
How are you feeling? Using Tangibles to Log the
Emotions of Older Adults

Daniel Gooch
School of Computing

Communications, The Open
University, UK

Vikram Mehta
School of Computing and

Communications, The Open
University, UK

Blaine Price
School of Computing and

Communications, The Open
University, UK

Ciaran McCormick
School of Computing and

Communications, The Open
University, UK

Arosha Bandara
School of Computing and

Communications, The Open
University, UK

Amel Bennaceur
School of Computing and

Communications, The Open
University, UK

Mohamed Bennasar
School of Computing and

Communications, The Open
University, UK

Avelie Stuart
Department of Psychology, University

of Exeter, Exeter, UK

Linda Clare
Department of Psychology, University

of Exeter, Exeter, UK

Mark Levine
Department of Psychology, University

of Exeter, Exeter, UK

Jessica Cohen
Age UK Exeter, UK

Bashar Nuseibeh
School of Computing and

Communications, The Open
University/Lero, University of

Limerick

ABSTRACT
The global population is ageing, leading to shifts in health-
care needs. Home healthcare monitoring systems currently
focus on physical health, but there is an increasing recogni-
tion that psychological wellbeing also needs support. This
raises the question of how to design devices that older adults
can interact with to log their feelings. We designed three
tangible prototypes, based on existing paper-based scales
of a�ect. We report �ndings from a lab study in which par-
ticipants used the prototypes to log the emotion from stan-
dardised emotional vignettes. We found that the prototypes
allowed participants to accurately record identi�ed emotions
in a reasonable time. Our participants expressed a perceived
need to record emotions, either to share with family/carers or
for self-re�ection. We conclude that our work demonstrates
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the potential for in-home tangible devices for recording the
emotions of older adults to support wellbeing.
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1 INTRODUCTION
Across the globe, populations are ageing. The UN expects the
number of older adults1 to increase from 962 million globally
in 2017 to 2.1 billion in 2050 and 3.1 billion in 2100 [36]. This
increase in the age of the population has huge implications
for healthcare. If no other factors change, such a shift will

1For the purposes of this work, we use the term ‘older adults’ to refer to
anyone over the age of 60 based on the recommendations of Age UK (the
main charity working with older adults in the UK).
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lead to an increasing number of people with long-term dis-
abilities and chronic conditions. This will increase the need
for carers, and will likely increase the costs of healthcare
[54]. From both cost-e�ciency and wellbeing perspectives,
there is a general need to facilitate people’s ability to ‘age in
place’ (i.e. at home) [35].

There have been promising developments in the design of
technology to support an ageing population, particularly au-
tomated systems for managing home care technologies [26]
or coordinating interactions with home care support teams
[2]. Reviews of technologically assisted care indicate several
partially successful implementations of systems, particularly
with smart homes using activity detection, medication ad-
herence, and other behavioural monitoring [3].

To date, much of the focus of this monitoring has been task-
or health-speci�c; studying either an individual’s activities
(e.g. showering or eating) [3] or elements of the individual’s
health (blood pressure; heart rate; whether they have fallen
over) [1]. However, with a clear link between ‘successfully’
ageing, physical health and wellbeing, there is an increasing
focus on how to support the psychological wellbeing of older
adults [53]. In a smart home scenario, this necessitates some
mechanism for the detection or logging of the older adult’s
a�ective state to either ensure that the older adult is happy,
or, when in emotional turmoil, appropriate support can be
structured [10, 32, 50]. Such a logging system should not
be passive but should be actively used by participants so
that the older adult’s privacy is retained and they gain the
bene�ts of engaging with a system that is inferring about
their health and wellbeing [25, 42].
The vast bulk of interfaces developed to monitor a�ect

have tended to focus on younger people [8, 9, 15, 17, 19, 20, 29,
43, 49]. These interfaces may not be immediately adaptable
to use by older adults who have distinct cognitive, physical
and technical skills, alongside distinct wellbeing needs [53].
Therefore it is necessary for us to consider how to develop a
mechanism for recording the a�ective state of older adults
at home over a long period of time.

In this paper we present a study to develop an interactive
tangible device for older adults to record their emotions. We
designed a series of paper prototypes and examined their
validity against existing scales of emotion. Our �ndings show
that the paper prototypes allowed participants to accurately
record identi�ed emotions. The results also highlight that our
participants expressed a perceived need to record emotions,
either to share with family/carers or for self-re�ection, with
this need in�uencing the participants’ preference of device.
This demonstrates the potential for in-home tangible devices
for recording the emotions of older adults.

