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Abstract. Indexing highly repetitive texts — such as genomic databases, software repositories and
versioned text collections — has become an important problem since the turn of the millennium. A
relevant compressibility measure for repetitive texts is r, the number of runs in their Burrows-Wheeler
Transforms (BWTs). One of the earliest indexes for repetitive collections, the Run-Length FM-index,
used O(r) space and was able to efficiently count the number of occurrences of a pattern of length
m in the text (in loglogarithmic time per pattern symbol, with current techniques). However, it was
unable to locate the positions of those occurrences efficiently within a space bounded in terms of r.
Since then, a number of other indexes with space bounded by other measures of repetitiveness —
the number of phrases in the Lempel-Ziv parse, the size of the smallest grammar generating (only)
the text, the size of the smallest automaton recognizing the text factors — have been proposed for
efficiently locating, but not directly counting, the occurrences of a pattern. In this paper we close this
long-standing problem, showing how to extend the Run-Length FM-index so that it can locate the
occ occurrences efficiently within O(r) space (in loglogarithmic time each), and reaching optimal time,
O(m+ occ), within O(r log logw(σ + n/r)) space, for a text of length n over an alphabet of size σ on a
RAM machine with words of w = Ω(logn) bits. Within that space, our index can also count in optimal
time, O(m). Multiplying the space by O(w/ log σ), we support count and locate in O(dm log(σ)/we) and
O(dm log(σ)/we+ occ) time, which is optimal in the packed setting and had not been obtained before
in compressed space. We also describe a structure using O(r log(n/r)) space that replaces the text and
extracts any text substring of length ` in almost-optimal time O(log(n/r) + ` log(σ)/w). Within that
space, we similarly provide direct access to suffix array, inverse suffix array, and longest common prefix
array cells, and extend these capabilities to full suffix tree functionality, typically in O(log(n/r)) time
per operation. Our experiments show that our O(r)-space index outperforms the space-competitive
alternatives by 1–2 orders of magnitude.

1 Introduction

The data deluge has become a pervasive problem in most organizations that aim to collect and
process data. We are concerned about string (or text, or sequence) data, formed by collections of
symbol sequences. This includes natural language text collections, DNA and protein sequences,
source code repositories, semistructured text, and many others. The rate at which those sequence
collections are growing is daunting, in some cases outpacing Moore’s Law by a significant margin
[109]. A key to handle this growth is the fact that the amount of unique material does not grow at the
same pace of the sequences. Indeed, the fastest-growing string collections are in many cases highly
repetitive, that is, most of the strings can be obtained from others with a few modifications. For
example, most genome sequence collections store many genomes from the same species, which in the

∗Partially funded by Basal Funds FB0001, Conicyt, by Fondecyt Grants 1-171058 and 1-170048, Chile, and by
the Danish Research Council DFF-4005-00267. An early partial version of this article appeared in Proc. SODA 2018
[46].
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case of, say, humans differ by 0.1% [102] (there is some discussion about the exact percentage). The
1000-genomes project5 uses a Lempel-Ziv-like compression mechanism that reports compression
ratios around 1% [40] (i.e., the compressed space is about two orders of magnitude less than the
uncompressed space). Versioned document collections and software repositories are another natural
source of repetitiveness. For example, Wikipedia reports that, by June 2015, there were over 20
revisions (i.e., versions) per article in its 10 TB content, and that p7zip6 compressed it to about 1%.
They also report that what grows the fastest today are the revisions rather than the new articles,
which increases repetitiveness.7 A study of GitHub (which surpassed 20 TB in 2016)8 reports a
ratio of commit (new versions) over create (brand new projects) around 20.9

Version management systems offer a good solution to the problem of providing efficient access
to the documents of a versioned collection, at least when the versioning structure is known. They
factor out repetitiveness by storing the first version of a document in plain form and then the edits
of each version of it. It is much more challenging, however, to provide more advanced functionalities,
such as counting or locating the positions where a string pattern occurs across the collection.

An application field where this need is most pressing is bioinformatics. The FM-index [32, 33]
was extremely successful in reducing the size of classical data structures for pattern searching, such
as suffix trees [114] or suffix arrays [81], to the statistical entropy of the sequence while emulating
a significant part of their functionality. The FM-index has had a surprising impact far beyond the
boundaries of theoretical computer science: if someone now sends his or her genome to be analyzed,
it will almost certainly be sequenced on a machine built by Illumina10, which will produce a huge
collection of quite short substrings of that genome, called reads. Those reads’ closest matches will
then be sought in a reference genome, to determine where they most likely came from in the
newly-sequenced target genome, and finally a list of the likely differences between the target and
the reference genomes will be reported. The searches in the reference genome will be done almost
certainly using software such as Bowtie11, BWA12, or Soap213, all of them based on the FM-index.14

Genomic analysis is already an important field of research, and a rapidly growing industry
[107]. As a result of dramatic advances in sequencing technology, we now have datasets of tens of
thousands of genomes, and bigger ones are on their way (e.g., there is already a 100,000-human-
genomes project15). Unfortunately, current software based on FM-indexes cannot handle such mas-
sive datasets: they use 2 bits per base at the very least [65]. Even though the FM-index can represent
the sequences within their statistical entropy [33], this measure is insensitive to the repetitiveness of
those datasets [73, Lem. 2.6], and thus the FM-indexes would grow proportionally to the sizes of the
sequences. Using current tools, indexing a set of 100,000 human genomes would require 75 TB of
storage at the very least, and the index would have to reside in main memory to operate efficiently.
To handle such a challenge we need, instead, compressed text indexes whose size is proportional to
the amount of unique material in those huge datasets.

5http://www.internationalgenome.org
6http://p7zip.sourceforge.net
7https://en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia
8https://blog.sourced.tech/post/tab vs spaces
9http://blog.coderstats.net/github/2013/event-types, see the ratios of push/create and commit.push.

10https://www.illumina.com. More than 94% of the human genomes in SRA [71] were sequenced by Illumina.
11http://bowtie-bio.sourceforge.net
12http://bio-bwa.sourceforge.net
13http://soap.genomics.org.cn
14Ben Langmead, personal communication.
15https://www.genomicsengland.co.uk/the-100000-genomes-project
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1.1 Related work

Mäkinen et al. [78, 108, 79, 80] pioneered the research on indexing and searching repetitive collec-
tions. They regard the collection as a single concatenated text T [1..n] with separator symbols,
and note that the number r of runs (i.e., maximal substrings formed by a single symbol) in the
Burrows-Wheeler Transform [20] of the text is relatively very low on repetitive texts. Their index,
Run-Length FM-Index (RLFM-index), uses O(r) words and can count the number of occurrences
of a pattern P [1..m] in time O(m log n) and even less. However, they are unable to locate where
those positions are in T unless they add a set of samples that require Θ(n/s) words in order to
offer O(s log n) time to locate each occurrence. On repetitive texts, either this sampled structure is
orders of magnitude larger than the O(r)-size basic index, or the locating time is extremely high.

Many proposals since then aimed at reducing the locating time by building on other compression
methods that perform well on repetitive texts: indexes based on the Lempel-Ziv parse [76] of T ,
with size bounded in terms of the number z of phrases [73, 42, 97, 9, 88, 15, 23]; indexes based on
the smallest context-free grammar (or an approximation thereof) that generates T and only T [68,
21], with size bounded in terms of the size g of the grammar [25, 26, 41, 89]; and indexes based
on the size e of the smallest automaton (CDAWG) [18] recognizing the substrings of T [9, 111, 7].
Table 1 summarizes the pareto-optimal achievements. We do not consider in this paper indexes
based on other repetitiveness measures that only apply in restricted scenarios, such as those based
on Relative Lempel-Ziv [74, 27, 11, 29] or on alignments [86, 87].

There are a few known asymptotic bounds between the repetitiveness measures r, z, g, and e:
z ≤ g = O(z log(n/z)) [105, 21, 58] and e = Ω(max(r, z, g)) [9, 8]. Examples of string families are
known that show that r is not comparable with z and g [9, 101]. Experimental results [80, 73, 9, 24],
on the other hand, suggest that in typical repetitive texts it holds z < r ≈ g � e.

For highly repetitive texts, one hopes to have a compressed index not only able to count and
locate pattern occurrences, but also to replace the text with a compressed version that nonetheless
can efficiently extract any substring T [i..i+`]. Indexes that, implicitly or not, contain a replacement
of T , are called self-indexes. As can be seen in Table 1, self-indexes with O(z) space require up
to O(z) time per extracted character, and none exists within O(r) space. Good extraction times
are instead obtained with O(g), O(z log(n/z)), or O(e) space. A lower bound for grammar-based
representations [113] shows that Ω((log n)1−ε/ log g) time, for any constant ε > 0, is needed to access
one random position within O(poly(g)) space. This bound shows that various current techniques
using structures bounded in terms of g or z [17, 14, 43, 10] are nearly optimal (note that g = Ω(log n),
so the space of all these structures is O(poly(g))). In an extended article [22, Thm. 6], the authors
give a lower bound in terms of r, for binary texts on a RAM machine of w = Θ(log n) bits:
Ω((log n)1−ε) for some constant ε when using O(poly(r log n)) space.

In more sophisticated applications, especially in bioinformatics, it is desirable to support a
more complex set of operations, which constitute a full suffix tree functionality [54, 98, 77]. While
Mäkinen et al. [80] offered suffix tree functionality, they had the same problem of needing Θ(n/s)
space to achieve O(s log n) time for most suffix tree operations. Only recently a suffix tree of size
O(e) supports most operations in time O(log n) [9, 8], where e refers to the e measure of T plus
that of T reversed.

Summarizing Table 1 and our discussion, the situation on repetitive text indexing is as follows.

1. The RLFM-index is the only structure able to count the occurrences of P in T in time
O(m log n). However, it does not offer efficient locating within O(r) space.

3



Index Space Count time

Navarro [89, Thm. 6] O(z log(n/z)) O(m logn+m log2+ε(n/z))

Navarro [89, Thm. 5] O(g) O(m2 +m log2+ε g)

Mäkinen et al. [80, Thm. 17] O(r) O(m( log σ
log log r

+ (log logn)2))

This paper (Lem. 1) O(r) O(m log logw(σ + n/r))
This paper (Thm. 2) O(r log logw(σ + n/r)) O(m)
This paper (Thm. 3) O(rw logσ logw(σ + n/r)) O(dm log(σ)/we)

Index Space Locate time

Kreft and Navarro [73, Thm. 4.11] O(z) O(m2h+ (m+ occ) log z)
Gagie et al. [42, Thm. 4] O(z log(n/z)) O(m logm+ occ log logn)
Bille et al. [15, Thm. 1] O(z log(n/z)) O(m(1 + logε z/ log(n/z)) + occ(logε z + log logn))
Christiansen and Ettienne [23, Thm. 2(3)] O(z log(n/z)) O(m+ logε z + occ(logε z + log logn))
Christiansen and Ettienne [23, Thm. 2(1)] O(z log(n/z) + z log log z) O(m+ occ(logε z + log logn))
Bille et al. [15, Thm. 1] O(z log(n/z) log log z) O(m+ occ log logn)

Claude and Navarro [26, Thm. 1] O(g) O(m2 log logg n+ (m+ occ) log g)
Gagie et al. [41, Thm. 4] O(g + z log log z) O(m2 + (m+ occ) log logn)

Mäkinen et al. [80, Thm. 20] O(r + n/s) O((m+ s · occ)( log σ
log log r

+ (log logn)2))

Belazzougui et al. [9, Thm. 3] O(r + z) O(m(log z + log logn) + occ(logε z + log logn))
This paper (Thm. 1) O(r) O((m+ occ) log logw(σ + n/r))
This paper (Thm. 2) O(r log logw(σ + n/r)) O(m+ occ)
This paper (Thm. 3) O(rw logσ logw(σ + n/r)) O(dm log(σ)/we+ occ)

Belazzougui and Cunial [7, Thm. 1] O(e) O(m+ occ)

Structure Space Extract time

Kreft and Navarro [73, Thm. 4.11] O(z) O(` h)
Gagie et al. [10, Thm. 2] O(z log(n/z)) O((1 + `/ logσ n) log(n/z))

Belazzougui et al. [14, Thm. 1] O(g) O(logn+ `/ logσ n)
Belazzougui et al. [14, Thm. 2] O(g logε n log(n/g)) O(logn/ log log n+ `/ logσ n)

Mäkinen et al. [80, Thm. 20] O(r + n/s) O((s+ `)( log σ
log log r

+ (log logn)2))

This paper (Thm. 4) O(r log(n/r)) O(log(n/r) + ` log(σ)/w)

Belazzougui and Cunial [7, Thm. 1] O(e) O(logn+ `)

Structure Space Typical suffix tree operation time

Mäkinen et al. [80, Thm. 30] O(r + n/s) O(s( log σ
log log r

+ (log logn)2))

This paper (Thm. 9) O(r log(n/r)) O(log(n/r))

Belazzougui and Cunial [8, Thm. 1] O(e) O(logn)

Table 1. Previous and our new results on counting, locating, extracting, and supporting suffix tree functionality. We
simplified some formulas with tight upper bounds. The variables are the text size n, pattern length m, number of
occurrences occ of the pattern, alphabet size σ, extracted length `, Lempel-Ziv parsing size z, smallest grammar size
g, BWT runs r, CDAWG size e, and machine word length in bits w. Variable h ≤ z is the depth of the dependency
chain in the Lempel-Ziv parse, and ε > 0 is an arbitrarily small constant. Symbols r or e mean r or e of T plus r or e
of its reverse. The z of Kreft and Navarro [73] refers to the Lempel-Ziv variant that does not allow overlaps between
sources and targets, but their index actually works in either variant.
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2. The only structure clearly smaller than the RLFM-index, using O(z) space [73], has unbounded
locate time. Structures using about the same space, O(g), have an Ω(m2) one-time overhead in
the locate time [25, 26, 41, 89].

3. Structures offering lower locate times require Ω(z log(n/z)) space [42, 97, 15, 23, 89], Θ(r + z)
space [9] (where r is the sum of r for T and its reverse), or Ω(e) space [9, 111, 7].

4. Self-indexes with efficient extraction require Ω(z log(n/z)) space [105, 21, 43, 10, 15], Ω(g) space
[17, 14], or Ω(e) space [111, 7].

5. The only efficient compressed suffix tree requires Θ(e) space [8].

6. Only a few of all these indexes have been implemented, as far as we know [80, 25, 73, 9].

1.2 Contributions

Efficiently locating the occurrences of P in T within O(r) space has been a bottleneck and an open
problem for almost a decade. In this paper we give the first solution to this problem. Our precise
contributions, largely detailed in Tables 1 and 2, are the following:

1. We improve the counting time of the RLFM-index to O(m log logw(σ + n/r)), where σ ≤ r is
the alphabet size of T , while retaining the O(r) space.

2. We show how to locate each occurrence in time O(log logw(n/r)), within O(r) space. We reduce
the locate time to O(1) per occurrence by using slightly more space, O(r log logw(n/r)).

3. By using O(r log logw(σ + n/r)) space, we obtain optimal locate time in the general setting,
O(m+ occ), as well as optimal counting time, O(m). This had been obtained before only with
space bounds O(e) [7] or O(e) [111].

4. By increasing the space toO(rw logσ logw(σ+n/r)), we obtain optimal locate time,O(dm log(σ)/we+
occ), and optimal counting time, O(dm log(σ)/we), in the packed setting (i.e., the pattern sym-
bols come packed in blocks of w/ log σ symbols per word). This had not been achieved so far
by any compressed index, but only by uncompressed ones [91].

5. We give the first structure built on BWT runs that replaces T while retaining direct access. It
extracts any substring of length ` in time O(log(n/r) + ` log(σ)/w), using O(r log(n/r)) space.
As discussed, even the additive penalty is near-optimal [22, Thm. 6]. Within the same space, we
also obtain optimal locating and counting time, as well as accessing subarrays of length ` of the
suffix array, inverse suffix array, and longest common prefix array of T , in time O(log(n/r) + `).

6. We give the first compressed suffix tree whose space is bounded in terms of r, O(r log(n/r))
words. It implements most navigation operations in time O(log(n/r)). There exist only compa-
rable suffix trees within O(e) space [8], taking O(log n) time for most operations.

7. We provide a proof-of-concept implementation of the most basic index (the one locating within
O(r) space), and show that it outperforms all the other implemented alternatives by orders of
magnitude in space or in time to locate pattern occurrences.

Contribution 1 is a simple update of the RLFM-index [80] with newer data structures for rank
and predecessor queries [13]. We present it in Section 2, together with a review of the basic concepts
needed to follow the paper.

