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THE GENERAL SETTING for worst-case execution time 
(WCET) analysis is that a set of hard real-time tasks 
is to be executed on a given hardware platform. Hard 
real-time tasks have associated deadlines within 
which they must finish their execution. The deadlines 
may be given by periods. Timing verification must verify 
these timing constraints are satisfied. Traditionally, 
timing verification is split into a WCET analysis, which 
determines upper bounds on the execution times of 
all tasks, and a schedulability analysis, which takes 
these upper bounds and attempts to verify the given 
set of tasks when executed on the given platform will 
all respect their deadlines.

The problem to determine upper (and potentially 
also) lower bounds on execution times underwent a 
transition in the 1990s:

	˲ In the old days, textbooks about 
the realization of real-time systems 
would strongly argue against the use 
of execution platforms with caches, 
pipelines, and such. For previously 
used architectures with instructions 
that had constant execution times, 
WCET analysis methods using timing 
schemata23 were the method of 
choice. Timing schemata describe 
how (bounds on) the execution times 
of a programming-language construct 
were composed from the (bounds on) 
the execution times of its compo-
nents. These methods would thus do 
structural induction over the struc-
ture of a program and determine 
bounds for ever bigger parts of the 
program. Worse yet, industry’s “best 
practice” was, and unfortunately part-
ly still is, to do some end-to-end mea-
surements, ignore some unwelcome 
outliers, if optimism prevailed, or add 
some safety margin, if more problem-
awareness dominated.

	˲ The introduction of performance-
enhancing architectural components 
and features such as caches, pipelines, 
and speculation made methods based 
on timing schemata obsolete. Execu-
tion times did not compose any longer 
because instruction execution times 
were now dependent on the execution 
state in which they were executed. In 
the composition A;B, the execution 
time of statement B depended on the 
execution state produced by statement 
A. The variability of execution times 
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 key insights
	˽ WCET searches a huge state space for 

a longest path. Adequate abstraction 
of the execution platform is key to cope 
with the complexity of the analysis, and 
Abstract Interpretation provides the 
theoretical foundation for a sound and 
efficient WCET analysis. 

	˽ The Timing Predictability of an 
architecture determines the efficiency  
of WCET analysis and the precision  
of its results.

	˽ Some performance-enhancing features 
ruin timing predictability and at the same 
time open the door to hardware security-
attacks like Spectre and Meltdown.

http://dx.doi.org/10.1145/3375545
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3375545&domain=pdf&date_stamp=2020-09-23


OCTOBER 2020  |   VOL.  63  |   NO.  10  |   COMMUNICATIONS OF THE ACM     55

I
M

A
G

E
 B

Y
 M

A
R

Y
N

O
V

A

grew with several architectural param-
eters, for example, the cache-miss pen-
alty and the costs for pipeline stalls 
and for control-flow mispredictions.

The introduction of multicore exe-
cution platforms into the embedded 
real-time domain made the problem 
still more difficult. These platforms 
typically have shared resources, and 
the interference on these shared re-
sources complicates the determina-
tion of upper execution-time bounds 
for tasks executed on such a platform. 
A few words about terminology. From 
the beginning we aimed at sound 
WCET-analysis methods. The results 
of a sound WCET analysis are conserva-
tive, that is, they will never be exceeded 
by an execution. We consider being 

conservative as a Boolean property. Of-
ten conservative is used as a metric, be-
ing more conservative meaning being 
less accurate. For an unsound method, 
however, it does not make sense to 
speak about being more or less conser-
vative. It is not even clear whether be-
ing “more conservative” means mov-
ing toward the real WCET from below 
or moving further away from the real 
WCET by increasing overestimation. 
The second, quite important property, 
referred to when mentioning conserva-
tism, is accuracy of the results of a 
WCET analysis.

