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ABSTRACT
While serializability always guarantees application correctness,
lower isolation levels can be chosen to improve transaction through-
put at the risk of introducing certain anomalies. A set of transactions
is robust against a given isolation level if every possible interleaving
of the transactions under the specified isolation level is serializable.
Robustness therefore always guarantees application correctness
with the performance benefit of the lower isolation level. While
the robustness problem has received considerable attention in the
literature, only sufficient conditions have been obtained. The most
notable exception is the seminal work by Fekete where he obtained
a characterization for deciding robustness against SNAPSHOT ISO-
LATION. In this paper, we address the robustness problem for
the lower SQL isolation levels READ UNCOMMITTED and READ
COMMITTED which are defined in terms of the forbidden dirty
write and dirty read patterns. The first main contribution of this pa-
per is that we characterize robustness against both isolation levels
in terms of the absence of counter example schedules of a specific
form (split and multi-split schedules) and by the absence of cycles
in interference graphs that satisfy various properties. A critical dif-
ference with Fekete’s work, is that the properties of cycles obtained
in this paper have to take the relative ordering of operations within
transactions into account as READ UNCOMMITTED and READ
COMMITTED do not satisfy the atomic visibility requirement. A
particular consequence is that the latter renders the robustness
problem against READ COMMITTED coNP-complete. The second
main contribution of this paper is the coNP-hardness proof. For
READ UNCOMMITTED, we obtain LOGSPACE-completeness.
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1 INTRODUCTION
To guarantee consistency during concurrent execution of trans-
actions, most database management systems offer a serializable
isolation level. Serializability ensures that the effect of concurrent
execution of transactions is always equivalent to a serial execu-
tion where transactions are executed in sequence one after another.
The database system thereby guarantees perfect isolation for every
transaction. For application programmers perfect isolation is ex-
tremely important as it implies that they only need to reason about
correctness properties of individual transactions. Ensuring serial-
izability, however, comes at a non-trivial performance cost [21].
Database systems therefore provide the ability to trade off isolation
guarantees for improved performance by offering a variety of isola-
tion levels. Even though isolation levels lower than serializability
are often configured by default (see, e.g., [5]), executing transac-
tions concurrently under such isolation levels is not without risk
as it can introduce certain anomalies. Sometimes, however, a set of
transactions can be executed at an isolation level lower than serial-
izability without introducing any anomalies. This is for instance
the case for the TPC-C benchmark application [20] running under
snapshot isolation. In such a case, the set of transactions is said
to be robust against a particular isolation level. More formally, a set
of transactions is robust against a given isolation level if every possible
interleaving of the transactions allowed under the specified isolation
level is serializable. Detecting robustness is highly desirable as it
allows to guarantee perfect isolation at the performance cost of a
lower isolation level.

Fekete et al [16] initiated the study of robustness in the context
of snapshot isolation, referring to it as the acceptability problem,
and providing a sufficient condition in terms of the absence of cycles
with specific types of edges in the static dependency graph (what we
and Fekete [15] call interference graph). This result was extended
by Bernardi and Gotsman [10] by providing sufficient conditions for
deciding robustness against the different isolation levels that can
be defined in a declarative framework as introduced by Cerone et
al [11]. This framework provides a uniform specification of various
isolation levels (including snapshot isolation) that admit atomic
visibility, a condition requiring that either all or none of the updates
of each transaction are visible to other transactions. The atomic
visibility assumption is key as it allows to specify isolation levels
by consistency axioms on the level of transactions rather than on
the granularity of individual operations within each transaction.
The sufficient conditions are again based on the absence of cycles
with certain types of edges.

https://doi.org/10.1145/3375395.3387655
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schedule s1 : W1[x]R1[z]W1[y]C1 (T1)
W2[z] R2[y]W2[x]C2 (T2)

schedule s2 : W1[x]R1[z] W1[y]C1 (T1)
W2[z]R2[y] W2[x]C2 (T2)

Figure 1: Schedules s1 and s2 for T = {T1,T2}.

In a seminal paper, Fekete [15] obtained a characterization for
deciding robustness against snapshot isolation which should
be contrasted with the work mentioned above that only provide
sufficient conditions. In this paper, we extend the former work by
providing characterizations for robustness against the lower SQL
isolation levels read uncommitted and read committed which
are defined in terms of the forbidden dirty write and dirty read
patterns [9]. Especially read committed is a very relevant isolation
level as it is the default isolation level in quite a number of database
systems [6] and also because it is one of the few isolation levels
providing highly available transactions [5]. Furthermore, as read
committed and by extension read uncommitted, provide a low
performance penalty, establishing robustness against these isolation
levels allows rapid concurrent execution while guaranteeing perfect
isolation. Alomari and Fekete [3] already studied robustness against
read committed and provide a sufficient condition that is not a
necessary one.

To provide some insight into the technical challenges, we intro-
duce some terminology by example (formal definitions are given in
Section 2). As usual, a transaction is a sequence of read and write
operations on objects followed by a commit. Consider for instance
the set of transactions T = {T1,T2} with T1 = W1[x]R1[z]W1[y]C1
and T2 = W2[z]R2[y]W2[x]C2. Here, Wi[x] and Ri[x] denote a read
and a write operation to object x by transaction Ti whereas Ci is
the commit operation ofTi . A schedule for T then is an ordering of
all operations occurring in transactions in T . For instance, s1 and
s2 as displayed in Figure 1 are schedules for T . A schedule is not
allowed under isolation level read uncommitted when it exhibits
a dirty write: a pattern of the form W1[x] · · · W2[x] · · · C1, that is,
T2 writes to an object that has been modified by a transaction T1
that has not yet committed. Both s1 and s2 are allowed under read
uncommitted. The isolation level read committed prohibits dirty
writes as well as dirty reads. The latter is a pattern of the form
W2[z] · · · R1[z] · · · C2. That is,T1 reads an object that has been modi-
fied by a transactionT2 that has not yet committed. The schedule s1
is not allowed under read committed. Notice that s1 and s2 are not
conflict serializable as their conflict graphs admit a cycle.1 Indeed,
consider s1, W2[z] occurring before R1[z] in s1 implies that in any
conflict equivalent sequential schedule T2 should occur before T1,
while W1[x] occurring before W2[x] in s1 implies the converse.

We start by studying robustness against read uncommitted.
This means that for a given set of transactions, we need to check
whether there is a counter example schedule that is allowed under
read uncommitted and which is not serializable, that is, contains

1See Section 2.2 for a definition of conflict graphs and how acyclity implies
serializability.

a cycle in its conflict graph. Notice that for T = {T1,T2} as defined
above s1 constitutes such a counter example. Furthermore, s1 is
of a very particular form. Indeed, s1 can be seen as the schedule
constructed by splitting T2 into two parts (W2[z] and R2[y]W2[x]C2)
and placing the complete transaction T1 in between. We call such
schedules a split schedule. They can also be defined for sets of
transactions consisting of more than two transactions by splitting
one transaction in two parts and placing all other transaction in
between (cf. Figure 2). We show that the existence of a counter
example schedule that has the form of a split schedule provides a
necessary and sufficient condition for deciding robustness against
read uncommitted.

Fekete [15] introduced the notion of an interference graph for
a set of transactions and obtained a characterization for deciding
robustness against snapshot isolation in terms of the absence of
a cycle with certain types of edges. We mimic his result by obtain-
ing an additional characterization of deciding robustness against
read uncommitted in terms of the absence of cycles in the inter-
ference graphs that are prefix-write-conflict-free.2 It is important
to point out the main difference with the work of Fekete: snapshot
isolation admits atomic visibility implying that cycles in the inter-
ference graph can refer to the global ordering of transactions and
can ignore the ordering of operations within transactions. For read
uncommitted, we can not rely on atomic visibility and need to
take the specific conflicting operations into account that generate
the edges in the interference graph. In addition, the notion of prefix-
write-conflict-free cycle requires to isolate a single transaction (the
one witnessing transferability, see Section 3 and the one that will be
split in the counter example schedule) and determine non-existence
of write-conflicts with respect to a prefix of this transaction (so the
order of operations matters). That being said, the complexity of
testing robustness against read uncommitted can be done very
efficiently as we show it to be logspace-complete.

Next, we turn to robustness against read committed. Schedule
s2 shown in Figure 1 is allowed under read committed and is not
serializable. It is hence a counter example showing that T is not ro-
bust against read committed. Notice that s2 is not a split schedule.
In fact, it can be argued that there is no split schedule for T that
is allowed under read committed. This means that the existence
of a counter example schedule in the form of a split schedule is
not a necessary condition for deciding robustness against read
committed. We show that counter examples do not need to take
arbitrary forms either. We obtain a characterization for deciding
robustness against read committed in terms of counter example
schedules that take the form of multi-split schedules as illustrated
in Figure 2. In contrast to a split schedule where one transaction
is split open and all other transactions are inserted, a multi-split
schedule can open several such transactions but needs to close them
in sequence.

We obtain an equivalent characterization in terms of the absence
of a multi-prefix-conflict-free cycle in the interference graph. The
latter is a rather involved property of cycles that much more than
the notion of prefix-write-conflict-free mentioned previously de-
pends on the ordering of operations within transactions. Using this
notion, we show that deciding robustness against read committed

2See Section 4 for a formal definition.



Split schedule for four transactions:

T1
T2
T3
T4

Multi-split schedule for six transactions:

T1
T2
T3
T4
T5
T6

opening phase sequential phase closing phase

Figure 2: Abstract presentation of split and multi-split
schedule. The drawing omits a possible trailing sequence
of non-interleaved transactions (cf. Definition 8 and Defini-
tions 18).

is conp-complete. The lower bound proof is a rather involved re-
duction from 3SAT that bears on ideas from the np-hardness proof
for the ProperlyColoredCycle problem discussed in Section 5.2.
The latter should be contrasted with robustness against snapshot
isolation for which the algorithm in [15] implies a ptime upper
bound.

Following the work of Fekete [15], we are the first to obtain a
complete characterization for robustness against the considered
isolation levels. The main contributions of this paper can be sum-
marized as follows:

(1) providing characterizations for deciding robustness against
read uncommitted and read uncommitted in terms of the
absence of (i) counter-example schedules of various shapes
and (ii) cycles in interference graphs of various forms; these
characterizations provide direct upper bounds on the com-
plexity of deciding robustness; and.

(2) conp-hardness of deciding robustness against read commit-
ted.

Outline.We introduce the necessary definitions in Section 2. We
introduce key notions in Section 3 in the context of robustness
against no isolation level. We consider robustness against read
uncommitted and read committed in Section 4 and Section 5,
respectively. We discuss related work in Section 6 and conclude in
Section 7.

