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The Adversarial Robustness of Sampling

Omri Ben-Eliezer∗ Eylon Yogev†

Abstract

Random sampling is a fundamental primitive in modern algorithms, statistics, and ma-
chine learning, used as a generic method to obtain a small yet “representative” subset of the
data. In this work, we investigate the robustness of sampling against adaptive adversarial
attacks in a streaming setting: An adversary sends a stream of elements from a universe U to
a sampling algorithm (e.g., Bernoulli sampling or reservoir sampling), with the goal of mak-
ing the sample “very unrepresentative” of the underlying data stream. The adversary is fully
adaptive in the sense that it knows the exact content of the sample at any given point along
the stream, and can choose which element to send next accordingly, in an online manner.

Well-known results in the static setting indicate that if the full stream is chosen in advance
(non-adaptively), then a random sample of size Ω(d/ε2) is an ε-approximation of the full
data with good probability, where d is the VC-dimension of the underlying set system (U,R).
Does this sample size suffice for robustness against an adaptive adversary? The simplistic
answer is negative: We demonstrate a set system where a constant sample size (corresponding
to a VC-dimension of 1) suffices in the static setting, yet an adaptive adversary can make the
sample very unrepresentative, as long as the sample size is (strongly) sublinear in the stream
length, using a simple and easy-to-implement attack.

However, this attack is “theoretical only”, requiring the set system size to (essentially) be
exponential in the stream length. This is not a coincidence: We show that in order to make the
sampling algorithm robust against adaptive adversaries, the modification required is solely to
replace the VC-dimension term d in the sample size with the cardinality term log |R|. That
is, the Bernoulli and reservoir sampling algorithms with sample size Ω(log |R|/ε2) output a
representative sample of the stream with good probability, even in the presence of an adaptive
adversary. This nearly matches the bound imposed by the attack.
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1 Introduction

Random sampling is a simple, generic, and universal method to deal with massive amounts
of data across all scientific disciplines. It has wide-ranging applications in statistics, databases,
networking, data mining, approximation algorithms, randomized algorithms, machine learning,
and other fields (see e.g., [CJSS03, JMR05, JPA04, CDK+11, CG05, CMY11] and [Cha01, Chapter
4]). Perhaps the central reason for its wide applicability is the fact that it (provably, and with
high probability) suffices to take only a small number of random samples from a large dataset
in order to “represent” the dataset truthfully (the precise geometric meaning is explained later).
Thus, instead of performing costly and sometimes infeasible computations on the full dataset,
one can sample a small yet “representative” subset of a data, perform the required analysis on
this small subset, and extrapolate (approximate) conclusions from the small subset to the entire
dataset.

The analysis of sampling algorithms has mostly been studied in the non-adaptive (or static)
setting, where the data is fixed in advance, and then the sampling procedure runs on the fixed
data. However, it is not always realistic to assume that the data does not change during the
sampling procedure, as described in [MNS11, GHR+12, GHS+12, HW13, NY15]. In this work,
we study the robustness of sampling in an adaptive adversarial environment.

The adversarial environment. In high-level, the model is a two-player game between a ran-
domized streaming algorithm, called Sampler, and an adaptive player, Adversary. In each round,

1. Adversary first submits an element to Sampler. The choice of the element can depend, pos-
sibly in a probabilistic manner, on all elements submitted by Adversary up to this point, as
well as all information that Adversary observed from Sampler up to this point.

2. Next, Sampler probabilistically updates its internal state, i.e., the sample that it currently
maintains. An update step usually involves an insertion of the newly received element to
the sample with some probability, and sometimes deletion of old elements from the sample.

3. Finally, Adversary is allowed to observe the current (updated) state of Sampler, before pro-
ceeding to the next round.

Adversary’s goal is to make the sample as unrepresentative as possible, causing Sampler to come
with false conclusions about the data stream. The game is formally described in Section 2.

Adversarial scenarios are common and arise in different settings. An adversary uses adver-
sarial examples to fool a trained machine learning model [SZS+14, MHS19]; In the field of online
learning [Haz16], adversaries are typically adaptive [SS17, LMPL18]. An online store suggests
recommended items based on a sample of previous purchases, which in turn influences future
sales [Sha12, GHR+12]. A network device routes traffic according to statistics pulled from a sam-
pled substream of packets [DLT05], and an adversary that observes the network’s traffic learns the
device’s routing choices might cause a denial-of-service attack by generating a small amount of
adversarial traffic [NY15]. A high-frequency stock trading algorithm monitors a stream of stock
orders places buy/sell requires based on statistics drawn from samples; A competitor might fool
the sampling algorithm by observing its requests and modifying future stock orders accordingly.
An autonomous vehicle receives physical signals from its immediate environment (which might
be adversarial [SBM+18]) and has to decide on a suitable course of action.
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Even when there is no apparent adversary, the adaptive perspective is sometimes natural
and required. For instance, adaptive data analysis [DFH+15, WFRS18] aims to understand the
challenges arising when data arrives online, such as data reuse, the implicit bias “collected”
over time in scientific discovery, and the evolution of statistical hypotheses over time. In graph
algorithms, [CGP+18] observed that an adversarial analysis of dynamic spanners would yield a
simpler (and quantitively better) alternative to their work.

In view of the importance of robustness against adaptive adversaries, and the fact that random
sampling is very widely used in practice (including in streaming settings), we ask the following.

Are sampling algorithms robust against adaptive adversaries?

Bernoulli and reservoir sampling. We mainly focus on two of the most basic and well-known
sampling algorithms: Bernoulli sampling and reservoir sampling. The Bernoulli sampling al-
gorithm with parameter p ∈ [0, 1] runs as follows: whenever it receives a stream element xi,
the algorithm stores the element with probability p. For a stream of length n the sample size is
expected to be np; and furthermore, it is well-concentrated around this value. We denote this
algorithm by BernoulliSample.

The classical reservoir sampling algorithm [Vit85] (see also [Knu97, Section 3.4.2] and a formal
description in Section 2) with parameter k ∈ [n] maintains a uniform sample of fixed size k,
acting as follows. The first k elements it receives, x1, . . . , xk, are simply added to the memory
with probability one. When the algorithm receives its ith element xi, where i > k, it stores it with
probability k/i, by overriding a uniformly random element from the memory (so the memory
size is kept fixed to k). We henceforth denote this algorithm by ReservoirSample.

Attacking sampling algorithms. To answer the question above of whether sampling algorithms
are robust against adversarially chosen streams, we must first define a notion of a representative
sample, as several notions might be appropriate. However, we begin the discussion with an
example showing how to attack the Bernoulli (and reservoir) sampling algorithm with respect to
merely any definition of “representative”.

Consider a setting where the stream consists of n points x1, . . . , xn in the one-dimensional
range of real numbers [0, 1]. BernoulliSample receives these points and samples each one indepen-
dently with probability p < 1. One can observe that, in the static setting and for sufficiently large
p, the sampled set will be a good representation of the entire n points for various definitions of
the term “representation”. For example, the median of the stream will be ε-close1 to the median
of the sampled elements with high probability, as long as p = c

ε2n
for some constant c > 0 (this

also holds for any other quantile).
Consider the following adaptive adversary which will demonstrate the difference of the adap-

tive setting. Adversary keeps a “working range” at any point during the game, starting with the
full range [0, 1]. In the first round, Adversary chooses the number x1 = 0.5 as the first element
in the stream. If x1 is sampled, then Adversary moves to the range [0.5, 1], and otherwise, to the
range [0, 0.5]. Next, Adversary submits x2 as the middle of the current range. This continues for n
steps; Formally, Adversary’s strategy is as follows. Set a1 = 0 and b1 = 1. In round i, where i runs

1The term “close” here means that the median of the sampled set will be an element whose order among the
elements of the full stream, when the elements are sorted by value from smallest to largest, is within the range
(1± ǫ)n/2, with high probability where the parameter ǫ depends on the probability p.
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from 1 to n, Adversary submits xi =
ai+bi

2 to BernoulliSample; If xi is sampled then Adversary sets
ai+1 = xi, bi+1 = bi, and otherwise, it sets ai+1 = ai, bi+1 = xi. The final stream is x1, . . . , xn.

Note that at any point throughout the process, Adversary always submits an element that is
larger than all elements in the current sampled set, and also smaller than all the non-sampled ele-
ments of the stream. Therefore, the end result is that after this process is over, with probability 1,
the k sampled elements are precisely the smallest k elements in the stream. Of course, the median
of the sampled set is far from the median of the stream as such a subset is very unrepresentative
of the data. Actually, one might consider it as the “most unrepresentative” subset of the data.

The exact same attack on BernoulliSample works almost as effectively against ReservoirSample.
In this case, the attack will cause all of the k sampled elements at the end of the process to lie
among the first O(k ln n) elements with high probability. For more details, see Section 5.