2 LITERATURE REVIEW
Across all �elds interested in a�ective experience, there are
three main approaches to detecting and measuring how peo-
ple feel; physiological, behavioural cues and self-report.
Under the physiological approach, a person’s physiolog-

ical state is measured and the a�ective state is inferred,
through parameters such as blood pressure, heart rate or
galvanic skin response [39].
The second approach to detecting a�ect is to examine

behavioural cues, based on the concept that certain a�ec-
tive states are re�ected in behavioural tendencies [11]. Tech-
niques include coding facial expressions [52], detecting smiles
from public cameras [16], inferringmood from signals present
in video blogs [48] or inferring mood through activity on
social media [28] or mobile phone use [21].
While both techniques show promise, they also remove

the agency of the person whose a�ective state is being in-
ferred. The third approach to detecting a�ect is self-reporting.
This approach uses scales and measures based on theoret-
ical constructs of emotion. These scales are completed by
an individual, providing a score for their current a�ective
state. The main limitations for self-reporting are well known;
generally, such scales cannot provide continuous monitoring
and are biased by a respondents’ ability and willingness to
report on their feelings [40].

While self-report measures have shortcomings, they pro-
vide the user with a level of control over the disclosure of
their a�ective state which is important for older adults in
having an active role in their healthcare needs [25, 42].

There is a rich literature on the bene�ts to an individual of
emotional re�ection and recording, which is commonly used
as a therapeutic technique [38]. A recent review of ecological
momentary assessment of mood highlights the importance
of self-reporting due to ecological validity and agency [58].
From a technology perspective, studies are starting to show
how technologically-mediated re�ection and recording can
improve wellbeing [22] and promote behaviour change [18].

Self-reported emotion scales
There are dozens of di�erent measures and scales focussed
on a�ect in the psychology literature (see [9] for an excellent
review). It has become common for such measures to coa-
lesce around two concepts: pleasure (or a�ect) and valence.
Dominance is a common third concept [5]. The theory is that
these three dimensions can account for signi�cant variances
in people’s emotional experiences.

Russell has been a strong proponent of a two-dimensional
approach to conceptualizing a�ect, demonstrating how a
range of models of a�ect can be presented as a spatial distri-
bution across two scales (a�ect and valence) [44, 45]. Such an
approach argues that a spatial model provides a conceptual



structure for related a�ective concepts in such a way that
allows the self-reporting of a�ect [44].
A related approach uses a�ective words to distinguish

between related a�ective states. One of the �rst measures
that took this approach was the Semantic Di�erential Scale,
consisting of a set of 18 bipolar adjective pairs [33]. Each pair
is then rated along a 9-point scale. Although heavily used,
the measure is extremely cumbersome to use, requiring 18
di�erent measurement ratings for each stimulus and relying
on a subject’s English reading skills.
Recognising these challenges, there was a move towards

pictorial scales, of which the Self-Assessment Manikin (SAM)
has become a signi�cant example. SAM consists of three
pictorial ranges. For a�ect (or pleasure), the pictures range
“from a smiling, happy �gure to a frowning, unhappy �gure”;
for arousal (or valence), the pictures range “from an excited,
wide-eyed �gure to a relaxed, sleepy �gure”; for dominance,
the change is in the size of the �gure, “a large �gure indicates
maximum control in the situation”. Under this scale, ‘happy’
is a pleasurable, slightly arousing and dominant experience;
fear is not pleasurable, highly arousing and submissive.

One of the main critiques of the SAM scale is the complex-
ity of administrating it, particularly in terms of explaining
the dimensions. Such instruction forms part of the SAM us-
age protocol. The dominance dimension is conceptually hard
to grasp and some have argued that the only intuitive scale
is valence (positive vs negative facial expression) [8].
This complexity has resulted in the development of sim-

pler pictorial scales. The ‘smileyometer’ was developed as
a single Likert-scale style set of a�ective faces [41]. Desmet
et al. take an alternative approach, identifying a set of eight
distinct emotions and generating cartoon �gures that repre-
sent those emotions. A questionnaire-based study with 191
participants suggests that their scale can provide robust and
reliable assessments of individuals’ emotions [9].

Self-reported a�ect interfaces
Many of the theoretical constructs and scales outlined in the
previous section have been developed into digital interfaces
so that they can be used in non-laboratory settings without
an expert administrating the scale.
The A�ectButton system translates a user’s cursor po-

sition x, y into values representing pleasure, arousal and
dominance (PAD). Based on those PAD values, a cartoon
facial expression is adapted. This allows a one-click a�ective
report on the three key a�ective constructs. Based on a vari-
ety of studies (including 3 large-scale studies involving 325,
202 and 128 participants respectively), the authors conclude
that the interface produces reliable, valid and usable a�ec-
tive results [8]. However, the studies only involved relative
young people from the Netherlands.

