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ABSTRACT

Numerous Al-assisted resource allocation decisions need to bal-
ance the conflicting goals of fairness and efficiency. Our paper
studies the challenging task of defining and modeling a proper
fairness-efficiency trade off. We define fairness with Rawlsian lex-
imax fairness, which views the lexicographic maximum among
all feasible outcomes as the most equitable; and define efficiency
with Utilitarianism, which seeks to maximize the sum of utilities
received by entities regardless of individual differences. Motivated
by a justice-driven trade off principle: prioritize fairness to benefit
the less advantaged unless too much efficiency is sacrificed, we
propose a sequential optimization procedure to balance leximax
fairness and utilitarianism in decision-making. Each iteration of
our approach maximizes a social welfare function, and we provide
a practical mixed integer/linear programming (MILP) formulation
for each maximization problem. We illustrate our method on a
budget allocation example. Compared with existing approaches of
balancing equity and efficiency, our method is more interpretable
in terms of parameter selection, and incorporates a strong equity
criterion with a thoroughly balanced perspective.
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1 INTRODUCTION

Fairness is a justifiably major concern in the design of Al systems.
However, the most equitable solution may not be the most efficient.
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For example, awarding mortgage loans in a distressed neighborhood
may promote equity but result in more foreclosures and evictions
than awarding the loans elsewhere. Business investment in a failed
state may serve justice but may also deny funds to less troubled ar-
eas where startup capital could create much more benefit. The issue
can be especially acute in health care. Very expensive treatments
that prolong the life of a few terminally ill patients may divert
funds from preventive health measures that would spare millions
the suffering brought by less serious diseases.

The intuition behind these examples is that the least advantaged
should have priority, but not at unlimited cost to everyone else.
Since resource allocation decisions are increasingly made with the
assistance of Al technology, it is imperative to find a principled
and systematic way to balance fairness and efficiency in such cases.
In this paper, we propose one approach to this issue: we define a
mathematical model that balances Rawlsian leximax fairness and
utilitarianism, and we formulate the model as a practical mixed
integer/linear programming problem. The trade-off between fair-
ness and efficiency is regulated by a single parameter that we argue
has a more natural and intuitive interpretation that alternative
approaches to balancing fairness and efficiency.

We use the notions of utility and social welfare widely studied in
the economics literature. For a given outcome, each entity, which
represents an individual person or object in this paper, evaluates
how good the outcome is using its utility function. The more an
entity desires an outcome, the higher its utility will be. With a well
defined utility function, each outcome has a vector representation
where the elements quantify individual preferences. A convenient
tool to compare outcomes is social welfare function (SWF), which
aggregates individual utilities into a scalar measuring how prefer-
able an outcome is for all entities as a unity.

Fairness and efficiency objectives correspond to different so-
cial welfare functions. In our discussion, we use a utilitarian social
welfare function as the efficiency objective. Utilitarianism was advo-
cated in the 18th and 19th century: it considers the optimal outcome
to be one that maximizes the sum of utilities enjoyed by all entities.
We choose Rawlsian Leximax Fairness as the fairness objective.
This fairness definition was given in [7], and has been studied by
an extensive line of work [9, 10]. The key justification is based on
a social contract with veil of ignorance. The simplest version of
Rawlsian fairness principle is known as maximin fairness, which
states that fairness is attainable by maximizing the utility of the
worst off entity. By recursively applying the rule of prioritizing the
worst-off, we reach the more refined definition we choose: Rawlsian
leximax fairness considers the lexicographic maximum among all
feasible outcomes to be the most equitable. On top of maximizing
the worst off utility, leximax fairness tries to maximize the utility


https://doi.org/10.1145/3375627.3375844
https://doi.org/10.1145/3375627.3375844
https://doi.org/10.1145/3375627.3375844
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3375627.3375844&domain=pdf&date_stamp=2020-02-07

Poster Presentation

of the second worst off, the third worst off, and so on. The Rawl-
sian perspective of defining fairness, while not uncontroversial, has
been defended by closely reasoned philosophical arguments in a
vast literature [2, 8].