The good news. This attack joins a line of attacks in the adversarial model. Lipton and
Naughton [LN93] showed that an adversary that can measure the time of operations in a dic-
tionary can use this information to increase the probability of a collision and as a result, signif-
icantly decrease the performance of the hashtable. Hardt and Woodruff [HW13] showed that
linear sketches are inherently non-robust and cannot be used to compute the Euclidean norm
of its input (where in the static setting they are used mainly for this reason). Naor and Yogev
[NY15] showed that Bloom filters are susceptible to attacks by an adaptive stream of queries if the
adversary is computationally unbounded and they also constructed a robust Bloom filter against
computationally bounded adversaries.

In our case, we note that the given attack might categorize it as “theoretical” only. In practice,
it is unrealistic to assume that the universe from which Adversary can pick elements is an infinite
set; how would the attack look, then, if the universe is the discrete set [N] = {1, . . . , N}? Adversary

splits the range [0, 1] to half for n times, meaning that the precision of the elements required is
exponential; The analogous attack in the discrete setting requires N to be exponentially large
with respect to the stream size n. Such a universe size is large and “unrealistic”: for Sampler to
memorize even a single element requires memory size that is linear in n, whilst sampling and
streaming algorithms usually aim to use an amount sublinear in n of memory.

Thus, the question remains whether there exist attacks that can be performed on elements us-
ing substantially less precision, that is, on a significantly smaller size of discrete universe. In this
work, we bring good news to both the Bernoulli and reservoir sampling algorithms by answer-
ing this question negatively. We show that both sampling algorithms, with the right parameters,
will output a representative sample with good probability regardless of Adversary’s strategy, thus
exhibiting robustness for these algorithms in adversarial settings.

We note that any deterministic algorithm that works in the static setting is inherently robust in
the adversarial adaptive setting as well. However, in many cases, deterministic algorithms with
small memory simply do not exist, or they are complicated and tailored for a specific task. Here,
we enjoy the simplicity of a generic randomized sampling algorithm combined with the robust
guarantees of our framework.

What is a representative sample? Perhaps the most standard and well-known notion of being
representative is that of an ε-approximation, first suggested by Vapnik and Chervonenkis [VC71]
(see also [MV17]), which originated as a natural notion of discrepancy [Cha01] in the geometric
literature. It is closely related to the celebrated notion of VC-dimension [VC71, Sau72, She72], and
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captures many quantitative properties that are desired in a random subset. Let X = (x1, . . . , xn)
be a sequence of elements from the universe U (repetitions are allowed) and let R ⊆ U. The
density of R in X is the fraction of elements in X that are also in R (i.e., dR(X) = Pri∈[n][xi ∈ R]).

A set system is simply a pair (U,R) where R ⊆ 2U is a collection of subsets. A non-empty
subsequence S of X is an ε-approximation of X with respect to the set system (U,R) if it preserves
densities (up to an ε factor) for all subsets R ∈ R.

Definition 1.1 (ε-approximation). We say that a (non-empty) sample S is an ε-approximation of X
with respect to R if for any subset R ∈ R it holds that |dR(X)− dR(S)| ≤ ε.

If the universe U is well-ordered, it is natural to take R as the collection of all consecutive
intervals in U, that is, R = {[a, b] : a ≤ b ∈ U} (including all singletons [a, a]). With this set
system in hand, ε-approximation is a natural form of “good representation” in the streaming
setting, pointed out by its deep connection to multiple classical problems in the streaming litera-
ture, like approximate median, and more generally, quantile estimation [MRL99, GK01, WLYC13,
GK16, KLL16] and range searching [BCEG07]. In particular, if S is an ε-approximation of X w.r.t.
(U,R), then any q-quantile of S is ε-close to the q-quantile of X; this holds simultaneously for all
quantiles (see Section 1.2).

1.1 Our Results

Fix a set system (U,R) over the universe U. A sampling algorithm is called (ε, δ)-robust if
for any (even computationally unbounded) strategy of Adversary, the output sample S is an ε-
approximation of the whole stream X with respect to (U,R), with probability at least 1− δ.

Our main result is an upper bound (“good news”) on the (ε, δ)-robustness of Bernoulli and
reservoir sampling, later to be complemented them with near-matching lower bounds.

Theorem 1.2. For any 0 < ε, δ < 1, set system (U,R), and stream length n, the following holds.

• BernoulliSample with parameter p ≥ 10 · ln |R|+ln(4/δ)
ε2n

is (ε, δ)-robust.

• ReservoirSample with parameter k ≥ 2 · ln |R|+ln(2/δ)
ε2 is (ε, δ)-robust.

The proof appears in Section 4. As the total number of elements sampled by BernoulliSample

is well-concentrated around np, the above theorem implies that a sample of total size (at least)

Θ(
ln |R|+ln 1

δ

ε2 ), obtained by any of the algorithms, BernoulliSample or ReservoirSample, is an ε-
approximation with probability 1− δ.

This should be compared with the static setting, where the same result is known as long

as p ≥ c ·
d+ln 1

δ

ε2n
for BernoulliSample, and k ≥ c ·

d+ln 1
δ

ε2 for ReservoirSample, where d is the VC-
dimension of (U,R) and c > 0 is a constant [VC71, Tal94, LLS01] (see also [MV17]).

As you can see, to make the static sampling algorithm robust in the adaptive setting one
solely needs to modify the sample size by replacing the VC-dimension term d with the cardinality
dimension ln |R| (and update the multiplicative constant). Below, in our lower bounds, we show
that this increase in the sample size is inherent, and not a byproduct of our analysis.
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Lower Bounds. We next show that being adaptively robust comes at a price. That is, the de-
pendence on the cardinality dimension, as opposed to the VC dimension, is necessary. By an
improved version of the attack described in the introduction, we show the following:

Theorem 1.3. There exists a constant c > 0 and a set system (U,R) with VC-dimension 1, where such
that for any 0 < ε, δ < 1/2:

1. The BernoulliSample algorithm with parameter p < c · ln |R|
n ln n is not (ε, δ)-robust.

2. The ReservoirSample algorithm with parameter k < c · ln |R|
ln n is not (ε, δ)-robust.

Moreover, for any n6 ln n ≤ N ≤ 2n/2, there exists (U,R) as above where |R| = |U| = N.

The proof can be found in Section 5.

Continuous robustness. The condition of (ε, δ)-robustness requires that the sample will be
ε-representative of the stream in the end of the process. What if we wish the sample to be repre-
sentative of the stream at any point throughout the stream? Formally, we say that a sampling
algorithm is (ε, δ)-continuously robust if, with probability at least 1− δ, at any point i ∈ [n] the
sampled set Si is an ε-approximation of the first i elements of the stream, i.e., of Xi = (x1, . . . , xi).
The next theorem shows that continuous robustness of ReservoirSample can be obtained with just
a small overhead compared to “standard” robustness. (For BernoulliSample one cannot hope for
such a result to be true, at least for the above definition of continuous robustness.)

Theorem 1.4. There exists c > 0, such that for any 0 < ε, δ < 1/2, set system (U,R), and stream

length n, ReservoirSample with parameter k ≥ c · ln |R|+ln 1/δ+ln 1/ε+ln ln n
ε2 is (ε, δ)-continuously robust.

Moreover, if only continuous robustness against a static adversary is desired, then the ln |R| term can
be replaced with the VC-dimension of (U,R).

We are not aware of a previous analysis of continuous robustness, even in the static setting.
The proof, appearing in Section 6, follows by applying Theorem 1.2 (or its static analogue) in
carefully picked “checkpoints” k = i1 ≤ i2 ≤ . . . ≤ it = n along the stream, where t = O(ε−1 ln n).
It shows that if the sample Si is representative of the stream Xi in any of the points i = i1, . . . , it−1,
then with high probability, the sample is also representative in any other point along the stream.
(We remark that a similar statement with weaker dependence on n can be obtained from Theorem
1.2 by a straightforward union bound.) The proof can be found in Section 6.

Comparison to deterministic sampling algorithms. Our results show that sampling algorithms
provide an ε-approximation in the adversarial model. One advantage of using the notion of ε-
approximation is its wide array of applications, where for each such task we get a streaming
algorithm in the adversarial model as described in the following subsection. We stress that for
any specific task a deterministic algorithm that works in the static setting will also automatically
be robust in the adversarial setting. However, deterministic algorithms tend to be more compli-
cated, and in some cases they require larger memory. Here, we focus on showing that the most
simple and generic sampling algorithms “as is” are robust in our adaptive model and yield a
representative sample of the data that can be used for many different applications.

The best known deterministic algorithm for computing an ε-approximating sample in the
streaming model is that of Bagchi et al. [BCEG07]. The sample size they obtain is O(ε−2 ln 1/ε);
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the working space of their algorithm and the processing time per element are of the form
ε−2d−O(1)(ln n)O(d), where d is the scaffold dimension2 of the set system. The exact bounds are
rather intricate, see Corollary 4.2 in [BCEG07]. While the space requirement of their approach
does not have a dependence on ln |R|, its dependence on ε and ln n is generally worse than ours,
making their bounds somewhat incomparable to ours. Finally, we note that there exist more
efficient methods to generate an ε-approximation in some special cases, e.g., when the set system
constitutes of rectangles or halfspaces [STZ04].