WCET analysis can be seen as the 
search for a longest path in the state 
space spanned by the program under 
analysis and by the architectural plat-

form. The analysis is based on the as-
sumption that the analyzed programs 
terminate, that is, all recursions and it-
erations are bounded. We are not con-
fronted with the undecidability of the 
halting problem. In trying to determine 
bounds on recursion or iteration in a 
program, our tool might discover that it 
cannot determine all of the bounds and 
will ask the user for annotations. All 
WCET bounds are then valid with re-
spect to the given annotations.

This state space is thus finite, but 
too large to be exhaustively explored. 
Therefore, (safe) overapproximation is 
used in several places. In particular, an 
abstraction of the execution platform 
is employed by the WCET analysis. 
We will in the following cover static 
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access sequence of cached memory 
blocks, extended by some way to indi-
cate not cashed. The associativity of a 
fully associative cache is equal to its 
capacity. For a set associative cache it 
is the size of a cache set, that is, the 
number of memory blocks fitting into 
each set. It was (for us) easy to see our 
analysis should perform a kind of in-
tersection and associate with the ele-
ments in the resulting set their maxi-
mal age from the incoming must 
caches, whenever control flow merges. 
Abstract must caches can be used to 
predict cache hits.

An abstract may cache at a program 
point indicates which memory blocks 
may be in a concrete cache whenever 
execution reaches this program point. 
In analogy, our analysis uses union at 
control-flow merge points and associ-
ates the minimal incoming age with 
the elements in the union. Taking the 
complement of a may cache gives the 
information which memory blocks 
will be in no concrete cache arriving at 
this program point. It thus allows to 
predict cache misses. In Lv,18 we called 
such analyses classifying analyses as 
their results allow to classify some 
memory accesses as either definite 
hits or definite misses.

In contrast, persistence analyses are 
called bounding analyses. They aim at 
bounding the number of cache re-
loads of memory blocks. Intuitively, a 
memory block is called persistent if it 
suffers at most one cache miss during 
program execution. We defined such a 
persistence analysis, which was too 
beautiful to be correct. The tempting 
idea was to add another cache line 
with age associativity in which all 
memory blocks were collected that 
had been replaced in the cache at least 
once and to compute the maximal po-
sition (relative age) for all memory 
blocks that may be in the cache. The 
analysis would thus use union and 
maximal age at control-flow merge 
points. Our mistake was that we ig-
nored the capacity constraints of the 
caches. Our analysis could collect 
more memory blocks in an abstract 
cache than would fit into the concrete 
cache and thereby underestimate the 
age. Luckily, this cache-persistence 
analysis was never implemented in 
AbsInt’s tools. The error was later 
corrected by Cullmann and Huynh.4,15

Let me jump out of the story to some 
later developments: Jan Reineke has 
clarified the semantic foundations of 
persistence analysis.21 All types of per-
sistence are identified by the occur-
rence of certain patterns in memory-
access traces, while categorizing cache 
analyses, that is, must and may analy-
ses only abstract from the last state in a 
trace. Reineke also identified a whole 
zoo of different persistence analyses. 
End of excursion.

Understanding Our Approach
We developed the cache analysis with 
the goal of classifying memory access-
es as either definite cache hits or defi-
nite cache misses. The difference to 
competing approaches was that we 
could describe our cache analyses as 
abstract interpretations.3 This meant 
we defined the following:

	˲ domains of abstract cache states 
with a partial order representing which 
domain elements contained better in-
formation than other elements,

	˲ corresponding to this partial or-
der, a join function, used to combine 
incoming abstract domain elements at 
control-flow merge points, for exam-
ple, some kind of intersection for the 
must-cache analysis, and,

	˲ abstract cache effects for each 
memory access, describing the update 
of abstract cache states corresponding 
to this memory access.

This stood in stark contrast to the 
state of the art in cache analysis, 
which would typically give a page of 
pseudo-C code and claim that this 
code would implement a sound cache 
analysis, of course without any cor-
rectness arguments!