Contribution 2 is one of the central parts of the paper, and is obtained in Section 3 in two steps.
The first uses the fact that we can carry out the classical RLFM-index counting process for P in
a way that we always know the position of one occurrence in T [101, 100]; we give a simpler proof
of this fact in Lemma 2. The second shows that, if we know the position in T of one occurrence

5



Functionality Space (words) Time

Count + Locate (Thm. 1) O(r) O(m log logw(σ + n/r) + occ log logw(n/r))
Count + Locate (Lem. 4) O(r log logw(n/r)) O(m log logw(σ + n/r) + occ)
Count + Locate (Thm. 2) O(r log logw(σ + n/r)) O(m+ occ)
Count + Locate (Thm. 3) O(rw logσ logw(σ + n/r)) O(dm log(σ)/we+ occ)
Extract (Thm. 4) O(r log(n/r)) O(log(n/r) + ` log(σ)/w)
Access SA, ISA, LCP (Thm. 5–7) O(r log(n/r)) O(log(n/r) + `)
Count + Locate (Thm. 8) O(r log(n/r)) O(m+ occ)
Suffix tree (Thm. 9) O(r log(n/r)) O(log(n/r)) for most operations

Table 2. Our contributions. For any “Count + Locate”, we can do only “Count” in the time given by setting occ = 0.

of BWT , then we can quickly obtain the preceding and following ones with an O(r)-size sampling.
This is achieved by using the BWT runs to induce phrases in T (which are somewhat analogous to
the Lempel-Ziv phrases [76]) and showing that the positions of occurrences within phrases can be
obtained from the positions of their preceding phrase start. The time O(1) is obtained by using an
extended sampling.

For Contributions 3 and 4, we use in Section 4 the fact that the RLFM-index on a text regarded
as a sequence of overlapping metasymbols of length s has at most rs runs, so that we can process the
pattern by chunks of s symbols. The optimal packed time is obtained by enlarging the samplings.

In Section 5, Contribution 5 uses an analogue of the Block Tree [10] built on the BWT -induced
phrases, which satisfies the property that any distinct string has an occurrence overlapping a border
between phrases. Further, it is shown that direct access to the suffix array SA, inverse suffix array
ISA, and array LCP of T , can be supported in a similar way because they inherit the same
repetitiveness properties of the text.

Contribution 6 needs, in addition to accessing those arrays, some sophisticated operations on
the LCP array [37] that are not well supported by Block Trees. In Section 6, we implement suffix
trees by showing that a run-length context-free grammar [?] of size O(r log(n/r)) can be built on
the differential LCP array, and then implement the required operations on it.

The results of Contribution 7 are shown in Section 7. Our experimental results show that our
simple O(r)-space index outperforms the alternatives by orders of magnitude when locating the
occurrences of a pattern, while being simultaneously smaller or nearly as small. The only compact
structure outperforming our index, the CDAWG, is an order of magnitude larger.

Further, in Section 8 we describe construction algorithms for all our data structures, achieving
construction spaces bounded in terms of r for the simpler and most practical structures. We finally
conclude in Section 9.

This article is an extension of a conference version presented in SODA 2018 [46]. The extension
consists, on the one hand, in a significant improvement in Contributions 3 and 4: in Section 4,
optimal time locating is now obtained in a much simpler way and in significantly less space. Further,
optimal time is obtained as well, which is new. On the other hand, Contribution 6, that is, the
machinery to support suffix tree functionality in Section 6, is new. We also present an improved
implementation in Section 7, with better experimental results. Finally, the construction algorithms
in Section 8 are new as well.
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2 Basic Concepts

A string is a sequence S[1..`] = S[1]S[2] . . . S[`], of length ` = |S|, of symbols (or characters, or
letters) chosen from an alphabet [1..σ] = {1, 2, . . . , σ}, that is, S[i] ∈ [1..σ] for all 1 ≤ i ≤ `. We use
S[i..j] = S[i] . . . S[j], with 1 ≤ i, j ≤ `, to denote a substring of S, which is the empty string ε if
i > j. A prefix of S is a substring of the form S[1..i] (also written S[..i]) and a suffix is a substring
of the form S[i..`] (also written S[i..]). The juxtaposition of strings and/or symbols represents their
concatenation.

We will consider indexing a text T [1..n], which is a string over alphabet [1..σ] terminated by the
special symbol $ = 1, that is, the lexicographically smallest one, which appears only at T [n] = $.
This makes any lexicographic comparison between suffixes well defined.

Our computation model is the transdichotomous RAM, with a word of w = Ω(log n) bits, where
all the standard arithmetic and logic operations can be carried out in constant time. In this article
we generally measure space in words.

2.1 Suffix Trees and Arrays

The suffix tree [114] of T [1..n] is a compacted trie where all the n suffixes of T have been inserted.
By compacted we mean that chains of degree-1 nodes are collapsed into a single edge that is labeled
with the concatenation of the individual symbols labeling the collapsed edges. The suffix tree has
n leaves and less than n internal nodes. By representing edge labels with pointers to T , the suffix
tree uses O(n) space, and can be built in O(n) time [114, 83, 112, 28].

The suffix array [81] of T [1..n] is an array SA[1..n] storing a permutation of [1..n] so that, for
all 1 ≤ p < n, the suffix T [SA[p]..] is lexicographically smaller than the suffix T [SA[p+ 1]..]. Thus
SA[p] is the starting position in T of the pth smallest suffix of T in lexicographic order. This can
be regarded as an array collecting the leaves of the suffix tree. The suffix array uses n words and
can be built in O(n) time without building the suffix tree [69, 70, 61].

All the occurrences of a pattern string P [1..m] in T can be easily spotted in the suffix tree or
array. In the suffix tree, we descend from the root matching the successive symbols of P with the
strings labeling the edges. If P is in T , the symbols of P will be exhausted at a node v or inside an
edge leading to a node v; this node is called the locus of P , and all the occ leaves descending from v
are the suffixes starting with P , that is, the starting positions of the occurrences of P in T . By using
perfect hashing to store the first characters of the edge labels descending from each node of v, we
reach the locus in optimal time O(m) and the space is still O(n). If P comes packed using w/ log σ
symbols per computer word, we can descend in time O(dm log(σ)/we) [91], which is optimal in the
packed model. In the suffix array, all the suffixes starting with P form a range SA[sp..ep], which
can be binary searched in time O(m log n), or O(m+ log n) with additional structures [81].

The inverse permutation of SA, ISA[1..n], is called the inverse suffix array, so that ISA[i] is the
lexicographical position of the suffix T [i..] among all the suffixes of T .

Another important concept related to suffix arrays and trees is the longest common prefix
array. Let lcp(S, S′) be the length of the longest common prefix between two strings S 6= S′, that
is, S[1..lcp(S, S′)] = S′[1..lcp(S, S′)] but S[lcp(S, S′) + 1] 6= S′[lcp(S, S′) + 1]. Then we define the
longest common prefix array LCP [1..n] as LCP [1] = 0 and LCP [p] = lcp(T [SA[p− 1]..], T [SA[p]..]).
The LCP array uses n words and can be built in O(n) time [64].

7



2.2 Self-indexes

A self-index is a data structure built on T [1..n] that provides at least the following functionality:

Count: Given a pattern P [1..m], compute the number occ of occurrences of P in T .
Locate: Given a pattern P [1..m], return the occ positions where P occurs in T .
Extract: Given a range [i..i+ `− 1], return T [i..i+ `− 1].

The last operation allows a self-index to act as a replacement of T , that is, it is not necessary
to store T since any desired substring can be extracted from the self-index. This can be trivially
obtained by including a copy of T as a part of the self-index, but it is challenging when the self-index
must use little space.

In principle, suffix trees and arrays can be regarded as self-indexes that can count in time O(m)
or O(dm log(σ)/we) (suffix tree, by storing occ in each node v) and O(m log n) or O(m + log n)
(suffix array, with occ = ep − sp + 1), locate each occurrence in O(1) time, and extract in time
O(d` log(σ)/we). However, they use O(n log n) bits, much more than the n log σ bits needed to
represent T in plain form. We are interested in compressed self-indexes [90, 96], which use the space
required by a compressed representation of T (under some compressibility measure) plus some
redundancy (at worst o(n log σ) bits). We describe later the FM-index, a particular self-index of
interest to us.

2.3 Burrows-Wheeler Transform

The Burrows-Wheeler Transform of T [1..n], BWT [1..n] [20], is a string defined as BWT [p] =
T [SA[p] − 1] if SA[p] > 1, and BWT [p] = T [n] = $ if SA[p] = 1. That is, BWT has the same
symbols of T in a different order, and is a reversible transform.

The array BWT is obtained from T by first building SA, although it can be built directly, in
O(n) time and within O(n log σ) bits of space [85]. To obtain T from BWT [20], one considers
two arrays, L[1..n] = BWT and F [1..n], which contains all the symbols of L (or T ) in ascending
order. Alternatively, F [p] = T [SA[p]], so F [p] follows L[p] in T . We need a function that maps any
L[p] to the position q of that same character in F . The formula is LF (p) = C[c] + rank[p], where
c = L[p], C[c] is the number of occurrences of symbols less than c in L, and rank[p] is the number
of occurrences of symbol L[p] in L[1..p]. A simple O(n)-time pass on L suffices to compute arrays
C and rank using O(n log σ) bits of space. Once they are computed, we reconstruct T [n] = $ and
T [n− k]← L[LF k−1(1)] for k = 1, . . . , n− 1, in O(n) time as well. Note that LF is a permutation
formed by a single cycle.

2.4 Compressed Suffix Arrays and FM-indexes

Compressed suffix arrays [90] are a particular case of self-indexes that simulate SA in compressed
form. Therefore, they aim to obtain the suffix array range [sp..ep] of P , which is sufficient to count
since P then appears occ = ep− sp+ 1 times in T . For locating, they need to access the content of
cells SA[sp], . . . ,SA[ep], without having SA stored.

The FM-index [32, 33] is a compressed suffix array that exploits the relation between the string
L = BWT and the suffix array SA. It stores L in compressed form (as it can be easily compressed
to the high-order empirical entropy of T [82]) and adds sublinear-size data structures to compute
(i) any desired position L[p], (ii) the generalized rank function rankc(L, p), which is the number of
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times symbol c appears in L[1..p]. Note that these two operations permit, in particular, computing
rank[p] = rankL[p](L, p), which is called partial rank. Therefore, they compute

LF (p) = C[L[p]] + rankL[p](L, p).

For counting, the FM-index resorts to backward search. This procedure reads P backwards and
at any step knows the range [spj , epj ] of P [j..m] in T . Initially, we have the range [spm+1..epm+1] =
[1..n] for P [m + 1..m] = ε. Given the range [spj+1..epj+1], one obtains the range [spj ..epj ] from
c = P [j] with the operations

spj = C[c] + rankc(L, spj+1 − 1) + 1,

epj = C[c] + rankc(L, epj+1).

Thus the range [sp..ep] = [sp1..ep1] is obtained with O(m) computations of rank, which dominates
the counting complexity.

For locating, the FM-index (and most compressed suffix arrays) stores sampled values of SA at
regularly spaced text positions, say multiples of s. Thus, to retrieve SA[p], we find the smallest k
for which SA[LF k(p)] is sampled, and then the answer is SA[p] = SA[LF k(p)] + k. This is because
function LF virtually traverses the text backwards, that is, it drives us from L[p], which precedes
suffix SA[p], to its position F [q], where the suffix SA[q] starts with L[p], that is, SA[q] = SA[p]− 1:

SA[LF (p)] = SA[p]− 1.

Since it is guaranteed that k < s, each occurrence is located with s accesses to L and computations
of LF , and the extra space for the sampling is O((n log n)/s) bits, or O(n/s) words.

For extracting, a similar sampling is used on ISA, that is, we sample the positions of ISA
that are multiples of s. To extract T [i..i + ` − 1] we find the smallest multiple of s in [i + `..n],
j = s · d(i+ `)/se, and extract T [i..j]. Since ISA[j] = p is sampled, we know that T [j − 1] = L[p],
T [j − 2] = L[LF (p)], and so on. In total we require at most `+ s accesses to L and computations
of LF to extract T [i..i+ `− 1]. The extra space is also O(n/s) words.

For example, using a representation [13] that accesses L and computes partial ranks in constant
time (so LF is computed in O(1) time), and computes rank in the optimal O(log logw σ) time, an
FM-index can count in time O(m log logw σ), locate each occurrence in O(s) time, and extract `
symbols of T in time O(s + `), by using O(n/s) space on top of the empirical entropy of T [13].
There exist even faster variants [12], but they do not rely on backward search.

2.5 Run-Length FM-index

One of the sources of the compressibility of BWT is that symbols are clustered into r ≤ n runs,
which are maximal substrings formed by the same symbol. Mäkinen and Navarro [78] proved a
(relatively weak) bound on r in terms of the high-order empirical entropy of T and, more impor-
tantly, designed an FM-index variant that uses O(r) words of space, called Run-Length FM-index
or RLFM-index. They later experimented with several variants of the RLFM-index, where the one
called RLFM+ [80, Thm. 17] corresponds to the original RLFM-index [78].

The structure stores the run heads, that is, the first positions of the runs in BWT , in a data
structure E = {1} ∪ {1 < p ≤ n,BWT [p] 6= BWT [p− 1]} that supports predecessor searches. Each
element e ∈ E has associated the value e.v = |{e′ ∈ E, e′ ≤ e}|, which is its position in a string
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L′[1..r] that stores the run symbols. Another array, D[0..r], stores the cumulative lengths of the
runs after stably sorting them lexicographically by their symbols (with D[0] = 0). Let array C ′[1..σ]
count the number of runs of symbols smaller than c in L. One can then simulate

rankc(L, p) = D[C ′[c] + rankc(L
′, q.v − 1)] + [if L′[q.v] = c then p− q + 1 else 0],

where q = pred(E, p), at the cost of a predecessor search (pred) in E and a rank on L′. By using
up-to-date data structures, the counting performance of the RLFM-index can be stated as follows.

Lemma 1. The Run-Length FM-index of a text T [1..n] whose BWT has r runs can occupy O(r)
words and count the number of occurrences of a pattern P [1..m] in time O(m log logw(σ+n/r)). It
also computes LF and access to any BWT [p] in time O(log logw(n/r)).

Proof. We use the RLFM+ [80, Thm. 17], using the structure of Belazzougui and Navarro [13,
Thm. 10] for the sequence L′ (with constant access time) and the predecessor data structure de-
scribed by Belazzougui and Navarro [13, Thm. 14] to implement E (instead of the bitvector used
in the original RLFM+). The RLFM+ also implements D with a bitvector, but we use a plain
array. The sum of both operation times is O(log logw σ + log logw(n/r)), which can be written as
O(log logw(σ+n/r)). To access BWT [p] = L[p] = L′[pred(E, p).v] we only need a predecessor search
on E, which takes time O(log logw(n/r)), and a constant-time access to L′. Finally, we compute
LF faster than a general rank query, as we only need the partial rank query

rankL[p](L, p) = D[C ′[L′[q.v]] + rankL′[q.v](L
′, q.v)− 1] + (p− q + 1),

which is correct since L[p] = L′[q.v]. The operation rankL′[q.v](L
′, q.v) can be supported in constant

time using O(r) space, by just recording all the answers, and therefore the time for LF on L is also
dominated by the predecessor search on E (to compute q), of O(log logw(n/r)) time. ut

We will generally assume that σ is the effective alphabet of T , that is, the σ symbols appear in
T . This implies that σ ≤ r ≤ n. If this is not the case, we can map T to an effective alphabet [1..σ′]
before indexing it. A mapping of σ′ ≤ r words then stores the actual symbols when extracting a
substring of T is necessary. For searches, we have to map the m positions of P to the effective
alphabet. By storing a perfect hash or a deterministic dictionary [104] of O(σ′) = O(r) words, we
map each symbol of P in constant time. On the other hand, the results on packed symbols only
make sense if σ is small, and thus no alphabet mapping is necessary. Overall, we can safely use the
assumption σ ≤ r without affecting any of our results, including construction time and space.

To provide locating and extracting functionality, Mäkinen et al. [80] use the sampling mechanism
we described for the FM-index. Therefore, although they can efficiently count within O(r) space,
they need a much larger O(n/s) space to support these operations in time proportional to s. Despite
various efforts [80], this has been a bottleneck in theory and in practice since then.

2.6 Compressed Suffix Trees

Suffix trees provide a much more complete functionality than self-indexes, and are used to solve
complex problems especially in bioinformatic applications [54, 98, 77]. A compressed suffix tree is
regarded as an enhancement of a compressed suffix array (which, in a sense, represents only the
leaves of the suffix tree). Such a compressed representation must be able to simulate the operations
on the classical suffix tree (see Table 4 later in the article), while using little space on top of the
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compressed suffix array. The first such compressed suffix tree [106] used O(n) extra bits, and there
are several variants using o(n) extra bits [37, 34, 103, 49, 1].

Instead, there are no compressed suffix trees using O(r polylog(n)) space. An extension of the
RLFM-index [80] still needs O(n/s) space to carry out most of the suffix tree operations in time
O(s log n). Some variants that are designed for repetitive text collections [1, 92] are heuristic and
do not offer worst-case guarantees. Only recently a compressed suffix tree was presented [8] that
uses O(e) space and carries out operations in O(log n) time.

3 Locating Occurrences

In this section we show that, if the BWT of a text T [1..n] has r runs, then we can have an
index using O(r) space that not only efficiently finds the interval SA[sp..ep] of the occurrences of
a pattern P [1..m] (as was already known in the literature, see Section 2.5) but that can locate
each such occurrence in time O(log logw(n/r)) on a RAM machine of w bits. Further, the time per
occurrence becomes constant if the space is raised to O(r log logw(n/r)).

