
54 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

contributed articles

THE GENERAL SETTING for worst-case execution time
(WCET) analysis is that a set of hard real-time tasks
is to be executed on a given hardware platform. Hard
real-time tasks have associated deadlines within
which they must finish their execution. The deadlines
may be given by periods. Timing verification must verify
these timing constraints are satisfied. Traditionally,
timing verification is split into a WCET analysis, which
determines upper bounds on the execution times of
all tasks, and a schedulability analysis, which takes
these upper bounds and attempts to verify the given
set of tasks when executed on the given platform will
all respect their deadlines.

The problem to determine upper (and potentially
also) lower bounds on execution times underwent a
transition in the 1990s:

	˲ In the old days, textbooks about
the realization of real-time systems
would strongly argue against the use
of execution platforms with caches,
pipelines, and such. For previously
used architectures with instructions
that had constant execution times,
WCET analysis methods using timing
schemata23 were the method of
choice. Timing schemata describe
how (bounds on) the execution times
of a programming-language construct
were composed from the (bounds on)
the execution times of its compo-
nents. These methods would thus do
structural induction over the struc-
ture of a program and determine
bounds for ever bigger parts of the
program. Worse yet, industry’s “best
practice” was, and unfortunately part-
ly still is, to do some end-to-end mea-
surements, ignore some unwelcome
outliers, if optimism prevailed, or add
some safety margin, if more problem-
awareness dominated.

	˲ The introduction of performance-
enhancing architectural components
and features such as caches, pipelines,
and speculation made methods based
on timing schemata obsolete. Execu-
tion times did not compose any longer
because instruction execution times
were now dependent on the execution
state in which they were executed. In
the composition A;B, the execution
time of statement B depended on the
execution state produced by statement
A. The variability of execution times

Real Time
Spent on
Real Time

DOI:10.1145/3375545

The story of the development of a sound, static
method for worst-case execution-time analysis.

BY REINHARD WILHELM

 key insights
	˽ WCET searches a huge state space for

a longest path. Adequate abstraction
of the execution platform is key to cope
with the complexity of the analysis, and
Abstract Interpretation provides the
theoretical foundation for a sound and
efficient WCET analysis.

	˽ The Timing Predictability of an
architecture determines the efficiency
of WCET analysis and the precision
of its results.

	˽ Some performance-enhancing features
ruin timing predictability and at the same
time open the door to hardware security-
attacks like Spectre and Meltdown.

http://dx.doi.org/10.1145/3375545
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3375545&domain=pdf&date_stamp=2020-09-23

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 55

I
M

A
G

E
 B

Y
 M

A
R

Y
N

O
V

A

grew with several architectural param-
eters, for example, the cache-miss pen-
alty and the costs for pipeline stalls
and for control-flow mispredictions.

The introduction of multicore exe-
cution platforms into the embedded
real-time domain made the problem
still more difficult. These platforms
typically have shared resources, and
the interference on these shared re-
sources complicates the determina-
tion of upper execution-time bounds
for tasks executed on such a platform.
A few words about terminology. From
the beginning we aimed at sound
WCET-analysis methods. The results
of a sound WCET analysis are conserva-
tive, that is, they will never be exceeded
by an execution. We consider being

conservative as a Boolean property. Of-
ten conservative is used as a metric, be-
ing more conservative meaning being
less accurate. For an unsound method,
however, it does not make sense to
speak about being more or less conser-
vative. It is not even clear whether be-
ing “more conservative” means mov-
ing toward the real WCET from below
or moving further away from the real
WCET by increasing overestimation.
The second, quite important property,
referred to when mentioning conserva-
tism, is accuracy of the results of a
WCET analysis.

WCET analysis can be seen as the
search for a longest path in the state
space spanned by the program under
analysis and by the architectural plat-

form. The analysis is based on the as-
sumption that the analyzed programs
terminate, that is, all recursions and it-
erations are bounded. We are not con-
fronted with the undecidability of the
halting problem. In trying to determine
bounds on recursion or iteration in a
program, our tool might discover that it
cannot determine all of the bounds and
will ask the user for annotations. All
WCET bounds are then valid with re-
spect to the given annotations.