1.2 Applications of Our Results

We next describe several representative applications and usages of ε-approximations (see also
[BCEG07] for more applications in the area of robust statistics). For some of these applications,
there exist deterministic algorithms known to require less memory than the simple random sam-
pling models discuss in this paper. However, one area where our generic random sampling
approach shines compared to deterministic approaches is the query complexity or running time
(under a suitable computational model). Indeed, while deterministic algorithms must inherently
query all elements in the stream in order to run correctly, our random sampling methods query
just a small sublinear portion of the elements in the stream.

Consequently, to the best of our knowledge, Bernoulli and reservoir sampling are the first two
methods known to compute an ε-approximation (and as a byproduct, solve the tasks described in
this subsection) in adversarial situations where it is unrealistic or too costly to query all elements
in the stream. The last part of this subsection exhibits an example of one such situation.

Quantile approximation. As was previously mentioned, ε-approximations have a deep connec-
tion to approximate median (and more generally, quantile estimation). Assume the universe U
is well-ordered. We say that a streaming algorithm is an (ε, δ)-robust quantile sketch if, in our
adversarial model, it provides a sample that allows to approximate the rank3 of any element in
the stream up to additive error εn with probability at least 1− δ. Observe that this is achieved
with an ε-approximation with respect to the set system (U,R) where R = {[1, b] : b ∈ U}. For
example, set b to be the median of the stream. Since the density of the range [1, b] is preserved in
the sample, we know that the median of the sample will be ε-close to the median of the stream.

This works for any other quantile simultaneously. The sample size is Θ( ln |U|+ln(1/δ)
ε2 ).

Corollary 1.5. For any 0 < ε, δ < 1, well-ordered universe U, and stream length n, BernoulliSample with

parameter p ≥ 10 · ln |U|+ln(4/δ)
ε2n

is an (ε, δ)-robust quantile sketch. The same holds for the ReservoirSample

algorithm with parameter k ≥ 2 · ln |U|+ln(2/δ)
ε2 .

A corollary in the same spirit regarding continuously robust quantile sketches can be derived
from Theorem 1.4.

Range queries. Suppose that the universe is of the form U = [m]d for some parameters m and
d. One basic problem is that of range queries: one is given a set of ranges R and each query
consists of a range R ∈ R where the desired answer is the number of points in the stream that

2The scaffold dimension is a variant of the VC-dimension equal to ⌈ln |R|/ ln |U|⌉.
3The rank of an element xi in a stream x1, . . . , xn is the total amount of elements xj in the stream so that xj ≤ xi.
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are in this range. Popular choices of such ranges are axis-aligned or rotated boxes, spherical
ranges and simplicial ranges. An ε-approximation allows us to answer such range queries up
to an additive error of εn. Suppose the sampled set is S, then an answer is given by computing
dR(S) · n/|S|. For example, when R consists of all axis-parallel boxes, ln |R| = O(d ln m) and
thus the sample size required to answer range queries that are robust against adversarial streams

is |S| = O
(

d ln |m|+ln(1/δ)
ε2

)

; for rotated boxes, one should replace d with d2 in this expression. See

[BCEG07] for more details on the connection between ε-approximations and range queries.

Center points. Our result is also useful for computing β-center points. A point c in the stream
is a β-center point if every closed halfspace containing c in fact contains at least βn points of
the stream. In [CEM+96, Lemma 6.1] it has been shown that an ε-approximation (with respect
to half-spaces) can be used to get a β-center point for suitable choices of the parameters. For
example, setting ε = β/5 we get that a 6β/5-center of the sample S is a β-center of the stream X.
Thus, we can compute a β-center of a stream in the adversarial model. See also [BCEG07].

Heavy hitters. Finding those elements that appear many times in a stream is a fundamental
problem in data mining, with a myriad of practical applications. In the heavy hitters problem,
there is a threshold α and an error parameter ε. The goal is to output a list of elements such that
if an element x appears more than αn times in the stream (i.e., dx(X) ≥ α) it must be included
in the list, and if an element appears less than (α− ε)n times in the stream (i.e., dx(X) ≤ α− ε it
cannot be included in the list.

Our results yield a simple and efficient heavy hitters streaming algorithm in the adversarial
model. For any universe U let R = {{a} : a ∈ U} be the set of all singletons. Now, pick ε′ = ε/3
and use either Bernoulli or reservoir sampling to compute an ε′-approximation S of the stream
X, outputting all elements x ∈ S with d{x}(S) ≥ α− ε′. Indeed, if da(X) ≥ α then dx(S) ≥ α− ε′.
On the other hand, if dx(X) ≤ α− ε then dx(S) ≤ α− ε + ε′ < α− ε′.

Corollary 1.6. There exists c > 0 such that for any 0 < ε, δ < 1/2, universe U, and stream length n,

BernoulliSample with parameter p ≥ c · ln |U|+ln(1/δ)
ε2n

solves the heavy hitters problem with error ε in the

adversarial model. The same holds for ReservoirSample with parameter k ≥ c · ln |U|+ln(1/δ)
ε2 .

Clustering. The task of partitioning data elements into separate groups, where the elements
in each group are “similar” and elements in different groups are “dissimilar” is fundamental
and useful for numerous applications across computer science. There has been lots of interest
on clustering in a streaming setting, see e.g. [GLA16] for a survey on recent results. Our results
suggest a generic framework to accelerate clustering algorithms in the adversarial model: Instead
of running clustering on the full data, one can simply sample the data to obtain (with high
probability, even against an adversary) an ε-approximation of it, run the clustering algorithm on
the sample, and then extrapolate the results to the full dataset.

Sampling in modern data-processing systems. It is very common to use random sampling
(sometimes “in disguise”) in modern data-intensive systems that operate on streaming data, ar-
riving in an online manner. As an illustrative example, consider the following distributed database
[OV11] setting. Suppose that a database system must receive and process a huge amount of
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queries per second. It is unrealistic for a single server to handle all the queries, and hence,
for load balancing purposes, each incoming query is randomly assigned to one of K query-
processing servers. Seeing that the set of queries that each such server receives is essentially a
Bernoulli random sample (with parameter p = 1/K) of the full stream, one hopes that the por-
tion of the stream sampled by each of these servers would truthfully represent the whole data
stream (e.g., for query optimization purposes), even if the stream changes with time (either unin-
tentionally or by a malicious adversary). Such “representation guarantees” are also desirable in
distributed machine learning systems [GDG+17, SKYL17], where each processing unit learns a
model according to the portion of the data it received, and the models are then aggregated, with
the hope that each of the units processed “similar” data.

In general, modern data-intensive systems like those described above become more and more
complicated with time, consisting of a large number of different components. Making these
systems robust against environmental changes in the data, let alone adversarial changes, is one
of the greatest challenges in modern computer science. From our perspective, the following
question naturally emerges:

Is random sampling a risk in modern data processing systems?

Fortunately, our results indicate that the answer to this question is largely negative. Our up-
per bounds, Theorems 1.2 and 1.4, show that a sufficiently large sample suffices to circumvent
adversarial changes of the environment.

1.3 Related Work

Online learning. One related field to our work is online learning, which was introduced for
settings where the data is given in a sequential online manner or where it is necessary for the
learning algorithm to adapt to changes in the data. Examples include stock price predictions, ad
click prediction, and more (see [Sha12] for an overview and more examples).

Similar to our model, online learning is viewed as a repeated game between a learning algo-
rithm (or a predictor) and the environment (i.e., the adversary). It considers n rounds where in
each round the environment submits an instance xi, the learning algorithm then makes a predic-
tion for xi, the environment, in turn, chooses a loss for this prediction and sends it as feedback
to the algorithm. The goal in this model is usually to minimize regret (the sum of losses) com-
pared to the best fixed prediction in hindsight. This is the typical setting (e.g., [HAK07, SST10]),
however, many different variants exist (e.g., [DGS15, ZLZ18]).

PAC learning. In the PAC-learning framework [Val84], the learner algorithm receives samples
generated from an unknown distribution and must choose a hypothesis function from a family
of hypotheses that best predicts the data with respect to the given distribution. It is known
that the number of samples required for a class to be learnable in this model depends on the
VC-dimension of the class.

A recent work of Cullina et al. [CBM18] investigates the effect of evasion adversaries on the
PAC-learning framework, coining the term of adversarial VC-dimension for the parameter govern-
ing the sample complexity. Despite the name similarity, their context is seemingly unrelated to
ours (in particular, it is not a streaming setting), and correspondingly, their notion of adversarial
VC-dimension does not seem to relate to our work.
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Adversarial examples in deep learning. A very popular line of research in modern deep learn-
ing proposes methods to attack neural networks, and countermeasures to these attacks. In such a
setting, an adversary performs adaptive queries to the learned model in order to fool the model
via a malicious input. The learning algorithms usually have an underlying assumption that the
training and test data are generated from the same statistical distribution. However, in practice,
the presence of an adaptive adversary violates this assumption. There are many devastating ex-
amples of attacks on learning models [SZS+14, BCM+13, PMG+17, BR18, MHS19] and we stress
that currently, the understanding of techniques to defend against such adversaries is rather lim-
ited [GMP18, MW18, MM19, MHS19].