We start with Lemma 2, which shows that the typical backward search process can be enhanced
so that we always know the position of one of the values in SA[sp..ep]. We give a simplification of
the previous proof [101, 100]. Lemma 3 then shows how to efficiently obtain the two neighboring
cells of SA if we know the value of one. This allows us to extend the first known cell in both
directions, until obtaining the whole interval SA[sp..ep]. Theorem 1 summarizes the main result of
this section.

Later, Lemma 4 shows how this process can be accelerated by using more space. We extend
the idea in Lemma 5, obtaining LCP values in the same way we obtain SA values. While not of
immediate use for locating, this result is useful later in the article and also has independent interest.

Definition 1. We say that a text character T [i] is sampled if and only if T [i] is the first or
last character in its BWT run. That is, T [SA[1] − 1] = T [n − 1] is sampled and, if p > 1 and
BWT [p] 6= BWT [p − 1], then T [SA[p − 1] − 1] and T [SA[p] − 1] are sampled. In general, T [i] is
s-sampled if it is at distance at most s from a BWT run border, where sampled characters are at
distance 1.

Lemma 2. We can store O(r) words such that, given P [1..m], in time O(m log logw(σ+ n/r)) we
can compute the interval SA[sp, ep] of the occurrences of P in T , and also return the position p and
content SA[p] of at least one cell in the interval [sp, ep].

Proof. We store a RLFM-index and predecessor structures Rc storing the position in BWT of all
the sampled characters equal to c, for each c ∈ [1..σ]. Each element p ∈ Rc is associated with its
corresponding text position, that is, we store pairs 〈p,SA[p] − 1〉 sorted by their first component.
These structures take a total of O(r) words.

The interval of characters immediately preceding occurrences of the empty string is the entire
BWT [1..n], which clearly includes P [m] as the last character in some run (unless P does not occur
in T ). It follows that we find an occurrence of P [m] in predecessor time by querying pred(RP [m], n).

Assume we have found the interval BWT [sp, ep] containing the characters immediately preced-
ing all the occurrences of some (possibly empty) suffix P [j+1..m] of P , and we know the position and
content of some cell SA[p] in the corresponding interval, sp ≤ p ≤ ep. Since SA[LF (p)] = SA[p]−1,
if BWT [p] = P [j] then, after the next application of LF -mapping, we still know the position and

11



value of some cell SA[p′] corresponding to the interval BWT [sp′, ep′] for P [j..m], namely p′ = LF (p)
and SA[p′] = SA[p]− 1.

On the other hand, if BWT [p] 6= P [j] but P still occurs somewhere in T (i.e., sp′ ≤ ep′), then
there is at least one P [j] and one non-P [j] in BWT [sp, ep], and therefore the interval intersects an
extreme of a run of copies of P [j], thus holding a sampled character. Then, a predecessor query
pred(RP [j], ep) gives us the desired pair 〈p′,SA[p′]− 1〉 with sp ≤ p′ ≤ ep and BWT [p′] = P [j].

Therefore, by induction, when we have computed the BWT interval for P , we know the position
and content of at least one cell in the corresponding interval in SA.

To obtain the desired time bounds, we concatenate all the universes of the Rc structures into a
single one of size σn, and use a single structure R on that universe: each 〈p,SA[p−1]〉 ∈ Rc becomes
〈(c− 1)n + p,SA[p]− 1〉 in R, and a search pred(Rc, q) becomes pred(R, (c− 1)n + q)− (c− 1)n.
Since R contains 2r elements on a universe of size σn, we can have predecessor searches in time
O(log logw(nσ/r)) and O(r) space [13, Thm. 14]. This is the same O(log logw(σ + n/r)) time we
obtained in Lemma 1 to carry out the normal backward search operations on the RLFM-index. ut

Lemma 2 gives us a toehold in the suffix array, and we show in this section that a toehold is all
we need. We first show that, given the position and contents of one cell of the suffix array SA of a
text T , we can compute the contents of the neighbouring cells in O(log logw(n/r)) time. It follows
that, once we have counted the occurrences of a pattern in T , we can locate all the occurrences in
O(log logw(n/r)) time each.

Definition 2. ([60]) Let permutation φ be defined as φ(i) = SA[ISA[i] − 1] if ISA[i] > 1 and
φ(i) = SA[n] otherwise.

That is, given a text position i = SA[p] pointed from suffix array position p, φ(i) = SA[ISA[SA[p]]−
1] = SA[p− 1] gives the value of the preceding suffix array cell. Similarly, φ−1(i) = SA[p+ 1].

Definition 3. We parse T into phrases such that T [i] is the first character in a phrase if and only
if T [i] is sampled.

Lemma 3. We can store O(r) words such that functions φ and φ−1 are evaluated in O(log logw(n/r))
time.

Proof. We store an O(r)-space predecessor data structure P± with O(log logw(n/r)) query time
[13, Thm. 14] for the starting phrase positions i of T (i.e., the sampled text positions). We also
store, associated with such values i ∈ P±, the positions in T next to the characters immediately
preceding and following the corresponding position BWT [q], that is, N [i] = 〈SA[q − 1],SA[q + 1]〉
for i = SA[q]− 1.

Suppose we know SA[p] = k+1 and want to know SA[p−1] and SA[p+1]. This is equivalent to
knowing the position BWT [p] = T [k] and wanting to know the positions in T of BWT [p− 1] and
BWT [p+1]. To compute these positions, we find in P± the position i in T of the first character of the
phrase containing T [k], take the associated positions N [i] = 〈x, y〉, and return SA[p−1] = x+k− i
and SA[p+ 1] = y + k − i.

To see why this works, let SA[p − 1] = j + 1 and SA[p + 1] = l + 1, that is, j and l are the
positions in T of BWT [p − 1] = T [j] and BWT [p + 1] = T [l]. Note that, for all 0 ≤ t < k − i,
T [k − t] is not the first nor the last character of a run in BWT . Thus, by definition of LF ,
LF t(p−1), LF t(p), and LF t(p+1), that is, the BWT positions of T [j− t], T [k− t], and T [l− t], are
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Fig. 1. Illustration of Lemma 3. Since BWT [p] = T [k] and i is the predecessor of k, the cells p−1, p, and p+1 would
travel together through consecutive applications of LF , reaching the positions N [i] = 〈x, y〉 after k− i steps. Thus it
must be that BWT [p− 1] = T [x+ k − i] and BWT [p+ 1] = T [y + k − i].

contiguous and within a single run, thus T [j − t] = T [k− t] = T [l− t]. Therefore, for t = k− i− 1,
T [j− (k− i− 1)] = T [i+ 1] = T [l− (k− i+ 1)] are contiguous in BWT , and thus a further LF step
yields that BWT [q] = T [i] is immediately preceded and followed by BWT [q−1] = T [j−(k−i)] and
BWT [q+ 1] = T [l− (k− i)]. That is, N [i] = 〈SA[q− 1],SA[q+ 1]〉 = 〈j− (k− i) + 1, l− (k− i) + 1〉
and our answer is correct. Figure 1 illustrates the proof. ut

We then obtain the main result of this section.

Theorem 1. We can store a text T [1..n], over alphabet [1..σ], in O(r) words, where r is the number
of runs in the BWT of T , such that later, given a pattern P [1..m], we can count the occurrences
of P in T in O(m log logw(σ + n/r)) time and (after counting) report their occ locations in overall
time O(occ · log logw(n/r)).

3.1 Larger and faster

The following lemma shows that the above technique can be generalized. The result is a space-time
tradeoff allowing us to list each occurrence in constant time at the expense of a slight increase in
space usage. This will be useful later in the article, in particular to obtain optimal-time locating.

Lemma 4. Let s > 0. We can store a data structure of O(rs) words such that, given SA[p], we
can compute SA[p− j] and SA[p+ j] for j = 1, . . . , s′ and any s′ ≤ s, in O(log logw(n/r) +s′) time.

Proof. Consider all BWT positions q1 < · · · < qt of s-sampled characters, and let W [1..t] be an
array such thatW [k] is the text position corresponding to qk, for k = 1, . . . , t. Now let q+1 < · · · < q+

t+

be the BWT positions having a run border at most s positions after them, and q−1 < · · · < q−
t−

be the BWT positions having a run border at most s positions before them. We store the text
positions corresponding to q+1 < · · · < q+

t+
and q−1 < · · · < q−

t− in two predecessor structures P+

and P−, respectively, of size O(rs). We store, for each i ∈ P+ ∪P−, its position f(i) in W , that is,
W [f(i)] = i.

To answer queries given SA[p], we first compute its P+-predecessor i < SA[p] inO(log logw(n/r))
time, and retrieve f(i). Then, it holds that SA[p+ j] = W [f(i) + j] + (SA[p]− i), for j = 0, . . . , s.
Computing SA[p− j] is symmetric (just use P− instead of P+).
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To see why this procedure is correct, consider the range SA[p..p+ s]. We distinguish two cases.

(i) BWT [p..p+ s] contains at least two distinct characters. Then, SA[p]− 1 ∈ P+ (because p is
followed by a run break at most s positions away), and is therefore the immediate predecessor of
SA[p]. Moreover, all BWT positions [p..p+ s] are in q1, . . . , qt (since they are at distance at most s
from a run break), and their corresponding text positions are therefore contained in a contiguous
range of W (i.e., W [f(SA[p]− 1)..f(SA[p]− 1) + s]). The claim follows.

(ii) BWT [p..p + s] contains a single character; we say it is unary. Then SA[p] − 1 /∈ P+,
since there are no run breaks in BWT [p..p + s]. Moreover, by the LF formula, the LF mapping
applied on the unary range BWT [p..p + s] gives a contiguous range BWT [LF (p)..LF (p + s)] =
BWT [LF (p)..LF (p) + s]. Note that this corresponds to a parallel backward step on text positions
SA[p] → SA[p] − 1, . . . ,SA[p + s] → SA[p + s] − 1. We iterate the application of LF until we end
up in a range BWT [LF δ(p)..LF δ(p+ s)] that is not unary. Then, SA[LF δ(p)]− 1 is the immediate
predecessor of SA[p] in P+, and δ + 1 is their distance. This means that with a single predecessor
query on P+ we “skip” all the unary BWT ranges BWT [LF k(p)..LF k(p+s)] for k = 1, . . . , δ−1 and,
as in case (i), retrieve the contiguous range in W containing the values SA[p]− δ, . . . ,SA[p+ s]− δ,
and add δ to obtain the desired SA values. ut

3.2 Accessing LCP

Lemma 4 can be further extended to entries of the LCP array, which we will use later in the article.
Given SA[p], we compute LCP [p] and its adjacent entries (note that we do not need to know p,
but just SA[p]). For s = 1 this is known as the permuted LCP (PLCP) array [106]. Our result can
indeed be seen as an extension of a PLCP representation by Fischer et al. [37]. In Section 6.2 we
use different structures that enable the classical access, that is, compute LCP [p] from p, not SA[p].

Lemma 5. Let s > 0. We can store a data structure of O(rs) words such that, given SA[p], we can
compute LCP [p− j + 1] and LCP [p+ j], for j = 1, . . . , s′ and any s′ ≤ s, in O(log logw(n/r) + s′)
time.

Proof. The proof follows closely that of Lemma 4, except that now we sample LCP entries corre-
sponding to suffixes following s-sampled BWT positions. Let us define q1 < · · · < qt, q

+
1 < · · · < q+

t+
,

and q−1 < · · · < q−
t− , as well as the predecessor structures P+ and P−, exactly as in the proof of

Lemma 4. We store LCP ′[1..t] = LCP [q1], . . . ,LCP [qt]. We also store, for each i ∈ P+ ∪ P−, its
corresponding position f(i) in LCP ′, that is, LCP ′[f(i)] = LCP [ISA[i+ 1]].

To answer queries given SA[p], we first compute its P+-predecessor i < SA[p] inO(log logw(n/r))
time, and retrieve f(i). Then, it holds that LCP [p + j] = LCP ′[f(i) + j] − (SA[p] − i − 1), for
j = 1, . . . , s. Computing LCP [p− j] for j = 0, . . . , s− 1 is symmetric (using P− instead of P+).

To see why this procedure is correct, consider the range SA[p..p+ s]. We distinguish two cases.

(i) BWT [p..p + s] contains at least two distinct characters. Then, as in case (i) of Lemma 4,
SA[p] − 1 ∈ P+ and is therefore the immediate predecessor i = SA[p] − 1 of SA[p]. Moreover,
all BWT positions [p..p + s] are in q1, . . . , qt, and therefore values LCP [p..p + s] are explicitly
stored in a contiguous range in LCP ′ (i.e., LCP ′[f(i)..f(i) + s]). Note that SA[p] − i = 1, so
LCP ′[f(i) + j]− (SA[p]− i− 1) = LCP ′[f(i) + j] for j = 0, . . . , s. The claim follows.

(ii) BWT [p..p+ s] contains a single character, so it is unary. Then we reason exactly as in case
(ii) of Lemma 4 to define δ so that i′ = SA[LF δ(p)] − 1 is the immediate predecessor of SA[p] in
P+ and, as in case (i) of this proof, retrieve the contiguous range LCP ′[f(i′)..f(i′) + s] containing
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the values LCP [LF δ(p)..LF δ(p + s)]. Since the skipped BWT ranges are unary, it is not hard to
see that LCP [LF δ(p + j)] = LCP [p + j] + δ for j = 1, . . . , s (note that we do not include j = 0
since we cannot exclude that, for some k < δ, LF k(p) is the first position in its run). From the
equality δ = SA[p] − i′ − 1 = SA[p] − SA[LF δ(p)] (that is, δ is the distance between SA[p] and
its predecessor minus one or, equivalently, the number of LF steps virtually performed), we then
compute LCP [p+ j] = LCP ′[f(i′) + j]− δ for j = 1, . . . , s. ut

As a simplification that does not change our asymptotic bounds (but that we consider in the
implementation), note that it is sufficient to sample only the last (or the first) characters of BWT
runs. In this case, our toehold in Lemma 2 will be the last cell SA[ep] of our current range SA[sp..ep]:
if BWT [ep] = P [j], then the next toehold is ep′ and its position is SA[ep] − 1. Otherwise, there
must be a run end (i.e., a sampled position) in SA[sp..ep], which we find with pred(RP [j], ep), and
this stores SA[ep′]. As a consequence, we only need to store N [i] = SA[q − 1] in Lemma 3 and just
P− in Lemmas 4 and 5, thus reducing the space for sampling. This was noted simultaneously by
several authors after our conference paper [46] and published independently [2]. For this paper, our
definition is better suited as the sampling holds crucial properties — see the next section.

4 Counting and Locating in Optimal Time

In this section we show how to obtain optimal counting and locating time in the unpacked — O(m)
and O(m + occ) — and packed — O(dm log(σ)/we) and O(dm log(σ)/we + occ) — scenarios, by
using O(r log logw(σ + n/r)) and O(rw logσ logw(σ + n/r)) space, respectively. To improve upon
the times of Theorem 1 we process P by chunks of s symbols on a text T ∗ formed by chunks, too.

4.1 An RLFM-index on chunks

Given an integer s ≥ 1, let us define texts T k[1..dn/se] for k = 0, . . . , s − 1, so that T k[i] =
T [k+ (i− 1)s+ 1..k+ is], where we assume T is padded with up to 2(s− 1) copies of $, as needed.
That is, T k is T devoid of its first k symbols and then seen as a sequence of metasymbols formed
by s original symbols. We then define a new text T ∗ = T 0 T 1 · · ·T s−1. The text T ∗ has length
n∗ = s · dn/se < n+ s and its alphabet is of size at most σs. Assume for now that σs is negligible;
we consider it soon.

We say that a suffix in T ∗ corresponds to the suffix of T from where it was extracted.

Definition 4. Suffix T ∗[i∗..n∗] corresponds to suffix T [i..n] iff the concatenations of the symbols
forming the metasymbols in T ∗[i∗..n∗] is equal to the suffix T [i..n], if we compare them up to the
first occurrence of $.

The next observation specifies the algebraic transformation between the positions in T ∗ and T .

Observation 1 Suffix T ∗[i∗..n∗] corresponds to suffix T [i..n] iff i = ((i∗ − 1) mod dn/se) · s +
di∗/dn/see.

The key property we exploit is that corresponding suffixes of T and T ∗ have the same lexico-
graphic rank.

Lemma 6. For any suffixes T ∗[i∗..n∗] and T ∗[j∗..n∗] corresponding to T [i..n] and T [j..n], respec-
tively, it holds that T ∗[i∗..n∗] ≤ T ∗[j∗..n∗] iff T [i..n] ≤ T [j..n].
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Proof. Consider any i∗ 6= j∗, otherwise the result is trivial because i = j. We proceed by induction
on n∗ − i∗. If this is zero, then T [i∗..n∗] = T [n∗] = T s−1[dn/se] = T [s − 1 + (dn/se − 1)s + 1..s −
1 + dn/ses] = $s is always ≤ T [j∗..n∗] for any j∗. Further, by Observation 1, i = dn/se · s is the
rightmost suffix of T (extended with $s), formed by all $s, and thus it is ≤ T [j..n] for any j.