Now, that we had solved one sub-
problem of WCET analysis, it was time 
to reflect more deeply what the essence 
of our method was, and we identified 
the following central idea behind our 
WCET-analysis method:

	˲ Consider any architectural effect 
that lets an instruction execute longer 
than its fastest execution time as a tim-
ing accident. Typically such timing ac-
cidents are cache misses, pipeline 
stalls, bus-access conflicts, and 
branch mis-predictions. Each such 
timing accident had to be paid for, in 
terms of execution-time cycles, by an 
associated timing penalty. The size of 
a timing penalty can be constant but 

analyses of the behavior of several ar-
chitectural components.

Cache Analysis
Our engagement in timing analysis 
started with the dissertation work of 
Christian Ferdinand at around 1995. I 
had proposed several thesis topics, 
which he all rejected with the argu-
ment, “This is of no interest to any-
body,” meaning irrelevant for industri-
al practice. When I proposed to develop 
an analysis of the cache behavior he 
answered, “This may actually be of in-
terest to somebody.” He was able to 
convince himself (and me) very quickly 
that an idea we had would work. He 
used the program-analysis generator 
PAG, conceived by Martin Alt and real-
ized by Florian Martin in his Ph.D. the-
sis,19 to implement a prototype cache 
analysis for caches with a least-recently 
used (LRU) replacement strategy. This 
was, and still is, WCET researcher’s 
dearest replacement policy. Our first 
submitted article on cache analysis1 
confirmed Ferdinand’s appreciation 
for the subject. It received enthusiastic 
reviews as for the relevance of the prob-
lem we had solved and for the elegance 
of the solution.

Unlike existing methods, Ferdinand 
designed two different abstract do-
mains for cache analysis, a must and a 
may domain.1,6,8 An abstract must 
cache at a program point indicates 
which memory blocks will be in all 
concrete caches whenever execution 
reaches this program point. There is 
an underlying assumption that pro-
gram execution is not disturbed by in-
terrupts or preemption. Otherwise, the 
impact of interrupts or preemptions 
must be taken into account by analyz-
ing the maximal cache impact through 
a CRPD analysis.2

An abstract must cache state com-
puted at a program point represents 
an over-approximation of the set of 
concrete cache states that may reach 
this program point. All the concrete 
cache states in this overapproximation 
have as common contents the memory 
blocks that are sure to be in the con-
crete cache when execution reaches 
this program point. In LRU caches, 
memory blocks logically have an age. 
The age is between 0 and the associa-
tivity—1 of the cache (set) and corre-
sponds to the relative position in the 
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proach.7 This processor had a four-
way set-associative cache with a rath-
er strange cache-replacement strategy 
using one global round-robin replace-
ment counter keeping track of where 
the next replacement should take 
place. It meant our cache analysis 
could essentially only keep track of 
the last loaded cache line in each 
cache set. This strange beast of a 
cache triggered the concept of timing 
predictability, which turned out to be 
a very fruitful research area, to be dis-
cussed later.

There was a second assumption 
that turned out to be false. It is intui-
tively clear the accuracy of the cache 
analysis has a strong impact on the ac-
curacy of the WCET-analysis results. 
This led us to believe that cache analy-
sis was the difficult part of WCET anal-
ysis, that the rest would be easy. It 
turned out that caches were relatively 
easy to analyze, although good solu-
tions for Non-LRU caches had yet to be 
found. Much later, between 2008–
2011, Daniel Grund developed an effi-
cient analysis for FIFO caches and ap-
proached a solution for the analysis 
problem for PLRU caches.9–11

Pipelines were much more difficult 
to analyze and also appeared in more 
variations and were mostly badly docu-
mented. And then Airbus informed us 
about the existence of peripheries and 
system controllers, architectural com-
ponents that serious WCET research-
ers had never heard of. Their analyses 
can have a very strong influence on the 
accuracy of timing analyses.