1.1 Related Works

One common technique of modeling an fairness-efficiency trade off
is to combine separate fairness and efficiency objectives into a single
social welfare measure. A well-studied approach is multiobjective
programming [6]: instead of optimizing the pure fairness measure
or efficiency measure, the decision problem has a weighted sum of
fairness and efficiency measures as the objective function. Another
method is to use an inequity-averse social welfare function known
as a-fairness. Previous works including [1, 4, 13] have discussed that
a-fairness captures a balance of fairness and efficiency. The well-
known Nash social welfare function, where the social welfare of an
outcome u is defined the product of individual elements IT_, u;, is
a special case of a-fairness. These two combination methods share
the same shortcoming: the parameters lack intuitive explanation
in the context of utility and social welfare, hence are difficult to
choose or interpret.

Motivated by this shortcoming, [3] proposed a novel social wel-
fare function combining Rawlsian maximin fairness and utilitari-
anism, which formalizes a trade off principle advocated in [11]: be
equitable until it becomes too expensive for efficiency. The social
welfare function in [3] uses a single parameter to split a feasible
utility region into fair region and utilitarian region, then maximin
fairness is active in the fair region and utilitarianism is active in
the utilitarian region. [5] applied this new approach in kidney ex-
change and gave an algorithm to combine leximax fairness and
utilitarianism. The algorithm first maximizes the Hooker-Williams
social welfare function, then selects the lexicographic maximum
among optimal solutions found.

1.2 Our Contributions

Our paper is motivated by the recent development on balancing
Rawlsian fairness and utilitarianism. We observe that the social
welfare function proposed by [3] does not impose a strong enough
fairness criterion: by their definition, not all entities impact social
welfare value. The fairness-efficiency trade off algorithm in [5] seeks
stronger fairness by adding the extra step of choosing lexicographic
maximum, but is not a direct combination of leximax fairness and
utilitarianism: only the first step uses a balanced objective.

We propose a sequential optimization procedure to balance lexi-
max fairness and utilitarianism. Compared with [3], our method in-
corporates a stronger fairness criterion: all entities in the fair region
of an outcome have impacts on social welfare values. Compared
with [5], our method takes a balanced perspective from beginning
to end. Each iteration of our approach maximizes a social welfare
function, which we define through extending the justification used
for the Hooker-Williams social welfare function.

In this paper, we first review the Hooker-Williams social welfare
function and define additional functions needed by our balanc-
ing approach. We then describe our approach, which consists of
a sequence of social welfare maximization problems. Each max-
imization problem has a practical mixed integer/linear program
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Figure 1: Piecewise linear SWF contours for 2 persons.

representation. We next apply our approach on a simple numerical
example of allocating budget to projects. We conclude by discussing
additional results not covered in this paper, ongoing work and fu-
ture directions.

1.3 Preliminary: Maximin Fairness and
Utilitarianism

A social welfare function F(u) assigns a numerical value to a dis-
tribution of utilities u = (u1, ..., up) across individuals 1,...,n.
Distributions with larger functional values are regarded as more
desirable. Recall from Introduction, a utilitarian social welfare func-
tion is

n
FUtl(y) = Z Uj.
i=1
Rawlsian maximin fairness has an explicit functional form,
FMaximinig) = min u;.
i=1,...,n

Rawlsian leximax fairness can also be expressed as a social welfare
function, using analytical form of lexicographic maximum given
in [12]. We do not introduce the function here because it is rarely
used in practice, due to potential numerical challenges rising from
large parameters.

[11] suggested a social welfare function combining utilitarianism
and maximin fairness for two persons, illustrated in Fig. 1, which
prioritizes the worse-off individual without taking an excessive
amount of resources from the other person. The contours of the
function are shown: they are utilitarian when u; and uy differ by
more than A and maximin otherwise; specifically,

if lug —ug| = A
otherwise

u + uy,
2min{ug, uz} + A,

F(uy,uz) = {

The maximin function would ordinarily be min{us, uz}, but it is
modified here to obtain continuous contours as one moves from a
utilitarian region to the maximin region.