Now, given a general pair T ∗[i∗..n∗] and T ∗[j∗..n∗], consider the first metasymbols T ∗[i∗] and
T ∗[j∗]. If they are different, then the comparison depends on which of them is lexicographically
smaller. Similarly, since T ∗[i∗] = T [i..i+ s− 1] and T ∗[j∗] = T [j..j + s− 1], the comparison of the
suffixes T [i..n] and T [j..n] depends on which is smaller between the substrings T [i..i + s − 1] and
T [j..j + s− 1]. Since the metasymbols T ∗[i∗] and T ∗[j∗] are ordered lexicographically, the outcome
of the comparison is the same. If, instead, T ∗[i∗] = T ∗[j∗], then also T [i..i+s−1] = T [j+s−1]. The
comparison in T ∗ is then decided by the suffixes T ∗[i∗ + 1..n∗] and T ∗[j∗ + 1..n∗], and in T by the
suffixes T [i+ s..n] and T [j + s..n]. By Observation 1, the suffixes T ∗[i∗ + 1..n∗] and T ∗[j∗ + 1..n∗]
almost always correspond to T [i + s..n] and T [j + s..n], and then by the inductive hypothesis
the result of the comparisons is the same. The case where T ∗[i∗ + 1..n∗] or T ∗[j∗ + 1..n∗] do not
correspond to T [i+ s..n] or T [j+ s..n] arises when i∗ or j∗ are a multiple of dn/se, but in this case
they correspond to some T k[dn/se], which contains at least one $. Since i∗ 6= j∗, the number of $s
must be distinct, and then the metasymbols cannot be equal. ut

An important consequence of Lemma 6 is that the suffix arrays SA∗ and SA of T ∗ and T ,
respectively, list the corresponding suffixes in the same order (the positions of the corresponding
suffixes in T ∗ and T differ, though). Thus we can find suffix array ranges in SA via searches on
SA∗. More precisely, we can use the RLFM-index of T ∗ instead of that of T . The following result
is the key to bound the space usage of our structure.

Lemma 7. If the BWT of T has r runs, then the BWT of T ∗ has r∗ = O(rs) runs.

Proof. Kempa [?, see before Thm. 3.3] shows that the number of s-runs in the BWT of T , that is,
the number of maximal runs of equal substrings of length s preceding the suffixes in lexicographic
order, is at most s · r. Since SA and SA∗ list the corresponding suffixes in the same order, the
number of s-runs in T essentially corresponds to the number of runs in T ∗, formed by the length-s
metasymbols preceding the same suffixes. The only exceptions are the s metasymbols that precede
some metasymbol T k[1] in T ∗. Other O(s) runs can appear because we have padded T with O(s)
copies of $, and thus T has O(s) further suffixes. Still, the result is in O(rs). ut

4.2 Mapping the alphabet

The alphabet size of T ∗ is σs, which can be large. Depending on σ and s, we could even be unable
to handle the metasymbols in constant time. Note, however, that the effective alphabet of T ∗ must
be σ∗ ≤ r∗ = O(rs), which will always be in o(n log2 n) for the moderate values of s we will use.
Thus we can always manage metasymbols in [1..σ∗] in constant time. We use a compact trie of
height s to convert the existing substrings of length s of T into numbers in [1..σ∗], respecting the
lexicographic order. The trie uses perfect hashing to find the desired child in constant time, and
the strings labeling the edges are represented as pointers to an area where we store all the distinct
substrings of length s in T . We now show that this area is of length O(rs).

Definition 5. We say that a text substring T [i..j] is primary iff it contains at least one sampled
character (see Definition 1).
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Lemma 8. Every text substring T [i..j] has a primary occurrence T [i′..j′] = T [i..j].

Proof. We prove the lemma by induction on j − i. If j − i = 0, then T [i..j] is a single character,
and every character has a sampled occurrence i′ in the text. Now let j − i > 0. By the inductive
hypothesis, T [i+1..j] has a primary occurrence T [i′+1..j′]. If T [i] = T [i′], then T [i′..j′] is a primary
occurrence of T [i..j]. Assume then that T [i] 6= T [i′]. Let [sp, ep] be the BWT range of T [i + 1..j].
Then there are two distinct symbols in BWT [sp, ep] and thus there must be a run of T [i]’s ending or
beginning in BWT [sp, ep], say at position sp ≤ q ≤ ep. Thus it holds that BWT [q] = T [i] and the
text position i′′ = SA[q]− 1 is sampled. We then have a primary occurrence T [i′′..j′′] = T [i..j]. ut

Lemma 9. There are at most 2rs distinct s-mers in the text, for any 1 ≤ s ≤ n.

Proof. From Lemma 8, every distinct s-mer appearing in the text has a primary occurrence. It
follows that, in order to count the number of distinct s-mers, we can restrict our attention to the
regions of size 2s − 1 overlapping the at most 2r sampled positions (Definition 1). Each sampled
position overlaps with s s-mers, so the claim easily follows. ut

The compact trie then has size O(rs), since it has σ∗ ≤ r∗ = O(rs) leaves and no unary paths,
and the area with the distinct strings is also of size O(rs). The structure maps any metasymbol to
the new alphabet [1..σ∗], by storing the corresponding symbol in each leaf. Each internal trie node
v also stores the first and last symbols of [1..σ∗] stored at leaves descending from it, vmin and vmax.

We then build the RLFM-index of T ∗ on the mapped alphabet [1..σ∗], and our structures using
O(σs) space become bounded by space O(σ∗) = O(r∗).

4.3 Counting in optimal time

Let us start with the base FM-index. Recalling Section 2.4, the FM-index of T ∗ consists of an array
C∗[1..σ∗] and a string L∗[1..n∗], where C∗[c] tells the number of times metasymbols less than c
occur in T ∗, and where L∗ is the BWT of T ∗, with the symbols mapped to [1..σ∗].

To use this FM-index, we process P by metasymbols too. We define two patterns, P ∗ · LP and
P ∗ · RP , with P ∗[1..m∗] = P [1..s]P [s + 1..2s] · · ·P [bm/s − 1c · s + 1..bm/sc · s], LP = P [bm/sc ·
s + 1..m] · $s−(m mod s), and RP = P [bm/sc · s + 1..m] · @s−(m mod s), @ being the largest symbol
in the alphabet. That is, P ∗ · PL and P ∗ · PR are P padded with the smallest and largest alphabet
symbols, respectively, and then regarded as a sequence of bm/sc+ 1 metasymbols. This definition
and Lemma 6 ensure that the suffixes of T starting with P correspond to the suffixes of T ∗ starting
with strings lexicographically between P ∗ · PL and P ∗ · PR.

We use the trie to map the symbols of P ∗ to the alphabet [1..σ∗]. If a metasymbol of P ∗ is not
found, it means that P does not occur in T . To map the symbols LP and RP , we descend by the
symbols P [bm/sc · s + 1..m] and, upon reaching trie node v, we use the precomputed limits vmin

and vmax. Overall, we map P ∗, LP and RP in O(m) time.

We can then apply backward search almost as in Section 2.4, but with a twist for the last
symbols of P ∗ ·PL and P ∗ ·PR: We start with the range [spm∗ , epm∗ ] = [C∗[vmin]+1, C∗[vmax]], and
then carry out m∗ − 1 steps, for j = m∗ − 1, . . . , 1, as follows, with c being the mapping of P ∗[j]:

spj = C∗[c] + rankc(L
∗, spj+1 − 1) + 1,

epj = C∗[c] + rankc(L
∗, epj+1).
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The resulting range, [sp, ep] = [sp1, ep1], corresponds to the range of P in T , and is obtained
with 2(m∗ − 1) ≤ 2m/s operations rankc(L, i).

A RLFM-index (Section 2.5) on T ∗ stores, instead of C∗ and L∗, structures E, L′, D, and C ′, of
total size O(σ∗+ r∗) = O(r∗). These simulate the operation rankc(L, i) in the time of a predecessor
search on E and rank and access operations on L′. These add up to O(log logw(σ∗ + n/r∗)) time.
We can still retain C∗ to carry out the first step of our twisted backward search on LP and RP ,
and then switch to the RLFM-index.

Lemma 10. Let T [1..n], on alphabet [1..σ], have a BWT with r runs, and let s = O(log n) be
a positive integer. Then there exists a data structure using O(rs) space that counts the number
of occurrences of any pattern P [1..m] in T in O(m + (m/s) log logw(σ + n/r)). In particular, a
structure using O(r log logw(σ + n/r)) space counts in time O(m).

Proof. We build the mapping trie, the RLFM-index on T ∗ using the mapped alphabet, and the
array C∗ of the FM-index of T ∗. All these require O(σ∗ + r∗) = O(r∗) space, which is O(rs) by
Lemma 7. To count the number of occurrences of P , we first compute P ∗, LP , and RP on the
mapped alphabet with the trie, in time O(m). We then carry out the backward search, which
requires one constant-time step to find [spm∗ , epm∗ ] and then 2(m∗ − 1) ≤ 2m/s steps requiring
rankc(L, i), which is simulated by the RLFM-index in time O(log logw(σ∗+n∗/r∗)). Since σ∗ ≤ σs,
n∗ ≤ n+s, and r∗ ≥ r, we can write the time as O(log logw(σs+n/r)) ⊆ O(log s+log logw(σ+n/r)).
The term O(log s) vanishes when multiplied by O(m/s) because there is an O(m) additive term. ut

4.4 Locating in optimal time

To locate in optimal time, we will use the toehold technique of Lemma 2 on T ∗ and P ∗. The only
twist is that, when we look for LP and RP in our trie, we must store in the internal trie node
we reach by P [bm/sc · s + 1..m] the position p in SA∗ and the value SA∗[p] of some metasymbol
starting with that string. From then on, we do exactly as in Lemma 2, so we can recover the
interval SA∗[sp, ep] of P ∗ in T ∗. Since, by Observation 1, we can easily convert position SA∗[p] to
the corresponding position SA[p] in T , we have the following result.

Lemma 11. We can store O(rs) words such that, given P [1..m], in time O(m+(m/s) log logw(σ+
n/r)) we can compute the interval SA[sp, ep] of the occurrences of P in T , and also return the
position p and content SA[p] of at least one cell in the interval [sp, ep].

We now use the structures of Lemma 4 on the original text T and with the same value of s.
Thus, once we obtain some value SA[p] within the interval, we return the occurrences in SA[sp..ep]
by chunks of s symbols, in time O(s+ log logw(n/r)). We then have the following result.

Theorem 2. Let s > 0. We can store a text T [1..n], over alphabet [1..σ], in O(rs) words, where r
is the number of runs in the BWT of T , such that later, given a pattern P [1..m], we can count the
occurrences of P in T in O(m+ (m/s) log logw(σ+n/r)) time and (after counting) report their occ
locations in overall time O((1 + log logw(n/r)/s) · occ). In particular, if s = log logw(σ + n/r), the
structure uses O(r log logw(σ + n/r)) space, counts in time O(m), and locates in time O(m+ occ).
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4.5 RAM-optimal counting and locating

In order to obtain RAM-optimal time, that is, replacing m by dm log(σ)/we in the counting and
locating times, we can simply use Theorem 2 with s = (w/ log σ)·log logw(σ+n/r) = w logσ logw(σ+
n/r). There is, however, a remaining O(m) time coming from traversing the trie in order to obtain
the mapped alphabet symbols of P ∗, PL, and PR.

We then replace our trie by a more sophisticated structure, which is described by Navarro
and Nekrich [91, Sec. 2], built on the O(rs) distinct strings of length s. Let d = bw/ log σc. The
structure is like our compact trie but it also stores, at selected nodes, perfect hash tables that allow
descending by d symbols in O(1) time. This is sufficient to find the locus of a string of length s
in O(ds/de) = O(ds log(σ)/we) time, except for the last s mod d symbols. For those, the structure
also stores weak prefix search (wps) structures [5] on the selected nodes, which allow descending
by up to d− 1 symbols in constant time.

The wps structures, however, may fail if the string has no locus, so we must include a verification
step. Such verification is done in RAM-optimal time by storing the strings of length 2s−1 extracted
around sampled text positions in packed form, in our memory area associated with the edges. The
space of the data structure is O(1) words per compact trie node, so in our case it is O(rs). We then
map P ∗, PL, and PR, in time O(dm log(σ)/we).

Theorem 3. We can store a text T [1..n], over alphabet [1..σ], in O(rw logσ logw(σ+ n/r)) words,
where r is the number of runs in the BWT of T , such that later, given a pattern P [1..m], we can
count the occurrences of P in T in O(dm log(σ)/we) time and (after counting) report their occ
locations in overall time O(occ).

5 Accessing the Text, the Suffix Array, and Related Structures

In this section we show how we can provide direct access to the text T , the suffix array SA, its
inverse ISA, and the longest common prefix array LCP . The latter enable functionalities that go
beyond the basic counting, locating, and extracting that are required for self-indexes, and will be
used to enable a full-fledged compressed suffix tree in Section 6.

We introduce a representation of T that uses O(r log(n/r)) space and can retrieve any substring
of length ` in time O(log(n/r) + ` log(σ)/w). The second term is optimal in the packed setting and,
as explained in the Introduction, the O(log(n/r)) additive penalty is also near-optimal in general.

For the other arrays, we exploit the fact that the runs that appear in the BWT of T induce
equal substrings in the differential suffix array, its inverse, and longest common prefix arrays, DSA,
DISA, and DLCP , where we store the difference between each cell and the previous one. Therefore,
all the solutions will be variants of the one that extracts substrings of T . Their extraction time will
be O(log(n/r) + `).

5.1 Accessing T

Our structure to extract substrings of T is a variant of Block Trees [10] built around Lemma 8.

Theorem 4. Let T [1..n] be a text over alphabet [1..σ]. We can store a data structure of O(r log(n/r))
words supporting the extraction of any length-` substring of T in O(log(n/r) + ` log(σ)/w) time.
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Proof. We describe a data structure supporting the extraction of α = w log(n/r)
log σ packed characters

in O(log(n/r)) time. To extract a text substring of length ` we divide it into d`/αe blocks and
extract each block with the proposed data structure. Overall, this will take O((1+`/α) log(n/r)) =
O(log(n/r) + ` log(σ)/w) time.

Our data structure is stored in O(log(n/r)) levels. For simplicity, we assume that r divides n
and that n/r is a power of two. The top level (level 0) is special: we divide the text into r blocks
T [1..n/r], T [n/r+1..2n/r], . . . , T [n−n/r+1..n] of size n/r. For levels l > 0, we let sl = n/(r ·2l−1)
and, for every sampled position i, we consider the two non-overlapping blocks of length sl: X

1
l,i =

T [i − sl..i − 1] and X2
l,i = T [i..i + sl − 1]. Each such block Xk

l,i, for k = 1, 2, is composed of two

half-blocks, Xk
l,i = Xk

l,i[1..sl/2]Xk
l,i[sl/2 + 1..sl]. We moreover consider three additional consecutive

and non-overlapping half-blocks, starting in the middle of the first, X1
l,i[1..sl/2], and ending in the

middle of the last, X2
l,i[sl/2 + 1..sl], of the 4 half-blocks just described: T [i − sl + sl/4..i − sl/4 −

1], T [i− sl/4..i+ sl/4− 1], and T [i+ sl/4..i+ sl − sl/4− 1].

From Lemma 8, blocks at level l = 0 and each half-block at level l > 0 have a primary occurrence
covered by blocks at level l+1. Such an occurrence can be fully identified by the coordinate 〈i′, off 〉,
where i′ is a sampled position (actually we store a pointer ptr to the data structure associated with
sampled position i′), and 0 < off ≤ sl+1 indicates that the occurrence starts at position i′−sl+1+off
of T .

Let l∗ be the smallest number such that sl∗ < 4α = 4w log(n/r)
log σ . Then l∗ is the last level of our

structure. At this level, we explicitly store a packed string with the characters of the blocks. This
uses in total O(r · sl∗ log(σ)/w) = O(r log(n/r)) words of space.

All the blocks at level 0 and half-block at levels 0 < l < l∗ store instead the coordinates 〈i′, off 〉
of their primary occurrence in the next level. At level l∗ − 1, these coordinates point inside the
strings of explicitly stored characters. These pointers also add up to O(r · l∗) = O(r log(n/r)) words
of space.

Let S = T [j..j+α−1] be the text substring to be extracted. Note that we can assume n/r ≥ α;
otherwise all the text can be stored in plain packed form using n log(σ)/w < αr log(σ)/w =
O(r log(n/r)) words and we do not need any data structure. It follows that S either spans two
blocks at level 0, or it is contained in a single block. The former case can be solved with two queries
of the latter, so we assume, without losing generality, that S is fully contained inside a block at
level 0. To retrieve S, we map it down to the next levels (using the stored coordinates of primary
occurrences of half-blocks) as a contiguous text substring as long as this is possible, that is, as long
as it fits inside a single half-block. Note that, thanks to the way half-blocks overlap, this is always
possible as long as α ≤ sl/4. By definition, then, we arrive in this way precisely at level l∗, where
characters are stored explicitly and we can return the packed text substring. Figure 2 illustrates
the data structure. ut

5.2 Accessing SA

Let us define the differential suffix array DSA[p] = SA[p] − SA[p − 1] for all p > 1, and DSA[1] =
SA[1]. The next lemmas show that the runs of BWT induce analogous repeated substrings in DSA.