Control-Flow Reconstruction
But first we needed to get programs to 
analyze. WCET analysis has to be done 
on the executable level because the 
compiler influences the execution 
time by its memory allocation and 
code generation. So, we needed a re-
construction of the control flow from 
binary programs. This was part of 
Henrik Theiling’s Ph.D. thesis.24 De-
coding individual instructions is rela-
tively easy, but identifying the control 
flow, in particular switch tables is a 
non-trivial task.

Pipeline Analysis
At the end of the 1990s, Stephan Thesing 
started to develop the framework for 
modeling pipeline architectures.16,25 

may also depend on the execution 
state. We consider the property that a 
particular instruction will not cause a 
particular timing accident as a safety 
property. The occurrence of a timing 
accident thus violates a correspond-
ing safety property.

	˲ Use an appropriate method for the 
verification of safety properties to 
prove that for individual instructions 
in the program some of the potential 
timing accidents will never happen. 
Reduce the worst-case execution-time 
bound for an instruction, which a 
sound WCET analysis would have to as-
sume, by the penalties for the excluded 
timing accidents.

	˲ Abstract interpretation3 is a pow-
erful method to prove safety proper-
ties. Use it to compute certain invari-
ants at each program point, namely an 
upper approximation of the set of exe-
cution states that are possible when 
execution reaches this program point. 
Derive safety properties, that certain 
timing accidents will not happen, 
from these invariants.

This method for the micro-architec-
tural analysis was the central innova-
tion that made our WCET analysis 
work and scale.

Our First Illusions
Christian Ferdinand had finished his 
very fine dissertation on cache analy-
sis in 1997. It still represents the state 
of the art in cache analysis for LRU 
caches.6 Since everybody else working 
in the area had tried to solve this 
problem first, and we were convinced 
that our solution was the best, we felt 
that we had essentially solved the 
WCET-analysis problem. Very opti-
mistically we founded AbsInta early in 
1998, “we,” being five former or actual 
Ph.D. students and me.

This optimism turned out as wrong 
in several aspects. Firstly, more or 
less nobody uses LRU caches in their 
processors since the logic is consid-
ered too complex. Frequently used re-
placement policies are PLRU, FIFO, 
random replacement, or even strange 
looking approximations of random 
replacement like in the Motorola 
Coldfire, which is flying in the Airbus 
A340, and which Airbus selected as a 
real-life processor to test our ap-

a	 www.absint.com

All types of 
persistence are 
identified by the 
occurrence of 
certain patterns 
in memory access 
traces, while 
categorizing cache 
analyses, that 
is, must or may 
analyses only 
abstract from the 
last state in a trace. 
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and 7%,12 but the analysis efficiency 
increased by an order of magnitude.

The Breakthrough
The European project Daedalus, Valida-
tion of critical software by static analysis 
and abstract testing, which ran from 
2000 to 2002, associated us with an ex-
tremely valuable partner, Airbus. Pat-
rick Cousot had organized an industry 
seminar on abstract interpretation. 
One of the participants was an Airbus 
engineer, Famantanantsoa Randim-
bivololona, in charge of identifying 
new, usable and helpful methods and 
tools for software development at Air-
bus. Randim had listed the most severe 
of Airbus’ problems, and Cousot com-
posed a consortium for a European 
project targeted at solving these prob-
lems. Saarbrücken was listed with 
WCET Analysis. My admiration of the 
problem-awareness of the software de-
velopers at Airbus grew during my first 
visit to the Airbus headquarters and de-
velopment labs in Toulouse, France. 
Everybody greeted me, expressing their 
concern that they had no viable solu-
tion for the verification of their real-
time requirements and their hope that 
we would provide a solution.