This state space is thus finite, but
too large to be exhaustively explored.
Therefore, (safe) overapproximation is
used in several places. In particular, an
abstraction of the execution platform
is employed by the WCET analysis.
We will in the following cover static

56 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

contributed articles

access sequence of cached memory
blocks, extended by some way to indi-
cate not cashed. The associativity of a
fully associative cache is equal to its
capacity. For a set associative cache it
is the size of a cache set, that is, the
number of memory blocks fitting into
each set. It was (for us) easy to see our
analysis should perform a kind of in-
tersection and associate with the ele-
ments in the resulting set their maxi-
mal age from the incoming must
caches, whenever control flow merges.
Abstract must caches can be used to
predict cache hits.

An abstract may cache at a program
point indicates which memory blocks
may be in a concrete cache whenever
execution reaches this program point.
In analogy, our analysis uses union at
control-flow merge points and associ-
ates the minimal incoming age with
the elements in the union. Taking the
complement of a may cache gives the
information which memory blocks
will be in no concrete cache arriving at
this program point. It thus allows to
predict cache misses. In Lv,18 we called
such analyses classifying analyses as
their results allow to classify some
memory accesses as either definite
hits or definite misses.

In contrast, persistence analyses are
called bounding analyses. They aim at
bounding the number of cache re-
loads of memory blocks. Intuitively, a
memory block is called persistent if it
suffers at most one cache miss during
program execution. We defined such a
persistence analysis, which was too
beautiful to be correct. The tempting
idea was to add another cache line
with age associativity in which all
memory blocks were collected that
had been replaced in the cache at least
once and to compute the maximal po-
sition (relative age) for all memory
blocks that may be in the cache. The
analysis would thus use union and
maximal age at control-flow merge
points. Our mistake was that we ig-
nored the capacity constraints of the
caches. Our analysis could collect
more memory blocks in an abstract
cache than would fit into the concrete
cache and thereby underestimate the
age. Luckily, this cache-persistence
analysis was never implemented in
AbsInt’s tools. The error was later
corrected by Cullmann and Huynh.4,15

Let me jump out of the story to some
later developments: Jan Reineke has
clarified the semantic foundations of
persistence analysis.21 All types of per-
sistence are identified by the occur-
rence of certain patterns in memory-
access traces, while categorizing cache
analyses, that is, must and may analy-
ses only abstract from the last state in a
trace. Reineke also identified a whole
zoo of different persistence analyses.
End of excursion.

Understanding Our Approach
We developed the cache analysis with
the goal of classifying memory access-
es as either definite cache hits or defi-
nite cache misses. The difference to
competing approaches was that we
could describe our cache analyses as
abstract interpretations.3 This meant
we defined the following:

	˲ domains of abstract cache states
with a partial order representing which
domain elements contained better in-
formation than other elements,

	˲ corresponding to this partial or-
der, a join function, used to combine
incoming abstract domain elements at
control-flow merge points, for exam-
ple, some kind of intersection for the
must-cache analysis, and,

	˲ abstract cache effects for each
memory access, describing the update
of abstract cache states corresponding
to this memory access.

This stood in stark contrast to the
state of the art in cache analysis,
which would typically give a page of
pseudo-C code and claim that this
code would implement a sound cache
analysis, of course without any cor-
rectness arguments!

Now, that we had solved one sub-
problem of WCET analysis, it was time
to reflect more deeply what the essence
of our method was, and we identified
the following central idea behind our
WCET-analysis method:

	˲ Consider any architectural effect
that lets an instruction execute longer
than its fastest execution time as a tim-
ing accident. Typically such timing ac-
cidents are cache misses, pipeline
stalls, bus-access conflicts, and
branch mis-predictions. Each such
timing accident had to be paid for, in
terms of execution-time cycles, by an
associated timing penalty. The size of
a timing penalty can be constant but

analyses of the behavior of several ar-
chitectural components.

Cache Analysis
Our engagement in timing analysis
started with the dissertation work of
Christian Ferdinand at around 1995. I
had proposed several thesis topics,
which he all rejected with the argu-
ment, “This is of no interest to any-
body,” meaning irrelevant for industri-
al practice. When I proposed to develop
an analysis of the cache behavior he
answered, “This may actually be of in-
terest to somebody.” He was able to
convince himself (and me) very quickly
that an idea we had would work. He
used the program-analysis generator
PAG, conceived by Martin Alt and real-
ized by Florian Martin in his Ph.D. the-
sis,19 to implement a prototype cache
analysis for caches with a least-recently
used (LRU) replacement strategy. This
was, and still is, WCET researcher’s
dearest replacement policy. Our first
submitted article on cache analysis1
confirmed Ferdinand’s appreciation
for the subject. It received enthusiastic
reviews as for the relevance of the prob-
lem we had solved and for the elegance
of the solution.