Lemma 12. Let [p− 1, p] be within a BWT run. Then LF (p− 1) = LF (p)− 1 and DSA[LF (p)] =
DSA[p].
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ii’

Fig. 2. Illustration of the proof of Theorem 4. Extracting the grayed square, we have arrived at a block around
sampled position i in level l. Due to its size, the square must be contained in a half-block. This half-block (in thick
line) has a copy crossing a sampled position i′ (we show this copy with a dashed line). Thus the extraction task is
translated to level l + 1, inside another block of half the length. Since the square is still small enough, it must fall
inside some half-block of level l + 1 (also in thick line). This continues until the last level, where the symbols are
stored directly.

Proof. Since p is not the first position in a BWT run, it holds that BWT [p − 1] = BWT [p], and
thus LF (p − 1) = LF (p) − 1 follows from the formula of LF . Therefore, if q = LF (p), we have
SA[q] = SA[p]− 1 and SA[q − 1] = SA[LF (p− 1)] = SA[p− 1]− 1; therefore DSA[q] = DSA[p]. ut

Lemma 13. Let [p − 1..p + s] be within a BWT run, for some 1 < p ≤ n and 0 ≤ s ≤ n − p.
Then there exists q 6= p such that DSA[q..q+ s] = DSA[p..p+ s] and [q− 1..q+ s] contains the first
position of a BWT run.

Proof. By Lemma 12, it holds that DSA[p′..p′+ s] = DSA[p..p+ s], where p′ = LF (p). If DSA[p′−
1..p′ + s] contains the first position of a BWT run, we are done. Otherwise, we apply Lemma 12
again on [p′..p′ + s], and repeat until we find a range that contains the first position of a run.
This search eventually terminates because there are r > 0 run beginnings, there are only n− s+ 1
distinct ranges, and the sequence of visited ranges, [LF k(p)..LF k(p)+s], forms a single cycle; recall
Section 2.3. Therefore our search will visit all the existing ranges before returning to [p..p+ s]. ut

This means that there exist 2r positions in DSA, namely those [q, q + 1] where BWT [q] is the
first position of a run, such that any substring DSA[p..p + s] has a copy covering some of those
2r positions. Note that this is the same property of Lemma 8, which enabled efficient access and
fingerprinting on T . We now exploit it to access cells in SA by building a similar structure on DSA.

Theorem 5. Let the BWT of a text T [1..n] contain r runs. Then there exists a data structure
using O(r log(n/r)) words that can retrieve any ` consecutive values of its suffix array SA in time
O(log(n/r) + `).

Proof. We describe a data structure supporting the extraction of α = log(n/r) consecutive cells in
O(log(n/r)) time. To extract ` consecutive cells of SA, we divide it into d`/αe blocks and extract
each block independently. This yields the promised time complexity.

Our structure is stored in O(log(n/r)) levels. As before, let us assume that r divides n and that
n/r is a power of two. At the top level (l = 0), we divide DSA into r blocks DSA[1..n/r],DSA[n/r+
1..2n/r], . . . ,DSA[n − n/r + 1..n] of size n/r. For levels l > 0, we let sl = n/(r · 2l−1) and, for
every position q that starts a run in BWT , we consider the two non-overlapping blocks of length
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sl: X
1
l,q = DSA[q − sl + 1..q] and X2

l,q = DSA[q + 1..q + sl].
16 Each such block Xk

l,q, for k =

1, 2, is composed of two half-blocks, Xk
l,q = Xk

l,q[1..sl/2]Xk
l,q[sl/2 + 1..sl]. We moreover consider

three additional consecutive and non-overlapping half-blocks, starting in the middle of the first,
X1
l,q[1..sl/2], and ending in the middle of the last, X2

l,q[sl/2+1..sl], of the 4 half-blocks just described:
DSA[q − sl + sl/4 + 1..q − sl/4], DSA[q − sl/4 + 1..q + sl/4], and DSA[q + sl/4 + 1..q + sl − sl/4].

From Lemma 13, blocks at level l = 0 and each half-block at level l > 0 have an occurrence
covered by blocks at level l+1. Let the half-block X of level l (blocks at level 0 are analogous) have
an occurrence containing position q∗ ∈ {q, q + 1}, where q starts a run in BWT . Then we store
the pointer 〈q∗, off , δ〉 associated with X, where 0 < off ≤ sl+1 indicates that the occurrence of X
starts at position q∗− sl+1 + off of DSA, and δ = SA[q∗− sl+1]− SA[q∗− sl+1 + off − 1]. (We also
store the pointer to the data structure of the half-block of level l + 1 containing the position q∗.)

Additionally, every level-0 block X ′ = DSA[q′ + 1..q′ + sl] stores the value S(X ′) = SA[q′]
(assume SA[0] = 0 throughout), and every half-block X ′ = DSA[q′ + 1..q′ + sl+1/2] corresponding
to the area X1

l+1,qX
2
l+1,q = DSA[q−sl+1+1..q+sl+1] stores the value ∆(X ′) = SA[q′]−SA[q−sl+1].

Let l∗ be the smallest number such that sl∗ < 4α = 4 log(n/r). Then l∗ is the last level of our
structure. At this level, we explicitly store the sequence of DSA cells of the areas X1

l∗,qX
2
l∗,q, for

each q starting a run in BWT . This uses in total O(r · sl∗) = O(r log(n/r)) words of space. The
pointers stored for the O(r) blocks at previous levels also add up to O(r log(n/r)) words.

Let S = SA[p..p+ α − 1] be the sequence of cells to be extracted. This range either spans two
blocks at level 0, or it is contained in a single block. In the former case, we decompose it into
two queries that are fully contained inside a block at level 0. To retrieve a range contained in a
single block or half-block, we map it down to the next levels using the pointers from blocks and
half-blocks, as a contiguous sequence as long as it fits inside a single half-block. This is always
possible as long as α ≤ sl/4. By definition, then, we arrive in this way precisely to level l∗, where
the symbols of DSA are stored explicitly and we can return the sequence.

We need, however, the contents of SA[p..p+α−1], not of DSA[p..p+α−1]. To obtain the former
from the latter, we need only the value of SA[p]. During the traversal, we will maintain a value f
with the invariant that, whenever the original position DSA[p] has been mapped to a position X[p′]
in the current block X, then it holds that SA[p] = f + X[1] + . . . + X[p′]. This invariant must be
maintained when we use pointers, where the original DSA values in a block X are obtained from a
copy that appears somewhere else in DSA.

The invariant is initially valid by setting f to the S(X) value associated with the level-0 block X
that contains SA[p]. When we follow a pointer 〈q, offs, δ〉 and choose X ′ from the 7 half-blocks that
cover the target, we update f ← f + δ +∆(X ′). When we arrive at a block X at level l∗, we scan
O(α) symbols until reaching the first value of the desired position X[p′]. The values X[1], . . . , X[p′]
scanned are also summed to f . At the end, we have that SA[p] = f . See Figure 3. ut

5.3 Accessing ISA and LCP

A similar method can be used to access inverse suffix array cells, ISA[i]. Let us define DISA[i] =
ISA[i]−ISA[i−1] for all i > 1, and DISA[1] = ISA[1]. The role of the runs in SA will now be played
by the phrases in ISA, which will be defined analogously as in the proof of Lemma 3: Phrases in
ISA start at the positions SA[p] such that a new run starts in BWT [p] (here, last positions of runs

16Note that this symmetrically covers both positions q and q+ 1; in Theorem 4, one extra unnecessary position is
covered with X1

l,q, for simplicity.
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Fig. 3. Illustration of Theorem 5. The area to extract (a gray square) is inside the thick half-block (X), which points
inside another area around position q in the next level. The sum of DSA over the offset from the beginning of the
area to the mapped block (in thick dashed line) is stored at δ(X), in negative (hence the direction of the arrow). The
squared area is mapped to a smaller half-block, X ′, which records in ∆(X ′) the sum of DSA between the beginning
of the area and X ′ (see the other dashed arrow). By adding δ(X) +∆(X ′), we map from the first thick block to the
second.

do not start phrases). Instead of LF , we use the cycle φ(i) of Definition 2. We make use of the
following lemmas.

Lemma 14. Let [i − 1..i] be within a phrase of ISA. Then it holds that φ(i − 1) = φ(i) − 1 and
DISA[i] = DISA[φ(i)].

Proof. Consider the pair of positions T [i−1..i] within a phrase. Let them be pointed from SA[p] = i
and SA[q] = i− 1, therefore ISA[i] = p, ISA[i− 1] = q, and LF (p) = q. Now, since i is not a phrase
beginning, p is not the first position in a BWT run. Therefore, BWT [p−1] = BWT [p], from which
it follows that LF (p − 1) = LF (p) − 1 = q − 1. Now let SA[p − 1] = j, that is, j = φ(i). Then
φ(i− 1) = SA[ISA[i− 1]− 1] = SA[q − 1] = SA[LF (p− 1)] = SA[p− 1]− 1 = j − 1 = φ(i)− 1. It
also follows that DISA[i] = p− q = DISA[j] = DISA[φ(i)]. ut

Lemma 15. Let [i− 1..i+ s] be within a phrase of DISA, for some 1 < i ≤ n and 0 ≤ s ≤ n− i.
Then there exists j 6= i such that DISA[j..j+ s] = DISA[i..i+ s] and [j− 1..j+ s] contains the first
position of a phrase.

Proof. By Lemma 14, it holds that DISA[i′..i′ + s] = DISA[i..i + s], where i′ = φ(i). If DISA[i′ −
1..i′ + s] contains the first position of a phrase, we are done. Otherwise, we apply Lemma 14 again
on [i′..i′ + s], and repeat until we find a range that contains the first position of a phrase. Just as
in Lemma 12, this search eventually terminates because φ is a permutation with a single cycle. ut

We can then use on DISA exactly the same data structure we defined to access SA in Theorem 5,
and obtain a similar result for ISA.

Theorem 6. Let the BWT of a text T [1..n] contain r runs. Then there exists a data structure
using O(r log(n/r)) words that can retrieve any ` consecutive values of its inverse suffix array ISA
in time O(log(n/r) + `).

Finally, by combining Theorem 5 and Lemma 5, we also obtain access to array LCP without
knowing the corresponding text positions.
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Theorem 7. Let the BWT of a text T [1..n] contain r runs. Then there exists a data structure
using O(r log(n/r)) words that can retrieve any ` consecutive values of its longest common prefix
array LCP in time O(log(n/r) + `).

Proof. Build the structure of Theorem 5, as well as the one of Lemma 5 with s = log(n/r). Then,
to retrieve LCP [p..p + s′ − 1] for any 0 ≤ s′ ≤ s, we first compute SA[p] in time O(log(n/r))
using Theorem 5 and then, given SA[p], we compute LCP [p..p + s′ − 1] using Lemma 5 in time
O(log logw(n/r) + s′). Adding both times gives O(log(n/r)).

To retrieve an arbitrary sequence of cells LCP [p..p+`−1], we use the method above by chunks of
s cells, plus a possibly smaller final chunk. As we use d`/se chunks, the total time is O(log(n/r)+`).

ut

5.4 Optimal counting and locating in O(r log(n/r)) space

The O(r log(n/r)) space we need for accessing T is not comparable with the O(r log logw(σ+n/r))
space we need for optimal counting and locating. The latter is in general more attractive, because
the former is better whenever r = ω(n/ logw σ), which means that the text is not very compressible.
Anyway, we show how to obtain optimal counting and locating within space O(r log(n/r)).

By the discussion above, we only have to care about the case r ≥ n/ log n. In such a case, it holds
that r log(n/r) ≥ (n log logn)/ log n,17 and thus we are allowed to use Θ(n log log n) bits of space.
We can then make use of a result of Belazzougui and Navarro [12, Lem. 6]. They show how we can
enrich the O(n)-bit compressed suffix tree of Sadakane [106] so that, using O(n(log tSA + log log σ))
bits, one can find the interval SA[sp..ep] of P in time O(m + tSA) plus the time to extract a
substring of length m from T .18 Since we provide tSA = O(log(n/r)) in Theorem 5 and extraction
time O(log(n/r)+m log(σ)/w) in Theorem 4, this arrangement uses O(n(log log(n/r)+log log σ)) ⊆
O(n log log n) bits, and it supports counting in time O(m+ log(n/r)).

Once we know the interval, apart from counting, we can use Theorem 5 to obtain SA[p] for
any sp ≤ p ≤ ep in time O(log(n/r)), and then use the structure of Lemma 4 with s = log(n/r)
to extract packs of s′ ≤ s consecutive SA entries in time O(log logw(n/r) + s′) ⊆ O(log(n/r) + s).
Overall, we can locate the occ occurrences of P in time O(m+ log(n/r) + occ).

Finally, to remove the O(log(n/r)) term in the times, we must speed up the searches for patterns
shorter than log(n/r). We index them using a compact trie as that of Section 4.2. We store in each
explicit trie node (i) the number of occurrences of the corresponding string, to support counting,
and (ii) a position p where it occurs in SA, the value SA[p], and the result of the predecessor queries
on P+ and P−, as required for locating in Lemma 4, so that we can retrieve any number s′ ≤ s of
consecutive entries of SA in time O(s′). By Lemma 9, the size of the trie and of the text substrings
explicitly stored to support path compression is O(r log(n/r)).

Theorem 8. We can store a text T [1..n], over alphabet [1..σ], in O(r log(n/r)) words, where r is
the number of runs in the BWT of T , such that later, given a pattern P [1..m], we can count the
occurrences of P in T in O(m) time and (after counting) report their occ locations in overall time
O(occ).

17Since r log(n/r) grows with r up to r = n/e, we obtain the lower bound by evaluating it at r = n/ logn.
18The O(n log log σ) bits of the space are not explicit in their lemma, but are required in their Section 5, which is

used to prove their Lemma 6.
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6 A Run-Length Compressed Suffix Tree

In this section we show how to implement a compressed suffix tree within O(r log(n/r)) words,
which solves a large set of navigation operations in time O(log(n/r)). The only exceptions are
going to a child by some letter and performing level ancestor queries, which may cost as much as
O(log(n/r) log n). The first compressed suffix tree for repetitive collections was built on runs [80],
but just like the self-index, it needed Θ(n/s) space to obtain O(s log n) time in key operations like
accessing SA. Other compressed suffix trees for repetitive collections appeared later [1, 92, 29], but
they do not offer formal space guarantees (see later). A recent one, instead, uses O(e) words and
supports a number of operations in time typically O(log n) [8]. The two space measures are not
comparable.

6.1 Compressed Suffix Trees without Storing the Tree

Fischer et al. [37] showed that a rather complete suffix tree functionality including all the operations
in Table 3 can be efficiently supported by a representation where suffix tree nodes v are identified
with the suffix array intervals SA[vl..vr] they cover. Their representation builds on the following
primitives:

1. Access to arrays SA and ISA, in time we call tSA.
2. Access to array LCP , in time we call tLCP .
3. Three special queries on LCP :

(a) Range Minimum Query,
RMQ(i, j) = arg min

i≤k≤j
LCP [k],

choosing the leftmost one upon ties, in time we call tRMQ.
(b) Previous/Next Smaller Value queries,

PSV(p) = max({q < p,LCP [q] < LCP [p]} ∪ {0}),
NSV(p) = min({q > p,LCP [q] < LCP [p]} ∪ {n+ 1}),

in time we call tSV.

An interesting finding of Fischer et al. [37] related to our results is that array PLCP , which
stores the LCP values in text order, can be stored in O(r) words and accessed efficiently; therefore
we can compute any LCP value in time tSA (see also Fischer [34]). We obtained a generalization
of this property in Section 3.2. They [37] also show how to represent the array TDE [1..n], where
TDE [i] is the tree-depth of the lowest common ancestor of the (i− 1)th and ith suffix tree leaves
(and TDE [1] = 0). Fischer et al. [37] represent its values in text order in an array PTDE , which
just like PLCP can be stored in O(r) words and accessed efficiently, thereby giving access to TDE
in time tSA. They use TDE to compute operations TDepth and LAQT efficiently.