This is a good point to describe pre-
vious funding. In DFG Collaborative Re-
search Center 124, DFG (our National 
Science Foundation) had funded the 
development of the foundations of 
WCET analysis, including Florian Mar-
tin’s Program Analyzer Generator 
(PAG). When this DFG Collaborative 
Research Center, which has run 15 
years (from 1983 to 1998) approached 
its end, DFG had just initiated a new 
type of grant, a Transfer Center, meant 
to support transfer of results of suc-
cessful Research Centers to practice. 
This was a perfect fit for our situation. 
We applied and were granted solid 
funding for further development. At 
about this time, Airbus was searching 
for a solution for their WCET-analysis 
problem. Cousot formed the consor-
tium, and the EU Commission granted 
us the Daedalus project. In hindsight, 
this sequence of funded projects ap-
pears like a miracle, each at exactly the 
right time!

Back to our contacts with Airbus 
and their search for some one to solve 
the WCET problem: They knew their 
previously used measurement-based 

He also did, as far as I know, the first 
modeling of a system controller for 
WCET analysis.26 Doing this precisely 
was highly important because an impre-
cise, too abstract model of a systems 
controller can easily cost an order of 
magnitude more accuracy than an im-
precise pipeline model.

Pipeline analysis is a highly com-
plex part of the overall analysis be-
cause, unlike caches, most pipelines 
do not have compact, efficiently up-
datable abstract domains. Cache 
analysis is efficient because the sets 
of concrete cache states that may oc-
cur at a program point can be com-
pactly represented by one abstract 
cache state, and abstract cache states 
can be efficiently updated when a 
memory access is analyzed. Essential-
ly, pipeline analysis uses an expensive 
powerset domain, that is, it collects 
sets of pipeline states instead of com-
puting an abstract pipeline state rep-
resenting sets of pipeline states. This 
characteristic would, in principle, 
make it amenable to model checking. 
Stephan Wilhelm tried this around 
2009 and encountered severe prob-
lems in the application of model 
checking to pipeline analysis.28,29 In 
particular, interfacing symbolic rep-
resentations of pipelines with ab-
stract representations of caches, 
while preserving accuracy, is difficult. 
Daniel Kaestner’s Astrée group made 
a similar experience when attempting 
to interface Astrée with some model 
checkers.b It appeared that model 
checking and abstract interpretation 
were communicating badly and thus 
seemed to replicate the behavior of 
their inventors.

Another excursion into the future: 
Hahn et al.13 describes a strictly in-or-
der pipeline providing for compact 
abstract domains. Strictly in-order 
pipelines avoid all downstream de-
pendences between consecutive in-
structions, such as the one of an oper-
and load of an earlier instruction on 
the instruction fetch of a consecutive 
instruction. In case of a contention, 
the operand load is always guaran-
teed to be executed first. The loss in 
(average-case) performance com-
pared to a traditional in-order pipe-
line was measured to be between 6% 

b	 https://www.absint.com/astree/index.htm

Pipeline analysis is 
a highly complex 
part of the overall 
analysis because, 
unlike caches, 
most pipelines 
do not have 
compact, efficiently 
updatable abstract 
domains. 
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years later hardware security-attacks 
like Meltdown and Spectre showed 
that architectural features with low 
predictability were also the basis for 
these security attacks. A combination 
of timing unpredictability and vulner-
ability to security attacks might have 
discredited the architectural compo-
nents more effectively.

AbsInt
WCET analysis for single-core architec-
tures had been essentially solved by a 
sequence of Ph.D. theses in my group. 
The only import was the Implicit Path 
Enumeration Technique (IPET) of Li 
and Malik.17 Li and Malik had managed 
to model the timing behavior of pro-
grams and the entire architecture as an 
integer linear program, which was far 
from efficiently solvable. The IPET 
technique was adopted to our setting 
by Henrik Theiling in his Ph.D. thesis.24