Unlike existing methods, Ferdinand
designed two different abstract do-
mains for cache analysis, a must and a
may domain.1,6,8 An abstract must
cache at a program point indicates
which memory blocks will be in all
concrete caches whenever execution
reaches this program point. There is
an underlying assumption that pro-
gram execution is not disturbed by in-
terrupts or preemption. Otherwise, the
impact of interrupts or preemptions
must be taken into account by analyz-
ing the maximal cache impact through
a CRPD analysis.2

An abstract must cache state com-
puted at a program point represents
an over-approximation of the set of
concrete cache states that may reach
this program point. All the concrete
cache states in this overapproximation
have as common contents the memory
blocks that are sure to be in the con-
crete cache when execution reaches
this program point. In LRU caches,
memory blocks logically have an age.
The age is between 0 and the associa-
tivity—1 of the cache (set) and corre-
sponds to the relative position in the

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 57

contributed articles

proach.7 This processor had a four-
way set-associative cache with a rath-
er strange cache-replacement strategy
using one global round-robin replace-
ment counter keeping track of where
the next replacement should take
place. It meant our cache analysis
could essentially only keep track of
the last loaded cache line in each
cache set. This strange beast of a
cache triggered the concept of timing
predictability, which turned out to be
a very fruitful research area, to be dis-
cussed later.

There was a second assumption
that turned out to be false. It is intui-
tively clear the accuracy of the cache
analysis has a strong impact on the ac-
curacy of the WCET-analysis results.
This led us to believe that cache analy-
sis was the difficult part of WCET anal-
ysis, that the rest would be easy. It
turned out that caches were relatively
easy to analyze, although good solu-
tions for Non-LRU caches had yet to be
found. Much later, between 2008–
2011, Daniel Grund developed an effi-
cient analysis for FIFO caches and ap-
proached a solution for the analysis
problem for PLRU caches.9–11

Pipelines were much more difficult
to analyze and also appeared in more
variations and were mostly badly docu-
mented. And then Airbus informed us
about the existence of peripheries and
system controllers, architectural com-
ponents that serious WCET research-
ers had never heard of. Their analyses
can have a very strong influence on the
accuracy of timing analyses.

Control-Flow Reconstruction
But first we needed to get programs to
analyze. WCET analysis has to be done
on the executable level because the
compiler influences the execution
time by its memory allocation and
code generation. So, we needed a re-
construction of the control flow from
binary programs. This was part of
Henrik Theiling’s Ph.D. thesis.24 De-
coding individual instructions is rela-
tively easy, but identifying the control
flow, in particular switch tables is a
non-trivial task.

Pipeline Analysis
At the end of the 1990s, Stephan Thesing
started to develop the framework for
modeling pipeline architectures.16,25

may also depend on the execution
state. We consider the property that a
particular instruction will not cause a
particular timing accident as a safety
property. The occurrence of a timing
accident thus violates a correspond-
ing safety property.

	˲ Use an appropriate method for the
verification of safety properties to
prove that for individual instructions
in the program some of the potential
timing accidents will never happen.
Reduce the worst-case execution-time
bound for an instruction, which a
sound WCET analysis would have to as-
sume, by the penalties for the excluded
timing accidents.

	˲ Abstract interpretation3 is a pow-
erful method to prove safety proper-
ties. Use it to compute certain invari-
ants at each program point, namely an
upper approximation of the set of exe-
cution states that are possible when
execution reaches this program point.
Derive safety properties, that certain
timing accidents will not happen,
from these invariants.

This method for the micro-architec-
tural analysis was the central innova-
tion that made our WCET analysis
work and scale.

Our First Illusions
Christian Ferdinand had finished his
very fine dissertation on cache analy-
sis in 1997. It still represents the state
of the art in cache analysis for LRU
caches.6 Since everybody else working
in the area had tried to solve this
problem first, and we were convinced
that our solution was the best, we felt
that we had essentially solved the
WCET-analysis problem. Very opti-
mistically we founded AbsInta early in
1998, “we,” being five former or actual
Ph.D. students and me.