2 DEFINITIONS
2.1 Transactions and Schedules
For natural numbers i and j with i ≤ j, denote by [i, j] the set
{i, . . . , j}. We fix an infinite set of objects Obj. For an object x ∈

Obj, we denote by R[x] a read operation on x and by W[x] a write
operation on x. We also assume a special commit operation denoted
by C. A transaction T over Obj is a sequence of read and write

operations on objects in Obj followed by a commit. In the sequel,
we leave the set of objects Obj implicit when it is clear from the
context and just say transaction rather than transaction over Obj.
We also sometimes just say reads and writes rather than read and
write operations.

We assume that a transaction performs at most one write and at
most one read per object. The latter is a common assumption (see,
e.g. [15]) and is made to simplify exposition; all our results carry
over to the more general setting in which multiple writes and reads
per object are allowed.

Formally, we model a transaction as a linear order (T, ≤T ), where
T is the set of (read, write and commit) operations occurring in
the transaction and ≤T encodes the ordering of the operations. As
usual, we use <T to denote the strict ordering.

For an operation b ∈ T, we denote by prefixb (T) the restriction
of T to all operations that are smaller than or equal to b according
to ≤T . Similarly, we denote by postfixb (T) the restriction of T to all
operations that are strictly larger than b according to ≤T . Through-
out the paper, we interchangeably consider transactions both as
linear orders as well as sequences. Therefore, T is then equal to the
sequence prefixb (T) followed by postfixb (T) which we denote by
prefixb (T) · postfixb (T) for every b ∈ T .

When considering a set T of transactions, we assume that every
transaction in the set has a unique id i and write Ti to make this
id explicit. Similarly, to distinguish the operations from different
transactions, we add this id as index to the operation. That is, we
write Wi[x] and Ri[x] to denote a write and read on object x occur-
ring in transaction Ti ; similarly Ci denotes the commit operation
in transaction Ti . Notice that this convention is consistent with the
literature (see, e.g. [9, 15]).

A schedule s over a set T of transactions is a sequence of all
the operations occurring in transactions in T in which the order
of operations from the different transactions is consistent with
their order in the respective transactions. Formally, we model a
schedule as a linear order (s, ≤s ) where s is the set containing all
operations of transactions in T and ≤s encodes the ordering of
these operations with the additional constraint that a <T b implies
a <s b for every T ∈ T and every a,b ∈ T.

The absence of aborts in our definition of schedule is consistent
with the common assumption [10, 15] that an underlying recovery
mechanism will rollback transactions that interfere with aborted
transactions.

A schedule s over a set of transactions T is sequential if its trans-
actions are not interleaved with operations from other transactions.
That is, for every a,b, c ∈ s with a <s b <s c and a, c ∈ T implies
b ∈ T for everyT ∈ T . Adopting the view of schedules as sequences,
the schedule s1 = T1 ·T2 · · ·Tn is an example of a sequential sched-
ule for the set of transactions {T1,T2, . . . ,Tn } as is any permutation
of transactions in s1.

2.2 Conflict Serializability
We say that two operations ai and bj from different transactionsTi
andTj are conflicting if both are operations on the same object, and
at least one of them is a write. That is, Ri[x] and Wj[x], and Wi[x]
and Wj[x] are conflicting operations while Ri[x] and Rj[x] are not.
Furthermore, a commit operation never conflicts with any other



operation. Two schedules s and s ′ are conflict equivalent if they are
over the same set T of transactions and if any pair of conflicting
operations a and b is ordered the same in both, that is, a ≤s b iff
a ≤s ′ b.

Definition 1. A schedule s is conflict serializable if it is conflict
equivalent to a sequential schedule.

A conflict graph CG(s) for schedule s over a set of transactions
T is defined as usual [17]: it is the graph whose nodes are the
transactions in T and where there is an edge from Ti to Tj if Ti
has an operation bi that conflicts with an operation aj in Tj with
bi <s aj .3 Since we are usually not only interested in the existence
of conflicting operations, but also in the operations themselves, we
assume the existence of a labeling function λ mapping each edge
to a set of pairs of operations. Formally, (bi ,aj ) ∈ λ(Ti ,Tj ) iff there
is an operation bi ∈ Ti that conflicts with an operation aj ∈ Tj
and bi <s aj . For ease of notation, we choose to represent CG(s)
as a set of quadruples (Ti ,bi ,aj ,Tj ) denoting all possible pairs of
these transactions Ti and Tj with all possible choices of conflicting
operations bi and aj . Henceforth, we refer to these quadruples
simply as edges. Notice that edges only contain read and write
operations, no commit operations.

A cycle C in CG(s) is a non-empty sequence of edges

(T1,b1,a2,T2), (T2,b2,a3,T3), . . . , (Tn,bn,a1,T1)

in CG(s), in which every transaction is mentioned exactly twice.
Note that cycles are by definition simple. Here, transactionT1 starts
and concludes the cycle. For a transaction Ti in C , we denote by
C[Ti ] the cycle obtained from C by letting Ti start and conclude
the cycle while otherwise respecting the order of transactions in C .
That is, C[Ti ] is the sequence

(Ti ,bi ,ai+1,Ti+1) · · · (Tn,bn,a1,T1)(T1,b1,a2,T2)

· · · (Ti−1,bi−1,ai ,Ti ).

We recall the following well-known result:

Theorem 2. [17] A schedule s is conflict serializable iff the conflict
graph for s is acyclic.

2.3 Isolation Levels
We define isolation levels in terms of the concurrency phenomena
that we want to exclude from schedules [9].

Let s be a schedule for a set T of transactions.
• Then, s exhibits a dirty write iff there are two different trans-
actions Ti and Tj in T and an object x such that

Wi[x] <s Wj[x] <s Ci.

That is, transaction Tj writes to an object that has been
modified earlier by Ti , but Ti has not yet issued a commit.

• Furthermore, s exhibits a dirty read iff there are two different
transactions Ti and Tj in T and an object x such that

Wi[x] <s Rj[x] <s Ci.

That is, transactionTj reads an object that has been modified
earlier by Ti , but Ti has not yet issued a commit.

3Throughout the paper, we adopt the following convention: a b operation can be
understood as a ‘before’ while an a can be interpreted as an ‘after’.

Definition 3. A schedule is allowed under isolation level read
uncommitted if it exhibits no dirty writes, and it is allowed under
isolation level read committed if, in addition, it also exhibits no
dirty reads. For convenience, we use the term no isolation to refer
to the isolation level that allows all schedules.

Notice that every schedule is allowed under no isolation. Fur-
thermore, every schedule allowed under read committed is also
allowed under read uncommitted. It is accustomed to view an
isolation level as a set of allowed schedules [17].

We say that an isolation level I is a restriction of an isolation
level I ′, denoted I ⊆ I ′, if the fact that a schedule s is allowed
under I implies that s is allowed under I ′ as well.

2.4 Robustness
Next, we define the robustness property [10] (also called acceptabil-
ity in [15, 16]), which guarantees serializability for all schedules of
a given set of transactions for a given isolation level.

Definition 4 Robustness. A set T of transactions is robust
against an isolation level if every schedule for T that is allowed under
that isolation level is conflict serializable.

For an isolation level I, robustness(I) is the problem to decide
if a given set of transaction T is robust against I. The following is
an immediate observation:

Lemma 5. Let T be a set of transactions. Let I and I ′ be isolation
levels with I ⊆ I ′. Then T is robust against I ′ implies that T is
robust against I.

3 NO ISOLATION LEVEL
We start by studying the toy isolation level no isolation that
admits all schedules. The present section serves as a warm up for
the remainder of the paper and allows to discuss key notions like
the interference graph, transferable cycle and split schedule in a
simplified setting.

We use a variant of the interference graph, as introduced by
Fekete [15], which essentially lifts the notion of a conflict graph
from schedules to sets of transactions. Consistent with our defi-
nition of conflict graph, we expose conflicting operations via an
explicit labeling of edges.

Definition 6. For a set of transactions T , the interference graph
IG(T ) for T is the graph whose nodes are the transactions in T and
where there is an edge from Ti to Tj if there is an operation in Ti
that conflicts with some operation in Tj . Again, we assume a labeling
function λmapping each edge to a set of pairs of conflicting operations.
Formally, (bi ,aj ) ∈ λ(Ti ,Tj ) iff there is an operation bi ∈ Ti that
conflicts with an operation aj ∈ Tj .

For convenience, just like for conflict graphs, we choose to
represent IG(T ) as a set of quadruples of the form (Ti ,bi ,aj ,Tj ).
That is, (Ti ,bi ,aj ,Tj ) ∈ IG(T ) iff there is an edge (Ti ,Tj ) and
(bi ,aj ) ∈ λ(Ti ,Tj ). Again, we then refer to these quadruples simply
as edges.

Notice that (Ti ,bi ,aj ,Tj ) ∈ IG(T ) implies (Tj ,aj ,bi ,Ti ) ∈ IG(T ).
Furthermore, the conflict graph CG(s) for a schedule s for T is al-
ways a subgraph of the interference graph IG(T ) for T . Therefore,
every cycle in CG(s) is a cycle in IG(T ). However, the converse is



T1 :R1[x]W1[y]C1 T2 :R2[y]W2[z]C2

T3 :R3[z]R3[x]W3[x]W3[z]C3

Figure 3: IG(T ) for T = {T1,T2,T3} as defined in Example 9.

not always true. Sometimes a cycle in IG(T ) can be found that does
not translate to a corresponding cycle in the conflict graph for any
schedule for T . We therefore introduce the notion of a transferable
cycle in an interference graph and show in Lemma 10 that when-
ever there is a transferable cycle in IG(T ) there is a schedule s of a
specific form called a split schedule (as defined in Definition 8) that
admits a cycle in CG(s).

Definition 7. Let T be a set of transactions and C a cycle in
IG(T ). Then, C is non-trivial if for some pair of edges (Ti ,bi ,aj ,Tj )
and (Tj ,bj ,ak ,Tk ) in C the operations bj and aj are different. Fur-
thermore, C is transferable if bj <Tj aj for some pair of edges
(Ti ,bi ,aj ,Tj ) and (Tj ,bj ,ak ,Tk ) in C . We then say that C is trans-
ferable in Tj on operations (bj ,aj ). As every transaction occurs, by
definition, exactly twice in a cycle, the latter is well-defined.

