ACM SIGSOFT Software Engineering Notes

Page 21

Automating TEST Case Design, Selection and Evaluation
Report on 10 Editions of A-TEST Workshop

Tanja E. J. Vos
Open Universiteit
Universidad Politécnica de Valencia
tvs@ou.nl,tvos@dsic.upv.es

Sinem Getir
Humboldt-Universitat zu Berlin
sinemgetir@gmail.com

ACM Reference Format:
Tanja E. J. Vos, I. S. W. B. Prasetya, Sigrid Eldh, Sinem Getir, Ali Parsai,
and Pekka Aho. 2019. Automating TEST Case Design, Selection and Evalua-
tion Report on 10 Editions of A-TEST Workshop. In Proceedings of . ACM,
New York, NY, USA, 4 pages.
DOI: 10.1145/3375572.3375578
http://doi.acm.org/10.1145/3375572.3375578

1 INTRODUCTION

Trends such as globalisation, standardisation and shorter life-cycles
place great demands on the flexibility of the software industry.
In order to compete and cooperate on an international scale, a
constantly decreasing time to market and an increasing level of
quality are essential. Testing is at the moment the most important
and mostly used quality assurance technique applied in industry.
However, the complexity of software and hence of their develop-
ment amount is increasing. Modern systems get larger and more
complex, as they connect large amounts of components that in-
teract in many different ways and have constantly changing and
different types of requirements (functionality, dependability, usabil-
ity, performance etc.). Data processing that impacts all aspects of
our life is increasingly distributed over clouds and devices. This
leads to new concerns, such as availability, security, and privacy,
which are aspects that also needs to be tested. Consequently, the
development of cost-effective and high-quality systems opens new
challenges that cannot be faced only with traditional testing ap-
proaches, and specifically manual testing is simply insufficient and
unreliable to manage the speed needed, and ensure the coverage of
ever-changing systems. New techniques for systematization and
automation of testing throughout the software and system life-cycle
are required.

Even though many test automation tools are currently available
to aid test planning and control as well as test case execution and
monitoring, all these tools share a similar passive philosophy to-
wards test case design, selection of test data and test evaluation.
They leave these crucial, time-consuming and demanding activities

I. S. W. B. Prasetya
Utrecht University
s.w.b.prasetya@uu.nl

Ali Parsai
Universiteit van Antwerpen
ali.parsai@uanwerpen.be

Sigrid Eldh
Ericsson
sigrid.eldh@ericsson.com

Pekka Aho

Open Universiteit

pekka.aho@ou.nl

to the human tester. This is not without reason; test case design and
test evaluation through oracles are difficult to automate with the
techniques available in current industrial practice. The domain of
possible inputs (potential test cases), are even for a trivial method,
program, model, user interface or service, typically too large to be
exhaustively explored. Consequently, one of the major challenges
associated with test case design is the selection of test cases that are
effective at finding flaws without requiring an excessive number
of tests to be carried out. Automation of the entire test process
requires new thinking that goes beyond test design or specific test
execution tools. Combining different technologies in new ways and
striving towards autonomous testing brings new insight in testing
that can reduce the cost of software systems.

These are the problems that this international Workshop on Au-
tomating Test Case Design, Selection and Evaluation (A-TEST) wants
to attack. A-TEST aims to provide a venue for researchers as well
as the industry to exchange and discuss trending views, ideas, state
of the art, work in progress, and scientific results on automated test
case design, selection and evaluation.

A-TEST has successfully run 10 editions since 2009. The first
editions took place at the Conference on Information Systems and
Technologies (CISTI)! and three editions at the Federated Confer-
ence on Computer Science and Information Systems (FEDCSIS)Z.
Due to the success of the event and the clear fit with the programme
of the international symposium on Foundations of Software Engi-
neering (FSE), the past four years we had the 7th, 8th, 9th and 10th
edition of A-TEST together with FSE.