It may be valuable information for 
many readers to estimate the neces-
sary effort to develop a sound formal 
method for an industrially relevant 
non-trivial problem more or less from 
scratch. At the core of our work leading 
to the first usable tool, as described in 
Ferdinand et al.,7 were three Ph.D. the-
ses, those of Christian Ferdinand, 
Stephan Thesing, and Henrik Theil-
ing. Their joint development effort 
would amount to approximately 11 
person years, ignoring the effort re-
quired to write up the theses, publish 
results, and satisfy project require-
ments. Another three years went into 
the implementation of static cache 
analysis for some non-LRU caches and 
into the value analysis of the timing-
analysis tool. The latter was based on 
existing theory developed in Cousot 
and Cousot3 but had to be adapted to 
the analysis of binary executables and 
to all the peculiarities of a machine se-
mantics. Altogether the effort invested 
in the first usable tool would add up to 
roughly 14 person years. However, one 
should not underestimate the acceler-
ating effect that PAG19 had on the im-
plementation of and experimentation 
with several abstract interpretations 
within the timing-analysis tool. This 
development effort was followed by 
work to improve efficiency of the analy-
ses and accuracy of the results, by re-
search into the predictability of archi-
tectural features and, based on the 

method, also used in certification, did 
not work any longer for the execution 
platform selected for the Airbus A380, 
namely the Motorola MPC755.

The Airbus people provided us with 
benchmark software, a set of 12 dena-
tured tasks, each consisting of several 
million instructions, as they were fly-
ing them in the A340. The platform 
there was the Motorola Coldfire pro-
cessor, mentioned earlier. The tool we 
developed until 2001 was able to ana-
lyze the benchmark provided by Airbus 
in decent time and with quite precise 
results. The upper bounds our tool 
computed made the Airbus people 
quite happy because they were apporxi-
mately in the middle between the worst 
observed execution times and the up-
per bound determined by Airbus with a 
measurement-based method using 
safety margins. More precisely, our 
analysis results were overestimating 
the worst observed execution times by 
roughly 15%. This breakthrough was 
reported in Ferdinand et al.7 Some-
thing surprising, at least for me, hap-
pened when I described our approach 
and reported our results at EMSOFT 
2001. Highly appreciated colleagues 
like Hermann Kopetz and Gérard Berry 
were storming the stage and congratu-
lated me as if I had just won an Oscar. 
Indeed, this paper received the EM-
SOFT Test-of-Time Award 2019.

Some words about our long-time co-
operation partner, Airbus, in Toulouse. 
We have experienced the group in 
charge of developing safety-critical 
software as problem-aware, highly 
competent, and extremely cooperative. 
They wanted to have this problem 
solved and they trusted us to solve it, 
and they kept us focused on the real 
problems, and thus prevented us from 
solving simplified, self-posed prob-
lems, a tendency academic researchers 
often are inclined to follow.

As a result of our successful devel-
opment, Airbus offered our tools to the 
certification authorities for the certifi-
cation of several Airbus plane genera-
tions, starting with the Airbus A380. 
The European Union Aviation Safety 
Agency (EASA) has accepted the AbsInt 
WCET analysis tool as validated tool 
for several time-critical subsystems of 
these plane types. We were less suc-
cessful with Airbus’ competitor, who 
partly certifies their planes themselves, 

as it recently turned out, and with the 
certification authority in charge, who 
doesn’t seem to require the use of a 
sound verification technology for real-
time requirements.

Predictability
When modeling the Motorola Coldfire 
cache we noticed that only one-fourth 
of its cache capacity could be predict-
ed. This quickly led us to consider the 
problem of timing-predictability of ar-
chitectures.14 In his Ph.D. thesis, Jan 
Reineke developed the first formally 
founded notion of predictability, 
namely that of cache predictability.20,22 
The concept behind this notion is that 
a cache architecture, more precisely 
its cache-replacement policy is more 
predictable than another one if it re-
covers from uncertainty about cache 
contents faster, that is, needs fewer 
memory accesses to remove uncer-
tainty from the abstract cache. Among 
all the considered cache-replacement 
strategies LRU fares provably best.