When a cycle is transferable inT on (b,a), we create a split sched-
ule by splitting T between b and a, inserting all other transactions
from the cycle in the created opening while maintaining their order-
ing and appending at the end all other transactions not occurring
in the cycle in an arbitrary order. Notice that split schedules exhibit
a cycle in their conflict graph. Split schedules are formally defined
as follows:

Definition 8 Split schedule. Let T be a set of transactions and
C a transferable cycle in IG(T ). A split schedule for T based on C
has the form

prefixb (T1) ·T2 · . . . ·Tm · postfixb (T1) ·Tm+1 · . . . ·Tn,

where

• (Tm,bm,a,T1) and (T1,b,a2,T2) is a pair of edges in C and C
is transferable in T on (b,a);

• T1, . . . ,Tm are the transactions in C[T1] in the order as they
occur; and,

• Tm+1, . . . ,Tn are the remaining transactions in T in an arbi-
trary order.

More specifically, we say that the above schedule is a split schedule
for T based on C , T1 and b.

We say that a schedule s is a split schedule for T if there is a
transferable cycle C in IG(T ) such that s is a split schedule for T
based on C . Figure 2 provides an abstract view of a split schedule
omitting the trailing sequence Tm+1 · · ·Tn .

Example 9. Consider T = {T1,T2,T3} with T1 = R1[x]W1[y]C1,
T2 = R2[y]W2[z]C2 andT3 = R3[z]R3[x]W3[x]W3[z]C3. Then IG(T ) is

depicted in in Figure 3. The cycle C1 consisting of the following edges

(T1, W1[y], R2[y],T2), (T2, W2[z], W3[z],T3), (T3, W3[x], R1[x],T1)

is transferable in T3 on (W3[x], W3[z]) as W3[x] <T3 W3[z]. The cycle
C2 consisting of the following edges

(T1, W1[y], R2[y],T2), (T2, W2[z], R3[z],T3), (T3, W3[x], R1[x],T1)

is not transferable in T3 on (W3[x], R3[z]) as W3[x] ≮T3 R3[z]. The
split schedule s1 for T based on C1, T3, and W3[x] is as follows:

R3[z]R3[x]W3[x]︸              ︷︷              ︸
prefixb (T3)

R1[x]W1[y]C1︸          ︷︷          ︸
T1

R2[y]W2[z]C2︸          ︷︷          ︸
T2

W3[z]C3︸  ︷︷  ︸
postfixb (T3)

,

with b = W3[x]. □

The following lemma collects some interesting properties of
transactions.

Lemma 10. Let T be a set of transactions.
(1) If a schedule s for T has a cycle C in its conflict graph, then C

is a transferable cycle in IG(T ).
(2) If there is a non-trivial cycle C in IG(T ) then there is a trans-

ferable cycle C ′ in IG(T ).
(3) Let s be a split schedule for T based on a transferable cycle C

in IG(T ). Then C is a cycle in CG(s).

We are now ready to formulate a theorem that provides a char-
acterization for deciding robustness against no isolation:

Theorem 11. A setT of transactions is not robust against isolation
level no isolation iff IG(T ) contains a non-trivial cycle.

Let T be a set of transactions. The following are equivalent:
(1) T is not robust against isolation level no isolation;
(2) IG(T ) contains a non-trivial cycle; and,
(3) there is split schedule s for T .

Proof. (1→ 2) Let s be a schedule for T that is not conflict seri-
alizable. Then there is a cycleC in its conflict graphCG(T ) (by The-
orem 2) which is a transferable cycle in IG(T ) due to Lemma 10(1).
Furthermore, a transferable cycle is non-trivial by definition.

(2→ 3) By Lemma 10(2) there is a transferable cycleC in IG(T ).
This cycle can be used to construct a split schedule for T .

(3→ 1) Immediate by Lemma 10(3). □

Next, we discuss the complexity of deciding robustness. Because
the interference graph IG(T ) of a set T of transactions is bidirec-
tional, it has a natural undirected interpretation. In the next theo-
rem, the upper bound is based on the result that undirected reacha-
bility is in logspace [18]. The lower-bound is by an fo-reduction
from the logspace-complete undirected acyclicity problem [14].

Theorem 12. robustness(no isolation) is logspace-complete.

4 READ UNCOMMITTED
In this section, we discuss robustness against read uncommitted.
This means that counter example schedules can no longer take
arbitrary forms but must adhere to the read uncommitted iso-
lation level. We therefore need additional requirements beyond
non-triviality for cycles in interference graphs.

The work by Fekete et al. [15, 16] approaches the robustness
problem by reasoning on cycles in interference graphs based on



the types of conflicts occurring in them without taking the spe-
cific operations responsible for these conflicts into account. Types
of conflicts are, for instance, write-write, write-read, and read-
write dependencies between transactions. In this view, it might
be tempting to think that a characterization for robustness against
read uncommitted can be found in terms of transferable cycles
in IG(T ) without write-write conflicts. However, consider T =
{W1[x]R1[y]W1[z]C1, W2[x]R2[z]W2[y]C2}. Then, there is a transfer-
able cycle (T1, R1[y], W2[y],T2), (T2, R2[z], W1[z],T1) without write-
write conflicts but no counter example schedule can be found that
is allowed under read uncommitted due to the presence of the
leading write to x in bothT1 andT2. Furthermore, a cycle of a sched-
ule allowed under read uncommitted can still have write-write
conflicts. Indeed, the schedule s1 = R1[x]W2[x]W2[y]C2W1[y]C1 is
allowed under read uncommitted since there is no dirty write but
the (only) cycle in CG(s1) has a write-write conflict on y.

The higher level explanation why it is necessary to reason about
operations instead of transactions is that the isolation level read
uncommitted (and read committed) does not guarantee atomic
visibility requiring that either all or none of the updates of each
transaction are visible to other transactions. More formally, a sched-
ule s over a set of transactions T guarantees atomic visibility when
Wi[x] <s Rj[x] iff Wi[y] <s Rj[y] for all Ti ,Tj ∈ T . For instance,
the schedule s2 = R1[x]R2[y]W2[x]W2[y]C2R1[y]C1 is allowed un-
der read uncommitted but does not guarantees atomic visibility
as R1[x] <s2 W2[x] but W2[y] <s2 R1[y]. When an isolation level
guarantees atomic visibility it suffices to reason on the level of
transactions rather than on the order of operations occurring in
them [11]. For read uncommitted (and read committed), we do
need to take the ordering of operations in individual transactions
into account as will become apparent in the notion of prefix-write-
conflict-free cycle as defined next.

Definition 13. Let T be a set of transactions and letC be a cycle
in IG(T ). Let T ∈ T and b,a ∈ T . Then, C is prefix-write-conflict-
free in T on operations (b,a) if C is transferable in T on operations
(b,a) and there is no write operation in prefixb (T) that conflicts with
a write operation in a transaction in C \ {T}.4

Furthermore, C is prefix-write-conflict-free if it is prefix-write-
conflict-free in T on (b,a) for some T ∈ T and some operations
b,a ∈ T .

Example 14. CycleC1 of Example 9 is prefix-write-conflict-free in
T3 on operations (W3[x], W3[z]). Indeed, there is no write operation in
T2 or T1 to object x. Notice that the split schedule s1 of Example 9 is
allowed under read uncommitted. The next lemma shows that this
is always the case. □

Lemma 15. Let T be a set of transactions. Let C be a prefix-write-
conflict-free cycle in IG(T ). Then, there is a split schedule for T based
on C that is allowed under isolation level read uncommitted.

Proof. Let T ∈ T and b,a ∈ T such that C is prefix-write-
conflict-free in T on (b,a). Let s be the split schedule based on C ,
T and b as defined in Definition 8. As T is the only transaction
whose operations are not consecutive in s , the only possibility for
a dirty write is when there is a write operation in prefixb (T) and a

4We abuse notation here and denote the set of transactions occurring in C also by C .

write operation in another transaction in C different from T that
both refer to the same object. As C is prefix-write-conflict-free
in T on (b,a), this can not be the case. Therefore s is under read
uncommitted. □

We are now ready to formulate a theorem that provides a char-
acterization for deciding robustness against read uncommitted in
terms of the existence of prefix-write-conflict-free cycles. It readily
follows from Lemma 15 and Lemma 10(3) that the existence of a
prefix-write-conflict-free cycle is a sufficient condition for the exis-
tence of a counter example schedule. The next theorem establishes
that it is also a necessary condition and in addition that always a
counter example in the form of a split schedule can be found.

Theorem 16. Let T be a set of transactions. The following are
equivalent:

(1) T is not robust against isolation level read uncommitted;
(2) IG(T ) contains a prefix-write-conflict-free cycle; and,
(3) there is a split schedule s for T that is allowed under read

uncommitted.

Proof Sketch. (3→1) Immediate by Lemma 10(3).
(2→3) Follows from Lemma 15.
(1→2) Let T be a set of transactions that is not robust against

isolation level read uncommitted. Towards a contradiction, sup-
pose that IG(T ) contains no prefix-write-conflict-free cycle. The
following is then implied by Definition 13:

(†) for every cycleC in IG(T ) that is transferable in someTi ∈ C
and on some pair of operations (b,a), there is a write Wi[x] ∈
Ti , with Wi[x] ≤Ti b, and a transactionTk ∈ C different from
Ti with a write Wk[x] ∈ Tk .

By Theorem 2 and the definition of robustness (Definition 4)
there is a schedule s for T under read uncommitted that admits a
cycle C in CG(s). W.l.o.g., we can assume that C is a minimal cycle,
that is, there is no cycle in CG(s) consisting of a strict subset of the
transactions occurring in C . By Lemma 10(1), C is a transferable
cycle in IG(T ). Furthermore, assumption (†) applies to C .

When C is transferable in T on some operation (b,a), we also
say thatT is a breakable transaction. The name comes from the fact
that C can be split on T to create a split schedule. That is, T needs
to be broken to create the split schedule.

The assumption (†) allows to derive the existence of conflicting
write operations for neighboring transactions (of which at least
one is breakable) in a transferable cycle. As the schedule s can not
exhibit dirty writes, the ordering of these writes in s determines the
ordering of the commits of the respective transactions in s as well.
The general idea is now to order neighboring transactions (w.r.t.
<s ) for all breakable transactions and extend this partial order to
a complete order for all other transactions in C . But as C is cyclic
this means that there will be a transaction that is smaller than itself
(w.r.t. <s ) which leads to the desired contradiction.

We distinguish two cases: C consists of only two edges and C
contains strictly more than two edges. In the former case the simple
structure allows for a more direct argument. In the latter case, we
are sure that nodes have two different neighbors in the cycle but
more care needs to be taken to compute the contradicting ordering
in an iterative manner depending on the structure of breakable
transactions. □



The following theorem establishes the complexity of deciding
robustness against read uncommitted.