The feasible set in Fig. 1 (the portion of the non-negative quad-
rant under the curve) represents all utility outcomes that are within
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Figure 2: Nonlinear SWF contours for 2 persons.

the resource capacity. Its shape reflects the fact that after a certain
point, further improvement of entity 1’s utility requires extraor-
dinary sacrifice by entity 2 due to the transfer of resources. The
utilitarian solution (black dot in the figure) might therefore be
viewed as preferable to the maximin solution (small open circle)
and in fact yields slightly more social welfare as indicated by the
contours.

[3] extended this social welfare function to n persons as fol-
lows. We adopt the convention that (u(y), ..., u(p)) is the tuple
(u1, ..., upn) arranged in non-increasing order, that is, u¢;y < u(;4q)
fori=1,---,n—1.

n
Fi(uw) =nugqy + (n— DA+ Z max{u; —u¢y — A0 (1)

i=1
We refer to (1) as Hooker-Williams Social Welfare Function. Part
of the intuition underlying (1) is that it should be utilitarian along
the walls of the nonnegative orthant, where the utilities are widely
spread, and Rawlsian near the center diagonal where the utilities
are similar. This effect can be obtained by smooth contours that
transition gradually from a utilitarian to a Rawlsian criterion, as
in Fig. 2, which is perhaps preferable to an abrupt shift from one
regime to the other. However, it is far from obvious how to specify
and parameterize a nonlinear function of this kind, and it poses a
difficult nonconvex continuous optimization problem if one wishes
to maximize social welfare. By contrast, the function (1) is parame-
terized by a single quantity A, no matter how many individuals are
involved. In addition, [3] showed that the problem of maximizing (1)
can be formulated as a mixed integer/linear programming problem

that is readily solved by existing software.

2 DEFINING THE SOCIAL WELFARE
FUNCTIONS

For ease of discussion, we define (u) so that u(qy, ..., U (y)) are

within A of u(qy; that is, u¢;y — u(qy < A if and only if i < t(u). We

will refer to utilities u(y), . . ., U(s(u)) as being in the fair region and

utilities u;(y)+1), - - - » U(n) a8 being in the utilitarian region.
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Figure 3: Contours of F(0, u2, u3). The function is constant in
the shaded region.

A serious drawback of (1) is that the utilities in the fair region,
other than the smallest, have absolutely no effect on social welfare.
This is illustrated in the 3-person example of Fig. 3, which shows the
contours of F(uz, uz, us) with A = 3 and u; fixed to zero. F(0, uz, us)
is constant in the shaded region, meaning that the utilities allocated
to persons 2 and 3 do not affect the social welfare as measured by
F(u), so long as they remain in the fair region. As a result, there are
infinitely many utility vectors that maximize social welfare, some
of which differ greatly in the fair region. One can add a tie-breaking
term e(u2 + u3) to the social welfare function, where € > 0 is small,
to maximize utility as a secondary objective. Yet this still does not
account for equity considerations within the fair region.

We address this issue by combining the utilitarian criterion with
leximax fairness rather than maximin fairness. A leximax objective
takes into account the second lowest utility, the third lowest, and
so forth, rather than only the lowest. Formally, a utility vector u is
lexicographically greater than or equal to u” when u gy > u2 k) and

(Uerys - - U(k—1)) = (u21>, ..
vector is a lexicographic maximum in a set if it is lexicographically
greater than or equal to all other utility vectors in the set.

To combine the leximax and utilitarian criteria, we propose opti-
mizing a sequence of social welfare functions Fy(u), . .., Fn(u), each
of which balances maximin and utilitarian criteria. The first func-
tion Fj(u) is the Hooker-Williams SWF (1) and is maximized over
all feasible outcomes to obtain a value for u(;y. Each subsequent
function F(u) is maximized over feasible outcomes while fixing
utilities ), ..., u(k_1) to the values already obtained, to deter-
mine a value for u ). The process terminates when maximizing
Fr(u) yields a value of u(y) that lies outside the fair region. At
this point, Fi(u) is utilitarian, and utilities U(kys - - - U(p) aTE de-
termined simultaneously by maximizing Fy(u) while maintaining
the fixed coordinates. We first define the functions F.(u) and es-
tablish their properties, then describe our sequential optimization