This optimism turned out as wrong
in several aspects. Firstly, more or
less nobody uses LRU caches in their
processors since the logic is consid-
ered too complex. Frequently used re-
placement policies are PLRU, FIFO,
random replacement, or even strange
looking approximations of random
replacement like in the Motorola
Coldfire, which is flying in the Airbus
A340, and which Airbus selected as a
real-life processor to test our ap-

a	 www.absint.com

All types of
persistence are
identified by the
occurrence of
certain patterns
in memory access
traces, while
categorizing cache
analyses, that
is, must or may
analyses only
abstract from the
last state in a trace.

58 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

contributed articles

and 7%,12 but the analysis efficiency
increased by an order of magnitude.

The Breakthrough
The European project Daedalus, Valida-
tion of critical software by static analysis
and abstract testing, which ran from
2000 to 2002, associated us with an ex-
tremely valuable partner, Airbus. Pat-
rick Cousot had organized an industry
seminar on abstract interpretation.
One of the participants was an Airbus
engineer, Famantanantsoa Randim-
bivololona, in charge of identifying
new, usable and helpful methods and
tools for software development at Air-
bus. Randim had listed the most severe
of Airbus’ problems, and Cousot com-
posed a consortium for a European
project targeted at solving these prob-
lems. Saarbrücken was listed with
WCET Analysis. My admiration of the
problem-awareness of the software de-
velopers at Airbus grew during my first
visit to the Airbus headquarters and de-
velopment labs in Toulouse, France.
Everybody greeted me, expressing their
concern that they had no viable solu-
tion for the verification of their real-
time requirements and their hope that
we would provide a solution.

This is a good point to describe pre-
vious funding. In DFG Collaborative Re-
search Center 124, DFG (our National
Science Foundation) had funded the
development of the foundations of
WCET analysis, including Florian Mar-
tin’s Program Analyzer Generator
(PAG). When this DFG Collaborative
Research Center, which has run 15
years (from 1983 to 1998) approached
its end, DFG had just initiated a new
type of grant, a Transfer Center, meant
to support transfer of results of suc-
cessful Research Centers to practice.
This was a perfect fit for our situation.
We applied and were granted solid
funding for further development. At
about this time, Airbus was searching
for a solution for their WCET-analysis
problem. Cousot formed the consor-
tium, and the EU Commission granted
us the Daedalus project. In hindsight,
this sequence of funded projects ap-
pears like a miracle, each at exactly the
right time!

Back to our contacts with Airbus
and their search for some one to solve
the WCET problem: They knew their
previously used measurement-based

He also did, as far as I know, the first
modeling of a system controller for
WCET analysis.26 Doing this precisely
was highly important because an impre-
cise, too abstract model of a systems
controller can easily cost an order of
magnitude more accuracy than an im-
precise pipeline model.

Pipeline analysis is a highly com-
plex part of the overall analysis be-
cause, unlike caches, most pipelines
do not have compact, efficiently up-
datable abstract domains. Cache
analysis is efficient because the sets
of concrete cache states that may oc-
cur at a program point can be com-
pactly represented by one abstract
cache state, and abstract cache states
can be efficiently updated when a
memory access is analyzed. Essential-
ly, pipeline analysis uses an expensive
powerset domain, that is, it collects
sets of pipeline states instead of com-
puting an abstract pipeline state rep-
resenting sets of pipeline states. This
characteristic would, in principle,
make it amenable to model checking.
Stephan Wilhelm tried this around
2009 and encountered severe prob-
lems in the application of model
checking to pipeline analysis.28,29 In
particular, interfacing symbolic rep-
resentations of pipelines with ab-
stract representations of caches,
while preserving accuracy, is difficult.
Daniel Kaestner’s Astrée group made
a similar experience when attempting
to interface Astrée with some model
checkers.b It appeared that model
checking and abstract interpretation
were communicating badly and thus
seemed to replicate the behavior of
their inventors.