Theorem 17. robustness(read uncommitted) is logspace-
complete.

5 READ COMMITTED
Next, we discuss robustness against read committedwhich means
that counter example schedules must adhere to the read commit-
ted isolation level. This section contains two main results: (i) a
characterization of robustness against read committed in terms
of multi-split schedules and multi-prefix-conflict-free cycles (Theo-
rem 23); and, (ii) conp-hardness of the associated decision problem
(Theorem 27).

5.1 Multi-split schedules
We start by showing that when a counter example schedule exists, it
can always take the form of a multi-split schedule based on a trans-
ferable cycle as defined below. In contrast to a split schedule where
one transaction is split open and all other transactions are inserted
in between in the order as they occur in the cycle, a multi-split
schedule can open several transactions appearing consecutively in
the cycle but needs to close them in sequence. Figure 2 provides an
abstract view of a split schedule omitting the possible trailing se-
quence of non-interleaved transactions. To facilitate the definition
of multi-split schedules, we assume that the first transaction in the
cycle that the schedule is based on, is the first transaction that is
opened.

Definition 18. Let T be a set of transactions and C a cycle in
IG(T ) that is transferable in its first transaction T1 on operations
(b1,a1). A multi-split schedule for T based on C is any schedule of
the form

prefixϵ (T1)(T1) · . . . · prefixϵ (Tm )(Tm )

· postfixϵ (T1)(T1) · . . . · postfixϵ (Tm )(Tm )

·Tm+1 · . . . ·Tn,

with T1, . . . ,Tm denoting the transactions in C in the order as they
occur, and with Tm+1, . . . ,Tn denoting the remaining transactions
in T in an arbitrary order. Here, ϵ is a function that maps each
transaction occurring in C to one of its operations and that satisfies
the following conditions: for every i > 1,

(1) ϵ(T1) = b1;
(2) if ϵ(Ti−1) = Ci−1 then ϵ(Ti ) = Ci; and,
(3) if ϵ(Ti−1) , Ci−1 then ϵ(Ti ) = bi or ϵ(Ti ) = Ci with the edge

(Ti ,bi ,aj ,Tj ) in C for some j.
The transaction Ti is called open when ϵ(Ti ) , Ci and is closed
otherwise. Notice that for a closed transactionTi , prefixϵ (Ti )(Ti ) = Ti
and postfixϵ (Ti )(Ti ) is empty. A multi-split schedule is fully split
when all transactions are open, that is, ϵ(Ti ) , Ci for all i ∈ [1,m].

We say that s is a multi-split schedule for T if it is a multi-split
schedule for T based on some cycle C . Notice that there is always
a number k > 0 such that the first k transactions occurring in C
are open and the others (if any) are closed. In a fully split schedule
there are no closed transactions.

The next lemma establishes that a multi-split schedule gives rise
to a cycle in the corresponding conflict graph.

T1 :W1[x]W1[y]C1 T2 :R2[v]R2[z]W2[v]W2[x]C2

T3 :R3[y] W3[z]C3

Figure 4: IG(T ) for T = {T1,T2,T3} as defined in Example 22.

Lemma 19. Let s be a multi-split schedule for a set of transactions
T based on a cycle C in IG(T ). Then C is also a cycle in CG(s).

The previous lemma does not imply that s is allowed under read
committed. To this end, we introduce the definition of a multi-
prefix-conflict-free cycle. First, we define the following notions.
Let T be a set of transactions, C a cycle in the interference graph
IG(T ), and T a transaction in T . Then there is precisely one edge
of the form (T ,b,a,T ′) inC for some b ∈ T ,T ′ ∈ T , and a ∈ T ′. For
ease of notation, we write bC (T ) to denote b and aC (T ) to denote a.
When C is clear from the context, we also write a(T ) and b(T ) for
aC (T ) and bC (T ), respectively.

In the following definition, T and T ′ intuitively refer to the first
open and last open transaction in the multi-split schedule that can
be constructed from a multi-prefix-conflict-free cycle.

Definition 20. Let T be a set of transactions and let C be a
cycle in IG(T ) containing transactions T and T ′. Then C is multi-
prefix-conflict-free inT andT ′ ifC is transferable inT and for every
transaction Ti that is equal to T ′ or occurs before T ′ in C[T ] there is
no write operation in prefixb(Ti )(Ti ) that

• conflicts with a read or write operation in prefixb(Tj )(Tj ) of
some transaction Tj occurring after Ti but before or equal to
T ′ in C[T ]; or,

• conflicts with a read or write operation in some transaction Tj
occurring after T ′ in C[T ]; or,

• conflicts with a read or write operation in postfixb(Tj )(Tj ) of
some transaction Tj occurring strictly before Ti in C[T ].

The next lemma says that when a multi-prefix-conflict-free cycle
can be found, a corresponding counter example multi-split schedule
witnessing non-robustness against read committed can be con-
structed. In Theorem 23, we show that the latter is also a necessary
condition.

Lemma 21. Let T be a set of transactions. Let C be a cycle in
IG(T ) that is multi-prefix-conflict-free in T and T ′. Then, there is a
multi-split schedule for T based on C that is allowed under isolation
level read committed.

Example 22. Consider T = {T1,T2,T3} with T1 = W1[x]W1[y]C1,
T2 = R2[v]R2[z]W2[v]W2[x]C2 andT3 = R3[y]W3[z]C3. Then IG(T ) is
depicted in in Figure 4. The cycle C consisting of the following edges

(T1, W1[x], W2[x],T2), (T2, R2[z], W3[z],T3), (T3, R3[y], W1[y],T1)

is multi-prefix-conflict-free in T1 and T2. The multi-split schedule s
for T based on C where T1 and T2 are open and T3 is closed is as



follows:

W1[x]︸︷︷︸
prefixb1 (T1)

R2[v]R2[z]︸      ︷︷      ︸
prefixb2 (T2)

R3[y]W3[z]C3︸          ︷︷          ︸
T3

W1[y]C1︸  ︷︷  ︸
postfixb1 (T1)

W2[v]W2[x]C2︸          ︷︷          ︸
postfixb2 (T2)

,

with b1 = W1[x] and b2 = R2[z]. Notice that s is allowed under read
committed. □

In the proof of Theorem 23, we show that any counter example
schedule witnessing non-robustness against read committed can
be transformed into one that is a multi-split schedule. Basically, in
a multi-split schedule every transaction is represented by one or
two blocks of consecutive operations. Indeed, an open transaction
is represented by two blocks while closed transactions as well as
trailing transactions are represented by one block. We refer to such
blocks of consecutive operations within a transaction as a chunk.
Formally, in a schedule s for T , we call a maximal sequence of
consecutive operations from the same transaction T a chunk of T
in s . For instance, in Figure 1, T1 is represented in s1 by one chunk
(W1[x]R1[z]W1[y]C1) while T2 is represented by two chunks (W2[z]
and R2[y]W2[x]C2).

Theorem 23. Let T be a set of transactions. The following are
equivalent:

(1) T is not robust against isolation level read committed;
(2) IG(T ) contains a multi-prefix-conflict-free cycle; and
(3) there is a multi-split schedule s for T that is allowed under

read committed.

Proof Sketch. (3)→ (2) Let s be the assumed multi-split sched-
ule for T based on a cycleC that is allowed under read committed.
Then, C is in CG(s) by Lemma 19. Let T ∈ C be the first transac-
tion that appears in s . Let T ′ denote the last transaction in C that
appears with two chunks in s . Then, C is multi-prefix-conflict-free
in T and T ′. Indeed, every transaction Ti equal to T ′ or occurring
before T ′ in C has exactly two chunks in s . Assume there is a write
operation a in prefixbi (Ti ) (with (Ti ,bi ,ai+1,Ti+1) in C) and a con-
flicting read or write operation b in prefixbj (Tj ) for transaction Tj
occurring afterTi inC (with (Tj ,bj ,aj+1,Tj+1) inC). Then, we have
by definition of multi-split schedule that a <s b <s Ci, which con-
tradicts with s being allowed under read committed. The case b in
postfixbj (Tj ) withTj occurring beforeTi inC implies a <s b <s Ci
as well.
(2)→ (1) Follows immediately, as by Lemma 21 and Lemma 19 there
is a schedule s for T that is allowed under read committed and
that has a cycle in CG(s).

(1) → (3) By Theorem 2 there is a schedule s0 for T allowed
under read committed with a cycle C in its conflict graph.

Let U ⊆ T denote the transactions occurring in C and let s
be the schedule obtained from s0 by removing all operations from
transactions not occurring in C . Notice that C is a cycle in the
conflict graph of s and that s is a schedule for U allowed under
read committed. Moreover, if a multi-split schedule s ′ exists for
U that is allowed under read committed, we can easily obtain
a multi-split schedule for T allowed under read committed by
appending to s ′ all missing transactions (those in T \U) in a serial
fashion.

The case whereU contains precisely two transactions is treated
in Lemma 32 in the appendix. Henceforth, we assume thatU con-
tains at least three transactions. Moreover, we assume that the
following property applies to s and C:

(i) C is minimal inCG(s) and contains at least three transactions;
no schedule for U allowed under read committed exists
with a cycle in its conflict graph mentioning a strict subset of
the transactions in C . Furthermore, s is allowed under read
committed.

The construction requires four phases. In each phase, we trans-
form schedule s one step closer to the desired form. Eventually, we
obtain a schedule s ′ for U satisfying Properties (i-v):

(ii) Every transaction Ti consists either of only one chunk or
exactly two chunks in s ′. In the latter case, the last operation
of the first chunk of Ti conflicts with an operation from
transaction Ti+1 occurring after Ti in C .

(iii) In the following, let T1 be the transaction whose first opera-
tion occurs first in s ′. Then T1 consists of two chunks in s ′.
Furthermore, all pairs of chunks in s ′ between the first and
last chunk of T1 and all pairs of chunks in s ′ after the last
chunk ofT1 appear in the same order as their corresponding
transactions appear in C .

(iv) Every transaction (except T1) has a chunk between the first
and last chunk of T1.

(v) If Ti consists of only one chunk, then the transaction Ti+1
occurring after Ti in C (unless it is T1) consists of only one
chunk.

Notice that a schedule s and cycle C having Properties (i-v) indeed
represent a multi-split schedule based on C that is allowed under
read committed, with as ϵ the mapping that maps Ti on the last
operation of its first chunk in s , which is either some read or write
operation from Ti (if Ti has two chunks) or Ci (if Ti has only one
chunk). □

5.2 Intermezzo: Properly colored cycles
In this section, we study the complexity of a decision problem over
colored graphs. Even though the problem is not directly related
to deciding robustness, the reduction we present provides the no-
frills intuition that will be central in the more complex reduction
presented next in Section 5.3.