.,u2k71>) for some k € {1,...,n}. A
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procedure more precisely. To build intuition, we rewrite (1) as

n

Fi(u) = uqy + (n=1)(ug) + A) + Y (uy = ugy = A)

i=t(u)+1

Thus the smallest utility u ;) represents itself in the sum, while
each u; in the utilitarian region is discounted by u;y + A. That is,
the SWF Fj(u) counts only the portion of utility that lies above the
threshold u(;) + A of the utilitarian region. This, in effect, gives
the lowest utility u(;y more weight and therefore more priority
than ;s in the utilitarian region. If t(u) = 1, the function becomes
purely utilitarian. This can be generalized to Fi(u) as follows:

Zi'c:l Uiy + (n - k)(u<1> + A)

+ 20y (M) —uqy — A) if e(w) > k

F(u) = @)

2?21 Uiy ift(u) < k

Here, utilities U(1ys - - - U(k) represent themselves, while each
u; in the utilitarian region is again discounted by u(;y + A. When
k > t(u), the function becomes purely utilitarian. The fair region
and utilitarian region are always defined with respect to the lowest
utility u(;y. The intuition here is that in stage k of the sequential
optimization procedure, (2) gives utilities u(y), . . ., t (k) more pri-
ority than those in the utilitarian region in the same way that F; (u)
gives priority to u¢;y. But u(qy, ..., u(k_1) have already been fixed
in previous stages. Thus utility u k) is given priority, and the value
obtained for u ) by maximizing Fi(u) is taken to be the utility
allocated to that party in the socially optimal distribution. As k
increases, increasingly advantaged parties in the fair region are
given priority, until all parties in the fair region are considered. As
a result, relatively disadvantaged parties are treated in a leximax
fashion, but while taking into account total utility at each stage.

Figure 4 illustrates how maximizing Fy(u), ..., F,(u) sequen-
tially is more sensitive to equity than maximizing Fj(u), which
has the flat region shown in Fig. 3, as noted earlier. Suppose we
determine a value for u; by maximizing Fj(u), say u; = 0. Then the
function F2(u) has no flat regions, as is evident in Fig. 4, and the
solutions in the flat region of Fig. 3 are now distinguished.

To prove continuity of the SWF Fy.(u), it is convenient to write
(2) as

k
Fr(w) = > gy + (n = K)(ugy +A)

- ©)
+ Z max{uy —u¢y — A, 0}

i=k+1

THEOREM 1. The functions Fy.(u) are continuous fork = 1,...,n.

Proor. It suffices to show that each term of (3) is continuous,
because a sum of continuous functions is continuous. Because order
statistics are continuous, u;y and (n — k)(u(;) + A) are continuous
functions of u. Also max{u(;y —u(y — A, 0} is continuous because
it is the maximum of continuous functions. O
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Figure 4: Contours of F2(0, uz, u3).

3 THE OPTIMIZATION PROBLEM

We wish to optimize a sequence of social welfare functions F; (u),
..., Fy(u) subject to resource constraints. Maximizing Fi(u) de-
termines the value of the k-th smallest u; in the solution of the
social welfare problem. We therefore maximize Fi(u) subject to the
condition that (a) the u;s already determined are fixed to the values
obtained for them, and (b) the remaining u;s must be at least as
large as the largest u; already determined. The unfixed u; with the
smallest value in the solution becomes the utility determined by
maximizing Fi(u). We indicate resource limits by writing u € C,
where C is a set of feasible outcomes. The main motivation for our
sequential procedure is that the leximax fairness criterion is equiv-
alent to sequential applications of the maximin criterion, where
the k-th iteration fixes the k-th smallest value in the final leximax
solution.

To state the optimization procedure more precisely, we define
a sequence of maximization problems Py, . .., Py, where P; maxi-
mizes Fj(u) subjecttou € C,and Py fork =2,...,nis

max Fi(u)
k-1

u,'j
uj > d,_,, €I}

ueC

=L_tij, j=1,..