Another excursion into the future:
Hahn et al.13 describes a strictly in-or-
der pipeline providing for compact
abstract domains. Strictly in-order
pipelines avoid all downstream de-
pendences between consecutive in-
structions, such as the one of an oper-
and load of an earlier instruction on
the instruction fetch of a consecutive
instruction. In case of a contention,
the operand load is always guaran-
teed to be executed first. The loss in
(average-case) performance com-
pared to a traditional in-order pipe-
line was measured to be between 6%

b	 https://www.absint.com/astree/index.htm

Pipeline analysis is
a highly complex
part of the overall
analysis because,
unlike caches,
most pipelines
do not have
compact, efficiently
updatable abstract
domains.

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 59

contributed articles

years later hardware security-attacks
like Meltdown and Spectre showed
that architectural features with low
predictability were also the basis for
these security attacks. A combination
of timing unpredictability and vulner-
ability to security attacks might have
discredited the architectural compo-
nents more effectively.

AbsInt
WCET analysis for single-core architec-
tures had been essentially solved by a
sequence of Ph.D. theses in my group.
The only import was the Implicit Path
Enumeration Technique (IPET) of Li
and Malik.17 Li and Malik had managed
to model the timing behavior of pro-
grams and the entire architecture as an
integer linear program, which was far
from efficiently solvable. The IPET
technique was adopted to our setting
by Henrik Theiling in his Ph.D. thesis.24

It may be valuable information for
many readers to estimate the neces-
sary effort to develop a sound formal
method for an industrially relevant
non-trivial problem more or less from
scratch. At the core of our work leading
to the first usable tool, as described in
Ferdinand et al.,7 were three Ph.D. the-
ses, those of Christian Ferdinand,
Stephan Thesing, and Henrik Theil-
ing. Their joint development effort
would amount to approximately 11
person years, ignoring the effort re-
quired to write up the theses, publish
results, and satisfy project require-
ments. Another three years went into
the implementation of static cache
analysis for some non-LRU caches and
into the value analysis of the timing-
analysis tool. The latter was based on
existing theory developed in Cousot
and Cousot3 but had to be adapted to
the analysis of binary executables and
to all the peculiarities of a machine se-
mantics. Altogether the effort invested
in the first usable tool would add up to
roughly 14 person years. However, one
should not underestimate the acceler-
ating effect that PAG19 had on the im-
plementation of and experimentation
with several abstract interpretations
within the timing-analysis tool. This
development effort was followed by
work to improve efficiency of the analy-
ses and accuracy of the results, by re-
search into the predictability of archi-
tectural features and, based on the

method, also used in certification, did
not work any longer for the execution
platform selected for the Airbus A380,
namely the Motorola MPC755.

The Airbus people provided us with
benchmark software, a set of 12 dena-
tured tasks, each consisting of several
million instructions, as they were fly-
ing them in the A340. The platform
there was the Motorola Coldfire pro-
cessor, mentioned earlier. The tool we
developed until 2001 was able to ana-
lyze the benchmark provided by Airbus
in decent time and with quite precise
results. The upper bounds our tool
computed made the Airbus people
quite happy because they were apporxi-
mately in the middle between the worst
observed execution times and the up-
per bound determined by Airbus with a
measurement-based method using
safety margins. More precisely, our
analysis results were overestimating
the worst observed execution times by
roughly 15%. This breakthrough was
reported in Ferdinand et al.7 Some-
thing surprising, at least for me, hap-
pened when I described our approach
and reported our results at EMSOFT
2001. Highly appreciated colleagues
like Hermann Kopetz and Gérard Berry
were storming the stage and congratu-
lated me as if I had just won an Oscar.
Indeed, this paper received the EM-
SOFT Test-of-Time Award 2019.

Some words about our long-time co-
operation partner, Airbus, in Toulouse.
We have experienced the group in
charge of developing safety-critical
software as problem-aware, highly
competent, and extremely cooperative.
They wanted to have this problem
solved and they trusted us to solve it,
and they kept us focused on the real
problems, and thus prevented us from
solving simplified, self-posed prob-
lems, a tendency academic researchers
often are inclined to follow.

As a result of our successful devel-
opment, Airbus offered our tools to the
certification authorities for the certifi-
cation of several Airbus plane genera-
tions, starting with the Airbus A380.
The European Union Aviation Safety
Agency (EASA) has accepted the AbsInt
WCET analysis tool as validated tool
for several time-critical subsystems of
these plane types. We were less suc-
cessful with Airbus’ competitor, who
partly certifies their planes themselves,

as it recently turned out, and with the
certification authority in charge, who
doesn’t seem to require the use of a
sound verification technology for real-
time requirements.