Abeliuk et al. [1] show that primitives RMQ, PSV, and NSV can be implemented using a
simplified variant of range min-Max trees (rmM-trees) [95], consisting of a perfect binary tree on
top of LCP where each node stores the minimum LCP value in its subtree. The three primitives
are then computed in logarithmic time. They define the extended primitives

PSV′(p, d) = max({q < p,LCP [q] < d} ∪ {0}),
NSV′(p, d) = min({q > p,LCP [q] < d} ∪ {n+ 1}),
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Operation Description

Root() Suffix tree root.
Locate(v) Text position i of leaf v.
Ancestor(v, w) Whether v is an ancestor of w.
SDepth(v) String depth for internal nodes, i.e., length of string represented by v.
TDepth(v) Tree depth, i.e., depth of tree node v.
Count(v) Number of leaves in the subtree of v.
Parent(v) Parent of v.
FChild(v) First child of v.
NSibling(v) Next sibling of v.
SLink(v) Suffix-link, i.e., if v represents a · α then the node that represents α, for a ∈ [1..σ].
WLink(v, a) Weiner-link, i.e., if v represents α then the node that represents a · α.
SLinki(v) Iterated suffix-link.
LCA(v, w) Lowest common ancestor of v and w.
Child(v, a) Child of v by letter a.
Letter(v, i) The ith letter of the string represented by v.
LAQS(v, d) String level ancestor, i.e., the highest ancestor of v with string-depth ≥ d.
LAQT (v, d) Tree level ancestor, i.e., the ancestor of v with tree-depth d.

Table 3. Suffix tree operations.

and compute them in time tSV′ , which in their setting is the same tSV of the basic PSV and NSV
primitives. The extended primitives are used to simplify some of the operations of Fischer et al. [37].

The resulting time complexities are given in the second column of Table 4, where tLF is the
time to compute function LF or its inverse, or to access a position in BWT . Operation WLink,
not present in Fischer et al. [37], is trivially obtained with two LF -steps. We note that most times
appear multiplied by tLCP in Fischer et al. [37] because their RMQ, PSV, and NSV structures do
not store LCP values inside, so they need to access the array all the time; this is not the case when
we use rmM-trees. The time of LAQS is due to improvements obtained with the extended primitives
PSV′ and NSV′ [1].19 The time for Child(v, a) is obtained by binary searching among the σ minima
of LCP [vl, vr], and extracting the desired letter (at position SDepth(v) + 1) to compare with a.
Each binary search operation can be done with an extended primitive RMQ′(p, q,m) that finds the
mth left-to-right occurrence of the minimum in a range. This is easily done in tRMQ′ = tRMQ time
on a rmM-tree by storing, in addition, the number of times the minimum of each node occurs below
it [95], but it may be not so easy to do on other structures. Finally, the complexities of TDepth
and LAQT make use of array TDE . While Fischer et al. [37] use an RMQ operation to compute
TDepth, we note that TDepth(v) = 1 + max(TDE [vl],TDE [vr + 1]), because the suffix tree has no
unary nodes (they used this simpler formula only for leaves).20

An important idea of Abeliuk et al. [1] is that they represent LCP differentially, that is, the
array DLCP [1..n], where DLCP [i] = LCP [i] − LCP [i − 1] if i > 1 and DLCP [1] = LCP [1], using
a context-free grammar (CFG). Further, they store the rmM-tree information in the nonterminals,

19They also use these primitives for NSibling, mentioning that the original formula has a bug. Since we obtain
better tRMQ than tSV′ time, we rather prefer to fix the original bug [37]. The formula fails for the penultimate
child of its parent. To compute the next sibling of [vl, vr] with parent [wl, wr], the original formula [vr + 1, u] with
u = RMQ(vr + 2, wr) − 1 (used only if vr < wr − 1) must now be checked as follows: if u < wr and LCP [vr + 1] 6=
LCP [u+ 1], then correct it to u = wr.

20We observe that LAQT can be solved exactly as LAQS , with the extended PSV′/NSV′ operations, now defined
on the array TDE instead of on LCP . However, an equivalent to Lemma 16 for the differential TDE array does not
hold, and therefore we cannot use that solution within the desired space bounds.
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Operation Generic Our
Complexity Complexity

Root() 1 1
Locate(v) tSA log(n/r)
Ancestor(v, w) 1 1
SDepth(v) tRMQ + tLCP log(n/r)
TDepth(v) tSA log(n/r)
Count(v) 1 1
Parent(v) tLCP + tSV log(n/r)
FChild(v) tRMQ log(n/r)
NSibling(v) tLCP + tRMQ log(n/r)
SLink(v) tLF + tRMQ + tSV log(n/r)
WLink(v) tLF log logw(n/r)
SLinki(v) tSA + tRMQ + tSV log(n/r)
LCA(v, w) tRMQ + tSV log(n/r)
Child(v, a) tLCP + (tRMQ′ + tSA + tLF ) log σ log(n/r) log σ
Letter(v, i) tSA + tLF log(n/r)
LAQS(v, d) tSV′ log(n/r) + log logw r
LAQT (v, d) (tRMQ + tLCP ) logn log(n/r) logn

Table 4. Complexities of suffix tree operations. Letter(v, i) can also be solved in time O(i · tLF ) = O(i log logw(n/r)).

that is, a nonterminal X expanding to a substring D of DLCP stores the (relative) minimum

m(X) = min
0≤k≤|D|

k∑
i=1

D[i]

of any LCP segment having those differential values, and its position inside the segment,

p(X) = arg min
0≤k≤|D|

k∑
i=1

D[i].

Thus, instead of a perfect rmM-tree, they conceptually use the grammar tree as an rmM-tree. They
show how to adapt the algorithms on the perfect rmM-tree to run on the grammar, and thus solve
primitives RMQ, PSV′, and NSV′, in time proportional to the grammar height.

Abeliuk et al. [1], and also Fischer et al. [37], claim that the grammar produced by RePair [75]
is of size O(r log(n/r)). This is an incorrect result borrowed from González et al. [51, 52], where it
was claimed for DSA. The proof fails for a reason we describe in our technical report [44, Sec. A].

We now start by showing how to build a grammar of size O(r log(n/r)) and height O(log(n/r))
for DLCP . This grammar is of an extended type called run-length context-free grammar (RLCFG)
[97], which allows rules of the form X → Y t that count as size 1. We then show how to implement the
operations RMQ and NSV/PSV in time O(log(n/r)) on the resulting RLCFG, and NSV′/PSV′ in
time O(log(n/r)+log logw r). Finally, although we cannot implement RMQ′ in time below Θ(log n),
we show how the specific Child operation can be implemented in time O(log(n/r) log σ).

Note that, although we could represent DLCP using a Block-Tree-like structure as we did in
Section 5 for DSA and DISA, we have not devised a way to implement the more complex operations
we need on DLCP using such a Block-Tree-like data structure within polylogarithmic time.

Using the results we obtain in this and previous sections, that is, tSA = O(log(n/r)), tLF =
O(log logw(n/r)), tLCP = tSA + O(log logw(n/r)) = O(log(n/r)), tRMQ = tSV = O(log(n/r)),
tSV ′ = O(log(n/r) + log logw r), and our specialized algorithm for Child, we obtain our result.
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Theorem 9. Let the BWT of a text T [1..n], over alphabet [1..σ], contain r runs. Then a compressed
suffix tree on T can be represented using O(r log(n/r)) words, and it supports the operations with
the complexities given in the third column of Table 4.

6.2 Representing DLCP with a run-length grammar

In this section we show that the differential array DLCP can be represented by a RLCFG of size
O(r log(n/r)). We first prove a lemma analogous to those of Section 5.

Lemma 16. Let [p−2, p] be within a BWT run. Then LF (p−1) = LF (p)−1 and DLCP [LF (p)] =
DLCP [p].

Proof. Let i = SA[p], j = SA[p − 1], and k = SA[p − 2]. Then LCP [p] = lcp(T [i..], T [j..]) and
LCP [p−1] = lcp(T [j..], T [k..]). We know from Lemma 12 that, if q = LF (p), then LF (p−1) = q−1
and LF (p − 2) = q − 2. Also, SA[q] = i − 1, SA[q − 1] = j − 1, and SA[q − 2] = k − 1. Therefore,
LCP [LF (p)] = LCP [q] = lcp(T [SA[q]..], T [SA[q − 1]..) = lcp(T [i − 1..], T [j − 1..]). Since p is not
the first position in a BWT run, it holds that T [j − 1] = BWT [p − 1] = BWT [p] = T [i − 1], and
thus lcp(T [i − 1..], T [j − 1..]) = 1 + lcp(T [i..], T [j..]) = 1 + LCP [p]. Similarly, LCP [LF (p) − 1] =
LCP [q − 1] = lcp(T [SA[q − 1]..], T [SA[q − 2]..) = lcp(T [j − 1..], T [k − 1..]). Since p − 1 is not the
first position in a BWT run, it holds that T [k − 1] = BWT [p − 2] = BWT [p − 1] = T [j − 1],
and thus lcp(T [j − 1..], T [k − 1..]) = 1 + lcp(T [j..], T [k..]) = 1 + LCP [p− 1]. Therefore DLCP [q] =
LCP [q]− LCP [q − 1] = (1 + LCP [p])− (1 + LCP [p− 1]) = DLCP [p]. ut

It follows that, if p1 < . . . < pr are the positions that start runs in BWT , then we can define a
bidirectional macro scheme [110] of size at most 4r + 1 on DLCP .

Definition 6. A bidirectional macro scheme (BMS) of size b on a sequence S[1..n] is a partition
S = S1 . . . Sb such that each Sk is of length 1 (and is represented as an explicit symbol) or it
appears somewhere else in S (and is represented by a pointer to that other occurrence). Let f(i),
for 1 ≤ i ≤ n, be defined arbitrarily if S[i] is an explicit symbol, and f(i) = j+ i′− 1 if S[i] = Sk[i

′]
is inside some Sk that is represented as a pointer to S[j..j′]. A correct BMS must hold that, for any
i, there is a k ≥ 0 such that fk(i) is an explicit symbol.

Note that f(i) maps the position S[i] to the source from which it is to be obtained. The last
condition then ensures that we can recover any symbol S[i] by following the chain of copies until
finding an explicitly stored symbol. Finally, note that all the f values inside a block are consecutive:
if Sk = S[i..i′] has a pointer to S[j..j′], then f([i..i′]) = [j..j′].

Lemma 17. Let p1 < . . . < pr be the positions that start runs in BWT , and assume p0 = −2 and
pr+1 = n+ 1. Then, the partition formed by (1) all the explicit symbols DLCP [pi + k] for 1 ≤ i ≤ r
and k ∈ {0, 1, 2}, and (2) all the nonempty regions DLCP [pi+3..pi+1−1] for all 0 ≤ i ≤ r, pointing
to DLCP [LF (pi + 3)..LF (pi+1 − 1)], is a BMS.

Proof. By Lemma 16, it holds that LF (pi + 3 + k) = LF (pi + 3) + k and DLCP [pi + 3 + k] =
DLCP [LF (pi + 3) + k] for all 0 ≤ k ≤ pi+1 − pi − 4, so the partition is well defined and the copies
are correct. To see that it is a BMS, it is sufficient to notice that LF is a permutation with one cycle
on [1..n], and therefore LF k(p) will eventually reach an explicit symbol, for some 0 ≤ k < n. ut

We now make use of the following result.
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Lemma 18 ([45, Thm. 1]). Let S[1..n] have a BMS of size b. Then there exists a RLCFG of size
O(b log(n/b)) that generates S.

Since DLCP has a BMS of size at most 4r + 1, the following corollary is immediate.

Lemma 19. Let the BWT of T [1..n] have r runs. Then there exists a RLCFG of size O(r log(n/r))
that generates its differential LCP array, DLCP.

6.3 Supporting the primitives on the run-length grammar

We describe how to compute the primitives RMQ and PSV/NSV on the RLCFG of DLCP , in
time tRMQ = tSV = O(log(n/r)). The extended primitives PSV′/NSV′ are solved in time tSV ′ =
O(log(n/r)+log logw r). While analogous procedures have been described before on CFGs and trees
[1, 95], the extension to RLCFGs and the particular structure of our grammar requires a complete
description.

The RLCFG built in Lemma 18 [45] is of height O(log(n/r)) and has one initial rule S →
X1 . . . XO(r). The other rules are of the form X → Y1Y2 or X → Y t for t > 2. All the right-hand
symbols can be terminals or nonterminals.

The data structure we use is formed by a sequence DLCP ′ = X1 . . . XO(r) capturing the initial
rule of the RLCFG, and an array of the otherO(r log(n/r)) rules. For each nonterminalX expanding
to a substring D of DLCP , we store its length l(X) = |D| and its total difference d(X) = D[1] +
. . .+D[l(X)]. For terminals X, assume l(X) = 1 and d(X) = X. We also store a cumulative length
array L[0] = 0 and L[x] = L[x − 1] + l(Xx) that can be binary searched to find the symbol of
DLCP ′ that contains any desired position DLCP [p]. To ensure that this binary search takes time
O(log(n/r)) when r = ω(n/r), we can store a sampled array of positions S[1..r], where S[t] = x if
L[x− 1] < t · (n/r) ≤ L[x] to narrow down the binary search to a range of O(n/r) entries of L. We
also store a cumulative differences array A[0] = 0 and A[x] = A[x− 1] + d(Xx).

Although we have already provided access to any LCP [p] in Section 5.3, it is also possible to
do it with these structures. We first find x by binary searching L for p, possibly with the help
of S, and set f ← A[x − 1] and p ← p − L[x − 1]. Then we enter recursively into nonterminal
X = Xx. If its rule is X → Y1Y2, we continue by Y1 if p ≤ l(Y1); otherwise we set f ← f + d(Y1),
p ← p − l(Y1), and continue by Y2. If, instead, its rule is X → Y t, we compute t′ = dp/l(Y )e − 1,
set f ← f + t′ · d(Y ), p← p− t′ · l(Y ), and continue by Y . When we finally arrive at a terminal X,
the answer is f + d(X). All this process takes time O(log(n/r)), the height of the RLCFG.

Answering RMQ. To answer this query, we store a few additional structures. We store an array
M such that M [x] = minL[x−1]<k≤L[x] LCP [k], that is, the minimum value in the area of LCP
expanded by Xx = DLCP ′[x]. We store a succinct data structure RMQM , which requires just O(r)
bits and finds the leftmost position of a minimum in any range M [x..y] in constant time, without
need to access M [36]. We also store, for each nonterminal X, the already defined values m(X) and
p(X) (for terminals X, we can store m(X) and p(X) or compute them on the fly).

To compute RMQ(p, q) on LCP , we first use L and S to determine that DLCP [p..q] contains the
expansion of DLCP ′[x+1..y−1], whereas DLCP ′[x..y] expands to DLCP [p′..q′] with p′ < p ≤ q < q′.
Thus, DLCP [p..q] partially overlaps DLCP ′[x] and DLCP ′[y] (the overlap could be empty). We first
obtain in constant time the minimum position of the central area, z = RMQM (x + 1, y − 1), and
then the minimum value in that area is LCP [L[z − 1] + p(Xz)]. To complete the query, we must
compare this value with the minima in Xx〈p−p′+1, l(Xx)〉 and Xy〈1, l(Xy)+q−q′〉, where X〈a, b〉
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refers to the substring D[a..b] in the expansion D of X. A relevant special case in this scheme is
that DLCP [p..q] is inside a single symbol DLCP ′[x] expanding to DLCP [p′..q′], in which case the
query boils down to finding the minimum value in Xx〈p− p′ + 1, l(Xx) + q − q′〉.

Let us disregard the rules X → Y t for a moment. To find the minimum in Xw〈a, b〉, we identify
the k = O(log(n/r)) maximal nodes of the grammar tree that cover the range [a..b] in the expansion
of Xw. Let these nodes be Y1, Y2, . . . , Yk. We then find the minimum of m(Y1), d(Y1) + m(Y2),
d(Y1) + d(Y2) + m(Y3), . . ., in O(k) time. Once the minimum is identified at Ys, we obtain the
absolute value by extracting LCP [L[w − 1] + l(Y1) + . . .+ l(Ys−1) + p(Ys)].

Our grammar also has rules of the form X → Y t, and thus the maximal coverage Y1, . . . , Yk may
include a part of these rules, say Y t′ for some 1 ≤ t′ < t. We can then compute on the fly m(Y t′)
as m(Y ) if d(Y ) ≥ 0, and (t′ − 1) · d(Y ) + m(Y ) otherwise. Similarly, p(Y t′) is p(Y ) if d(Y ) ≥ 0
and (t′ − 1) · l(Y ) + p(Y ) otherwise.

Once we have the (up to) three minima from Xx, DLCP ′[x+ 1..y − 1], and Xy, the position of
the smallest of the three is RMQ(p, q).

Answering PSV/NSV and PSV′/NSV′. These queries are solved analogously. Let us describe
NSV′(p, d), since PSV′(p, d) is similar. Let DLCP [p..] be included in the expansion of DLCP ′[x..],
which expands to DLCP [p′..] (for the largest possible p′ ≤ p), and let us subtract LCP [p′ − 1] =
A[x − 1] from d to put it in relative form. We first consider Xx〈p − p′ + 1, l(Xx)〉 = X〈a, b〉,
obtaining the O(log(n/r)) maximal nonterminals Y1, Y2, . . . , Yk that cover X〈a, b〉, and find the
first Ys where d(Y1) + . . . + d(Ys−1) + m(Ys) < d. Then we subtract d(Y1) + . . . + d(Ys−1) from d,
add l(Y1) + . . .+ l(Ys−1) to p, and continue recursively inside Ys to find the precise point where the
cumulative differences fall below d.