4)

The indices i; are defined so that u;; is the utility determined by
solving P;. In particular, u;; is the utility with the smallest value
among those obtained by solving P;. Thus

ij = argmin{ulm}

i€l;
where ul/l is an optimal solution of Pj and I; = {1, ...,n}\{i1,...,ij-1}
is the set of undetermined indices in the feasible region of P;. We de-

[
ij
i, is equal to the smallest value among the ul!l indices which are
not fixed in constraints of P;.

We need only solve P for k = 1,...,K + 1, where K is the
largest k for which @;, < @;, + A. We note that P maximizes a

note by ai; =u the solution value obtained for ui; in Pj, namely,
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utilitarian objective subject to resource constraints and fixed-value
constraints. The solution of our sequential procedure is then

. U
u. =
i uEK]

As mentioned, [3] formulated problem P; as a MILP problem.
For our new problems P, . . ., Pk, we can also formulate them as
MILP problems. We first need to introduce additional constraints
to make Py (4) MILP-representable. [3] has discussed the case for
k = 1, so we focus on k > 2. As shown, we add constraint (5¢) to
have a MILP-representable problem Pl,c'

fori=iy,...,igk_1

forielg

max Fi(u)
zg < Z;-c:_ll Wi, + Uy + (n—k)(@;, +A)

+ Zi61k+1(ui - ai] - A)+ (a) (5)
uj >, €I (b)
uj —uj; <M, i€l (c)

ueC

We give the following MILP reformulation of P ; detailed proof of
Theorem 2 is given in appendix.

THEOREM 2. The MILP model for P]’C whenk =2,...,nis

max zj

k-1
szZﬂij+(n—k+l)A+Zv,~ (@)

j=1 i€l
ui—AN<vi <uj—AS;, i€l (b)
ui—A<v; <u;j—ANej, i €1 (c)
uj, — M(5i + 6,’) <, i €I (d)
vi < +(M—=N)6i +¢€;), i €I} (e) (6)
w <, i €I f)
ui <w+M1-¢), i€l (9)
Dier € =1 (h)
up >, i€l (i)
uj —ij; <M, i€l ()

di,ei €{0,1}, i € I,
ueC

4 NUMERICAL EXPERIMENTS

We apply our leximax fairness and utilitarianism balancing ap-
proach on an example of budget allocation. Suppose the decision
maker (DM) wishes to allocate a total budget of 7000 dollars to 20
projects indexed as {1, ..., 20}. For each project i, it has a fixed
budget requirement b;, and the DM decides whether to allocate to
a project its full required budget or nothing. Project i’s utility is
measured as

uj = pi +riyi, (7)
where p; is the base performance of project i, r; is the performance
increase from receiving its required budget, and y; € {0,1} is a
binary variable denoting whether project i receives budget. Specif-
ically, y; = 1 means the DM assigns b; out of $7000 to project i.
Suppose the DM values all projects and wishes to assign budgets
fairly and efficiently without exceeding the available amount.
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Table 1: Data for Budget Allocation Example

Projecti pi ri bi($)| i pi ri bi($)
[1] 22 95 600 |[11] 9 42 400
[2] 12 110 800 |[12] 15 50 550
[3] 22 130 950 |[13] 5 18 200
[4] 16 120 900 |[14] 5 30 400
[5] 20 8 660 |[15] 11 35 500
[6] 28 140 1100 | [16] 3 20 300
[7] 25 125 1000 | [17] 3 40 600
[8] 35 150 1200 | [18] 22 500
[9] 25 100 850 |[19] 10 25 600
[10] 18 80 700 |[20] 8 27 700

Table 2: Optimal Decision Balancing Maximin Fairness and
Utilitarianism: Projects in Fair Region Shown in Boldface

A range Projects receiving budget u’g”; u
0-51 1,2,3,4,5,7,8,9 3; 60.7
52 -90 2,3,4,6,7,8,9,13 3;59.6
91-97 3,4,6,7,8,13,14,16,17 7; 53.6
98 — 102 3,6,7,8,13,14,16,17,18,20 9; 50.05
103-105 2,8,11,12,13,14,15,16,17,18,19,20  16; 43.4
106 — 129  2,8,11,12,13,14,15,16,17,18,19,20  16; 43.4
130-up  2,4,11,12,13,14,15,16,17,18,19,20  18; 41.9