Maintaining random samples. Reservoir sampling is a simple and elegant algorithm for main-
taining a random sample of a stream [Vit85], and since its proposal, many flavors have been
introduced. Chung, Tirthapura, Woodruff [CTW16] generalized reservoir sampling to the setting
of multiple distributed streams, which need to coordinate in order to continuously respond to
queries over the union of all streams observed so far (see also Cormode et al. [CMYZ12]). An-
other variant is weighted reservoir sampling where the probability of sampling an element is
proportional to a weight associated with the element in the stream [ES06, BOV15]. A distributed
version as above was recently considered for the weighted case as well [JSTW19].

1.4 Paper Organization

Section 2 contains an overview of our adversarial model and a more precise and detailed def-
inition than the one given in the introduction. In Section 3 we mention several concentration
inequalities required for our analysis. In Section 4 we present and prove our main technical
Lemma, from which we derive Theorem 1.2. This includes analysis of both BernoulliSample and
ReservoirSample. In Section 5 we present our “attack”, i.e., our lower bound showing the tightness
of our result. Finally, in Section 6, we prove our upper bounds in the continuous setting.

2 The Adversarial Model for Sampling

In this section, we formally define the online adversarial model discussed in this paper. Roughly
speaking, we say that Sampler is an (ε, δ)-robust sampling algorithm for a set system (U,R) if
for any adversary choosing an adaptive stream of elements X = (x1, . . . , xn), the final state of
the sampling algorithm σn is an ε-approximation of the stream with probability 1− δ. This is
formulated using a game, AdaptiveGame, between two players, Sampler and Adversary.

Rules of the game:

1. Sampler is a streaming algorithm, which gets a sequence of n elements one by one x1, . . . , xn

in an online manner (the sampling algorithms we discuss in this paper do not need to know
n in advance). Upon receiving an element xi, Sampler can perform an arbitrary computation
(the running time can be unbounded) and update a local state σ. We denote the local state
after i steps by σi, and write σi ← Sampler(σi−1, xi).

2. The stream is chosen adaptively by Adversary: a probabilistic (unbounded) player that, given
all previously sent elements x1, . . . , xi−1 and the current state σi−1, chooses the next element
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xi to submit. The strategy that Adversary employs along the way, that is, the probability
distribution over the choice of xi given any possible set of values x1, . . . , xi−1 and σi−1, is
fixed in advance. The underlying (finite or infinite) set from which Adversary is allowed to
choose elements during the game is called the universe, and denoted by U. We assume that
U does not change along the game.

3. Once all n rounds of the game have ended, Sampler outputs σn. For the sampling algorithms
discussed in this paper, S := σn is a subsequence of the stream X = (x1, . . . , xn). S is usually
called the sample obtained by Sampler in the game.

For an illustration on the rules of the game see Figure 1.

The game AdaptiveGame

Parameters: n, ε, (U,R).

1. Set σ0 = ⊥.

2. For i = 1 . . . n do:

(a) Adversary(σi−1, x1, . . . , xi−1) submits the query xi.

(b) Set σi ← Sampler(σi−1, xi).

3. Let S = σn, and output 1 if S is an ε-representative sample of X = x1, . . . , xn with
respect to (U,R), and 0 otherwise.

Figure 1: The definition of the game AdaptiveGameε between a streaming algorithm Sampler

and Adversary. Here the adversary chooses the next element to the stream while given the state
(memory) of the streaming algorithm thus-far. In the beginning of the game, Adversary receives
the parameters n, ε, (U,R) and knows exactly which sampling algorithm is employed by Sampler.

Using the game defined above, we now describe what it means for a sampling algorithm to
be (adversarially) robust.

Definition 2.1 (Robust sampling algorithm). We say that a sampling algorithm Sampler is (ε, δ)-
robust with respect to the set system (U,R) and the stream length n if for and any (even unbounded)
strategy of Adversary, it holds that

Pr[AdaptiveGame(Sampler,Adversary) = 1] ≥ 1− δ

The memory size used by Sampler is defined to be the maximal size of σ throughout the process of
AdaptiveGame.

A stronger requirement that one can impose on the sampling algorithm is to hold an ε-
approximation of the stream at any step during the game. To handle this, we define a continuous
variant of AdaptiveGame which we denote ContinuousAdaptiveGame, presented in Figure 2.

For the sampling algorithms that we consider, the state at any time σi is essentially equal to
the sample Si. In any case, the definition of the framework given in Figure 2 generally allows σi
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The game ContinuousAdaptiveGame

Parameters: n, ε, (U,R).

1. Set σ0 = ⊥.

2. For i = 1 . . . n do:

(a) Adversary((σi−1, Si−1), x1, . . . , xi−1) submits the query xi.

(b) Set (σi, Si)← Sampler(σi−1, xi).

(c) If Si is not an ε-approximation of Xi = x1, . . . , xi with respect to (U,R) then
output 0 and halt.

3. Output 1.

Figure 2: The game corresponding to the continuous variant, ContinuousAdaptiveGame be-
tween a streaming algorithm Sampler and an Adversary. Here, Sampler is required to hold an
ε-approximating sampled set Si after each step.

to contain additional information, if needed. A sampling algorithm is called (ε, δ)-continuously
robust if the following holds with probability at least 1− δ: for any strategy of Adversary, and all
i ∈ [n], the sample Si is an ε-approximation of the stream at time i.

Definition 2.2 (Continuously robust sampling algorithm). We say that a sampling algorithm Sampler

is (ε, δ)-continuously robust with respect to the set system (U,R) and the stream length n if for and any
(even unbounded) strategy of Adversary, it holds that

Pr[ContinuousAdaptiveGame(Sampler,Adversary) = 1] ≥ 1− δ

The memory size used by Sampler is defined to be the maximal size of σ throughout the process of
ContinuousAdaptiveGame.

Reservoir sampling. For completeness, we provide the pseudocode of the reservoir sampling
algorithm [Vit85, Knu97]. Here, k denotes the (fixed) memory size of the algorithm, i denotes the
current round number, and xi is the currently received element.

ReservoirSample(k, i, σi−1, xi):

1. If i < k then parse σi−1 = x1, . . . , xi−1 and output σi = x1, . . . , xi.

2. Otherwise, parse σi−1 = s1, . . . , sk.

3. With probability k/i do:
choose j ∈ [k] uniformly at random and output σi = s1, . . . , sj−1, xi, sj+1, . . . , sk.

4. Otherwise, output σi = σi−1.

11



3 Technical Preliminaries

The logarithms in this paper are usually of base e, and denoted by ln. The exponential function
exp (x) is ex. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. We state some con-
centration inequalities, useful for our analysis in later sections. We start with the well-known
Chernoff’s inequality for sums of independent random variables.

Theorem 3.1 (Chernoff Bound [Che52]; see Theorem 3.2 in [CL06]). Let X1, . . . , Xm be independent
random variables that take the value 1 with probability pi and 0 otherwise, X = ∑

m
i=1 Xi, and µ = E[X].

Then for any 0 < δ < 1,

Pr[X ≤ (1− δ)µ] ≤ exp

(

−
δ2µ

2

)

and

Pr[X ≥ (1 + δ)µ] ≤ exp

(

−
δ2µ

2 + 2δ/3

)

.

Our analysis of adversarial strategies crucially makes use of martingale inequalities. We thus
provide the definition of a martingale.

Definition 3.2. A martingale is a sequence X = (X0, . . . , Xm) of random variables with finite means, so
that for 0 ≤ i < m, it holds that E[Xi+1 | X0, . . . , Xi] = Xi.

The most basic and well-known martingale inequality, Azuma’s (or Hoeffding’s) inequality,
asserts that martingales with bounded differences |Xi+1−Xi| are well-concentrated around their
mean. For our purposes, this inequality does not suffice, and we need a generalized variant of
it, due to McDiarmid [McD98, Theorem 3.15]; see also Theorem 4.1 in [Fre75]. The formulation
that we shall use is given as Theorem 6.1 in the survey of Chung and Lu [CL06].

Lemma 3.3 (See [CL06], Theorem 6.1). Let X = (X0, X1, . . . , Xn) be a martingale. Suppose further
that for any 1 ≤ i ≤ n, the variance satisfies Var(Xi|X0, . . . , Xi−1) ≤ σ2

i for some values σ1, . . . , σn ≥ 0,
and there exists some M ≥ 0 so that |Xi − Xi−1| ≤ M always holds. Then, for any λ ≥ 0, we have

Pr(X − X0 ≥ λ) ≤ exp

(

−
λ2

2 ∑
n
i=1(σ

2
i ) + Mλ/3

)

.