Reineke also compared how sensi-
tive caches are to changes to the initial 
cache state. He could show that all 
non-LRU cache replacement strategies 
he considered were quite sensitive to 
such changes. This means the differ-
ence in the cache-miss rate is only 
bounded by the length of the memory-
access sequence. Thus, missing an ini-
tial cache state when measuring execu-
tion time may mean to miss a 
memory-access sequence with a high 
cache-miss rate.

In Wilhelm et al,27 we collected our 
wisdom concerning timing predict-
ability of several types of architectural 
components. It heavily influenced the 
design of the Kalray MPPA.5

One could at this point remark that 
a future automatically driven car will 
employ a GPU executing learned-pat-
tern recognition, which is controlled 
by an 8-core-ARM architecture whose 
design contradicts under almost all as-
pects this collected wisdom of ours. It 
employs random-replacement caches, 
a cache coherence protocol, a shared 
bus, and all DRAM memory.

Another remark is in place here. Our 
efforts to push the predictability issue 
had limited effect. In retrospect, it 
looks like we came up too early with 
our complaints and the ideas to reme-
dy the corresponding problems. A few 
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namely how to determine reliable 
and precise upper bounds on execu-
tion times of programs. We were not 
the only ones to attempt this. Why 
were we more successful than other 
groups? Essentially the answer is, 
we had a firm background in formal 
methods, particularly in abstract in-
terpretation, and abstraction of the 
execution platform played the deci-
sive role in our approach. Without 
the right abstraction of the architec-
ture, the search space is just too large. 
However, there is more to it! WCET 
analysis consists of many phases. 
A practically usable WCET-analysis 
method requires strong solutions 
to all the subproblems and their ad-
equate interaction. Otherwise, either 
the effort is too high, or the accuracy 
is too low. The people at AbsInt did an 
excellent engineering job to come up 
with WCET-analysis tools and later 
also other tools that were usable on 
an industrial scale.	
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results, into ways to exploit the con-
figurability of processor architectures.

We had founded AbsInt to industri-
alize our WCET technology. Well, we 
solved the problem, we had instantia-
tions for some processor architectures, 
basically for those that Airbus and their 
suppliers needed. However, we had to 
learn that hardly any two potential cus-
tomers employed the same architec-
ture configuration. The decision for a 
new platform was taken without consid-
ering whether a WCET-analysis existed 
for this platform. Instantiating our 
technology for a new, complex platform 
took a lot of effort, and platforms were 
not getting simpler! In consequence, 
such an instantiation was very expen-
sive, which did not raise the motivation 
of potential customers to buy our 
WCET tools or order the development 
of a new instance for their platform. In 
addition, there existed some competi-
tors, who marketed their measure-
ment-based, unsound timing analysis 
and often forgot to mention the un-
soundness of their tool. When compa-
nies that developed or integrated hard 
real-time systems were obliged to show 
“that they did something about this 
nasty problem” this unsound, inexpen-
sive solution was sometimes preferred 
to show “that we do something” (and 
didn’t pay too much for it). So, industri-
alizing and marketing a sound WCET 
technology, that inherently needed to 
be expensive, was no promising way to 
get rich.

However, our development of a 
sound method that actually solved a 
real problem of real industry was con-
sidered a major success story for the 
often disputed formal-methods do-
main. AbsInt became the favorite 
partner for the industrialization of ac-
ademic prototypes. First, Patrick Cou-
sot and his team offered their proto-
type of Astrée, a static analysis for 
run-time errors, which in cooperation 
with some of the developers has been 
largely extended by AbsInt. Then, 
Xavier Leroy offered the result of his 
much-acclaimed research project, 
CompCert, the first verified optimiz-
ing C compiler. Both Astrée and 
CompCert are now AbsInt products.

Conclusion
My former Ph.D. students and I have 
solved a relevant, non-trivial problem, 