2 THEMES, GOALS AND TOPICS

This workshop’s main objective is to provide researchers and prac-
titioners a forum for exchanging ideas, experiences, understanding
of the problems, visions for the future, and promising solutions
to the problems in automated test case generation, selection and
evaluation for modern information systems. This way the work-
shop also provides a platform for researchers and developers of
testing tools to work together to identify the problems in the theory
and practice of test automation and to set an agenda and lay the
foundation for future development. An open attitude to multiple
aspects of automation has been held throughout the years.
Topics of the workshop include:

lhttp://www.aisti.eu/
Zhttp://\wa.fedcsis.org

January 2020 Volume 45 Number 1


http://www.aisti.eu/
http://www.fedcsis.org

ACM SIGSOFT Software Engineering Notes

Page 22

Tanja E. J. Vos, I. S. W. B. Prasetya, Sigrid Eldh, Sinem Getir, Ali Parsai, and Pekka Aho

o Techniques and tools for automating test case design, genera-
tion, and selection, e.g. model-based approaches, combinatorial-
based approaches, search based approaches, symbolic-based
approaches, as well as static, dynamic and statistical analysis
and machine learning methods.

e New trends in the use of machine learning and artificial
intelligence to improve test automation.

o Test cases optimizatio, selection and reduction.

o Test cases evaluation and metrics.

o Test cases design, selection, and evaluation in emerging do-
mains, e.g. Graphical User Interface, Social Network, Cloud,
Gaming, Security, Apps. and Cyber Physical Systems.

o Case studies that have evaluated an existing technique or tool
on real systems, not only toy problems, to show the quality
of the resulting test cases compared to other approaches.

3 FORMAT OF THE WORKSHOP

Although throughout the years we have changed the format a bit,
we have mostly invited the following types of paper submissions.
Position papers (max. 2 pages) that analyze trends in A-TEST and
raise issues of importance and challenges from industries that are
not resolved. Position papers are intended to generate discussion
and debate during the workshop, and will be reviewed with respect
to relevance and their ability to start up fruitful discussions. Work-
in-progress papers (max. 4 pages) that describe novel, interesting,
and highly potential work in progress, but not necessarily reaching
its full completion. Full papers (max. 10 pages) describing original
and completed research — either empirical or theoretical — in A-
TEST techniques, tools, or industrial case studies. Tool papers
(max. 4 pages) presenting some academic testing tool in a way that
it could be presented to industry as a start of successful technology
transfer.

4 HANDS-ON SESSIONS

During the years 2017, 2018, and 2019, we included hands-on ses-
sions in the program of our workshop. These sessions turned out
to be a great instrument to (i) getting the audience involved with
state-of-the-art technology, and (ii) getting the proof-of-concept
providers to discover the trade-offs associated with their technique
(and/or tool) using a mixed audience of academics and practitioners
of the field. Consequently, the hands-on session format with a short
background theory section, a long hands-on practical session, and
a short final feedback session, works very well. The following tools
have been presented in the past editions of the workshop:

A-TEST 2017

Automated GUI Testing with TESTAR. TESTAR is a tool for auto-
mated scriptless testing at the GUI level [2]. During the session, the
participants installed the tool on a virtual machine, and follow the
provided step-by-step tutorial to complete the given tasks using
the TESTAR tool. By the end of the session, the participants have
learned about scriptless GUI testing, and gained experience with
the TESTAR tool and it use of real-life software.

Model-Based Testing with Axini Toolset. Axini is a company special-
izing in model-based testing (MBT) for complex industrial software.
At Axini, MBT is considered the next step in test automation. The

crux of MBT is in the modeling. During the hands-on session, the
participants could try out the Axini toolset to model a simple system,
and automatically generate and execute test cases for the system
under test (SUT). The participants were given an opportunity to
use the commercial Axini toolset in a close-to-reality setting, and
by the end of the session, they attained a bird’s eye view of what it
means to model, generate, and execute tests and analyse the results.

A-TEST 2018

Mutation Testing with LittleDarwin. LittleDarwin is a Java mutation
testing tool that mainly targets fast deployment in complicated soft-
ware environments [6]. In this hands-on session, the participants
used LittleDarwin to perform mutation testing on an educational
software project, and by following the step-by-step tutorial they
familiarized themselves with the process of mutation testing. By
the end of the tutorial, the participants gained insight about test
suite quality, why the simple metrics such as statement or branch
coverage are not enough, and the ways to mitigate weaknesses and
improve the quality of their tests.