A (vertex-)colored graph is a tuple G = (V , E,K, f ) where V is a
finite set of nodes, E ⊆ V ×V is the set of edges, K is a finite set of
colors, and f maps each vertex inV to a color inK . As before, a cycle
C is a non-empty sequence of edges (v1,v2), (v2,v3), . . . , (vn,v1)
such that every vertex in V does not occur in C or occurs precisely
twice. The latter in particular means thatC is simple. We say thatC
is properly colored if for each two vertices v1 and v2 occurring in C
(not necessarily adjacent in C), (v1,v2) ∈ E implies f (v1) , f (v2).
So, the induced subgraph ofG determined by the vertices occurring
in C should color adjacent vertices differently.

Let ProperlyColoredCycle be the problem to decide if a given
colored graph contains a properly colored cycle. In this section, we
show the following result:

Proposition 24. ProperlyColoredCycle is np-complete.



As the upper-bound is straightforward, it remains to argue that
ProperlyColoredCycle is also np-hard. The proof is by a reduc-
tion from 3SAT. To this end, let φ be a propositional logic formula in
3CNF and let Vars(φ) be the set of variables occurring inφ. We recall
that φ is a conjunction of clauses Cj of the form Lj ,1 ∨ Lj ,2 ∨ Lj ,3
and each literal Lj ,ℓ equals x or x , with x ∈ Vars(φ). For ease of
notation, we assume Vars(φ) = {x1, . . . , xm } and we refer to the
clauses in φ by Cm+1, . . . ,Cn , thus with the variables and clauses
having indices over disjoint intervals.

Next, we construct a vertex-colored graph G(φ) and show that
G(φ) contains a properly colored cycle iff φ is satisfiable.

For the construction, we distinguish the following gadgets, which
are disjoint subgraphs of G(φ):

• A variable gadget G(xi ) = (Vi , Ei ) for every variable xi in
φ with vertices and edges as depicted in Figure 5a; the in-
tuition is that vi ,1 encodes the choice to make xi true and
vi ,2 encodes the choice to make xi false. A path from vi ,in
to vi ,out then encodes the inverse truth assignment for xi :
xi is assigned true iff the path visits vertex vi ,2.

• A clause gadget G(Cj ) = (Vj , Ej ) for every clauseCj inφ with
vertices and edges as depicted in Figure 5b; the intuition is
that verticesvj ,ℓ encode the literals Lj ,ℓ in clauseCj . A path
from vj ,in to vj ,out then encodes the choice of which literal
in clause Cj is true.

Now, define G(φ) = (Vφ , Eφ ,Kφ , fφ ) as the following vertex-
colored graph:

• Vφ = {v0} ∪ V1 ∪ · · · ∪ Vn contains a special start vertex
v0 and the vertices necessary to describe gadgets G(xi ) and
G(Cj ) for every variable xi and clause Cj in φ;

• Eφ consists of the following edges:
– edges Ei and Ej from gadgets G(xi ) and G(Cj ) for every
variable xi and clause Cj in φ;

– edges from vi ,out to vi+1,in, for i ∈ [1,n − 1], to chain all
variable gadgets and clause gadgets after one other;

– edges (v0,v1,in) and (vm,out,v0) to connect the chain with
start node v0 creating a cycle;

– edges between variables in variable gadgets and their oc-
currence in clause gadgets:
∗ an edge from each vertex vi ,1 in a variable gadget to
each vertexvj ,ℓ in clause gadgets withvj ,ℓ representing
a literal Lj ,ℓ = xi (recall that vi ,1 encodes true for xi );

∗ an edge from each vertex vi ,2 in variable gadgets to
each vertexvj ,ℓ in clause gadgets wherevj ,ℓ represents
a literal Lj ,ℓ = x i (recall that vi ,2 encodes false for xi );

We refer to these types of edges as consistency edges as ap-
propriate coloring will ensure a consistent interpretation
of the truth assignment.

• Kφ = Kvariable ∪ Kother with
– Kvariable = {xi , x i | xi ∈ Vars(φ)}; and,
– Kother a set of |Vφ |−3n +m colors distinct from Kvariable.

• fφ is defined as follows:
– fφ (vi ,1) = xi and fφ (vi ,2) = x i for every xi ∈ Vars(φ);
– fφ (vj ,ℓ) = Lj ,ℓ for j ∈ [m + 1,n] and ℓ ∈ {1, 2, 3}.
– for all other vertices v ∈ Vφ , f (v) is assigned a different
color in Kother.

vi ,in

vi ,1

vi ,2

vi ,out

(a) Variable gadget G(xi ).

vj ,in

vj ,1

vj ,2

vj ,3

vj ,out

(b) Clause gadget G(Cj ).

Figure 5: Gadgets for the construction of G(φ).

Figure 6: G(φ1) forφ1 = (x1∨x2∨x3)∧(x1∨x2∨x3). For ease of
exposition, vertices assignedwith a unique color fromKother
are left blank.

Example 25. Consider φ1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). Then
G(φ1) is given in Figure 6. □

The following lemma then implies np-hardness.

Lemma 26. Let φ be a propositional logic formula in 3CNF. Then,
φ is satisfiable iff G(φ) has a properly colored cycle.

Proof. (if) Assume C is a properly colored cycle. By construc-
tion of G(φ), a properly colored cycle always needs to go through
each variable and clause gadget exactly once. Indeed, no cycle can
use one of the shortcut consistency edges as the adjacent vertices
carry the same color. Therefore,C picks for every variable xi either
the vertex vi ,1 enoding true or vertex vi ,2 encoding false in the
variable gadget G(x). Furthermore, in every clause gadget G(Cj ), C
picks a single vertex vj ,ℓ encoding literal Lj ,ℓ in Cj . Let ξ be the
truth assignment that maps every variable xi to false when vi ,1
is picked by C and to true when vi ,2 is picked. So, the choices of
C represent the complement of the truth assignment. Notice, that
under ξ every clause Cj evaluates to true. Indeed, let Lj ,ℓ be the
literal picked by C . When Lj ,ℓ = xi for some xi ∈ Vars(φ), then
the vertices vj ,ℓ and vx ,1 inG(φ) are connected with a consistency
edge and are both labeled with the same color. As C is properly
colored, this means that C must have picked the vertex vi ,2 and
ξ (xi ) = ξ (Lj ,ℓ) = true. The same reasoning holds when Lj ,ℓ = x i .
It thus follows that φ evaluates to true under ξ .

(only if) Let ξ be a satisfying truth assignment for φ. Then, let C
be the path through G(φ) that starts and ends in v0 and that picks
in every variable gadget G(xi ), the vertex vi ,1 when ξ (xi ) is false
and vi ,2 otherwise. Furthermore, C picks in every clause gadget
G(Cj ) a literal Lj ,ℓ such that ξ (Lj ,ℓ) is true. The only possibility to
violate properly coloring is through the consistency edges as these
are the only edges where endpoints carry the same color. Assume



two vertices vi ,1 (with i ∈ [1,m]) and vj ,ℓ (with j ∈ [m + 1,n])
are picked by C that carry the same color. By construction, this
color then is xi meaning that ξ (xi ) = false by assumption on the
choice of C on variables. Furthermore, ξ (Cj ,ℓ) = ξ (xi ) = true by
assumption on the choice of C in clause gadgets. This leads to the
desired contradiction. A similar argument can be made when vi ,2
and vj ,ℓ are picked by C . This concludes the proof. □

5.3 conp-completeness
Next, we turn to the main result of this section showing that ro-
bustness(read committed) is conp-complete. The remainder of
this section is devoted to the proof of the following theorem:

Theorem 27. robustness(read committed) is conp-complete.

Obviously, robustness(read committed) is in conp. Indeed,
for a set of transactions T , just guess a counter example schedule s
over T ; then check that s is allowed under read committed and
that CG(s) has a cycle. As the size of the guessed schedule is linear
in the size of T , and the checking step is in polynomial time, the
latter procedure is in np.

The remainder of this section is devoted to a reduction from the
np-complete 3SAT problem to the complement of robustness(read
committed), from which Theorem 27 then follows. For this, let φ
be a boolean formula in 3CNF given as input to 3SAT. Thus, φ is a
conjunction of clausesCj of the form Lj ,1 ∨ Lj ,2 ∨ Lj ,3 with literals
Lj ,ℓ that either equal a variable x or a variable’s complement x ,
with x ∈ Vars(φ). Analogous to Section 5.2, we assume Vars(φ) =
{x1, . . . , xm } and refer to the clauses in φ by Cm+1, . . . ,Cn .

Next, we define a set T(φ) of transactions that (we will later
show) is not robust under isolation level read committed iff φ
is satisfiable. The construction is similar to the construction of
G(φ) in the previous section. In fact, we construct T(φ) so to have
exactly one transaction for every vertex in G(φ). All transactions
corresponding to vertices in (variable and clause) gadgets follow
the following template (⋆):

• write to a distinguished object that identifies the vertex under
consideration;

• read the objects that identify the successor vertices; and,
• read all objects that identify the predecessor vertices.

When the transaction corresponds to an inner vertex of a gadget
(a vertex of the form vj ,ℓ with ℓ ∈ [1, 3]), the above template is
preceded by writes to objects Uℓj to deal with consistency edges.

A formal construction of T(φ) is given below. We omit defining
Obj explicitly, as the necessary objects can be derived straightfor-
wardly from the below transaction definitions. For ease of exposi-
tion we also omit Ci at the end of every transaction Ti .
For every variable xi in φ, T(φ) contains a variable gadget T(φ, i)
consisting of the following four transactions:

Ti ,in : Wi,in[Xi], Ri,in[Y1i], Ri,in[Y
2
i], Ri,in[Zi−1],

Ti ,1 : conflict-seti ,1, Wi,1[Y
1
i], Ri,1[Zi], Ri,1[Xi],

Ti ,2 : conflict-seti ,2, Wi,2[Y
2
i], Ri,2[Zi], Ri,2[Xi],

Ti ,out : Wi,out[Zi], Ri,out[Xi+1], Ri,out[Y1i], Ri,out[Y
2
i].

with conflict-seti ,1 and conflict-seti ,2 a sequence of write operations
that will be specified later.