In particular,

Pr(|X − X0| ≥ λ) ≤ 2 exp

(

−
λ2

2 ∑
n
i=1(σ

2
i ) + Mλ/3

)

.

Unlike Azuma’s inequality, Lemma 3.3 is well-suited to deal with martingales where the max-
imum value M of |Xi+1 − Xi| is large, but the maximum is rarely attained (making the variance
much smaller than M2). The martingales we investigate in this paper depict this behavior.

4 Adaptive Robustness of Sampling: Main Technical Result

In this section, we prove the main technical lemma underlying our upper bounds for Bernoulli
sampling and reservoir sampling. The lemma asserts that for both sampling methods, and any
given subset R of the universe U, the fraction of elements from R within the sample typically
does not differ by much from the corresponding fraction among the whole stream.
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Lemma 4.1. Fix ε, δ > 0, a universe U and a subset R ⊆ U, and let X = (x1, x2, . . . , xn) be the sequence
chosen by Adversary in AdaptiveGameε against either BernoulliSample or ReservoirSample.

1. For BernoulliSample with parameter p ≥ 10 · ln(4/δ)
ε2n

, we have Pr(|dR(X)− dR(S)| ≥ ε) ≤ δ.

2. For ReservoirSample with memory size k ≥ 2 · ln(2/δ)
ε2 , it holds that Pr(|dR(X)− dR(S)| ≥ ε) ≤ δ.

Both of these bounds are tight up to an absolute multiplicative constant, even for a static
adversary (that has to submit all elements in advance); see Section 6 for more details.

The proof of Theorem 1.2 follows immediately from Lemma 4.1, and is given below. The
proof of Theorem 1.4 requires slightly more effort, and is given in Section 6.

Proof of Theorem 1.2. Let (U,R), ε, δ, n be as in the statement of the theorem, and let X and
S denote the stream and sample, respectively. We start with the Bernoulli sampling case, and

assume that p ≥ 10 · ln(4/δ)+ln |R|
ε2n

= 10 · ln(4|R|/δ)
ε2n

. For each R ∈ R, we apply the first part of
Lemma 4.1 with parameters ε and δ/|R|, concluding that

Pr(|dR(X)− dR(S)| ≥ ε) ≤ δ/|R|.

In the event that |dR(X) − dR(S)| ≤ ε for any R, by definition S is an ε-approximation of X.
Taking a union bound over all RR, we conclude that the probability of this event not to hold is
bounded by |R| · (δ/|R|) = δ, meaning that BernoulliSample with p as above is (ε, δ)-robust.

The proof for ReservoirSample is identical, except that we replace the condition on p with the

condition that k ≥ 2 · ln(2/δ)+ln |R|
ε2 , and apply the second part of Lemma 4.1.

It is important to note that the typical proofs given for statements of this type in the static
setting (i.e., when Adversary submits all elements in advance, and cannot act adaptively) do
not apply for our adaptive setting. Indeed, the usual proof of the static analogue of the above
lemma goes along the following lines: Adversary chooses which elements to submit in advance,
and in particular, determines the number of elements from A sent, call it nA. Then, the number
of sampled elements from A is distributed according to the binomial distribution Bin(nA, p) for
Bernoulli sampling, and Bin(nA, k/n) for reservoir sampling. One can then employ Chernoff
bound to conclude the proof. This kind of analysis crucially relies on the adversary being static.

Here, we need to deal with an adaptive adversary. Recall that Adversary at any given point
is modeled as a probabilistic process, that given the sequence Xi−1 = (x1, . . . , xi−1) of elements
sent until now, and the current state σi−1 of Sampler, probabilistically decides which element xi

to submit next. Importantly, this makes for a well-defined probability space, and allows us to
analyze Adversary’s behavior with probabilistic tools, specifically with concentration inequalities.

Chernoff bound cannot be used here, as it requires the choices made by the adversary along
the process to be independent of each other, which is clearly not the case. In contrast, martingale
inequalities are suitable for this setting. We shall thus employ these, specifically Lemma 3.3, to
prove both parts of our main result in this section.

4.1 The Bernoulli Sampling Case

We start by proving the Bernoulli sampling case (first statement of Lemma 4.1). Recall that here
each element is sampled, independently, with probability p. At any given point 0 ≤ i ≤ n along
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the process, let Xi = (x1, . . . , xi) denote the sequence of elements submitted by the adversary
until round i, and let Si ⊆ Xi denote the subsequence of sampled elements from Xi. Note that
Xn = X and Sn = S, and hence, to prove the lemma, we need to show that |dR(Xn)− dR(Sn)| ≤ ε.

As a first attempt, it might make sense to try applying a martingale concentration inequal-
ity on the sequence of random variables (Y0, Y1, . . . , Yn), where we define Yi = dR(Xi)− dR(Si).
Indeed, our end-goal is to bound the probability that Yn significantly deviates from zero. How-
ever, a straightforward calculation shows that this is not a martingale, since the condition that
E[Yi|Y0, . . . , Yi−1] = 0 does not hold in general. To overcome this, we show that a slightly different
formulation of the random variables at hand does yield a martingale. Given the above R ⊆ U,
for any 0 ≤ i ≤ n we define the random variables

AR
i =

i

n
· dR(Xi) =

|R ∩ Xi|

n
; BR

i =
|R ∩ Si|

np
; ZR

i = BR
i − AR

i , (1)

where, as before, the intersection between a set R and a sequence Xi is the subsequence of Xi

consisting of all elements that also belong to R.
Importantly, as is described in the next claim, the sequence of random variables ZR =

(ZR
0 , . . . , ZR

n ) defined above forms a martingale. The claim also demonstrates several useful prop-
erties of these random variables, to be used later in combination with Lemma 3.3.

Claim 4.2. The sequence (ZR
0 , ZR

1 , . . . , ZR
n ) is a martingale. Furthermore, the variance of ZR

i conditioned
on ZR

0 , . . . , ZR
i−1 is bounded by 1/n2 p, and it always holds that |ZR

i − ZR
i−1| ≤ 1/np.

We shall prove Claim 4.2 later on; first we use it to complete the proof of the main result.

Proof of Lemma 4.1, Bernoulli sampling case. It suffices to prove the following two inequalities for
any p satisfying the conditions of the lemma for the Bernoulli sampling case:

Pr(|AR
n − BR

n | ≥ ε/2) ≤ δ/2 ; Pr(|BR
n − dR(Sn)| ≥ ε/2) ≤ δ/2. (2)

Indeed, taking a union bound over these two inequalities, applying the triangle inequality, and
observing that AR

n = dR(Xn), we conclude that Pr(|dR(Xn)− dR(Sn)| ≥ ε) ≤ δ, as desired.
The first inequality follows from Claim 4.2 and Lemma 3.3. Indeed, in view of Claim 4.2, we

can apply Lemma 3.3 on (ZR
0 , . . . , ZR

n ) with parameters λ = ε/2, σ2
i = 1/n2 p, and M = 1/np. As

ZR
0 = 0, we have |AR

n − BR
n | = |Z

R
n − ZR

0 |, and so

Pr(|AR
n − BR

n | ≥ ε/2) ≤ 2 exp

(

−
(ε/2)2

2n · 1
n2 p

+ ε
6np

)

< 2 exp

(

−
ε2np

9

)

.

The right hand side is bounded by δ/2 when np ≥ 9
ε2 ln(δ/4), settling the first inequality of (2).

We next prove the second inequality of (2). Observe that BR
n = dR(Sn) ·

|Sn|
np . Since each

element is added to the sample with probability p, independently of other elements, the size of
Sn is distributed according to the binomial distribution Bin(n, p), regardless of the adversary’s
strategy. Applying Chernoff inequality with δ = ε/2, we get that

Pr(
∣

∣|Sn| − np
∣

∣ ≥ εnp/2) ≤ 2 exp

(

−
(ε/2)2 np

2 + ε/3

)

< 2 exp

(

−
ε2np

10

)

.
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This probability is bounded by δ/2 provided that np ≥ 10 ln(4/δ)
ε2 . Conditioning on this event not

occurring, we have that

∣

∣dR(Sn)− BR
n

∣

∣ =

∣

∣

∣

∣

1−
|Sn|

np

∣

∣

∣

∣

· dR(Sn) ≤

∣

∣

∣

∣

1−
|Sn|

np

∣

∣

∣

∣

≤
ε

2
,

where the first inequality follows from the fact that densities (in this case, dR(Sn)) are always
bounded from above by one, and the second inequality follows from our conditioning. This
completes the proof of the second inequality in (2).

The proof of Claim 4.2 is given next.

Proof of Claim 4.2. We first show that (ZR
0 , ZR

1 , . . . , ZR
n ) is a martingale. Fix 1 ≤ i ≤ n, and suppose

that the first i − 1 rounds of AdaptiveGameε have just ended (so the values of ZR
0 , . . . , ZR

i−1 are
already fixed), and that Adversary now picks an element xi to submit in round i of the game.