We implement the optimization procedure described in previous
sections using the respective MILP representation in each iteration.
Since the single parameter A affects whether the trade-off is more
equitable or more efficient, we experiment with a broad range
of integer values A € [0, 150] to compare the optimal outcomes
and provide insights of the corresponding trade-off. The MILP
instances are solved with GUROBI 8.1.1. Table 1 contains data in
this example: our data are artificial. We index the projects so that
the cost over performance-increase ratio b;/r; increases with i.
To compare our procedure with the Hooker-Williams scheme, we
implement both methods: Table 2 and 3 summarize the respective
experiment results. We use u* to denote the optimal outcome: in
result tables, u?l) is the smallest utility of u* and u* is the average
utility of u*. For conciseness, we give the list of projects receiving
their required budgets in outcome corresponding to u*, instead
of giving the complete u*. To further facilitate interpretation, we
highlight the projects whose utilities are contained in the fair region
[u?w, u’€1> + A] in boldface.

As shown in Tables 2 and 3, with A increasing, both methods
return optimal decision where the worst off entity’s utility u’<‘1>
is non-decreasing and the average utility decreases. This fits the
expected balancing performance of our approach: as A increases,
the combined criterion captured by our method prioritizes more
fairness and less efficiency. Despite the monotonic trends observed
in this simple example, it is less obvious whether theoretical re-
sults about monotonic behaviors on the optimal outcome from
our sequential procedure can be stated. We also observe that the
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Table 3: Optimal Decision Balancing Leximax Fairness and
Utilitarianism: Projects in Fair Region Shown in Boldface

A range Projects receiving budget u?l); u*
0-90 1,2,3,4,5,7,8,9 3; 60.7
91 -97 1,2,3,4,7,8,13,14,16,17 7; 56.85
98 — 102 1,2,3,4,7,13,14,16,17,18,20 9,51.8
103 -105 1,2,9,11,12,13,14,15,16,17,18,19,20  16; 45.65
106 — 108 1,2,9,11,12,13,14,15,16,17,18,19,20  16; 45.65
109-129 1,2,9,11,12,13,14,15,16,17,18,19,20  16; 45.65
130—up 2,4,11,12,13,14,15,16,17,18,19,20 18; 41.9

size of fair region grows with A, implying both methods are more
fairness-oriented at larger A values.

Recall our index rule, the projects with larger indices have higher
cost over performance increase ratio, namely these projects are
worse off in terms of utility distribution. We expect the worse off
projects to receive better treatment in a fairer balancing scheme,
which is exactly what we observe from the experiment results.
Another interesting observation from this example is that for the
same A range, the optimal solution found by our leximax fairness
balancing scheme is both fairer and more efficient than the optimal
solution found by the Hooker-Williams scheme.

5 CONCLUSION AND FUTURE WORK

Motivated by the justice-driven trade-off principle between fairness
and efficiency, that is, one should prioritize fair treatment of the
less advantaged until too much sacrifice from efficiency is needed,
we design a sequential optimization approach to balance Rawlsian
leximax fairness and utilitarianism. We take the novel combination
idea presented in [3] to full potentials. Using a parameter A, we di-
vide the feasible utility region into fair region and utilitarian region.
In all social welfare functions, the utilitarian region is associated
with a utilitarian measurement; each function has a different fair
region measurement, and all together they characterize leximax
fairness.

Our approach maximizes the social welfare function F;(u) in
iteration i. Using optimal solution returned in the i-th iteration,
we fix the i-th smallest utility value in the final optimal outcome.
Each optimization problem has a practical MILP formulation. We
illustrate the practical potentials of our approach with a budget
allocation example.