In this construction, Ti ,in and Ti ,out , respectively, represent the
in- and out-vertex of the variable gadgetG(xi ), that is, verticesvi ,in
and vi ,out, respectively. In addition, the transactions Ti ,1 and Ti ,2
represent the remaining two inner vertices vi ,1 and vi ,2, respec-
tively. Notice, that these transactions correspond to the template (⋆).
Indeed, consider for instance the transactionTi ,in corresponding to
vertex vi ,in which is identified by object Xi and who has successors
vi ,1 andvi ,2 inG(φ) represented by objects Y 1

i and Y 2
i , respectively.

Furthermore, vi ,in has exactly one predecessor vi−1,out identified
by Zi−1 when i > 1, and otherwise has v0 as predecessor which in
turn is identified by object Z0.
For every clauseCj in φ, we have a gadgetU(φ, j) consisting of the
following five transactions:

Tj ,in : Wj,in[Xj], Rj,in[Y1j], Rj,in[Y
2
j], Rj,in[Y

3
j], Rj,in[Zj−1],

Tj ,1 : Wj,1[U1j], Wj,1[Y
1
j], Rj,1[Zj], Rj,1[Xj],

Tj ,2 : Wj,2[U2j], Wj,2[Y
2
j], Rj,2[Zj], Rj,2[Xj],

Tj ,3 : Wj,3[U3j], Wj,3[Y
3
j], Rj,3[Zj], Rj,3[Xj],

Tj ,out : Wj,out[Zj], Rj,out[Xj+1], Rj,out[Y1j], Rj,out[Y
2
j], Rj,out[Y

3
j].

In this construction, Tj ,in and Tj ,out represent the in- and out-
vertex of the clause gadgetG(Cj ). The transactionsTj ,1,Tj ,2 andTj ,3
represent the remaining three inner vertices of the clause gadget.
Notice that the above transactions follow template (⋆) as well.
Furthermore, every ℓ-th inner vertex has the additional identifier
Uℓj that its corresponding transaction writes to.
Finally, T(φ) contains also the next transaction, corresponding to
vertex v0 in G(φ):

T0 : W0[Z0], R0[X1], W0[Xn+1].

It remains to specify the conflict sets, whose purpose it is to rep-
resent the consistency edges in G(φ). For i ∈ [1,m], conflict-seti ,1
consists of all Wi,1[Uℓj] such that Lj ,ℓ = xi in clause Cj for some
j ∈ [m+1,n] and ℓ ∈ {1, 2, 3}. Similarly, conflict-seti ,2 consists of all
Wi,2[U

ℓ
j] such that Lj ,ℓ = x i in clauseCj for some j ∈ [m+ 1,n] and

ℓ ∈ {1, 2, 3}. That is, every occurrence of variable xi (respectively,
x i ) in the ℓ-th position of a clause Cj is witnessed by a write to Uℓj
in Ti ,1 (respectively, Ti ,2).

Let β : Vφ ↔ T(φ) be the bijection that associates the vertices in
G(φ) with their corresponding transaction in T(φ). The following
lemma details the correspondence between T (φ) and G(φ):

Lemma 28. For every v,v ′ ∈ Vφ :
(1) (v,v ′) ∈ Eφ implies there is an edge from β(v) to β(v ′) in the

interference graph of T(φ); and,
(2) an edge from β(v) to β(v ′) in the interference graph of T(φ)

implies either (v,v ′) ∈ Eφ or (v ′,v) ∈ Eφ .

AsT (φ) can be constructed in logspace, Theorem 27 then follows
from Lemma 29 and Lemma 30.

Lemma 29. If there is a properly colored cycle in G(φ) then T(φ)
is not robust against read committed.

Proof. Let Cφ be a properly colored cycle in G(φ). As argued
in the proof of Lemma 26, Cφ passes through the special vertex v0
as well as through each variable and clause gadget in G(φ). Let the



following sequence be the result of applying β on the vertices in C
in the order as they appear in C starting with v0:

T0,T1,in,T1,k1 ,T1,out , . . . ,Tn,in,Tn,kn ,Tn,out .

Denote the set consisting of all transactions in this sequence by T ′.
By Lemma 28, there is a cycle CT in IG(T (φ)) that corresponds to
Cφ . Then,CT is transferable inT0 on operations (R0[X1], W0[Xn+1]).

Next, we construct a multi-split schedule for T ′. To this end, we
introduce the following notation. Let b0 = R0[X1] and let

bi ,α =


Ri,in[Y

ℓ
i], if α = in and Ti ,ℓ follows Ti ,in in CT

Ri,α [Zi], if α ∈ {1, 2, 3}
Ri,out[Xi+1], if α = out

for every i ∈ [1,n]. Clearly, b0 ∈ T0 and notice further that every
bi ,α occurs in Ti ,α . For i ∈ [1,n], denote by prefixi the sequence

prefixbi ,in (Ti ,in ), prefixbi ,ki (Ti ,ki ), prefixbi ,out (Ti ,out ),

and by postfixi the sequence

postfixbi ,in (Ti ,in ), postfixbi ,ki (Ti ,ki ), postfixbi ,out (Ti ,out )

Now, let s ′ be the schedule over T ′ of the following form:

prefixb0 (T0) · prefix1 · · · prefixn ·

postfixb0 (T0) · postfix1 · · · postfixn .

Notice that s ′ is indeed a multi-split schedule based on CT on
operations (R0[X1], W0[Xn+1]) (c.f., Definition 18).

We argue in the full version of this paper that s ′ is allowed under
read committed.

To conclude the proof, it suffices to remark that the transactions
occurring in T(φ) \T ′ can be appended to s ′ in a serial fashion and
in arbitrary order to obtain the required schedule s for T(φ) that is
allowed under read committed. Indeed, s is clearly still allowed
under read committed and has cycle CT in its conflict graph. By
Theorem 2, T(φ) is thus not robust against read committed. □

Lemma 28(1) provides a direct way to obtain a set of transac-
tions from a properly colored cycle thereby facilitating the proof
of Lemma 29. The main difficulty in the proof of the next lemma
stating the converse direction is that the interference graph forT (φ)
is bidirectional and can therefore contain cycles not corresponding
to a cycle in G(φ) which is problematic for the reduction.

Lemma 30. If T(φ) is not robust against read committed then
there is a properly colored cycle in G(φ).

Proof. Assume T(φ) is not robust for read committed. Accord-
ing to Theorem 23, there exists a multi-split schedule s for T(φ)
based on some transferable cycle CT that is allowed under read
committed. We argue thatCT corresponds to a properly colored cy-
cle inG(φ). To this end, we introduce some notation. For i ∈ [1,n]},
let

ωin
i := (Ti ,in,bi ,in,ai ,ki ,Ti ,ki );

ωout
i := (Ti ,ki ,bi ,ki ,ai ,out ,Ti ,out ); and,

ω∼
i := (Ti ,out ,bi ,out ,ai+1,in,Ti+1,in );

where

bi ,α =


Ri,in[Y

ℓ
i], if α = in and Ti ,ℓ follows Ti ,in in CT

Ri,α [Zi], if α ∈ {1, 2, 3}
Ri,out[Xi+1], if α = out

and

ai ,α =


Wi,in[Xi], if α = in
Wi,α [Y

α
i ], if α ∈ {1, 2, 3}

Wi,out[Zi], if α = out.

Furthermore, let a0 = W0[Xn+1], b0 = R0[X1].
We prove the following two claims to be true in the full version of
this paper.

(C1) The cycle CT is transferable in T0 on (b0,a0) and
has the following form:

(T0,b0,a1,in,T1,in ),ω
in
1 ,ω

out
1 ,ω

∼
1 ,ω

in
2 ,ω

out
2 ,ω

∼
2

. . . ,ω∼
n−1,ω

in
n ,ω

out
n , (Tn,out ,bn,out ,a0,T0).

(C2) The schedule s is fully split.
It follows immediately from Claim (C1) that CT directly cor-

responds to a valid cycle C through each gadget in G(φ), that is,
edges are followed in the correct direction. Towards a contradic-
tion, assume that C is not a properly colored cycle in G(φ). Then,
by construction, as similarly colored nodes are only connected
through consistency edges, there are two transactionsTi ,k andTj ,ℓ
with i ∈ [1,m], j ∈ [m + 1,n], k ∈ {1, 2} and ℓ ∈ {1, 2, 3}, corre-
sponding to the two vertices with the same color in respectively a
variable gadget G(xi ) and a clause gadget G(Cj ). In this case, both
Ti ,k andTj ,ℓ contain a write operation on objectU ℓ

j in respectively
prefixbi ,k (Ti ,k ) and prefixbj ,ℓ (Tj ,ℓ). However, by Condition (C2)
postfixbi ,k (Ti ,k ) is not empty, implying that the conflicting write of
Tj ,ℓ happens after the write of Ti ,k , but before the commit of Ti ,k .
As a result, s cannot be allowed under read committed, leading to
the desired contradiction. □

6 RELATEDWORK
In this section, we discuss the papers that considered (variants of)
the robustness problem.
Sufficient conditions. Fekete et al. [16] studied the robustness
problem for snapshot isolation by extending traditional conflict
graphs with extra information w.r.t. the type of each conflict. In
contrast to our interference graphs, these static dependency graphs
only capture the possible types of conflicts between transactions but
not the specific operations responsible for these conflicts. Based on
these graphs, a sufficient condition for robustness against snapshot
isolation is presented, as well as possible approaches on how
to modify transactions when robustness is not guaranteed. The
performance of these approaches is studied by Alomari et al. [2].
Alomari and Fekete [3] provide a sufficient condition for robustness
against read committed, both under a lock based and multiversion
semantics. This work uses the same graph approach as in [16].
The provided condition, however, is not a necessary condition and
can therefore not be used to characterize robustness against read
committed.

Cerone et al. [11] provide a framework for uniformly specifying
different isolation levels in a declarative way. A key assumption in
their framework is atomic visibility, requiring that either all or none
of the updates of each transaction are visible to other transactions.
This assumption facilitates reasoning over isolation levels, since
these isolation levels can be specified by consistency axioms on



the level of transactions instead of individual operations within
each transaction. Bernardi and Gotsman [10] extended the work of
Fekete et al. [16] by providing sufficient conditions for robustness
against the different isolation levels that can be defined by this
framework. Continuing on this line of work, Cerone, Gotsman and
Yang [13] examined the relationship between consistency axioms
restricting the allowed schedules over a set of transactions and
the resulting properties of possible cycles in the static dependency
graph for this set of transactions. In particular, they provide a more
direct approach to derive robustness criteria based on static depen-
dency graphs from arbitrary isolation levels specified by consis-
tency axioms. Cerone and Gotsman [12] later refined the sufficient
condition for robustness against snapshot isolation first obtained
by Fekete et al. [16]. They furthermore obtained a sufficient condi-
tion for robustness against parallel snapshot isolation towards
snapshot isolation (i.e., whether for a given workload every
schedule allowed under parallel snapshot isolation is allowed
under snapshot isolation). However, the declarative framework
by Cerone et al. [11] providing the foundation on which the above
work is built, cannot be used to study read committed (and hence
read uncommitted) as it does not admit the atomic visibility con-
dition.