If xi /∈ R then AR
i = AR

i−1 and BR
i = BR

i−1 and so ZR
i = ZR

i−1, which trivially means that

E
[

ZR
i | ZR

0 , . . . , ZR
i−1 ; xi /∈ R

]

= ZR
i−1 as desired.

When xi ∈ R, we have

AR
i = AR

i−1 +
1

n
; BR

i =

{

BR
i−1 if xi is not sampled.

BR
i−1 +

1
np if xi is sampled.

⇒ ZR
i =

{

ZR
i−1 − 1/n if xi is not sampled.

ZR
i−1 + 1/np− 1/n if xi is sampled.

Recall that Sampler uses Bernoulli sampling with probability p, that is, xi is sampled with proba-
bility p (regardless of the outcome of the previous rounds). Therefore, we have that

E

[

ZR
i | ZR

0 , . . . , ZR
i−1 ; xi ∈ R

]

= ZR
i−1 + p · (

1

np
−

1

n
) + (1− p) · (−

1

n
) = ZR

i−1.

The analysis of both cases xi /∈ R and xi ∈ R implies that E[ZR
i |Z

R
0 , . . . , ZR

i−1] = ZR
i−1, as desired.

We now turn to prove the other two statements of Claim 4.2. The maximum of the expression
|ZR

i −ZR
i−1| is max{ 1

n , 1
np −

1
n} ≤

1
np , obtained when xi ∈ R. The variance of ZR

i given ZR
0 , . . . , ZR

i−1

is zero given the additional assumption that xi /∈ R; assuming that xi ∈ R, the variance satisfies

Var(ZR
i | ZR

0 , . . . , ZR
i−1 ; xi ∈ R) = (1− p) ·

(

1

n

)2

+ p ·

(

1

np
−

1

n

)2

=
1

n2

(

1

p
− 1

)

≤
1

n2p
.

Combining both cases, we conclude that Var(ZR
i | ZR

0 , . . . , ZR
i−1) ≤

1
n2 p

, completing the proof.

4.2 The Reservoir Sampling Case

We continue to the proof of the second statement of Lemma 4.1, which considers reservoir sam-
pling. In high level, the proof goes along the same lines, except that we work with a different
martingale. Specifically, for k < i ≤ n we define

AR
i = i · dR(Xi) = |R ∩ Xi|,

BR
i = i · dR(Si) =

i

k
· |R ∩ Si|,

ZR
i = BR

i − AR
i ,
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whereas for i ≤ k we simply define AR
i = BR

i = |R ∩ Xi|. (This is a natural extension of the
definition for i > k; specifically, in view of the definition of BR

i , note that as long as no more than
k elements appear in the stream, the reservoir simply keeps all of the stream’s elements.)

The following claim is the analogue of Claim 4.2 for the setting of reservoir sampling.

Claim 4.3. The sequence (ZR
0 , ZR

1 , . . . , ZR
n ) is a martingale. Furthermore, the variance of ZR

i conditioned
on ZR

0 , . . . , ZR
i−1 is bounded by i/k, and it always holds that |ZR

i − ZR
i−1| ≤ i/k.

Proof. We follow the same kind of analysis as in Claim 4.2. Fix i > k (for i ≤ k the claim holds
trivially), and suppose that the first i − 1 rounds have ended, so ZR

0 , . . . , ZR
i−1 are already fixed.

Denote the next element that the adversary submits by xi. First, it is easy to verify that

AR
i =

{

AR
i−1 xi /∈ R

AR
i−1 + 1 xi ∈ R

The calculation of BR
i requires a more subtle case analysis. Given BR

0 , . . . , BR
i−1 and xi, the value

of BR
i is determined by three factors: (i) is xi ∈ R or not? (ii) is xi sampled or not? and

(iii) conditioning on xi being sampled, does it replace an element from R in the sample, or an
element not in R? We separate the analysis into several cases; in cases where xi is sampled, we
denote the element removed from the sample to make room for xi by ri.

Case 1: xi /∈ R. In the cases where xi is either not sampled, or sampled but with ri /∈ R, elements
from R are neither added nor removed from the sample. That is, R ∩ Si = R ∩ Si−1. Hence,

BR
i =

i

k
· |R ∩ Si| =

i− 1

k
· |R ∩ Si−1|+

1

k
· |R ∩ Si−1| = BR

i−1 + dR(Si−1),

where the first equality is by definition, and the third equality follows again by definition and
since |Si−1| = k for i > k.

It remains to consider the event where xi is sampled and ri ∈ R. The probability that xi is
sampled equals k/i, and conditioning on this occurring, the probability that ri belongs to R is
dR(Si−1), so the above event holds with probability (k/i) · dR(Si−1). In this case, one element
from R is removed from the sample, that is, |R ∩ Si| = |R ∩ Si−1| − 1, and therefore

BR
i =

i

k
· |R ∩ Si| =

i

k
· |R ∩ Si−1| −

i

k
= BR

i−1 + dR(Si−1)−
i

k
.

Thus, conditioned on xi /∈ R, the expectation of BR
i is

(

1−
k

i
· dR(Si−1)

)

·
(

BR
i−1 + dR(Si−1)

)

+
k

i
· dR(Si−1) ·

(

BR
i−1 + dR(Si−1)−

i

k

)

= BR
i−1.

Since AR
i = AR

i−1 when xi /∈ R, we deduce that

E[ZR
i |Z

R
0 , . . . , ZR

i−1 ; xi /∈ R] = ZR
i−1.
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Case 2: xi ∈ R. Similarly, whenever Si = Si−1 we have that BR
i = BR

i−1 + dR(Si−1). The only case
where this does not hold is when xi is sampled and ri /∈ R, which has probability (k/i) · (1−
dR(Si−1)). In this case, |R ∩ Si| = |R ∩ Si−1|+ 1, implying that

BR
i =

i

k
· |R ∩ Si| =

i

k
· |R ∩ Si−1|+

i

k
= BR

i−1 + dR(Si−1) +
i

k
.

Combining these two we get, conditioned on xi ∈ R, that the expectation of BR
i is

BR
i−1 + dR(Si−1) +

(

k

i
· (1− dR(Si−1))

)

·
i

k
= BR

i−1 + 1.

Finally, since AR
i = AR

i−1 + 1 when xi ∈ R, we have that

E[ZR
i |Z

R
0 , . . . , ZR

i−1 ; xi ∈ R] = ZR
i−1.

The analysis of these two cases implies that (ZR
0 , . . . , ZR

n ) is indeed a martingale.
It remains to obtain the bounds on the difference |ZR

i − ZR
i−1| and the variance of ZR

i given

ZR
0 , . . . , ZR

i−1. This follows rather easily as a byproduct of the above analysis (and the fact that the
density dR is always bounded between zero and one). When xi /∈ R, we know from the analysis
that AR

i = AR
i−1 and BR

i−1 − i/k ≤ BR
i ≤ BR

i−1 + 1, whereas if xi ∈ R, we have AR
i = AR

i−1 + 1 and

BR
i−1 ≤ BR

i ≤ BR
i−1 + 1 + i/k. In both cases, we conclude that |ZR

i − ZR
i−1| ≤ i/k.

We next bound the variance of ZR
i conditioned on the values of ZR

0 , . . . , ZR
i−1 (the analysis

also implicitly conditions on the value dR(Si−1); the bound we shall eventually derive holds
regardless of this value). We start with the case that xi /∈ R, and revisit Case 1 above: with
probability (k/i) · dR(Si−1), the value of ZR

i is smaller than its expectation by i/k− dR(Si−1); and
otherwise (with probability 1− (k/i) · dR(Si−1)), the value of ZR

i is larger than its expectation by
dR(Si−1). Thus, we have that

Var(ZR
i | ZR

0 , . . . , ZR
i−1, xi /∈ R, dR(Si−1))

=
k

i
· dR(Si−1) ·

(

i

k
− dR(Si−1)

)2

+

(

1−
k

i
· dR(Si−1)

)

· (dR(Si−1))
2

=
i

k
· dR(Si−1)− (dR(Si−1))

2 ≤
i

k
.

We next address the case where xi ∈ R, which correspond to Case 2 above. Here, with probability
(k/i) · (1− dR(Si−1)), the value of ZR

i is larger than its conditional expectation by i/k+ dR(Si−1)−
1; otherwise, ZR

i is smaller than the expectation by 1− dR(Si−1). Thus,

Var(ZR
i | ZR

0 , . . . , ZR
i−1, xi ∈ R, dR(Si−1))

=
k

i
· (1− dR(Si−1)) ·

(

i

k
+ dR(Si−1)− 1

)2

+

(

1−
k

i
· (1− dR(Si−1))

)

· (1− dR(Si−1))
2

=
i

k
· (1− dR(Si−1))− (1− dR(Si−1))

2 ≤
i

k
.