Rivera-Pelayo et al. take a di�erent approach with their
MoodMap App [43]. Based on the two dimensions of Rus-
sell’s Circumplex Model of A�ect [44, 45], the app consists
of a spectrum of colour across the two dimensions where
users can select their mood based on a position within the
colour spectrum. The results of a �eld study with 71 people
across two call centers over four weeks suggest the app could
improve work performance and team communication.
Sarzotti had the aim of making mood collection fun and

engaging. They developed the Mood TUI – a cube with a
di�erent emoticon on each face of the cube [49]. By rotating
the cube, the user selects what mood they are in by which
face is pointing up when placed on a table. 32 participants
took part in a discussion session based around the Mood TUI.
While participants were interested in the design, without a
evaluation assessing the validity of the data collected it is
hard to assess how useful the device would be.
It is notable that none of the interfaces explicitly discuss

their applicability to older adults, with the majority of study
populations being young adults [8, 9, 15, 17, 19, 20, 29, 43, 49].
Given that older adults have distinct physical and cognitive
di�erences from this population, we cannot assume that
these results are transferable to an older population.
There is a clear need for technologies that allow older

adults to log their emotions. In developing our prototypes,
we focused on designs that would be suitable for older adults
to use in their homes over a long period of time, which would
enable them to age in place.

3 DEVELOPING THE PAPER PROTOTYPES
Designing for long-term use by Older Adults
Given our design context, our �rst consideration was choos-
ing the most suitable format of the prototypes.

With aging, people can experience various degrees of de-
cline in their physical and cognitive abilities. This results in
various interactional challenges for older adults when op-
erating conventional graphical user interfaces [37, 51]. For
example, reduced vision makes it harder to read the screen
output and reduced motor skills makes selecting items with
a mouse di�cult and slower [55]. Several authors also note
the di�culties encountered by older adults when interacting
with touch screens [12, 34]. The lack of haptic feedback in
such interfaces can create perceptual di�culties [57].

Many researchers have therefore proposed exploring Tan-
gible User Interfaces (TUIs) as a more suitable interaction
media for older adults which lower the learning curve and
are more acceptable in domestic settings [23, 24, 51]. A vari-
ety of studies have started to explore how to design tangible
technologies for older adults, arguing that they are more
appropriate than their GUI-equivalent [24, 37, 51].



TUIs have also been found to increase engagement with
mood logging, something which is important to promote
ongoing use [49]. Furthermore, a recent systematic review of
the last 10 years of HCI health literature, with a detailed anal-
ysis of 139 papers, concluded that “HCI ought to be pushing
the research front on... novel tangible interfaces” particularly
in the context of wellbeing, due to the value of engaging with
interfaces outside of virtual or online environments [47].
Our �rst design decision was therefore to focus on the

design of a TUI prototype for logging emotional states.

Selecting the emotion scale
Given the range of types of scales (namely pictorial-based,
word-based and continuous scales), we wanted to develop
a prototype for each type. This would allow us to explore
whether the type of scale impacted the ability of participants
to record their emotions using the prototype. It would also al-
low us to explore whether there were any usability concerns
connected to the type of the scale.

Given that we wanted to compare the type of scale, it made
sense to select scales based around the same fundamental
conceptualisation of a�ect. We chose scales based around
Russell’s circumplex of a�ect as an established scale which
also had continuous, word-based and pictorial representa-
tions. We selected the circumplex itself, the emotive words
from Russell’s circumplex and Desmet’s pictorial scale [9],
based on anthropomorphic cartoons of the emotive words
from the circumplex. While none of these scales were ex-
clusively designed for use with older adults, they have been
widely used with this population and are accepted to be
accurate measures of a�ect.
Figure 1 shows how the three scales represent the same

conceptualisation. Taking the emotion of ‘excited’, the blue-
highlighted quadrant can be taken to represent the emotion
‘excited’ in the circumplex, it is represented by the word
‘Excited’ and the picture from Desmet is of an excited person.

This also led us to focus on developing prototypes that
could record eight emotions (as this corresponds to the num-
ber of emotions expressed in Desmet’s pictorial scale). The
emotions we are focussed on recording are thus set as:Happy,
Excited, Nervous, Annoyed, Sad, Bored, Calm and Relaxed.
These eight emotions provide wide coverage over the range
of potential emotions and are a commonly used sub-set of
representative emotions [9].

Designing the Paper Prototypes
Our designs were derived from a series of 5 group ideation
sessions in which the HCI members of our research team
generated and re�ned a variety of ideas for technologies that
could represent the selected scales (the circumplex, emotive
words and the pictorial scale from [9]) in a tangible form.
The ideation in these sessions was guided by previous work

Figure 1: A representation of how the circumplex of a�ect
[44], emotive words from [44] and pictorial scale from [9]
are all representations of the same scale.

on tangible mood devices (e.g. [43, 49]) while drawing on
the researchers’ creativity.

These ideation sessions resulted in a set of eight potential
designs which were tangible representations of the selected
scales. All of these designs were constructed in the form of
paper-prototypes and other non-functional artefacts.

We presented these designs to our partners from Age UK
Exeter and our social and clinical psychologists at a whole-
day workshop. During this meeting we discussed their views
on the designs, considering their appropriateness for use
by older adults in terms of both ease-of-use and ease-of-
understanding.
Based on this workshop, we iterated over the prototype

designs, resulting in three prototypes that a) had a strong
link to an existing scale and b) had a form that we believed
would best integrate into a home location, being based on
a format that would be familiar (a clock, a picture frame
and a dice). At this stage, we also selected the scale that the
research team believed would be most suited to that form of
tangible interaction.
We pilot tested these designs with two older adults. The

feedback from these pilots was used to further re�ne the
prototypes into designs that were suitable for use by older
adults, particularly by re�ning the sizing and materials used
in the prototypes. The resulting designs were named the
Emotion Octagon, the Emotion Clock and the Emotion Board.