Predictability
When modeling the Motorola Coldfire
cache we noticed that only one-fourth
of its cache capacity could be predict-
ed. This quickly led us to consider the
problem of timing-predictability of ar-
chitectures.14 In his Ph.D. thesis, Jan
Reineke developed the first formally
founded notion of predictability,
namely that of cache predictability.20,22
The concept behind this notion is that
a cache architecture, more precisely
its cache-replacement policy is more
predictable than another one if it re-
covers from uncertainty about cache
contents faster, that is, needs fewer
memory accesses to remove uncer-
tainty from the abstract cache. Among
all the considered cache-replacement
strategies LRU fares provably best.

Reineke also compared how sensi-
tive caches are to changes to the initial
cache state. He could show that all
non-LRU cache replacement strategies
he considered were quite sensitive to
such changes. This means the differ-
ence in the cache-miss rate is only
bounded by the length of the memory-
access sequence. Thus, missing an ini-
tial cache state when measuring execu-
tion time may mean to miss a
memory-access sequence with a high
cache-miss rate.

In Wilhelm et al,27 we collected our
wisdom concerning timing predict-
ability of several types of architectural
components. It heavily influenced the
design of the Kalray MPPA.5

One could at this point remark that
a future automatically driven car will
employ a GPU executing learned-pat-
tern recognition, which is controlled
by an 8-core-ARM architecture whose
design contradicts under almost all as-
pects this collected wisdom of ours. It
employs random-replacement caches,
a cache coherence protocol, a shared
bus, and all DRAM memory.

Another remark is in place here. Our
efforts to push the predictability issue
had limited effect. In retrospect, it
looks like we came up too early with
our complaints and the ideas to reme-
dy the corresponding problems. A few

60 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

contributed articles

namely how to determine reliable
and precise upper bounds on execu-
tion times of programs. We were not
the only ones to attempt this. Why
were we more successful than other
groups? Essentially the answer is,
we had a firm background in formal
methods, particularly in abstract in-
terpretation, and abstraction of the
execution platform played the deci-
sive role in our approach. Without
the right abstraction of the architec-
ture, the search space is just too large.
However, there is more to it! WCET
analysis consists of many phases.
A practically usable WCET-analysis
method requires strong solutions
to all the subproblems and their ad-
equate interaction. Otherwise, either
the effort is too high, or the accuracy
is too low. The people at AbsInt did an
excellent engineering job to come up
with WCET-analysis tools and later
also other tools that were usable on
an industrial scale.	

References
1.	 Alt, M., Ferdinand, C., Martin, F., and Wilhelm, R.

Cache behavior prediction by abstract interpretation.
R. Cousot and D.A. Schmidt, Eds. In Proceedings of
Static Analysis, 3rd Intern. Symp. (Aachen, Germany,
Sept. 24–26, 1996). LNCS 1145, 52–66; https://doi.
org/10.1007/3-540-61739-6_33

2.	 Altmeyer, S., Maiza, C., and Reineke, J. Resilience
analysis: Tightening the CRPD bound for set-
associative caches. J. Lee and B.R. Childers, Eds. In
Proceedings of the ACM SIGPLAN/SIGBED 2010
Conf. Languages, Compilers, and Tools for Embedded
Systems, (Stockholm, Sweden, Apr. 13–15, 2010),
153–162; doi:10.1145/1755888.1755911.

3.	 Cousot, P. and Cousot, R. Abstract interpretation: A
unified lattice model for static analysis of programs
by construction or approximation of fixpoints.
R.M. Graham, M.A. Harrison, and R. Sethi, Eds. In
Proceedings of the 4th ACM Symp. on Principles of
Programming Languages, (Los Angeles, CA, USA, Jan.
1977), A8–252; doi:10.1145/512950.512973.

4.	 Cullmann, C. Cache persistence analysis: Theory and
practice. ACM Trans. Embedded Comput. Syst. 12, 1
(2013), 40:1–40:25; doi:10.1145/2435227.2435236.

5.	 de Dinechin, B.D., van Amstel, D., Poulhiès, M., and
Lager, G. Time-critical computing on a single-chip
massively parallel processor. G.P. Fettweis and W.N.,
Eds. Design, Automation & Test in Europe Conf. &
Exhibition (Dresden, Germany, Mar. 24–28, 2014), 1–6:
doi: 10.7873/DATE.2014.110.

