifurcation diagram highlighting that the system undergoes a super-critical
Hopf bifurcation at κ = 1. The parameter values used are a = 1.01, τ = 100, C = 10
and b = 0.736 (ρ∗ = 0.55).

Numerical Example 2 (Sub-critical): Let a = 0.924, C = 10, τ = 100 and b = 0.257
which corresponds to equilibrium utilization of 70% (ρ∗ = 0.70), the system under-
goes a Hopf bifurcation at κ = 1. Using (58), we calculate µ2 = −3.547×10−2 < 0,
implying that the Hopf bifurcation is sub-critical. The bifurcation diagram shown
in Figure 9 confirms that the system exhibits a sub-critical Hopf bifurcation, as
the bifurcation parameter is varied beyond the critical threshold. The numerical
simulation shown in Figure 10(a) illustrates that the system is stable for κ < 1.
For κ = 1.05, as shown in Figure 10(b), the system exhibits a limit cycle but now
with amplitude larger than that of previous example.
Numerical Example 3 (Sub-critical): Consider a = 0.827, C = 10, τ = 100 and
b = 0.022 (ρ∗ = 0.90), we get κc = 1. For these values, using (58), we obtain
µ2 = −5.254× 10−2 < 0, implying that the system undergoes a sub-critical Hopf.
We can also observe from Figure 11 that there exists no stable limit cycle in the
neighborhood, as the bifurcation parameter is varied beyond the critical threshold.
Hence the Hopf bifurcation is sub-critical. To illustrate the occurrence of a sub-
critical Hopf, we present some numerical simulations in Figure 12. Considering the
initial condition R0 = 8.9 and κ = 0.95, the system converges to the stable equilib-
rium, R∗ = 9 (see Figure 12(a)). Whereas, after the bifurcation i.e. for κ > κc, the
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Fig. 8: Numerical simulations illustrating that the system exhibits a super-critical
Hopf bifurcation, as κ increases beyond the critical value. Time series are shown
for the cases κ < 1 and κ > 1. The parameter values chosen are a = 1.01, C = 10,
τ = 100 and b = 0.736 (R∗ = 5.5).
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Fig. 9: Bifurcation diagram showing the existence of a sub-critical Hopf for a =
0.924, τ = 100, C = 10 and b = 0.257 (ρ∗ = 0.70). The solid and dashed lines
denote the amplitude of stable and unstable limit cycles respectively.

previously stable fixed point now becomes unstable and also the solution would
eventually jump to infinity (Figure 12(b)).

In summary, the results of theoretical and numerical analysis reveal that the
RCP which uses both rate mismatch and queue size feedback, can undergo a sub-
critical Hopf bifurcation, which is undesirable for engineering applications. In fact,
in the context of congestion control algorithms, the possibility of occurrence of a
sub-critical Hopf has not been extensively studied so far. The insights from Hopf
bifurcation analysis could guide design considerations such that any loss of local
stability only occurs via the emergence of small amplitude stable limit cycles.
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Fig. 10: Numerical simulations illustrating that the system undergoes a sub-critical
Hopf as the bifurcation parameter κ increases beyond the critical threshold (κc =
1). The values of the parameters used are a = 0.924, τ = 100, C = 10 and b = 0.257
(R∗ = 7.0). The initial condition is chosen as R0 = 6.9.
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Fig. 11: Bifurcation diagram showing the existence of a sub-critical Hopf for a =
0.827, τ = 100, C = 10 and b = 0.022 (ρ∗ = 0.90).

In other words, the nature of Hopf bifurcation and the stability of the bifurcating
limit cycles should also be considered while designing congestion control protocols.

7 Packet-level simulations

In this section, the theoretical insights are validated by investigating if the packet-
level simulations of the underlying system exhibits the qualitative properties pre-
dicted through the analysis of the fluid model. The packet-level simulations are
done using a discrete event RCP simulator (for more details, refer to [16]).
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Fig. 12: Numerical simulations highlighting that the system undergoes a sub-
critical Hopf for the parameter values κc = 1, a = 0.827, τ = 100, C = 10 and
b = 0.022 (R∗ = 9.0).
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Fig. 13: Simulation setup with a single resource of capacity C and n sources that
each producing Poisson traffic. The round-trip times of all the flows are assumed
to be same.