Emotion Octagon
The Emotion Octagon took inspiration from the Mood TUI
cube developed by Sarzotti [49]. Accepting that this is an
engaging way of selecting an emotion, which doesn’t require
�ne-grain motor control, we decided to use a more validated
representation of emotion, selecting the pictorial scale in



Desmet et al. [9]. As this scale uses eight di�erent images of
people to represent eight di�erent a�ective states, we had to
develop an octagonal representation with each image from
the scale on a di�erent face (see Figure 2). A user selects an
emotion by placing the picture that represents their emotion
facing upwards.

Figure 2: The Emotion Octagon, using the pictorial scale in
[9]. Currently showing the ‘Relaxed’ option selected.

Emotion Clock
The Emotion Clock is based on the emotive words positioned
around Russell’s circumplex [44, 45]. We utilised this concept
by taking eight emotive words from the descriptive labels
for each of the �gures from the pictorial scale from Desmet
et al. [9]. These words are arranged around a clock-face in
accordance with Russell’s a�ect/valence circumplex [44, 45]
(see Figure 3). A user selects an emotion by rotating the
clock hand to the word describing the emotion they want to
convey.

Figure 3: The Emotion Clock, using a subset of the emotive
words in [44]. The user has chose the ‘Happy’ emotion.

Emotion Board
The Emotion Board is a tangible representation of Russell’s
axes [44, 45], using the colour scheme from Rivera et al. [43]
(see Figure 4). We added the colour scheme to the original

design based on the feedback of Age UK Exeter and our social
and clinical psychologists who believed it would make the
prototype more engaging.
The axes are labelled High Energy to Low Energy (top to

bottom) and Feeling Bad to Feeling Good (left to right). A user
moves a magnet around to select a position on the axes and
thus represent an emotive state.

Figure 4: The Emotion Board, based on the Russell axes in
[44] using the colour scheme from [43].

4 METHOD
We have two key concerns in exploring the value of these
prototypes. The �rst is whether participants can accurately
record their emotional state through the prototype. In doing
so, we demonstrate the potential to use TUIs for older adults
to record their emotions in a meaningful way.
The second is to capture older adults’ attitudes and per-

ceptions towards the three prototypes and to explore their
willingness to place something similar in their homes. If the
TUIs are capable of recording excellent data but no one is
willing to use the devices, we will still be unable to collect
a�ective data over the long-term from older adults.
Our study was designed in accordance with our Univer-

sity’s code of ethics. Each of the designs was piloted and
was found to induce no discomfort. We allowed participants
the right to refuse to use any of the designs, and we made it
possible for participants to immediately end their use of a
design if they experienced any discomfort. None of the par-
ticipants opted to do so. We also piloted the study method
with two participants, re�ning our study procedure.

Participants
Participants’ ages ranged from 63 to 90 years old (M = 72.64
years, SD = 8.4). All 14 participants had English as their �rst
language. None of the participants had disruptive cognitive
or physical di�culties. Participants were recruited through
Age UK Milton Keynes or personal contact with the authors.



Procedure
To gather feedback about the designs, we employed a lab-
style approach, followed by a short interview. One session
took place at a participant’s home; the other 13 took place
at the Age UK Milton Keynes centre. While this is not a
domestic location, it is more familiar than a lab-setting while
not requiring participants to allow researchers into their
homes. The sessions lasted between 25 and 46 minutes (mean
= 32 minutes). Each session was one-to-one between the
researcher and participant. Our procedure was as follows:
(1) Study Introduction. Sessions began by the researcher

explaining that the purpose of the study was to explore new
ways of logging emotion and highlighting that no personal
emotional experiences would be logged. Informed consent
was then collected. At this point, participants were given a
brief explanation of the prototypes and how they represent
the two dimensions of emotion. The researcher answered
any questions the participant had regarding the prototypes.
(2) Prototype Introduction and Use. To ensure coverage

across di�erent emotional states, we decided to use standard-
ised emotive vignettes. For this purpose, we gained access
to the A�ective Norms for English Text (ANET) vignettes
which are linked to known Self-Assessment Mannikin (SAM)
scores, giving us a known emotion associated with each vi-
gnette [6]. These texts have previously been used in studies
of emotional interfaces [8]. For each of the eight emotions
(Happy; Calm; Nervous; Excited; Sad; Relaxed; Bored and
Annoyed), we selected a short vignette with SAM scores
corresponding to that emotion.