A-TEST 2019

Amplifying Integration Tests with CAMP. CAMP is a tool that am-
plifies integration tests. Given a deployable SUT and a description
of what changes to explore, CAMP generates alternative configu-
rations, each having the SUT deployed in a different environment.
In this hands-on session, the participants used CAMP to amplify
tests of a simple web-service. By the end of session, the partici-
pants learned about integration testing of web services, and how
to automatically amplify the tests for such a system.

Visualizing Test Results in Unity3D with TestViz-City. TestViz-City is
a visualization prototype tool that shows test results from running
several iterations of regression testing [3]. It represents test results
in a city landscape, giving the user an easy way to find the error-
prone areas of the code. In this hands-on session, the participants
used the results of the regression testing of a real-life embedded
system project, and attempted to replicate the analysis of testing
experts using this visualization tool. By performing this task, they
learned how to use the visualization tools at their disposal in an
effective manner to analyze SUT.

5 OVERVIEW OF RESEARCH TOPICS

In Figure 1 an overview is given of the topics that have been pre-
sented over the 10 years. In each category the topic with the most
papers related is at the top.

6 INSIGHTS FROM SUBMISSIONS

6.1 Testing techniques

A-TEST has covered the whole range of testing techniques: ran-
dom, combinatoric, property based, model based, and search based.
Model based testing (MBT) is a subject that is present in almost
every year of A-TEST. Despite being a technology that has been
around for several decades —introduced back in 90’s [4]-, there are
still plenty of open challenges in MBT. For example, in practice
models can easily become large and complex, for which simple node
coverage might not be good enough to expose non-obvious bugs. In

January 2020 Volume 45 Number 1



ACM SIGSOFT Software Engineering Notes

Automating TEST Case Design, Selection and Evaluation
Report on 10 Editions of A-TEST Workshop

Mutation
Reduction/prioritization
Amplification

Quality of Test Suites

Coverage

Risk-based

Testability

Unittesting Test Levels

Integration

Page 23

10 years A-TEST

Model-based
Al/ML-based

Property-based

Testing Techniques

Random and fuzzing
Search-based

Pattern-based

Services, clouds
Concurrent

Web

Mobile

Compilers
Desktop

Embedded

Repositories (SIR, etc)

Figure 1: Overview of topics over 10 years of A-TEST.

A-TEST we have seen works that seek to apply e.g. a combinatoric
approach to obtain stronger test suites, and prioritization to keep
the cost manageable. Better tests can be generated if the models are
made richer, e.g. by capturing the parameters of the transitions, and
their pre- and post-conditions. This however makes test generation
a harder problem, for which pure graph-based traversal algorithms
would not suffice. In the A-TEST we have seen works applying
search-based algorithms, even in combination with symbolic rea-
soning, to address this problem. Another challenge is that models
can be incomplete, or become incomplete because the software
under test evolves. In recent years we have seen increasing atten-
tion to Al and machine learning in A-TEST. Although they were
mainly used for searching effective tests, it seems an interesting
future direction to train Al algorithms to do model maintenance
tasks (e.g. to smartly evolve models when they become obsolete).
In addition to work in learning Al, we also hope to see more contri-
bution from cognitive Al in the future, either to improve existing
testing techniques, or to derive a completely new class of testing
techniques.

6.2 Quality of Test Suites

The quality of generated test suites gain importance in the recent
years within various techniques. Mutation testing is a state of the
art technique in the last decades. The quality of mutation testing
in terms of both reduction of redundant mutants and efficient com-
puting are the focus in the last three years of A-TEST. Reduction
approaches is another technique to increase the quality of test
suites, although we observe little in the last years. Techniques such
as coverage, amplification as well as debugging are means to in-
crease quality appearing since 2016. In summary, the quality aspect
of test suites appear more as research topics recently in time.