Simulation traces in Figures 14 and 15 show the evolution of queue size and flow
rate for the cases with and without queue size feedback, respectively. The simulated
network has a single bottleneck link setup that considers Capacity, C = 1 Giga bits
per sec (Gbps), number of sources = 100 and τ = 100 ms for all the flows. Here, we
set b = 0.005 which corresponds to equilibrium utilization of 95% of link capacity.
For RCP without queue size feedback, we set γ = 0.95 to achieve the same target
link utilization. From these traces, we can observe that, in the presence of queue
feedback, the system readily loses stability and leads to the emergence of limit
cycles. These observations corroborate the results of our stability analysis which
establish that the presence of queue size feedback is associated with a smaller
choice of the protocol parameter a.

Similarly, the insights of Hopf bifurcation analysis can be verified from the
simulation traces shown in Figure 16 and 17. We can observe that the RCP which
uses both rate mismatch and queue feedback exhibits large amplitude limit cycles
(due to the occurrence of a sub-critical Hopf). Whereas, in the absence of queue
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Fig. 14: Traces from a packet-level simulation of RCP which uses both rate mismatch and
queue size feedback. Parameter values chosen are: τ = 100 ms, b = 0.005, C = 1 Gbps and
number of sources = 100.
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Fig. 15: Simulation traces of RCP which uses only rate mismatch feedback. The parameter
values used are τ = 100 ms, b = 0, γ = 0.95, C = 1 Gbps and number of sources = 100.
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Fig. 16: Simulation Traces highlighting that the system which includes queue feedback exhibits
limit cycles with amplitude much larger than that of RCP which uses only rate mismatch
feedback. The parameter values used are i) with queue feedback: a = 0.8, b = 0.005 and ii)
without queue feedback: a = 1.6, γ = 0.95. We consider the number of sources as 100, and
each with round-trip time of 100 ms.

feedback, the system undergoes a super-critical Hopf bifurcation, and leads to the
emergence of small amplitude limit cycles. The results of Hopf bifurcation analysis
revealed that the type of Hopf bifurcation does not depend on the values of link
capacity, round-trip time and the number of flows. We can verify this by changing
the values of these parameters and observe the results in both the cases i.e., with
and without queue size feedback (see Figures 16 and 17).
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Fig. 17: Simulation traces showing that the nature of Hopf bifurcation does not change with
τ and the number of sources. Parameter values chosen are i) with queue feedback: a = 0.8,
b = 0.005, C = 1 Gbps and ii) without queue feedback: a = 1.6, γ = 0.95, C = 1 Gbps.

8 Conclusions

RCP estimates the fair rate of flows using feedback based on rate mismatch and
queue size. An open design question in RCP is whether it is advantageous to in-
clude queue size feedback, given that the protocol already includes feedback based
on rate mismatch. To address this question, we linearized the system and ana-
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lyzed some of the stability and convergence properties for both the design options,
i.e., with and without queue size feedback. However, the results of stability and
convergence analyses do not provide any design guidelines on whether the queue
size feedback is useful or not. This provides motivation for non-linear analysis to
study some additional dynamical properties. In particular, we proceeded to ana-
lyze the dynamics of both the design choices as conditions for local stability are
just violated. We analyzed the type of Hopf bifurcation and the orbital stability
of the bifurcating limit cycles. We highlighted that the presence of queue feedback
in RCP results in a sub-critical Hopf bifurcation, at high link utilization. A sub-
critical Hopf leads to either large amplitude limit cycles or unstable limit cycles,
and hence its occurrence should be avoided. Whereas, in the absence of queue
feedback, the Hopf bifurcation is always super-critical and leads to the emergence
of stable limit cycles of small amplitude. Hence, it is advisable to go with the de-
sign choice that uses only rate mismatch feedback. We complemented the analysis
with bifurcation diagrams, numerical computations, and packet-level simulations.

Naturally, the work should also extend to consider the cases with multi bottle-
neck link and heterogeneous delays. It is also important to validate the analytical
insights using hardware experiments.
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