Unfortunately, part of the procedure for using ANET is to
keep the vignettes con�dential so we are unable to reproduce
them here. However, to illustrate the nature of the vignettes,
the examples below were written by the �rst author:

1) “You receive a phone call telling you that you have won
the star prize of a million dollars in the crossword competi-
tion you entered last month” [Excited]

2) “You discover that your pet has passed away peacefully
in their sleep while you were at work” [Sad]

Participants were provided with the texts in a randomised
order. Having read the text, participants were asked to think
about the emotion expressed by the text. They would then
provide a verbal description of that emotion (which we shall
refer to as the participant description). In all cases, partici-
pants provided a verbal description that was a synonym of
one of the eight emotions (e.g. ‘nerve wracking’ becomes
‘Nervous’). The participant description allows us to ensure
that the emotion logged by the participant through the pro-
totype matches the emotion the participant wanted to log.
Participants were provided with each of the designs in a

randomised order; participants were then asked to record
the emotion from the vignette through the prototype. The

researcher recorded the result for the prototype alongside
the time taken by the participant to record the emotion. This
timing data is used as a proxy for usability, assessing that
none of the prototypes took an unreasonable amount of time
to use (either through confusion of how to log an emotion,
or di�culty of using the interface).
Participants were also asked to follow a think-aloud pro-

tocol and notes were taken throughout.
(3) Wrap Up Interview. We concluded by asking partici-

pants to complete a short interviewwhichwas audio recorded.
Participants were asked about what they thought generally
about the idea of recording their emotions, how hard they
found each prototype to use, how hard each prototype was to
understand and their opinions about having a similar device
in their home.
Sessions ended with a short debrief, during which time

participants were thanked. Participants were not remuner-
ated for taking part.

5 ANALYSIS
In analysing the data from the study, we have two main
concerns. The �rst is the accuracy of the prototypes – can
participants log the emotion they want to log through the
prototype devices? The second concern is exploring the par-
ticipants’ views of recording their emotion, how hard they
found each prototype to use, how hard each prototype was to
understand and their opinions about having a similar device
in their home.

Accuracy of the prototypes
The data from each of the prototypes can be analysed in two
di�erent ways: categorically and ordinally. Data from each
of the prototypes can be treated as categorical data. For each
vignette we have ‘ground truth’; that is, as they are from
a validated set of emotive texts, we know the emotion the
vignette should be provoking in our participants. We also
have the participant description, the emotion the participant
believes each vignette expresses. To determine whether the
prototypes allow participant’s to log the emotion they want
to record, we can use Cohen’s kappa to compare the emo-
tion recorded through the prototype against a) the expected
emotion from the vignette and b) the participant description.
Cohen’s kappa ranges from no agreement (k=0) to complete
agreement (k=1) [31].
The problem with treating the data as categorical is that

it removes any connection between the di�erent emotions.
For example, if a participant records ‘Happy’ instead of ‘Ex-
cited’, that is a closer match than if they record ‘Sad’. An
alternative way of conceptualising the data is as two ordinal
scales. Each of the prototypes uses a scale based on Russell’s
circumplex of a�ect (see Figure 1), therefore each emotion



can be represented as a pair of �gures ranging from -2 to +2
for both A�ect and Valence (see Figure 5).

Figure 5: A representation of how the emotions can be given
ordinal values on the circumplex of a�ect.

As an indicator of similarity, it is possible to calculate the
Euclidean distance, by calculating the distance between two
matrices (the expected emotional values and the actual emo-
tional values) with eachmatrix being formed of the a�ect and
valence values. The distance re�ects the size of dissimilarity
between the expected emotions and the recorded emotions;
the more dissimilar, the greater the distance between them.
The Euclidean distance between two observations is the
length of the line between them. The equation below is used
to calculate the distance across all samples:

Di =

vut n’
j=1

(Aj � Bj )2

In both the categorical Cohen’s kappa and the ordinal
Euclidean distance, we are not interested in the statistical
performance per se; we are looking for con�rmation that the
prototypes are allowing participants to log the emotion they
wish to record.

Analysing participants’ views
The interviews were audio recorded and transcribed. Tran-
scripts were subjected to an inductive thematic analysis [7]
in which we explored our participants’ views of the proto-
types. No codes or themes existed prior to the analysis; they
were created through constant comparison of the data and
the application of labels to the text.

This qualitative analysis was supported by analysing (with
an Anova test) how long it took to use the prototypes.

6 RESULTS
Accuracy of the logged emotions
The importance of using the standard ANET vignettes, along-
side the participant description, is that they provide baseline

data of the emotion associated with the vignette and what
the participant wanted to express. This can then be compared
against the emotions collected through the three prototypes.

The �rst stage of this comparison is to examine the results
as categorical data. We are comparing the results collected
through the prototypes against the expected result based on
the ANET vignette scores and the participant described emo-
tions. Table 1 presents the results from calculating Cohen’s
kappa for each prototype. The results show at least moderate
agreement (all Kappas > 0.46 at p<0.001) [27].