As the conditional variance is always bounded by i/k, the bound remains intact if we remove the
conditioning on the value of dR(Si−1) and the predicate assessing whether xi ∈ R or not. In other
words, Var(ZR

i |Z
R
0 , . . . , ZR

i−1) ≤ i/k, completing the proof.
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The proof of the second part of Lemma 4.1 now follows from the last claim.

Proof of Lemma 4.1, reservoir sampling case. Observe that

Pr(|dR(X)− dR(S)| ≥ ε) = Pr(|BR
n − AR

n | ≥ εn)

= Pr(|ZR
n − ZR

0 | ≥ εn).

In view of Claim 4.3, we apply Lemma 3.3 on the martingale ZR = (ZR
0 , . . . , ZR

n ) with λ = εn,
σ2

i = i/k for any i ≥ k (for i ≤ k, we can set σ2
i = 0), and M = n/k. We get that

Pr(|ZR
n − ZR

0 | ≥ λ) ≤ 2 exp

(

−
λ2

2 ∑
n
i=1 σ2

i + Mλ/3

)

= 2 exp

(

−
ε2n2

2 ∑
n
i=1(i/k) + (n/k) · εn/3

)

= 2 exp

(

−
ε2kn2

n(n + 1) + εn2/3

)

≤ 2 exp

(

−
ε2kn2

2n2

)

= 2 exp

(

−
ε2k

2

)

,

where the second inequality holds for n ≥ 2. Therefore, it suffices to require k ≥ 2
ε2 ln

(

2
δ

)

to get
the bound Pr(|dR(X)− dR(S)| ≥ ε) ≤ δ.

5 An Adaptive Attack on Sampling

In this section, we present our lower bounds. Specifically, we show that the sample size cannot
depend solely on the VC-dimension, but rather that the dependency on the cardinality is neces-
sary. This is done by describing a set system (U,R) with large |U| and VC-dimension of one,
together with a strategy for the adversary that will make the sampled set unrepresentative with
respect to (U,R). That is, the sampled set will not be an ε-approximation of (U,R) with high
probability. This is in contrast to the static setting where the same sample size suffices to an
ε-approximation with high probability. Moreover, in the case of the BernoulliSample algorithm,
the sampled set under attack is extremely unrepresentative, consisting precisely of the k smallest
elements in the stream (where k is the total sample size at the end of the stream).

Proof of Theorem 1.3. Set the universe to be the well-ordered set U = {1, 2, . . . , N} for an arbitrary
n6 ln n ≤ N ≤ 2n/2 and let R = {[1, b] : b ∈ U}. Clearly, (U,R) has VC-dimension 1. Adversary’s
strategy (for both sampling algorithms BernoulliSample and ReservoirSample) is described in Fig-
ure 3.

Let S denote the subsequence of elements sampled by the algorithm BernoulliSample along
the stream. The expected size of S is np ≤ np′, and it follows from the well-known Markov
inequality (see e.g. [AS16], Appendix A) that Pr(|S| ≥ 2np′) < 1/2 (in fact the probability is
much smaller, by Chernoff inequality, but we will not need the stronger bound). From here on,
we condition on the complementary event: we assume that |S| < 2np′. The next claim asserts
that for S of this size, Adversary’s strategy does not fail, in the sense that it never runs out of
elements (i.e., ai < bi for all i ∈ [n]).
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The adversarial strategy

1. Set a1 = 1 and b1 = N.

2. Let p′ = max{p, ln n/n}.

3. For i = 1 . . . n do:

(a) Set xi = ⌊ai + (1− p′)(bi − ai)⌋.

(b) If xi is sampled then set ai+1 = xi and bi+1 = bi.

(c) Otherwise set ai+1 = ai and bi+1 = xi.

4. The final stream is X = x1, . . . , xn.

Figure 3: The description of Adversary’s strategy for making the sample unrepresentative.

Claim 5.1. If |S| < 2np′ then bi − ai ≥ n for any i ∈ [n].

Proof. For any i ∈ [n], set ℓi = bi − ai. We prove by induction that ℓi ≥ n. If xi is sampled, then
we have that ℓi+1 ≥ p′ℓi and otherwise we have that ℓi+1 = (1− p′)ℓi − 2 ≥ (1− 2p′)ℓi, where
the inequality follows from the induction assumption. Since |S| < 2np′, we get that

ℓi ≥ p′|S|(1− 2p′)n−|S| · N

≥ p′|S|(1− 2p′)n · N

= e
−(|S| ln 1

p′
+n ln( 1

1−2p′
))
· N

> e
−(|S| ln 1

p′
+3np′)

· N

> e
−(2np′ ln 1

p′
+3np′)

· N

≥ eln n−ln N · N = n ,

where the third inequality holds since 3p ≥ ln( 1
1−2p) for small enough p > 0, and the last

inequality follows since p′ ≤ ln N
6n ln n and p′ ≥ ln n/n, which means that

ln N ≥ 6np′ ln n ≥ 2np′ ln(1/p′) + 3np′ + ln n.

This proves the induction step, and completes the proof of the claim.

The last claim means that if |S| < 2np′, then the attack in Figure 3 successfully generates a
stream of n elements. We now show that the sampled set is not an ε-approximation. We begin
by analyzing the BernoulliSample algorithm.

Claim 5.2. Consider Adversary’s attack on BernoulliSample described in Figure 3. At round i of the game,

• All elements that were previously submitted by Adversary and sampled are no bigger than ai.

• All elements that were previously submitted but not sampled are no smaller than bi.
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• The element submitted during round i is between ai and bi.

Proof. By induction, where the base case i = 1 is trivial. Suppose that the claim holds for the
first i − 1 rounds; we now prove it for round i. By definition of the attack, and from Claim 5.1
it holds that ai−1 ≤ ai < bi ≤ bi−1 and so any of the elements xj for j < i − 1 satisfies the
desired condition, by the induction assumption. It remains to address the case where j = i− 1.
If xi−1 was sampled, then the attack sets ai = xi−1, that is, xi−1 is a sampled element and satisfies
xi−1 ≤ ai. Otherwise, the attack sets bi = xi−1 and so xi−1 is a non-sampled element and satisfies
xi−1 ≥ bi. Finally, ai < xi < bi always holds. Thus, the three desired conditions are retained.

As the last claim depicts, all sampled elements are smaller than all non-sampled ones at any
point along the stream. This, of course, suffices for the sampled set to not be an ε-approximation
of (U,R). Denote the sampled set by S, and let s be the maximal element in S (if S is empty,
we are done). Consider now the range [1, s] ∈ R: its density in the sampled set is 1, namely,
d[1,s](S) = 1, while its density in the stream is d[1,s](X) = |S|/n. To summarize,

|d[1,s](S)− d[1,s](X)| ≥ 1− |S|/n ≥ 1− 2p′ > 1/2 ≥ ε .

Altogether, the attack does not fail provided that |S| < 2np′, which holds with probability at least
1/2. Thus, BernoulliSample with parameter p as in the theorem’s statement is not (ε, δ)-robust.

The analysis of the ReservoirSample algorithm is very similar. Recall that k denotes the sample
size, and let k′ be the total number of elements that were sampled during the reservoir sampling
process. That is, k′ counts sampled elements that were evicted at a future iteration. We bound k′

as follows. E[k′] = k + ∑
n
i=1 k/n ≤ 2k ln n. Again, Markov inequality shows that with probability

at least 1/2, we will have k′ ≤ 4k ln n. Using the previous analysis, we know that all k′ elements
are the smallest elements in the stream. The sample set S consists of some k elements among
these k′ elements (in other words, the sample set is not necessarily the set of k smallest element,
but it is still a subset of the k′ smallest elements). Thus, taking the interval [1, s] where s is
the maximal element among the k′ elements, we have that the density of [1, s] in the sample is
d[1,s](S) =

k
k = 1. On the other hand, the density of [1, s] is the stream is

d[1,s](X) =
k′

n
≤

4k ln n

n
≤

ln N

n
≤ 1/2.

Together, we entail that
|d[1,s](S)− d[1,s](X)| > 1− 1/2 ≥ ε ,

meaning that ReservoirSample with k as in the statement of the theorem is not (ε, δ)-robust.

6 Continuous Robustness

In this section, we prove that the ReservoirSample algorithm is (ε, δ)-continuous robust against
static and adaptive adversaries. Recall that a sampling algorithm is (ε, δ)-continuously robust
if the following holds with probability at least 1− δ: at any point throughout the stream, the
current sample held by Sampler is an ε-approximation of the current stream (i.e., of the set of all
elements submitted by Adversary until now).
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With this definition in hand, BernoulliSample cannot possibly be continuously robust in gen-
eral (even in the static setting)4. We thus restrict our discussion to ReservoirSample from here on,
and turn to the proof of Theorem 1.4. The proof examines O(ε−1 ln n) carefully picked points
along the stream, applying Theorem 1.2 on each of the points. It then shows that if the sam-
ple is a good approximation of the stream at all of these points, then continuous robustness is
guaranteed with high probability.