For exposition convenience, we focus on the case where an
entity is an individual person or object in this paper. In practice, it
is common to have an entity represent a group of people or objects
sharing certain characteristics. We have generalized (4) to define
slightly different social welfare functions to model group-entities.
The optimization procedure is easily extended to fit the general
group case. Our ongoing experiments on healthcare provision and
paper-reviewer assignment examples have generated interesting
results.

On a more theoretical perspective, we have been studying math-
ematical properties of our balancing approach. One property of
special interest to fairness research is the Pigou-Dalton (PD) con-
dition, which states any utility-invariant wealth transfer from a
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better-off entity to a worse-off entity should not decrease the social
welfare value. Many popular fairness measures including a-fairness
satisfy the PD condition. Given the sequential nature of our method,
we first adapt the conventional definition to specify what it means
for our method to violate or satisfy Pigou-Dalton condition. One
way to view our approach is that each iteration eliminates some
outcomes by fixing one utility coordinate, hence the sequential
procedure generates a weak ranking (some outcomes share the
same rank) of all feasible outcomes. We suppose a more prefer-
able outcome has a higher rank in the order, then we state that
our method violates Pigou-Dalton condition if there exists feasible
outcomes u, u’ such that u receives a higher rank than u’ but u can
be obtained from u’ via poor-to-rich wealth transfer. An ongoing
direction of ours is to provide a definitive answer to whether the
Pigou-Dalton condition is violated or satisfied.

Another potentially useful question to study is whether the
choice of A can be formulated as a well-defined problem. Since A
directly affects the nature of the underlying trade-off, practical po-
tentials of our approach will be greatly enhanced if we can provide
a well-justified process for choosing its value, rather than leaving
the choice to trial-and-error.
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Poster Presentation

where « is an arbitrarily chosen index in Ij
For i € I}, we set

such that ux = uy).

(@,,0,0), ifui —a;, <Aandi#x
(vi, i, €i) = (u; = 4,0,1), %fui B Z?il <A andl: -
(wi —A,1,0), ifu;—a; >ANandi#x
(i —A1,1), ifu;—a; >ANandi=«

It is easily checked that these assignments satisfy constraints
(6b)—(6h). Constraint (6a) becomes

k-1

2k < iy + (n—k+ DA+ (e — A)
=1
+ Z i, + Z (ui — N)
iel\{x} ielx\{x}
= A ui—iy >A

This can be written
k-1

2z < Zaij +(n—k+ 1)@, + D) + (ux — @5, — A)
Jj=1
+ Z (@, —a;,) + Z (uj — @, — A)
iel\{x} iel\{x}
ui—ﬁil <A ui—ﬂil >A
which simplifies to
k-1
2z < Zaij + e+ (n— k)@, +A) + Z (u; — 11, — A)
= iel\(x}
u;—i; >A
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This is equivalent to (5a), and we conclude that (6a) is satisfied by
our assignments above.

For the converse, we show that for any (u, z, v, 8, €, w) that sat-
isfies (6), (u, zp) satisfies (5). Constraint (5b) and (5c) are obviously
satisfied, due to (6i) and (6j). To verify that (5a) is satisfied, we first
let k be the index for which €, = 1, which is unique due to (6h). We
then write (6a) as follows:

k-1
zE < Za,—}. +(n—k+1DA+vc+ Z vi + Z v;
Jj=1 iel\{x} iel\{x}
5;=0 Si=1
This can be written
k-1
2z < Z i, + vy + (n = k)@, + A)

= ®)
) wimm)+ ) (i)
iel\{x} iel\{x}

85;=0 §i=1

We show that (8) implies (5a) by observing the following. First,
Uk = Ux = Uy, due to (6¢). The second summation of (8) vanishes
because v; = i;, due to (6d), (6e) and the fact that €; = 0 for i # k.
In the third summation, we have

vi — i, =uj — i —A < (ui—ﬂil —A)+
where the equality is due to (6b). We conclude that (5a) is satisfied.
m]



	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions
	1.3 Preliminary: Maximin Fairness and Utilitarianism

	2 Defining the Social Welfare Functions
	3 The Optimization Problem
	4 Numerical Experiments
	5 Conclusion and Future Work
	References
	A Proof of Theorem 2