When calculating the results, and analysing the interviews,
it was clear that participants struggled to di�erentiate be-
tween the ‘Relaxed’ and ‘Calm’ vignettes. The italic �gures
in Table 1 also provide the Kappas for each prototype ex-
cluding data relating to these two categories, demonstrating
increased levels of agreement.
The Kappa results highlight that the Emotion Clock has

the most matches between intended emotion and expressed
emotion, followed by the Emotion Octagon and the Emotion
Board prototypes.

Prototype Vignette Participant
Description

Emotion Clock 0.62 (0.82) 0.74 (0.82)
Emotion Octagon 0.5 (0.63) 0.63 (0.66)
Emotion Board 0.5 (0.63) 0.46 (0.61)

Table 1: Cohen’s kappa values for each prototype. Figures in
italics are Cohen’s kappa values for each prototype exclud-
ing the relaxed/calm data.

Prototype Vignette Participant
Total Description

Distance Total Distance
Emotion Clock 80.7 55.7

Emotion Octagon 106.6 73.2
Emotion Board 122.5 124.5

Table 2: The Euclidean distance for the a�ect and valence
data recorded through each interface compared against the
expected data from the vignette and the participant descrip-
tion.

We now examine the results as ordinal data. We calcu-
lated the Euclidean distance between the a�ect/valence val-
ues collected through the prototypes and the expected af-
fect/valence from the vignettes. We also calculated the Eu-
clidean distance between the values collected through the
prototypes and the participant’s description of the vignette.
Table 2 shows the Euclidean distances for each of the pro-
totypes. To interpret these �gures, it is important to note



that there are a total of 112 data points (8 vignettes from 14
participants) on two scales running from �2 to +2.
To contextualise the data, we also calculated what the

Euclidean distance would be if, for a given interface, all
participants were one emotion out (see Figure 5, e.g. the
expected emotion was ‘Excited’ and the participant records
‘Happy’). Such a scenario provides a Euclidean distance of
158.4. We also calculated what the Euclidean distance would
be if, for a given interface, all participants provided the op-
posite emotion (e.g. the expected emotion was ‘Happy’ and
the participant records ‘Sad’). Such a scenario provides a
Euclidean distance of 500.9.
Compared against these contextual calculations, our re-

sults in Table 2 show at least moderate agreement between
the expected emotion and the recorded emotion. This sug-
gests that the disagreements between expected emotions and
recorded emotions noted by the Cohen Kappa results were
not large discrepancies (e.g. logging ‘Happy’ instead of ‘Sad’)
but small (e.g. logging ‘Excited’ instead of ‘Happy’).
Consistent with the Kappa results, these results show a

clear di�erence in the accuracy of the prototype responses
with the emotions logged through the Emotion Clock being
the closest to both the vignette and participant description
values, the Emotion Octagon being the next closest and the
Emotion Board having the least accurate results.
The cross-tabulation presented in Table 3 shows the par-

ticipants’ responses recorded through the prototypes as com-
pared to the expected emotion from the ANET vignette. This
data highlights the challenge of categorising emotion in this
fashion: Happy/Excited are used almost interchangeably and
Relaxed/Calm are di�cult to distinguish.

Speed of using the prototypes
The �rst element of exploring the usability of the prototypes
was to establish whether there were any signi�cant di�er-
ences in the time taken to use any of the prototypes. The
mean time for entering an emotion was low: Emotion Clock
took 5.93 seconds, Emotion Octagon took 12.41 seconds and
Emotion Board took 8.59 seconds.

We ran a two-factor Anovawith replication to �ndwhether
there was a signi�cant di�erence in the time taken to record
an emotion by prototype (F=11.02, p<0.005), by vignette
(F=0.75, p>0.05) or by the interaction of both (F=1.29, p>0.05).
This shows a signi�cant di�erence in the amount of time
taken to record an emotion by the prototype.
To establish where the di�erence is, we ran three paired

t-tests comparing the Emotion Clock against the Emotion
Board (t =�2.22, p<0.05), the Emotion Clock against the Emo-
tion Octagon (t = �5.42, p<0.05) and the Emotion Octagon
against the Emotion Board (t = 2.41, p<0.05). This demon-
strates that it was quickest to record an emotion through the

Emotion Clock, then the Emotion Board with the Emotion
Octagon the slowest.

The next stage in presenting our results is to examine what
the interviews with our participants reveal. Our thematic
analysis resulted in three broad level themes: a) whether
the older adults could see a purpose in using the prototypes
to record emotions; b) speci�c insights into the particular
prototype designs; and c) the suitability of the prototype
designs for use with older adults.

Perceived need to record emotion
All of our participants could see a purpose in recording their
emotions on a regular basis.
Most of our participants (9/14) saw recording their emo-

tion as a mechanism for sharing their feelings over time with
other people. Broadly speaking, this was seen in the context
of wellbeing either in terms of sharing with family members:
“I think for other familymembers to be aware of, would be good”
[P4] or with carers: “If I was living at home and I had a carer
coming in, I would be prepared to slide that around somewhere
on a day and go ‘Yes, I feel a bit blue-esy today’ or ‘I don’t feel
so good’... it’s a way, perhaps, of expressing something quite
complicated without having to go into any great detail” [P3].
Almost half (6/14) of our participants saw bene�ts in

recording their emotion in terms of being able to self-re�ect
on their feelings and, if necessary, change their behaviour:
“because sometimes you do feel a little bit down but don’t know
why. So, I suppose you could, if there was a pattern, you could
help” [P11], “if you had some mental health issues... if you
were depressed, or anxious, or something like that, as part of
therapy it might be that you record that on a daily basis... I
could see that working” [P5].