Proof of Theorem 1.4. We provide the proof for the setting of an adaptive adversary. The proof for
the static setting is essentially identical, with the only difference being that, instead of making
black-box applications of Theorem 1.2, we apply the static analogue of it; Recall that the bound in

the static analogue is of the form Θ
(

d+ln 1/δ
ε2

)

, compared to the Θ
(

ln |R|+ln 1/δ
ε2

)

bound appearing

in the statement of Theorem 1.2.
Let (U,R), n, ε, δ be as in the statement of the theorem. As a warmup, let us analyze a

simple yet non-optimal proof based on a naı̈ve union bound. Denote the stream and sample
after i rounds by Xi and Si, respectively. Consider for a moment the first i rounds of the game as
a “standalone” game where the stream length is i. Applying the second part of Theorem 1.2 with
parameters (U,R), ε, δ′, i, where δ′ = δ/n, we get that if the memory size k of ReservoirSample

satisfies

k ≥ 2 ·
ln |R|+ ln(2n/δ)

ε2
= 2 ·

ln |R|+ ln(2/δ) + ln n

ε2
, (3)

then regardless of Adversary’s strategy,

Pr(Si is not an ε-approximation of Xi) ≤ δ/n.

Taking a union bound, the probability that Si is an ε-approximation of Xi for all i ∈ [n] is at
least 1− n · (δ/n) = 1− δ. Thus, it follows that ReservoirSample whose parameter k satisfies the
condition of (3) is (ε, δ)-continuously robust.

We now continue to the proof of the improved bound, appearing in the statement of the
theorem. The proof is also based, at its core, on a union bound argument, albeit a more efficient
one. The key idea is to take a sparse set of “checkpoints” i1, . . . , it along the stream, where ij+1 =
(1 + Θ(ε))ij , apply Theorem 1.2 at any of the times i1, . . . , it to make sure the sample is an (ε/2)-
approximation of the stream in any of these times. Finally, we show that with high probability, for
any j ∈ [t− 1], the approximation is preserved (the approximation factor might become slightly
worse, but no worse than ε) in the “gaps” between any couple of such neighboring points.

For this, we first need the following simple claims.

Claim 6.1. Let T, T′ be two sequences of length k over U, which differ in up to v values. Then |dR(T)−
dR(T

′)| ≤ v/k for any R ⊆ U. In particular, if T is an α-approximation of some sequence X ⊇ T, T′,
then T′ is an (α + v/k)-approximation of X.

Proof. For any subset R ⊆ U we have −v ≤ |R ∩ T| − |R ∩ T′| ≤ v. Dividing by k = |T| = |T′|,
and recalling that dR(T) = |R ∩ T|/|T| and dR(T

′) = |R ∩ T′|/|T′|, we conclude that −v/k ≤

4To see this, consider any set system (U,R) where R contains a singleton {u} for some u ∈ U, which is the first
element of the stream. With probability 1− p this element is not sampled and the density of {u} in the sample at
the current point is 0, while its density in the stream is 1. This violates the ε-approximation requirement (unless
p ≥ 1− δ).
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dR(T)− dR(T
′) ≤ v/k, that is, |dR(T)− dR(T

′)| ≤ v/k. To prove the second part, note that

|dR(T
′)− dR(X)| ≤ |dR(T

′)− dR(T)|+ |dR(T)− dR(X)| ≤ v/k + α

for any R ⊆ U.

Claim 6.2. Suppose that T ⊆ X ⊆ X′ are three sequences over U, where T is an α-approximation of X,
and |X′| ≤ (1 + β)|X|. Then T is an (α + β)-approximation of X′.

Proof. For any subset R ⊆ U, we have that |R ∩ X| ≤ |R ∩ X′| ≤ |R ∩ X|+ β|X|. We also know
that |dR(T)− dR(X)| ≤ α, since T is an α-approximation of X. On the one hand, it follows that

dR(T) ≥ dR(X)− α =
|R ∩ X|

|X|
− α ≥

|R ∩ X′| − β|X|

|X|
− α

≥
|R ∩ X′|

|X′|
− β− α = dR(X

′)− (α + β).

On the other hand,

dR(T) ≤ dR(X) + α =
|R ∩ X|

|X|
+ α ≤

|R ∩ X′|

|X′|/(1 + β)
+ α

= (1 + β)dR(X
′) + α ≤ dR(X

′) + (α + β).

As these inequalities hold for any R ⊆ U, the claim follows.

As a consequence of the above two claims, we get the following useful claim. (Recall that for
any i ∈ [n], the sample and stream after i rounds are denoted by Si and Xi, respectively.)

Claim 6.3. Consider ReservoirSample with memory size k, and suppose that exactly v elements were
sampled in rounds l + 1, l + 2, . . . , m of the game, where k ≤ l < m ≤ (1 + β)l. If Sl is an α-
approximation of Xl, then Sm is an (α + β + v/k)-approximation of Xm.

Proof. By Claim 6.2, Sl is an (α + β)-approximation of Xm. As Sm differs from Sl by at most v
elements, we conclude from Claim 6.1 that Sm is an (α + β + v/k)-approximation of Xm.

The last claim equips us with an approach to ensure continuous robustness, which is more
efficient compared to the simple union bound approach. Suppose that there exists a set of
integers k = i1 < i2 < . . . < it = n satisfying the following for any j ∈ [t− 1].

1. Sij
is an α-approximation of Xij

, where α = ε/4.

2. ij+1 ≤ (1 + β)ij, where β = ε/4.

3. The number of elements sampled in rounds ij + 1, ij + 2, . . . , ij+1 is bounded by v = εk/2.

We claim that the above three conditions suffice to ensure that Si is an ε-approximation of Xi for
any i ∈ [n]. Indeed, for i ≤ k, Si = Xi is trivially an ε-approximation. When i > k, consider the
maximum j < t for which ij ≤ i, and apply Claim 6.3 with l = ij, m = i, and α, β, v as dictated
above. Since α + β + v/k = ε, the claim implies that Si is an ε-approximation of Xi, as desired.

Specifically, given k satisfying the assumption of Theorem 1.4, we pick i1, i2, . . . , it recursively
as follows: we start with i1 = k; and given ij we set ij+1 ≤ n as the largest integer satisfying that
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ij+1 ≤ (1+ β)ij = (1+ ε/4)ij . It is not hard to verify that ij = k · (1+ θ(ε))j−1 (this implicitly relies
on the fact that k ≥ 4/ε, ensured by the assumption of the theorem). Note that t = O(ln1+ε n) =
O(ε−1 ln n). We next show that for this choice of i1, . . . , it, the above three conditions are satisfied
simultaneously for all j ∈ [t− 1] with probability at least 1− δ. This shall conclude the proof.

For the first condition, apply Theorem 1.2 for any j ∈ [t− 1] with parameters (U,R), ε/42, δ′, ij

where δ′ = δ/2t, concluding that if the memory size k satisfies

k ≥ 2 ·
ln |R|+ ln(4t/δ)

(ε/4)2
= Θ

(

ln |R|+ ln(1/δ) + ln(1/ε) + ln ln n

ε2

)

then for any j ∈ [t− 1],

Pr(Sij
is an ε/2-approximation of Xij

) ≥ 1− δ/2t.

Taking a union bound, with probability at least 1− δ/2 the first condition holds for all j ∈ [t− 1].
The second condition, regarding the boundedness of ij+1 as a function of ij, holds trivially

(and deterministically) for our choice of i1 ≤ i2 ≤ . . . ≤ it.
Finally, it remains to address the third condition. For any j ∈ [t− 1], let Aj denote the total

number of sampled elements in rounds ij + 1, ij + 2, . . . , ij+1 of the game. Note that each such Aj

is a random variable. We wish to show that

Pr(Aj > εk/2) ≤ δ/2t. (4)

Indeed, if (4) is true for any j ∈ [t − 1], then the probability that the third condition holds for
any j is at least 1− δ/2, which (in combination with our analysis of the other two conditions)
completes the proof. Thus, it remains to prove (4).

Recall that the probability of an element to be sampled in round i is exactly k/i, and that
ij+1 ≤ (1 + ε/4)ij . Hence, Aj is a sum of up to ⌊εij/4⌋ independent random variables, each of
which has probability less than k/ij to be sampled. In particular, the mean of Aj is less than
(εij/4) · (k/ij) = εk/4. From Chernoff bound (Theorem 3.1), we get the desired bound:

Pr(Aj ≥ εk/2) < exp

(

−
22 · εk/4

2 + 2 · 2/3

)

≤ exp

(

−
εk

4

)

≤
δ

2t
,

where the last inequality holds for k ≥ c · ε−1(ln 1/δ + ln 1/ε + ln ln n), for a sufficiently large
constant c > 0; note that k in the theorem’s statement indeed satisfies this inequality.
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