The recursive traversal from Ys works as follows. If Ys → Y1Y2, we first see if m(Y1) < d. If so,
we continue recursively on Y1; otherwise, we subtract d(Y1) from d, add l(Y1) to p, and continue
recursively on Y2. If, instead, the rule is Ys → Y t, we proceed as follows. If d(Y ) ≥ 0, then the answer
must be in the first copy of Y , thus we recursively continue on Y . If d(Y ) < 0, instead, we must find
the copy t′ into which we continue. This is the smallest t′ such that (t′− 1) ·d(Y ) +m(Y ) < d, that
is, t′ = max(1, 2 + b(d−m(Y ))/d(Y )c). Thus we subtract (t′ − 1) · d(Y ) from d, add (t′ − 1) · l(Y )
to p, and continue with Y . Finally, when we arrive at a terminal X, it holds that m(X) < d and
the answer to the query is the current value of p. All of this process takes time O(log(n/r)), the
height of the grammar.

It might be, however, that we traverse Y1, Y2, . . . , Yk, that is, the whole Xx〈p − p′ + 1, l(Xx)〉,
and still do not find a value below d. We then must find where we fall below (the current value
of) d inside DLCP ′[x + 1..]. Once this search identifies the leftmost position DLCP ′[z] where the
answer lies, we complete the search on Xz〈1, l(Xz)〉 as before, for d← d−A[z − 1] +A[x].

The search problem can be regarded as follows: Given the array B[z] = A[z] +m(Xz), find the
leftmost position z > x such that B[z] < A[x] + d. Navarro and Sadakane [95, Sec. 5.1] show that
this query can be converted into a weighted ancestor query on a tree: given nodes with weights
that decrease toward the root, the query gives a node v and a weight w and seeks for its nearest
ancestor with weight < w. In our case, the tree has O(r) nodes and the weights are LCP values, in
the range [0..n− 1].

Kopelowitz and Lewenstein [72, Sec. 3.2] show how this query can be solved in O(r) space
and the time of a predecessor query. Those predecessor queries are done on universes of size n
where there can be arbitrarily few elements. However, we can resort to binary search if there are
O(n/r) elements, within the allowed time O(log(n/r)). Therefore, the predecessor queries have
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to be implemented only on sets of Ω(n/r) elements. By using the structure of Belazzougui and
Navarro [13, Thm. 14], the predecessor time is O(log logw r). Therefore, we obtain time tSV′ =
O(log(n/r) + log logw r).

This time can be reduced to tSV = O(log(n/r)) for the simpler primitives PSV/NSV as follows:
When r is so large that log(n/r) < log log n, that is, r > n/ log n, the allowed Θ(r log(n/r)w) bits
of space are actually Ω(n log logn). We are then entitled to use O(n) bits of space, within which
we can solve queries PSV and NSV in O(1) time [37, Thm. 3].

6.4 Supporting operation Child

Operation Child(v, a) requires us to binary search the O(σ) positions where the minimum occurs
in LCP [vl+1..vr], and choose the one that descends by letter a. Each check for a takes O(log(n/r))
time, as explained.

To implement this operation efficiently, we will store for each nonterminal X the number n(X) of
times m(X) occurs inside the expansion of X. To do the binary search on LCP [p..q] (with p = vl+1
and q = vr), we first compute RMQ(p, q) as in the previous section, and then find the desired
occurrence of its relative version, µ = LCP [RMQ(p, q)]−LCP [p−1], through Xx〈p−p′+1, l(Xx)〉,
DLCP ′[x+ 1..y − 1], and Xy〈1, l(Xy) + q − q′〉. The values p′, q′, x, and y are those we computed
to obtain RMQ(p, q).

Searching inside a nonterminal. To process Xw〈a, b〉 we first determine how many occurrences
of µ it contains. We start with a counter c = 0 and scan again Y1, Y2, . . . , Yk. For each Ys, if
d(Y1)+ . . .+d(Ys−1)+m(Ys) = µ, we add c← c+n(Ys). To process Y t′ in constant time note that,
if µ occurs in Y t′ , then it occurs only in the first copy of Y if d(Y ) > 0, only in the last if d(Y ) < 0,
and in every copy if d(Y ) = 0. Therefore, n(Y t′) = n(Y ) if d(Y ) 6= 0 and t′ · n(Y ) if d(Y ) = 0.

After we compute c in O(log(n/r)) time, we binary search the c occurrences of µ in Xw〈a, b〉.
For each of the O(log c) = O(log σ) steps of this binary search, we must find a specific occurrence
of µ, and then compute the corresponding letter to compare with a and decide the direction of the
search. As said, we can compute the corresponding letter in time O(log(n/r)). We now show how
a specific occurrence of µ is found within the same time complexity.

Finding a specific occurrence inside a nonterminal. Assume we want to find the c′th
occurrence of µ in Xx〈p − p′ + 1, l(Xx)〉. We traverse once again Y1, Y2, . . . , Yk. For each Ys, if
d(Y1) + . . . + d(Ys−1) + m(Ys) = µ, we subtract c′ ← c′ − n(Ys). When the result is below 1, the
occurrence is inside Ys. We then add l(Y1) + . . .+ l(Ys−1) to p, subtract d(Y1) + . . .+ d(Ys−1) from
µ, restore c′ ← c′ + n(Ys), and recursively search for µ inside Ys.

Let Ys → Y1Y2. If m(Y1) 6= µ, we continue on Y2 with p ← p + l(Y1) and µ ← µ − d(Y1). If
m(Y1) = µ and n(Y1) ≥ c′, we continue on Y1. Otherwise, we continue on Y2 with p ← p + l(Y1),
µ← µ− d(Y1) and c′ ← c′ − n(Y1).

To process Y t in the quest for c′, we do as follows. If d(Y ) > 0, then µ can only occur in the
first copy of Y . Thus, if m(Y ) 6= µ, we just skip Y t with p ← p+ t · l(Y ) and µ ← µ− t · d(Y ). If
m(Y ) = µ, we see if n(Y ) ≥ c′. If so, then we enter into Y ; otherwise we skip Y t with p← p+t·l(Y ),
µ← µ− t ·d(Y ) and c′ ← c′−n(Y ). The case where d(Y ) < 0 is similar, except that when we enter
into Y , it is the last one of Y t, and thus we set p ← p + (t− 1) · l(Y ) and µ ← µ− (t− 1) · d(Y ).
Finally, if d(Y ) = 0, then the minimum of Y appears many times. If m(Y ) 6= µ, we skip Y t with
p← p+ t · l(Y ) and µ← µ− t · d(Y ). Otherwise, if t · n(Y ) < c′, we must also skip Y t, updating p
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and µ, and also c′ ← c′ − t · n(Y ). Otherwise, we must enter into the t′th occurrence of Y , where
t′ = dc′/n(Y )e, by continuing on Y with p ← p + (t′ − 1) · l(Y ), µ ← µ − (t′ − 1) · d(Y ) and
c′ ← c′ − (t′ − 1) · n(Y ).

Therefore, if the desired minimum is in Xw〈a, b〉, we spot it in O(log(n/r) log σ) time.

Searching the central area. If we do not find the desired letter inside Xx〈p− p′ + 1, l(Xx)〉 or
Xy〈1, l(Xy) + q− q′〉, we must find it in DLCP ′[x+ 1..y− 1]. Here we proceed differently. From the
computation of RMQ(p, q) we know if there are occurrences of µ in DLCP ′[x + 1..y − 1]. If there
are, then any minimum in this range is an occurrence of µ. We binary search those minima by
using a representation that uses O(r) bits on top of M and finds an approximation to the median
of the minima in constant time [35] (it might not be the median but its rank is a fraction between
1/16 and 15/16 of the total). For each DLCP [z] that contains some occurrence of µ, we obtain
its leftmost position L[z − 1] + p(Yz) and determine the associated letter, compare it with a and
determine if the binary search on DLCP ′[x+1..y−1] goes left or right. Since there are O(σ) minima
in DLCP ′[x+ 1..y − 1], the search also takes O(log(n/r) log σ) time.

Once we have finally determined that our letter must occur inside some Xz, we process it as
done on Xw〈a, b〉 to determine the exact occurrence, if it exists.

7 Experimental results

We implemented our simplest scheme, that is, Theorem 1 using O(r) space, and compared it with
the state of the art.

7.1 Implementation

We implemented the simpler version described by Bannai et al. [2] of the structure of Theorem 1
(with s = 1) using the sdsl library [48].21 For the run-length FM-index, we used the implementation
described by Prezza [101, Thm. 28] (suffix array sampling excluded), taking (1 + ε)r(log(n/r) +
2) + r log σ bits of space (lower-order terms omitted for readability) for any constant ε > 0 fixed
at construction time and supporting O(log(n/r) + log σ)-time LF mapping. In our implementation,
we chose ε = 0.5. This structure employs Huffman-compressed wavelet trees (sdsl’s wt huff) to
represent run heads, as in our experiments they turned out to be comparable in size and faster
than Golynski et al.’s structure [50], which is implemented in sdsl’s wt gmr.

Our locate machinery is implemented as follows. We store one gap-encoded bitvector First[1..n]
marking with a bit set the text positions that are the first in their BWT run (note that First[i]
refers to text position i, not BWT position). First is implemented using sdsl’s sd vector, takes
overall r(log(n/r)+2) bits of space (lower-order terms omitted), and answers queries in O(log(n/r))
time. We also store a vector FirstToRun[1..r] such that text position First.select1(i) belongs
to the FirstToRun[i]-th BWT run. FirstToRun is a packed integer vector stored in r log r bits.
Finally, we explicitly store r suffix array samples in a vector Samples[1..r]: Samples[p] is the text
position corresponding to the last letter in the p-th BWT run. Samples is also a simple packed
vector, stored in r log n bits of space.

Let SA[sp..ep] be the range of our query pattern. The run-length FM-index and vector Samples
are sufficient to find the range [sp..ep] and locate SA[ep] using the simplified toe-hold lemma [2].

21https://github.com/simongog/sdsl-lite
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Moreover, for 0 < i < n it holds that φ(i) = Samples[FirstToRun[First.rank1(i)]− 1] +∆, where
∆ = i − First.predecessor(i) (assuming for simplicity that the first text position is marked in
First; the general case can easily be handled with few more operations). Note that φ is evaluated
in just O(log(n/r)) time. Notably, this time drops to O(1) in the average case, that is, when bits
set in First are uniformly distributed. This is because sdsl’s sd vector breaks the bitvector into
r equal-sized buckets and solves queries inside each bucket (which in the average case contains just
O(1) bits set). Occurrences SA[ep− 1],SA[ep− 2], . . . ,SA[sp] are then retrieved as φk(SA[ep]), for
k = 1, . . . , ep− sp.

Overall, our index takes at most ((1 + ε) log(n/r) + 2 log n + log σ + 4 + 2ε) r bits of space for
any constant ε > 0 (lower-order terms omitted for readability) and, after counting, locates each
pattern occurrence in O(log(n/r)) time. Note that the space of our index essentially coincides with
the information-theoretic minimum needed for storing the run-length BWT and 2r text positions
in plain format (which is r log(n/r) + r log σ + 2r log n bits); therefore it is close to the optimum,
since our locate strategy requires storing 2r text positions. In the following, we refer to our index
as r-index; the code is publicly available22.

7.2 Experimental Setup

We compared r-index with the state-of-the-art index for each compressibility measure: lzi23 [73,
24] (z), slp23 [25, 24] (g), rlcsa24 [79, 80] (r), and cdawg25 [9] (e). We also included hyb26 [30, 31],
which combines a Lempel-Ziv index with an FM-index, with parameter M = 8, which is optimal
for our experiment. We tested rlcsa using three suffix array sample rates per dataset: the rate X
resulting in the same size for rlcsa and r-index, plus rates X/2 and X/4.

We measured memory usage and locate times per occurrence of all indexes on 1000 patterns of
length 8 extracted from four repetitive datasets, which are also published with our implementation:

DNA: an artificial dataset of 629,145 copies of a DNA sequence of length 1000 (Human genome)
where each character was mutated with probability 10−3;

boost: a dataset consisting of concatenated versions of the GitHub’s boost library;

einstein: a dataset consisting of concatenated versions of Wikipedia’s English Einstein page;

world leaders: a collection of all pdf files of CIA World Leaders from 2003 to 2009 downloaded
from the Pizza&Chili corpus.

Table 5 shows the main characteristics of the datasets: the length n, the alphabet size σ, the
number of runs r in their BWT, the number z of LZ77 phrases27, and the size of g the grammar
generated by Repair28. Note the varying degrees of repetitiveness: boost is the most repetitive
dataset, followed by DNA and einstein, which are similar, and followed by the least repetitive one,
world leaders. It can be seen that g ≥ z by a factor of 1.3–2.8 and r ≥ g by a factor of 1.0–1.8.
Therefore, we could expect in general that the indexes based on grammars or on Lempel-Ziv parsing
are smaller than r-index, but as we see soon, the differences are not that large.

22https://github.com/nicolaprezza/r-index
23https://github.com/migumar2/uiHRDC
24https://github.com/adamnovak/rlcsa
25https://github.com/mathieuraffinot/locate-cdawg
26https://github.com/hferrada/HydridSelfIndex
27Using code requested to the authors of an efficient LZ77 parser [59].
28Using the “balanced” version offered at http://www.dcc.uchile.cl/gnavarro/repair.tgz
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Dataset n σ r z g

DNA 629,140,006 10 1,287,508 (0.065) 551,237 (0.028) 727,671 (0.037)
boost 629,145,600 96 62,025 (0.003) 22,747 (0.001) 63,480 (0.003)
einstein 629,145,600 194 958,671 (0.049) 292,117 (0.015) 631,239 (0.032)
world leaders 46,968,181 89 573,487 (0.391) 175,740 (0.120) 507,525 (0.346)

Table 5. The main characteristics of our dataset. The numbers in parentheses are rough approximations to the
bits/symbol achievable by the associated compressors by using one 4-byte integer per run, phrase, or right-hand-side
grammar symbol.

Memory usage (Resident Set Size, RSS) was measured using /usr/bin/time between index
loading time and query time. This choice was motivated by the fact that, due to the datasets’ high
repetitiveness, the number occ of pattern occurrences was very large. This impacts sharply on the
working space of indexes such as lzi and slp, which report the occurrences in a recursive fashion.
When considering this extra space, these indexes always use more space than the r-index, but
we prefer to emphasize the relation between the index sizes and their associated compressibility
measure. The only existing implementation of cdawg works only on DNA files, so we tested it only
on the DNA dataset.

7.3 Results

Figure 4 summarizes the results of our experiments. On all datasets, the time per occurrence of
r-index is 100–300 nanoseconds per occurrence, outperforming all the indexes based on Lempel-Ziv
or grammars by a factor of 10 to 100. These indexes are generally smaller, using 45%–95% (lzi),
80%–105% (slp), and 45%–100% (hyb) of the space of r-index, at the expense of being orders
of magnitude slower, as said: 20–100 (lzi), 8–50 (slp), and 7–11 (hyb) times. Further, r-index
dominates all practical space-time tradeoffs of rlcsa: using the same space, rlcsa is 20–500 times
slower than rindex, and letting it use 1.7–4.4 times the space of r-index, it is still 5–100 times
slower. The regular sampling mechanism of the FM-index is then completely outperformed. Finally,
cdawg is almost twice as fast as r-index, but it is 60 times larger (indeed, larger than a classical
FM-index), which leaves it out of the competition on “small” indexes.

Comparing with the bits per symbol of Table 5, we note that the space of r-index is 2–4 words
per run, whereas lzi and hyb use 3–6 words per Lempel-Ziv phrase and slp uses 4–6 words per
symbol on the right-hand-side of a rule. The low space per run of r-index compared to the indexes
based on z or g shrink the space gap one could expect from comparing the measures r, z, and g.

7.4 Scalability

We finish with an experiment showing the space performance of the indexes on a real collection of
Influenza nucleotide sequences from NCBI29. It is formed by 641,444 sequences, of total size 0.95
GB after removing the headers and newlines. We built the indexes on 100 prefixes of the dataset,
whose sizes increased evenly from 1% to 100% of the sequences. As the prefixes grew, they became
more repetitive; we measured how the bits per symbol used by the indexes decreased accordingly.
As a repetition-insensitive variant, we also include a classical succinct FM-index (fm-index), with
a typical sampling rate of dlg ne positions for locating, plain bitvectors for the wavelet trees and
for marking the sampled SA positions, and a rank implementation using 1.25 bits per input bit.

29ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/influenza.fna.gz, the description is in the parent directory.
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Fig. 4. Locate time per occurrence and working space (in bits per symbol) of the indexes. The y-scale measures
nanoseconds per occurrence reported and is logarithmic.

Figure 5 shows the evolution of the index sizes. As we add more and more similar sequences,
all the indexes (except the FM-index) decrease in relative size (bps), as expected. On the complete
collection, fm-index still uses 4.75 bits per symbol (bps), whereas r-index has decreased to 0.88
bps (about 2.4 words per run), hyb to 0.52 bps (about 5.5 words per phrase, 60% of r-index), slp
to 0.49 bps (about 1.9 words per symbol, 56% of r-index), and lzi to 0.22 bps (about 2.3 words
per phrase, 25% of r-index). We remind that, in exchange, r-index is 10–100 times faster than
those indexes, and that it uses 18% of the space of the classic fm-index (a factor that decreases as
the collection grows).