Prototype preferences
When asked to select the prototype they were most likely to
use in the future, the participants were fairly evenly spread
with 5 participants selecting the Emotion Clock, 4 selecting
the Emotion Octagon, 3 selecting the Emotion Board and 2
participants unable to choose between the Emotion Clock
and the Emotion Board.

These decisions followed a remarkably consistent pattern.
Most (11/14) participants stated that the Emotion Clock was
the easiest prototype to use, primarily as the decision-making
process was so straightforward. Selecting an emotive word
required little interpretation or thought: “because it did the
exact moods, whether you were happy, excited” [P2]. While
this lack of thought created a simple prototype, it was also
interpreted as trivialising the process.

The Emotion Octagon created an additional process of in-
terpretation which required more thought: “[it was] more dif-
�cult to understand, because on some of the answers, I couldn’t
�nd a picture that really said how I felt” [P4]. Three of our



Expected emotion from the ANET vignette
Emotion Happy Excited Nervous Annoyed Sad Bored Relaxed Calm Total
recorded
in the

prototype
Happy 24 10 0 0 0 3 9 4 50
Excited 13 27 1 1 0 0 1 1 44
Nervous 1 3 20 3 2 1 0 0 30
Annoyed 0 1 7 36 3 1 0 2 50

Sad 0 0 10 1 32 1 0 2 46
Bored 0 0 1 1 3 24 0 11 40
Relaxed 2 1 1 0 0 11 28 12 55
Calm 2 0 2 0 2 1 4 10 21
Total 42 42 42 42 42 42 42 42 336

Table 3: Cross-tabulation of emotions associated with the vignette and the emotion recorded through the prototype for all
participants

participants preferred the Emotion Octagon as a compromise
between simplicity and re�ection: “you need to be a bit more
analytical... you had to think about what it meant” [P5].

However, the Emotion Board was generally agreed by six
participants to require the most interpretation: “you’ve got
more of a nuance there because you’ve got a range of mood
in between” [P3], “because it makes you think about it more.
You’ll think about your answers more” [P7].
In terms of engagement, the simplicity of the Emotion

Clock made it unengaging. The use of faces on the Emotion
Octagon provided a media that people could relate to, that
appeared to lead to a greater level of engagement: “The facial
expressions can sometimesmeanmore to people, in a subtle way,
than the actual words” [P3]. However, �ve participants found
it challenging to interpret the emotion expressed by the faces:
“you can look at faces and see di�erent things. Someone might
think that’s a happy face, you know?” [P11].

The most engaging interface for eight of our participants
was the Emotion Board, partially due to the �exibility in
where to record their emotion but also due to the use of
colours: “the colours actually help convey mood a lot” [P7],
“is more open if you want to look at colours and that. I always
think yellow is a happy one. red can be a bit excitable. I do like
green, because it’s serene” [P6]. The emotional connotations of
colour are extremely complex, culturally speci�c and beyond
the remit of this paper. However, it is worth noting that
these connotations appear to have been individualised and
important in terms of engaging our participants.

Suitability for older adults
We have previously discussed how there is some research
which indicates that TUI devices are easier for older adults
to interact with than GUIs [12, 23, 24, 34, 37, 51, 55, 57].
Building on this, and work which suggests that TUIs provide

an engaging way of logging emotions [49], we wanted to
explore our participants’ thoughts regarding the suitability
of the devices for older adults.
The �rst aspect was tangibility. Half of the participants

discussed how the physicality of the prototypes made them
easier to operate even with arthritis: “It’s easier to hold for me
anyway, and I’m paralysed in this hand... it’s arthritis” [P1].

There was some indication that the participants found the
interfaces engaging, that the physicality of the interaction
was pleasant: “I liked physically handling this [the Emotion
Octagon]... turning the cube and looking at the faces and then
picking the face” [P12]. Only one of our participants (P5)
suggested that a smartphone app would be something they
would be more likely to use.

Our last question around suitability was if participants
would like to keep the prototype, in which room in their
home they would be most likely to place it. The majority of
our participants selected public areas of their homes (seven
chose the living room, one chose the dining room, one chose
the front door) with only one participant choosing a private
area (their bedroom). Not only does this indicate the ap-
propriateness of the prototypes, with 10 of our participants
wanting to keep the prototypes, it also indicates that our
participants were not concerned about other people seeing
the prototypes and questioning their purpose.

7 DISCUSSION
Our research questions were focussed around two key con-
cerns. The �rst is whether participants can accurately re�ect
their emotional state through the prototype. Our data clearly
highlights that all three prototypes allowed participants to
accurately log the emotion they wanted to record.