Characterizations. As mentioned before Fekete [15] is the first
work that provides a necessary and sufficient condition for de-
ciding robustness against snapshot isolation. In particular, that
work provides a characterization for acceptable allocations when
every transaction runs under either snapshot isolation or strict
two-phase locking (S2PL). The allocation then is acceptable when
every possible execution respecting the allocated isolation levels
is serializable. As a side result, this work indirectly provides a nec-
essary and sufficient condition for robustness against snapshot
isolation, since robustness against snapshot isolation holds
iff the allocation where each transaction is allocated to snapshot
isolation is acceptable.

Beillahi et al. use an algorithmic approach to decide robustness
against causal consistency [8] and snapshot isolation [7] by
providing a polynomial time reduction from these problems to
the reachability problem in transactional programs over a sequen-
tially consistent shared memory. Their setting is slightly different
from our setting, as they allow a nondeterministic execution of
transactions. They furthermore group transactions under different
processes. During execution, each process then runs its transactions
sequentially but concurrently with other processes. Due to this dif-
ferent setting, they obtain complexity bounds that are considerably
higher than our complexity results. In particular, they show that
deciding robustness against causal consistency and snapshot iso-
lation are expspace-complete in general, and pspace-complete
if respectively the number of sites or the number of processes is
fixed.

Transaction chopping. Instead of weakening the isolation level,
transactions can also be split in smaller pieces to obtain perfor-
mance benefits. However, this approach poses a new challenge, as
not every serializable execution of these chopped transactions is
necessarily equivalent to some serializable execution over the origi-
nal transactions. A chopping of a set of transactions is correct if for

every serializable execution of the chopping there exists an equiva-
lent serializable execution of the original transactions. Shasha et
al. [19] provide a graph based characterization for this correctness
problem. It is interesting to note that robustness against no isola-
tion corresponds to the correctness of fully chopped transactions.
Indeed, if we would chop each operation of each transaction into its
own chopped transaction, then every serializable schedule of this
chopping would clearly correspond to a schedule over the original
transactions allowed under no isolation and vice versa. How-
ever, this relation is no longer trivial when considering robustness
against read uncommitted and read committed. In particular,
a correspondence between transaction chopping correctness and
robustness against read committed is not to be expected, as the
former is decidable in polynomial time [19], whereas we showed
that the latter to be conp-complete.

7 CONCLUSIONS
In this paper, we provided characterizations for robustness against
the isolation levels read uncommitted and read committed,
and used these to establish upper bounds on the complexity of
the associated decision problem. We also obtained matching lower
bounds. The obtained characterizations provide insight in to what
robustness means in these settings and under which circumstances
it can occur.

While the characterizations in this paper are not restricted to the
traditional lock-based semantics of the SQL isolation levels as they
are defined in terms of forbidden patterns [9], it would be interesting
to see what kind of characterizations for robustness can be found
in terms of a multi-version definition of the isolation levels [1].
A second immediate question pertains the conp-hardness result:
are there natural restrictions that make the problem tractable. In
an online context with millions of transactions, testing robustness
against read committed is obviously not feasible and tractable
restrictions or approximations would be desirable. On the other
hand, in an offline context, where the set of transactions is generated
through a finite (and small) set of transaction programs, as discussed
next, intractability is not necessarily problematic.

The initial motivation for the study of robustness lies in the
performance improvement gained by executing transactions at a
weaker isolation level without the danger of introducing anom-
alies [16]. It is important to point out that robustness makes the
most sense in settings where transactions can be grouped together
or where the set of possible transactions is known beforehand. A
natural occurrence of the latter is when transactions are generated
by a finite set of parameterized transaction programs as for example
in a banking application where customers can do a fixed number
of financial transactions. Consider the parameterized transaction
τ = R[v]W[v]R[w]R[w] that represents a transfer from an account
v to an accountw and where v andw are variables. Any transac-
tions T = R[x]W[x]R[y]R[y] with x, y ∈ Obj then is an instance of
τ . For this example, it could even make sense to interpret v and
w with the same object x. However, in some scenarios it makes
sense to disallow different variables to be interpreted by the same
object. In future work, we will study the robustness problem w.r.t.
a formalization of parameterized transactions. In such a setting
the same characterizations continue to hold but the interference



graphs become infinitely large. Initial results show that depending
on particular enforced disjoint variable domain constraints, the
same complexities for robustness as in this paper can be obtained.

Robustness is a binary property: a set of transactions is robust
against a given isolation level or it is not. When robustness does not
hold, one can devise methods to make a set of transactions robust or
one can split up transactions into maximally robust subsets. These
questions have been considered for snapshot isolation [12, 16]
and it would make sense to consider them w.r.t. the different isola-
tion levels occurring in database systems [5]. An orthogonal, and
undoubtedly more challenging, setting, is to depart from the re-
quirement that every transaction has to be executed at the same
isolation level. That is, for a given set of transaction programs, al-
locate every transaction to the optimal isolation level for suitable
notions of optimality. An immediate interpretation of optimality
could be the weakest possible isolation level for every transaction
that guarantees overall robustness for the whole set. Fekete [15]
studied, and solved, the allocation problem w.r.t. snapshot isola-
tion and strict two-phase locking, but no results of this flavor have
been obtained for other isolation levels.
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A PROOFS FOR SECTION 5 (READ COMMITTED)
Let T be a transaction. A subsequence B of T is a sequence of consecutive operations in T . If a is the next operation in T following the last
operation in B then B · a is the subsequence B extended with a. Let T be a set of transactions and s be a schedule for T . Let T ∈ T and
let B · a be a subsequence of T . Then we denote by s(B;a) the schedule obtained from s by first removing all operations in B in s and then
inserting them just before a in s . More formally, let s = s1 · a · s2. Then, s(B;a) is the schedule s ′1 · B · a · s2 where s ′1 is obtained from s1 by
deleting every operation in B. Such actions will be performed to merge chunks in a schedule in the proof of the following theorem.

Lemma 31. Let T be a set of transactions and s a schedule for T allowed under isolation level I ∈ {no isolation, read uncommitted,
read committed}. Let B · a be a subsequence of some transactionTi ∈ T . The schedule s(B;a) for T obtained from s by removing all operations
in B and inserting them in front of a is allowed under I if at least one of the following conditions is true:

(1) For every operation c that conflicts with an operation d in B we have c <s d or Ck <s a, with Ck the commit of the transaction that c is in.
(2) Operation a equals Ci and Ti is the transaction whose commit occurs last in s .
(3) For every operation c that conflicts with an operation d in B we have c <s d or a <s c .

Proof. Observe that Condition (2) implies Condition (1), since Ck <s Ci = a follows from the assumption thatTi is the transaction whose
commit occurs last in s . In the remainder of the proof we show Property (1) and Property (3). Let s ′ = s(B;a).
(1) For this, let ch ∈ Th and dj ∈ Tj be two arbitrary conflicting operations with ch <s ′ dj . Towards a contradiction, suppose that ch and
dj witness a forbidden phenomenon in s ′ for isolation level I (i.e., ch <s ′ dj <s ′ Ch. That is, a dirty-write if I = read uncommitted; a
dirty-write or dirty-read if I = read committed). The proof is by case distinction:

• If ch < B and dj < B, then the proof is straightforward. Indeed, the relative order between ch , dj and Ch is identical in s and s ′.
Therefore, either ch and dj do not witness a forbidden phenomenon in s ′ or the phenomenon is already present in s . Both contradict
with our assumptions.

• If ch ∈ B, then Th = Ti and ch <Th a. By Condition (1), dj <s ch or Cj <s a. Note that, since s ′ is constructed from s by moving
operations in B to the right, ch <s ′ dj implies ch <s dj . We conclude that dj <s Cj <s a, and hence dj <s ′ Cj <s ′ ch , contradicting
our assumption that ch <s ′ dj .

• If dj ∈ B, then Tj = Ti and dj <Tj a. By Condition (1), ch <s dj or Ch <s a. Note that, since s ′ is constructed from s by moving
operations in B to the right, dj <s ′ Ch implies dj <s Ch. If ch <s dj , the relative order between ch , dj and Ch is identical in s and s ′,
again leading to a contradiction. We conclude that dj <s Ch <s a. But then ch <s ′ Ch <s ′ dj , contradicting our assumption that ch
and dj witness a forbidden phenomenon.

We conclude that s ′ is indeed allowed under I.
(3) The proof is analogous to the proof for Condition (1). Let ch and dj be again two arbitrary conflicting operations with ch <s ′ dj that we
assume to witness a forbidden phenomenon for isolation level I. If ch < B and dj < B, the proof argument is the same as in the proof for
Property (1). The other two cases are as follows:

• If ch ∈ B, then Th = Ti and ch <Th a. By Condition (3), dj <s ch or a <s dj . Analogous to the proof for Condition (1), the former
cannot happen, and hence ch <s a <s dj , implying that the relative order between ch , dj and Ch is identical in s and s ′, again leading
to a contradiction.

• If dj ∈ B, thenTj = Ti and dj <Tj a. By Condition (3), ch <s dj or a <s ch . The former case is analogous to the proof for Condition (1),
implying that the relative order between ch , dj and Ch is identical in s and s ′. The latter case cannot occur, as dj <s a <s ch implies
dj <s ′ ch by construction of s ′ from s , contradicting our assumption that ch <s ′ dj .

□

Lemma 32. Let T be a set containing precisely two transactions. If T is not robust against isolation level read committed, then there is a
multi-split schedule s for T that is allowed under read committed.

Proof. Let s be a schedule for T that is allowed under read committed and contains a cycle. We call the transaction whose commit
occurs first in s transaction T1, and the other transaction T2. Let c be the first operation from T2 that conflicts with an operation d from T1
such that c <s d . (Notice that c and d exist, due to existence of a cycle C in CG(s).) Next, we distinguish two cases:
(Case: There is an operation a from T1 that occurs before c in s and conflicts with an operation b from T2.) Let a be the last such operation in
s . Let s ′ be the schedule obtained from s by moving all operations from T2 occurring after c to the chunk with C2; all operations from T2
occurring before c to the chunk with c; all operation from T1 occurring after a and before c to the chunk with C1.