6.	 Ferdinand, C. Cache Behavior Prediction for Real-Time
Systems. Pirrot, 1997; http://d-nb.info/953983706.

7.	 Ferdinand, C., Heckmann, R., Langenbach, M., Martin,
F., Schmidt, M., Theiling, H., Thesing, S., and Wilhelm,
R. Reliable and precise WCET determination for a real-
life processor. EMSOFT LNCS, 2211 (2001), 469–485.

8.	 Ferdinand, C. and Wilhelm, R. Efficient and precise
cache behavior prediction for real-time systems.
Real-Time Systems 17, 2–3 (1999), 131–181.

9.	 Grund, D. Static Cache Analysis for Real-Time
Systems: LRU, FIFO, PLRU. Ph.D. thesis, Saarland
University, 2011.

10.	 Grund, D. and Reineke, J. Abstract interpretation of
FIFO replacement. J. Palsberg and Z. Su, Eds. In
Proceedings of the 16th Intern. Symp. Statis Analysis
(Los Angeles, CA, USA, Aug. 9–11, 2009). LNCS 5673;
doi:10.1007/978-3-642-03237-0_10.

11.	 Grund, D. and Reineke, J. Toward precise PLRU cache
analysis. B. Lisper, Ed. In Proceedings of the 10th
Intern. Workshop on Worst-Case Execution Time
Analysis, (Brussels, Belgium, July 8, 2010).
OASICS 15 (2010) 23–35. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, Germany; doi:10.4230/
OASIcs.WCET.2010.23.

12.	 Hahn, S. On Static Execution-Time Analysis -
Compositionality, Pipeline Abstraction, and Predictable
Hardware. Ph.D. thesis, Saarland University, 2019.

13.	 Hahn, S., Reineke, J., and Wilhelm, R. Toward compact
abstractions for processor pipelines. R. Meyer, A.
Platzer, and H. Wehrheim, Eds. In Proceedings of
Correct System Design—Symp. Honor of Ernst-Rüdiger
Olderog (Oldenburg, Germany, Sept. 8–9, 2015). LNCS
9360, 205–220; doi:10.1007/978-3-319-23506-6_14.

14.	 Heckmann, R., Langenbach, M., Thesing, S., and
Wilhelm, R. The influence of processor architecture
on the design and the results of WCET tools. In IEEE
Proceedings on Real-Time Systems 91, 7 (2003),
1038–1054.

15.	 Huynh, B.K., Ju, L., and Roychoudhury, A. Scope-
aware data cache analysis for WCET estimation.
In Proceedings of the 17th IEEE Real-Time and
Embedded Technology and Applications Symp,
(Chicago, IL, USA, Apr. 11–14, 2011) 203–212;
doi:10.1109/RTAS.2011.27.

16.	 Langenbach, M., Thesing, S., and Heckmann, R. Pipeline
modeling for timing analysis. M.V. Hermenegildo and
G. Puebla, Eds. In Proceedings of the 9th Intern. Symp.
on Static Analysis (Madrid, Spain, Sept. 17–20, 2002),
LNCS 2477, 294–309; doi:10.1007/3-540-45789-5_22.

17.	 Li, Y.S. and Malik, S. Performance analysis of
embedded software using implicit path enumeration.
In Proceedings of the 32nd ACM/IEEE Design
Automation Conf. (June 1995), 456–461.

18.	 Lv, M., Guan, N., Reineke, J., Wilhelm, R., and Yi, W. A
survey on static cache analysis for real-time systems.
LITES 3, 1 (2016), 05:1–05:48; doi:10.4230/LITES-
v003-i001-a005.

19.	 Martin, F. Generating Program Analyzers. Ph.D. thesis.
Saarland University, Saarbrücken, Germany, 1999;
http://scidok.sulb.uni-saarland.de/volltexte/2004/203/
index.html.

20.	 Reineke, J. Caches in WCET Analysis: Predictability –
Competitiveness – Sensitivity. Ph.D. thesis. Saarland
University, 2009; https://bit.ly/3enUrXr

21.	 Reineke, J. The semantic foundations and a landscape
of cache-persistence analyses. LITES 5, 1 (2018),
03:1–03:52; doi:10.4230/LITES-v005-i001-a003.