One of the surprising �ndings from our data is that none
of the prototypes are notably more accurate in recording the



emotion a participant wants to log. This indicates that any of
the prototypes could be used to accurately record emotion.
Our �ndings also demonstrate that our participants saw

value in the devices if a suitable intervention can then be
provided. Such a position is common in self-tracking sys-
tems aimed at supporting behaviour change [10, 17]. There
was a clear di�erence in which device would enable them
to log constrained or open emotion options. Whether they
preferred constrained or open options was dependent on the
perceived purpose of the device.

Participants who preferred the constrained Emotion Clock
tended to see the need of the device as sharing a general re-
port of their a�ective state with others (be that family or
carers). The expectation is that the family/carers would fur-
ther explore the emotional state of the older adult and work
with them to improve their wellbeing. Those participants
who preferred the more open-ended Emotion Board, saw the
device as a mechanism for self-re�ection, using the act of
logging as a way of self-checking their emotions and poten-
tially enacting behaviour change as a result. Both of these
perceived needs are important, given the clear link between
successfully ageing, physical health and wellbeing [53].
In both cases, the level of granularity of emotion is rela-

tively large; knowing that someone is relaxed rather than
calm is less signi�cant than whether someone is happy or
sad. Given the context, we would argue that the prototypes
provide su�ciently detailed data that could be used to sup-
port older adults wellbeing. Such a �nding also suggests that
there is a need for a clear use case associated with the design
of an interactive device to log emotion; either combining the
ability to report constrained emotions while leaving open
the ability to re�ect, or having separate devices.

For both use cases, there is a need to generate a historical
record. For those interested in sharing data, this can simply
chart the emotions recorded over time. However, for those
interested in self-re�ection, research in self-tracking has
highlighted that in addition to the bene�ts of re�ecting at the
moment of collection, there are further bene�ts to wellbeing
in re�ecting on the data at a later point [13, 30, 56]. This is
an area of research that needs further work.
Our second research question was whether older adults

could use the three prototypes to record their emotions. Our
timing data shows that our participants could record emo-
tions at a reasonable speed through all three prototypes,
particularly when compared to the amount of time needed
to complete a diary entry or a questionnaire.
Our results also highlight that the tangible nature of the

devices was useful, particularly for those older adults who
have arthritis or other musculoskeletal di�culties. Given
that arthritis is a common condition, particularly in later life
[4], and that musculoskeletal di�culties can limit the ability

of an individual to control a GUI [46], it appears as though a
tangible device is much more suitable for use by older adults.
In terms of engagement, all of our participants were in-

terested and excited by the tangible prototypes. A recent
literature review has established that the real-world uptake
and engagement of self-help apps varies dramatically but is
relatively low, particularly over the longer term [14]. As such,
we would argue that focussing on using a tangible approach
for long-term engagement with the use of the self-tracking
technology is a route for further work.

8 LIMITATIONS AND FUTUREWORK
It is important to note a number of limitations with our
approach. In terms of the prototype designs, we did not com-
pare all of the potential designs in terms of the combinations
of the scale selected and the interface type. While we have
demonstrated the potential for TUIs to acts as tools for older
adults to log their emotion, we do not o�er our speci�c de-
vices as the most e�ective designs.

For example, as three of our participants noted, the way all
three prototypes are con�gured means that it is not possible
to record multiple emotions. These shortcomings are inher-
ent in the standardised scales we based our prototypes on
and need to be considered when translating the prototypes
into functional devices.

Similarly, in basing the prototypes on standardised scales,
we constrained the range of emotions that could be logged –
in the current designs, it is hard to express emotions such as
‘thoughtful’, ‘suspicious’ or ‘horror’. Further work is needed
to explore whether a wider range of emotions are needed in
the context of supporting wellbeing for older adults.
Beyond this, there is a broader question around the use

of TUIs for logging emotions. Our work demonstrates that
tangible interfaces can be used for selecting emotions with
the same degree of accuracy as paper-based interactions
also based on selection. It is interesting to consider what
tangibles could o�er beyond this if we move away from
standard scales of emotion and focus on developing tangible
expressions of emotion. While not the aim of this paper, we
o�er this suggestion as a direction of further work

9 CONCLUSION
In this paper we have contributed an empirical investigation
into the suitability of using TUIs based on standardised scales
of emotion for older adults to log emotions. We conclude that
some of our prototypes are su�ciently accurate in collecting
emotional data from older adults. We further demonstrate
that the tangibility of the prototypes is engaging for older
adults and that our study population could foresee practical
uses of the prototypes, particularly as tools for sharing their
emotional data and as a mechanism for self-re�ection.



This study provides foundational support for a range of dis-
crete and continuous tangible emotion self-logging devices
for older adults. In future work we plan on exploring whether
implementations of our prototypes can collect meaningful
data in the long-term in an individual’s home and explore
whether such devices can support the wellbeing of older
adults as they age in place.
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