6.3 Systems Under Test (SUTs)

The studies published in A-TEST cover a variety of systems under
test. From concurrent systems to cloud-based applications, desktop,
mobile, or embedded systems, compilers or web applications. While

the diversity of SUTs in each edition of A-TEST has been high,
there is a trend towards mobile and web application systems. This
coincides with the growing importance of such systems in the
developer world, given the fact that most end-users are moving
towards mobile platforms [1]. The importance of testing in such
platforms comes from the fact that on the one hand, they are more
costly and difficult to test due to variety in platforms, and on the
other hand these systems are expected to be robust and performant
[5]. The shift towards automated testing of mobile and web systems
is apparent in the recent editions of A-TEST, since there has been
at least one published study on mobile and web systems in the past
4 editions of A-TEST. We expect this trend in A-TEST to only grow
as the global trend towards mobile and web systems continues, and
the testing problems in this domain remain a popular subject for
researchers.

6.4 Testlevels

During the last decade, there seems to be a shift from automating
the low level tests, such as unit tests, to automating the higher level
tests - testing the entire system. Great examples are e.g. GUI tests -
testing through the user interface, but also utilizing technologies
that can challenge a larger code base in a more black-box fash-
ion. In practise, unit tests complemented by coverage and evolved
static analysis support has made developers in agile teams develop
full automation, which is common practice - some also use TDD.
Nevertheless, unit test automation a now a normal activity. The
research papers that still address unit test level, are concentrat-
ing on mutation testing to evaluate the quality of the unit tests,
or more advanced techniques for unit test code generation. Simi-
larly we can now see functional tests being automated, followed by
non-functional (extra-functional properties). This automation also
allows for new challenges to emerge - as well as new solutions. A
new concern is the ever growing size of test code (automated tests)
that is now easily surpassing the size of software code, currently
resulting in test selection, optimization and prioritization together
with reduction of test size in general.

January 2020 Volume 45 Number 1



ACM SIGSOFT Software Engineering Notes

Page 24

Tanja E. J. Vos, I. S. W. B. Prasetya, Sigrid Eldh, Sinem Getir, Ali Parsai, and Pekka Aho

7 CONCLUSIONS

A-test has proven itself during this passed 10 years to be an impor-
tant workshop in the field of software testing, and its tool devel-
opment, allowing new meetings and discussions of problems and
solutions and contributing to the research direction in the field.

8 ACKNOWLEDGEMENTS

A-TEST started within the FITTEST project that was funded by the
EU under contract number FP7-ICT-257574 and finished in 2014.
A-TEST would not have been possible without the continuous sup-
port of the University of Utrecht, The Universidad Politecnica de
Valencia, the Open Universiteit The Netherlands and Ericsson. Even
if there was not project to support the workshop, these organisa-
tions made it possible. As from the year 2017, A-TEST has also
been supported by the TESTOMAT project, an ITEA 3project under
contract number 16032.

REFERENCES

[1] Personal computing device shipments forecast to continue their slow decline with
a five-year compound annual growth rate of -1.2%, according to idc, Mar 2019.
https://www.idc.com/getdoc.jsp?containerld=prUS44908319.

[2] S. Bauersfeld, T. E. J. Vos, Nelly Condori-Fernandez, Alessandra Bagnato, and
Etienne Brosse. Evaluating the TESTAR tool in an industrial case study. In
2014 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM ’14, Torino, Italy, September 18-19, 2014, page 4, 2014.

[3] Markus Borg, Daniel Brytting, and Daniel Hansson. Enabling visual design veri-
fication analytics - from prototype visualizations to an analytics tool using the
unity game engine. CoRR, abs/1808.09767, 2018.

[4] Ibrahim K El-Far and James A Whittaker. Model-based software testing. Encyclo-
pedia of Software Engineering, 2002.

[5] B.Kirubakaran and V. Karthikeyani. Mobile application testing — challenges and
solution approach through automation. In 2013 International Conference on Pattern
Recognition, Informatics and Mobile Engineering, pages 79-84, Feb 2013.

[6] Ali Parsai, Alessandro Murgia, and Serge Demeyer. LittleDarwin: A Feature-Rich
and Extensible Mutation Testing Framework for Large and Complex Java Systems,
pages 148-163. Springer International Publishing, Cham, 2017.

January 2020 Volume 45 Number 1


https://www.idc.com/getdoc.jsp?containerId=prUS44908319