22.	 Reineke, J., Grund, D., Berg, C., and Wilhelm, R. Timing
predictability of cache replacement policies. Real-
Time Systems 37, 2 (2007), 99–122.

23.	 Shaw, A.C. Deterministic timing schema for parallel
programs. V.K. Prasanna Kumar, Ed. In Proceedings
of the 5th Intern. Parallel Processing Symp. (Anaheim,
CA, USA, Apr. 30–May 2, 1991), 56–63. IEEE
Computer Society; doi:10.1109/IPPS.1991.153757.

24.	 Theiling, H. Control Flow Graphs for Real-Time
Systems Analysis: Reconstruction from Binary
Executables and Usage in ILP-based Path Analysis.
Ph.D. thesis, Saarland University, Saarbrücken,
Germany, 2003; http://scidok.sulb.uni-saarland.de/
volltexte/2004/297/index.html.

25.	 Thesing, S. Safe and Precise WCET Determinations
by Abstract Interpretation of Pipeline Models. Ph.D.
thesis, Saarland University, 2004.

26.	 Thesing, S. Modeling a system controller for timing
analysis. S.L. Min and W. Yi, Eds. In Proceedings of
the 6th ACM & IEEE Intern. Conference on Embedded
Software (Seoul, Korea, Oct. 22–25, 2006), 292–300;
doi:10.1145/1176887.1176929.

27.	 Wilhelm, R., Grund, D., Reineke, J., Schlickling, M.,
Pister, M., and Ferdinand, C. Memory hierarchies,
pipelines, and buses for future architectures in
time-critical embedded systems. IEEE Trans. on
CAD of Integrated Circuits and Systems 28, 7 (2009);
doi:10.1109/TCAD.2009.2013287.

28.	 Wilhelm, S. Symbolic Representations in WCET
Analysis. Ph.D. thesis, Saarland University, 2012;
http://scidok.sulb.uni-saarland.de/volltexte/2012/4914/.

29.	 Wilhelm, S. and Wachter, B. Symbolic state traversal
for WCET analysis. S. Chakraborty and N. Halbwachs,
Eds. In Proceedings of the 9th ACM & IEEE Intern.
Conf. Embedded Software. (Grenoble, France, Oct.
12–16, 2009), 137–146; doi:10.1145/1629335.1629354.

Reinhard Wilhelm (wilhelm@cs.uni-saarland.de)
is Professor Emeritus at Saarland University in
Saarbrücken, Germany.

Copyright held by author/owner.

results, into ways to exploit the con-
figurability of processor architectures.

We had founded AbsInt to industri-
alize our WCET technology. Well, we
solved the problem, we had instantia-
tions for some processor architectures,
basically for those that Airbus and their
suppliers needed. However, we had to
learn that hardly any two potential cus-
tomers employed the same architec-
ture configuration. The decision for a
new platform was taken without consid-
ering whether a WCET-analysis existed
for this platform. Instantiating our
technology for a new, complex platform
took a lot of effort, and platforms were
not getting simpler! In consequence,
such an instantiation was very expen-
sive, which did not raise the motivation
of potential customers to buy our
WCET tools or order the development
of a new instance for their platform. In
addition, there existed some competi-
tors, who marketed their measure-
ment-based, unsound timing analysis
and often forgot to mention the un-
soundness of their tool. When compa-
nies that developed or integrated hard
real-time systems were obliged to show
“that they did something about this
nasty problem” this unsound, inexpen-
sive solution was sometimes preferred
to show “that we do something” (and
didn’t pay too much for it). So, industri-
alizing and marketing a sound WCET
technology, that inherently needed to
be expensive, was no promising way to
get rich.

However, our development of a
sound method that actually solved a
real problem of real industry was con-
sidered a major success story for the
often disputed formal-methods do-
main. AbsInt became the favorite
partner for the industrialization of ac-
ademic prototypes. First, Patrick Cou-
sot and his team offered their proto-
type of Astrée, a static analysis for
run-time errors, which in cooperation
with some of the developers has been
largely extended by AbsInt. Then,
Xavier Leroy offered the result of his
much-acclaimed research project,
CompCert, the first verified optimiz-
ing C compiler. Both Astrée and
CompCert are now AbsInt products.

Conclusion
My former Ph.D. students and I have
solved a relevant, non-trivial problem,