That s ′ is allowed under read committed is straightforward by application of Lemma 31 on the three steps of the construction. Indeed,
due to C1 <s C2, the first step of the construction satisfies Condition (2); since c is the first operation from T2 in s that conflicts with an
operation on its right, this step satisfies Condition (1); by choice of a, the operations between a (inclusive) and c (exclusive) are not conflicting
with operations from T2 and are inserted right before the first operation of T1 that occurs after c , hence Condition (1) applies.

We conclude the case by observing that s ′ is indeed a multi-split schedule for T based on cycle (T1,a,b,T2), (T2, c,d,T1) and function ϵ
with ϵ(T1) := a and ϵ(T2) := c .



(Case: Otherwise) We assume that none of the operations from T1 occurring before c in s conflicts with an operation from T2. Let s ′ be the
schedule obtained from s by moving all operations from T2 occurring after c to the chunk with C2; all operations from T1 to the chunk with
C1.

To see that s ′ is allowed under read committed we make the following observations: The first step of the construction satisfies
Lemma 31(2), since T2 commits last in s; The second step of the construction satisfies Lemma 31(1) by the assumption of the case.

Recall that there is an edge (T1,a,b,T2) in C , for some operations a from T1 and b from T2 with a <s b. By assumption of the case, we
have c <s a thus a <s ′ b (by construction of s ′).

Now it is straightforward to see that s ′ is a multi-split schedule for T based on the cycle (T2, c,d,T1), (T1,a,b,T2) and function ϵ with
ϵ(T2) := c and ϵ(T1) := C1. □

Theorem 23. Let T be a set of transactions. The following are equivalent:

(1) T is not robust against isolation level read committed;
(2) IG(T ) contains a multi-prefix-conflict-free cycle; and
(3) there is a multi-split schedule s for T that is allowed under read committed.

Proof. (Continued).
For convenience of notation, we refer in each phase by s ′ to the new version of s .

Phase 1: From a schedule s for U under read committed with a cycle C in its conflict graph and with Property (i) we construct a schedule s ′

forU under read committed with cycle C ′ ∈ CG(s) and Properties (i-ii). For the construction, we iterate over the transactions inU in the
opposite order as defined by C , starting from the transaction whose commit occurs last in s . For each visited transaction, we verify that it
does not contradict Property (ii). If it does, then we rewrite s to a new schedule s ′ in which the property is made true forTi and remains true
for all earlier visited transactions. We continue the iterative process on the new schedule s ′ until Property (ii) is true.

The above procedure terminates as we never split chunks from other transactions than the selected one. Hence, the only possibly side
effect on a transaction with Property (ii) in s is that its two chunks may become a single chunk in s ′.

Notice that our picking order has the following implications: The first transaction Ti that we pick has property Ci+1 <s Ci, with Ti+1 the
transaction following Ti in C . Indeed, we start with the transaction that commits last in s . For every next transaction Ti , we can assume that
Property (ii) is already true for Ti+1.

For the rewriting step, we distinguish three cases:
(Case: Ci+1 <s Ci) Let b be the first operation ofTi in s that conflicts with an operation fromTi+1. Then let s ′ be the schedule obtained by (I)
removing in s all operations in prefixb (Ti ) except b and inserting them in front of b; (II) removing all operations in postfixb (Ti ) except Ci
and inserting them in front of Ci.

The resulting schedule s ′ is allowed under read committed, because both steps (I) and (II) satisfy Lemma 31(1). Indeed, for (I) it follows
from the choice of b that all operations c conflicting with an operation d in prefixb (Ti ) are from Ti−1 and due to Property (i) thus occur
before d in s . For (II), if an operation c conflicts with an operation d in prefixb (Ti ) with c <s d , then the same argument applies. Otherwise, if
d <s c it follows from Condition (1) on s that c is from Ti+1 and thus from the condition of the case that Ci+1 <s Ci.

Replacing the edge betweenTi andTi+1 inC by (Ti ,b, c,Ti+1), with c an operation fromTi+1 that b conflicts with, results in a cycle that is
in CG(s ′). Since C ′ mentions the same transactions as C , Property (1) straightforwardly transfers from s and C to s ′ and C ′. Notice also that
b (which is conflicting by assumption) is the last operation of the first chunk of Ti in s ′, thus s ′ has Property (ii) for transaction Ti .
(Case: Ci <s Ci+1 and there is an operation b in Ti that conflicts with an operation e from Ti+1 with b <s e <s Ci) Let b denote the last
operation in s with this property.

Let s ′ be the schedule obtained by (I) removing in s all operations from prefixb (Ti ) except b and inserting them in front of b; and (II)
removing all operations in postfixb (Ti ) except Ci and inserting them in front of Ci.

To see that s ′ is allowed under read committed, we argue that both steps (I) and (II) satisfy Lemma 31(3). For step (I), this follows from
the observation that Ti+1 already has Property (ii) due to the order in which we select transactions. Existence of b thus implies that the first
chunk ofTi+1 is located between b and Ci in s . From this, we infer that for every operation c that conflicts with an operation d in prefixb (Ti ),
we either have that c <s d or, if d <s c , that c is from Ti+1, due to Property (i) on s , and thus that b <s c . For step (II), if an operation c
conflicts with an operation d in postfixb (T1) it follows from our choice of b that either c <s d or Ci <s c , hence Lemma 31(3) applies.

Due to the above observations and the fact that b is the last operation of the first chunk of Ti in s ′, Property (ii) is indeed true for
transaction Ti in s ′.

Notice that the above analysis implies that cycleC remains a cycle inCG(s ′). Hence, letC ′ equalC . Now it follows straightforwardly from
Property (i) on s and C that Property (i) is true for s ′ and C ′.
(Case: Ci <s Ci+1 and there is no operation b in Ti that conflicts with an operation e from Ti+1 with b <s e <s Ci) Let s ′ be the schedule
obtained by removing all operations from Ti except Ci from s and inserting them in front of Ci.

To see that s ′ is allowed under read committed, we observe that for every operation c that conflicts with an operation d in Ti , the
assumption of the case implies that either c <s d or Ci <s c . Hence, Lemma 31(3) applies.

We conclude that Property (ii) is indeed true for Ti in s ′ since Ti now has only one chunk.



Here, again, we let C ′ equal C , as it is indeed a cycle in CG(s ′) (inferred from the earlier analysis on s ′). That Property (i) is true for s ′
and C ′ follows immediately from Property (i) on s , the fact that s ′ is allowed under read committed and because C ′ mentions the same
transactions as C .
Phase 2: From a schedule s for U under read committed with a cycle C in its conflict graph and with Properties (i-ii) we construct a schedule
s ′ forU under read committed with cycle C ′ ∈ CG(s) and Properties (i-iii).

Let s ′ be the schedule obtained by sorting in s all chunks between the first chunk of T1 and last chunk of T1 based on the order of the
transaction that they are part of in C[T1] and by sorting all chunks occurring after C1 according to the same order. Let C ′ equal C .

That s ′ is under read committed follows straightforwardly from the following observation: an operation in a chunk from some transaction
Ti can only conflict with an operation in chunks from transactions Ti−1 and Ti+1. Due to minimality of C in CG(s) and the fact that U (thus
also C) has three or more transactions, it follows that for chunks from transactions Ti and Ti+1, either they are already in the correct order,
or they contain no conflicting operations and thus can be swapped safely. Since we do not swap chunks containing conflicts, cycle C ′ is
indeed a cycle in CG(s ′).

Property (i) on s ′ and C ′ follows from the fact that Property (i) is true on s and C and because C ′ equals C . Property (ii) follows from the
fact that Property (ii) is true on s and because we don’t split chunks to obtain s ′.
Phase 3: From a schedule s for U under read committed with a cycle C in its conflict graph and with Properties (i-iii) we construct a schedule
s ′ forU under read committed with cycle C ′ ∈ CG(s) and Properties (i-iv).

Let Ti be the last transaction (w.r.t. the order defined in C[T1]) without chunk between the first and last chunk of T1 in s . Notice that
i < n, because i = n would imply there is no edge from Tn to T1 in IG(s), which contradicts with Property (iii) on s and the assumption that
C contains all transactions fromU. For the same reason, transaction Ti+1 must have two chunks in s : one before C1 and one after C1. Indeed,
if Ti+1 is closed, there can be no edge from Ti to Ti+1 in IG(s). We will denote the last operation occuring in the first chunk of Ti+1 by a.

Let s ′ be the schedule obtained by moving all chunks occurring before Ti+1 in s to their chunk after a or inserting on the right place after
C1 w.r.t. the ordered defined by C[T1] (if the transaction has only one chunk in s). Let C ′ equal C .

That schedule s ′ is allowed under read committed follows from Lemma 31; particularly the fact that Lemma 31(3) applies to each
individual swap. Property (i) follows from the assumption that Property (i) is true on s and C and by construction of C ′ (which equals C).
Property (ii) follows from the assumption that Property (ii) is true on s and because we don’t split chunks to obtain s ′. Property (iii) and
(iv) follow directly from the construction, taking Ti+1 as T1. Indeed, we do not split chunks and all repositionings are w.r.t. the order of
transactions in C . By choice of Ti all transactions occurring between Ti+1 and T1 in C already had a chunk between the first chunk of Ti+1
and the last chunk ofT1 (and possibly a second chunk occuring after the second chunk ofTi+1). TransactionsT1 tillTi either already appeard
closed between the first and last chunk of Ti+1 or are closed and put on the right position by the construction.
Phase 4: From a schedule s for U under read committed with a cycle C in its conflict graph and with Properties (i-iv) we construct a schedule
s ′ forU under read committed with cycle C ′ ∈ CG(s) and Properties (i-v).

Let s ′ be the schedule obtained from s by iteratively picking a transaction Ti having two chunks in s , with i , 1, and with Ti−1 having
only one chunk, then removing the second chunk of Ti and inserting it immediately after its first chunk.

This procedure clearly leads to a schedule with Property (v). The resulting schedule s ′ is also allowed under read committed. Indeed,
suppose towards a contradiction that a pair of conflicting operations c and d exist with c <s ′ d witnessing a forbidden phenomenon for
isolation level I. Then either c or d must be from Ti (as otherwise the phenomenon already occurred in s). If c <s d with c from Ti , then
d must be from Ti+1 (due to Property (i) on s and C) and it follows from the construction that c <s ′ Ci <s ′ d , which contradicts with our
assumption that c and d witness a forbidden phenomenon. Similarly, if c <s d with d from Ti , then c must be from Ti−1 (again due to
Property (i)), which implies c <s ′ Ci−1 <s ′ d .

Properties (ii-iv) transfer from s to s ′, because we do not split chunks and because we do not remove chunks located between the first and
second chunk of T1. □
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