This collection, where the repetitiveness is not as high as in the previous datasets (in fact, it
is close to that of world leaders), shows that r (and thus r-index) is more sensitive than g and
z to the decrease in repetitiveness. In particular, g and z are always O(n/ logσ n), and thus the
related indexes always use O(n log σ) bits. Instead, r can be as large as n [101], so in the worst case
r-index can use Θ(n log n) bits. Note, in particular, that the other indexes are below the 2 bps of
the raw data after processing just 3% of the collection; r-index breaks this barrier only after 8%.

8 Construction

In this section we analyze the working space and time required to build all our data structures.
Table 6 summarizes the results. The working space does not count the space needed to read the
text in online form, right-to-left. Times are worst-case unless otherwise stated. Expected cases hold
with high probability (w.h.p.), which means over 1− 1/nc for any fixed constant c.

8.1 Dictionaries and predecessor structures

A dictionary mapping t keys from a universe of size u to an interval [1..O(t)] can be implemented as
a perfect hash function using O(t) space and searching in constant worst-case time. Such a function
can be built in O(t) space and expected time [38]. A construction that takes O(t) time w.h.p. [115]
starts with a distributor hash function that maps the keys to an array of buckets B[1..t]. Since the
largest bucket contains O(log t/ log log t) keys w.h.p., we can build a fusion tree [39] on each bucket,
which requires linear space and construction time, and constant query time.
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If we are interested in deterministic construction time, we can resort to the so-called determin-
istic dictionaries, which use O(t) space and can be built in time O(t(log log t)2) [104].

A minimum perfect hash function (mphf) maps the keys to the range [1..t]. This is trivial using
O(t) space (we just store the mapped value), but it is also possible to store a mphf within O(t)
bits, building it in O(t) expected time and O(t) space [6]. Such expected time holds w.h.p. as well if
they use a distributor function towards t′ = O(t/ log t) buckets. For each bucket Bi, i ∈ [1..t′], they
show that w.h.p. O(log t) trials are sufficient to find a perfect hash function σ(i) for Bi, adding up
to O(t) time w.h.p. Further, the indexes σ(i) found distribute geometrically (say, with a constant
parameter p), and the construction also fails if their sum exceeds λ · t/p for some constant λ of our
choice. The probability of that event is exponentially decreasing with t′ for any λ > 1 [56].

A monotone mphf (mmphf), in addition, preserves the order of the keys. A mmphf can be
stored in O(t log log u) bits while answering in constant time. Its construction time and space is as
for a mphf [3, Sec. 3] (see also [4, Sec. 3]). Therefore, all the expected cases we mention related
to building perfect hash functions of any sort hold w.h.p. as well. Alternatively, their construction
time can turn into worst-case w.h.p. of being correct.

Our predecessor structure [13, Thm. 14] requiresO(t) words and answers in timeO(log logw(u/t)).
Its reduced-space version [13, Sec. A.1 and A.2], using O(t log(u/t)) bits, does not use hashing. It is
a structure of O(log logw(u/t)) layers, each containing a bitvector of O(t) bits. Its total worst-case
construction time is O(t log logw(u/t)), and requires O(t) space.

Finally, note that if we can use O(u) bits, then we can build a constant-time predecessor
structure in O(u) time, by means of rank queries on a bitvector.

8.2 Our basic structure

The basic structures of Section 2.5 can be built in O(r) space. We start by using an O(r)-space
construction of the run-length encoded BWT that scans T once, right to left, in O(n log r) time
[101] (see also Ohno et al. [99] and Kempa [?]). The text T is not needed anymore from now on.
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Structure Construction time Construction space

Basic counting and locating (Lem. 1) O(n log r) O(r)
or O(n) O(n)

Fast locating (Thm. 1 + Lem. 4, s = log logw(n/r)) O(n(log r + log logw(n/r))) O(r log logw(n/r))
or O(n) O(n)

Optimal counting and locating (Thm. 2) O(n(log r + log logw(n/r))) O(r log logw(σ + n/r))
or O(n+ r(log log σ)3) O(n)

RAM-optimal counting and locating (Thm. 3) O(n(log r + log logw(n/r))) O(rw logσ logw(σ + n/r))
+O(rw1+ε) exp.

or O(n+ rw1+ε) exp. O(n)

Text substrings (Thm. 4) O(n(log r + log logw(n/r))) O(r log(n/r))
or O(n) O(n)

Accessing SA, ISA, and LCP (Thm. 5, 6 & 7) O(n(log r + log logw(n/r))) O(r log(n/r))
or O(n) O(n)

Optimal counting/locating, O(r log(n/r)) space (Thm. 8) O(n+ r(log log σ)2) exp. O(r log(n/r) logn/ log log n)

Suffix tree (Thm. 9) O(n+ r log logw r) O(n)
without operation LAQS O(n) O(n)
with O(Sort(n)) I/Os O(n(log r + log logw(n/r))) O(B + r log(n/r))
with O(n/B + log(n/r)) I/Os, no TDepth & LAQT O(n(log r + log logw(n/r))) O(B + r log(n/r))

Table 6. Construction time and space for our different data structures, for any constant ε > 0. All the expected
times (“exp.”) hold w.h.p. as well. Variable B is the block size in the external memory model, where Sort(n) denotes
the I/O complexity of sorting n integers.

We then build the predecessor structure E that enables the LF -steps in time O(log logw(n/r)).
The construction takes O(r log logw(n/r)) time and O(r) space. The positions p that start or end
BWT runs are easily collected in O(r) time from the run-length encoded BWT .

The structures to compute rank on L′ in time O(log logw σ) [13] also use predecessor structures.
These are organized in r/σ chunks of size σ. Each chunk has σ lists of positions in [1..σ] of lengths
`1, . . . , `σ, which add up to σ. The predecessor structure for the ith list is then built over a sample
of `i/ logw σ elements, in time O((`i/ logw σ) log logw(σ logw(σ)/`i)). Adding over all the lists, we
obtain O((σ/ logw σ) log logw σ) ⊆ O(σ). The total construction time of this structure is then O(r).

In total, the basic structures can be built in O(n log r) time and O(r) space. Of course, if we
can use O(n) construction space, then we easily obtain O(n) construction time, by building the
suffix array in linear time and then computing the structures from it. In this case the predecessor
structure E is implemented as a bitvector, as explained, and LF operates in constant time.

8.3 Fast locating

Structure E collects the starts of runs. In Section 3 we build two extended versions that collect
starts and ends of runs. The first is a predecessor structure R (Lemma 2), which organizes the O(r)
run starts and ends separated by their character, on a universe of size σn. The second uses two
predecessor structures (Lemmas 3 and 4), called P+ and P− in Lemma 4, which contain the BWT
positions at distance at most s from run borders.

To build both structures, we simulate a backward traversal of T (using LF -steps from the
position of the symbol $) to collect the text positions of all the run starts and ends (for R), or all
the elements at distance at most s from a run start or end (for P+ and P−). We use predecessor and
successor queries on E (the latter are implemented without increasing the space of the predecessor
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structure) and accesses to L′ to determine whether the current text position must be stored, and
where. The traversal alone takes time O(n log logw(n/r)) for the LF -steps.

The predecessor structure R is built in O(r) space and O(r log log(σn/r)) ⊆ O(n log log σ) ⊆
O(n log r) (since σ ≤ r) time. The structures P+ and P− contain O(rs) elements in a universe of
size n, and thus are built in O(rs) space and time O(rs log log(n/(rs))) ⊆ O(n) (we index up to rs
elements but never more than n).

Overall, the structure of Theorem 1, enhanced as in Lemma 4, can be built in O(rs) space
and O(n log r + n log logw(n/r)) time. If we can use O(n) space for the construction, then the LF -
steps can be implemented in constant time and the traversal requires O(n) time. In this case, the
structures R, P+ and P− can also be built in O(n) time, since the predecessor searches can be
implemented with bitvectors.

For the structure of Lemma 5 we follow the same procedure, building the structures P+ and
P−. The classical algorithm to build the base LCP array [64] uses O(n) time and space. Within this
space we can also build the predecessor structures in O(n) time, as before. Note that this structure
is not needed for Theorem 1, but in later structures. Using those, we will obtain a construction of
LCP using less space (see Section 8.6).

8.4 Optimal counting and locating

The first step of this construction is to build the compact trie that contains all the distinct substrings
of length s of T . All these lie around sampled text positions, so we can simulate a backward traversal
of T using E and L′, as before, while maintaining a window of the last s symbols seen. Whenever
we hit a run start or end in L, we collect the next s − 1 symbols as well, forming a substring of
length 2s− 1, and from there we restart the process, remembering the last s symbols seen.30 This
traversal costs O(n log logw(n/r)) time as before.

The memory area where the edges of the compact trie will point is simply the concatenation of
all the areas of length 2s− 1 we obtained. We now collect the s substrings of length s from each of
these areas, and radix-sort the O(rs) resulting strings of length s, in time O(rs2). After the strings
are sorted, if we remove duplicates (getting σ∗ distinct strings) and compute the longest common
prefix of the consecutive strings, we easily build the compact trie structure in a single O(σ∗)-time
pass. We then assign consecutive mapped values to the σ∗ leaves and also assign the values vmin

and vmax to the internal nodes. By recalling the suffix array and text positions each string comes
from, we can also assign the values p and SA[p] (or SA∗[p]) to the trie nodes.

To finish, we must create the perfect hash functions on the children of each trie node. There are
O(rs) children in total but each set stores at most σ children, so the total deterministic time to create
the dictionaries is O(rs(log log σ)2). In total, we create the compact trie in time O(n log logw(n/r)+
rs2 + rs(log log σ)2) and space O(rs).

The construction of the RLFM-index of T ∗ can still be done within this space, without explicitly
generating T ∗, as follows. For each position L[i], the BWT of T , we perform s LF -steps to obtain the
metasymbol corresponding to L∗[i], which we use to traverse the compact trie in order to find the
mapped symbol L∗[i]. Since the values of L∗ are obtained in increasing order, we can easily compress
its runs on the fly, in O(rs) space. The BWT of T ∗ is then obtained in time O(ns log logw(n/r)).
We can improve the time by obtaining this BWT run by run instead of symbol by symbol: We

30If we hit other run starts or ends when collecting the s− 1 additional symbols, we form a single longer text area
including both text samples; we omit the details.
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start from each run L[x1, y1] and compute x2 = LF (x1). From it, we find the end y2 of the run x2
belongs in L. The new run is L[x2, y2]. We repeat the process s times until obtaining L[xs, ys]. The
next run of L∗ is then L∗[x1, x1 + (ys−xs)]. The computation of yk from xk can be done by finding
the predecessor of xk in E and associating with each element in E the length of the run it heads,
which is known when building E. In this way, the cost to compute the BWT of T ∗ decreases to
O(r∗ log logw(n/r)) ⊆ O(n log logw(n/r)).

From the BWT , the other structures of the RLFM-index of T ∗ are built as in Section 8.2, in time
O(r∗ log logw(n/r∗)) ⊆ O(n) and space O(r∗) ⊆ O(rs). The array C∗ is also built in O(r∗) ⊆ O(rs)
time and O(σ∗) ⊆ O(rs) space.

To finish, we need to build the structure of Lemma 4, which as seen in Section 8.3 is built in
O(rs) space and O(n log logw(n/r)) time. With s = log logw(σ + n/r), the total construction time
is upper bounded by O(n(log logw(n/r) + (log log σ)2)) and the construction space by O(rs) (we
limit rs by n because we never have more than n symbols in the trie or runs in L∗). When added
to the O(n log r) time to build the BWT of T , the total simplifies to O(n(log r + log logw(n/r)))
because σ ≤ r.

If we can use O(n) space for the construction, then the LF -steps can be implemented in constant
time. We can generate T ∗ explicitly and use linear-time and linear-space suffix array construction
algorithms, so all the structures are built in time O(n). The compact trie can be built by pruning
at depth s the suffix tree of T , which is built in O(n) time. We still need to build the perfect hash
functions for the children, in deterministic time O(rs(log log σ)2). When added to O(n), the total
simplifies to O(n+ r(log log σ)3).

The difference when building the RAM-optimal version is that the compact trie must be changed
by the structure of Navarro and Nekrich [91, Sec. 2]. In their structure, they jump by logσ n symbols,
whereas we jump by w/ log σ symbols. Their perfect hash functions, involving O(rs) nodes, can be
built in time O(rs(log log(rs))2), whereas their weak prefix search structures [5, Thm. 6] are built
in expected time O(rswε) for any constant ε > 0. For the value of s used in this case, the time can
be written as O(rw1+ε). The construction space stays in O(rs).

8.5 Access to the text

The structure of Theorem 4 can be built as follows. We sample the text positions of starts and
ends of BWT runs. Each sampled position induces a constant number of half-blocks at each of the
O(log(n/r)) levels (there are also r blocks of level 0). For each block or half-block, we must find
its primary occurrence. We first find all their rightmost BWT positions with an LF -guided scan
of T of time O(n log logw(n/r)), after which we can read each block or half-block backwards in
O(log logw(n/r)) time per symbol. For each of them, we follow the method described in Lemma 8
to find its primary occurrence in O(log logw(σ+n/r)) time per symbol, doing the backward search
as we extract its symbols backwards too. Since at level l there are O(r) blocks or half-blocks of
length O(n/(r · 2l−1)), the total length of all the blocks and half-blocks adds up to O(n), and the
total time to find the primary occurrences is O(n log logw(σ + n/r)).

We also need to fill in the text at the leaves of the structure. This can be done with an additional
traversal of the BWT , filling in the T values (read from L′) at the required positions whenever
we reach them in the traversal. The extra time for this operation is O(n log logw(n/r)) (we use
predecessor and successor queries on E to determine when our BWT position is close enough to a
sample so that the current symbol of L′ must be recorded in the leaf associated with the sample).
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Therefore, the structure of Theorem 4 is built in O(n log logw(σ+n/r)) time and O(r log(n/r))
working space, once the basic structure of Lemma 1 is built.

In case of having O(n) space for construction, we can replace predecessor structures with rank
queries on bitvectors of n bits, but we still have the O(log logw σ) time for rank on L′. Thus the total
time is O(n log logw σ). Although this is the most intuitive construction, we will slightly improve it
in Section 8.6.

8.6 Suffix array access and byproducts

The other structures of Section 5 give access to cells of the suffix array (SA), its inverse (ISA), and
the longest common prefix array (LCP).

The structure of Theorem 5 is analogous to that of Theorem 4: it has O(log(n/r)) levels and
O(r) blocks or half-blocks of length sl = n/(r · 2l−1) at each level l. However, its domain is the
suffix array cells and the way to find a primary occurrence of each block is different. At each level,
we start with any interval of length sl and compute LF on its left extreme. This leads to another
interval of length sl. We repeat the process until completing the cycle and returning to the initial
interval. Along the way, we collect all the intervals that correspond to blocks or half-blocks of this
level. Each time the current interval contains or immediately follows a sampled BWT position in
E, we make it the primary occurrence of all the blocks or half-blocks collected so far (all those
must coincide with the content of the current block or half-block), and reinitialize an empty set
of collected blocks. This process takes O(n log logw(n/r)) time for a fixed level. We can perform a
single traversal for all the levels simultaneously, storing all the blocks in a dictionary using the left
extreme as their search key. As we traverse the BWT , we collect the blocks of all lengths starting
at the current position p. Further, we find the successor of p − 1 in E to determine the minimum
length of the blocks that cover or follow the nearest sampled position, and all the sufficiently long
collected blocks find their primary occurrence starting at p. The queries on E also amount to
O(n log logw(n/r)) time.

This multi-level process requires a dictionary of all the O(r log(n/r)) blocks and half-blocks.
If we implement it as a predecessor structure, it takes O(r log(n/r)) space, it is constructed in
O(r log(n/r) log logw(n/r)) time, and answers the O(n) queries in time O(n log logw(n/r)). The
collected segments can be stored separated by length, and the O(log(n/r)) active lengths be marked
in a small bitvector, where we find the nonempty sets over some length in constant time.

We also need to fill the DSA cells of the leaves of the structure. This can be done with an
additional traversal of the BWT , filling in the SA values at the required positions whenever we
reach them in the traversal. We can then easily convert SA to DSA values in the leaves. This does
not add extra time or space, asymptotically.

The construction of the structures of Theorem 6 is analogous. This time, the domain of the
blocks and half-blocks are the text positions and, instead of traversing with LF , we must use φ.
This corresponds to traversing the BWT right to left, keeping track of the corresponding position in
T . We can maintain the text position using our basic structure of Lemma 3. Then, if the current text
position is i, we can use the predecessor structures on T to find the first sampled position following
i − 1, to determine which collected blocks have found their primary occurrence. We can similarly
fill the required values DISA by traversing the BWT right-to-left and writing the appropriate ISA
values. Therefore, we can build the structures within the same cost as Theorem 5.

In both cases, if we have O(n) space available for construction, we can build the structures in
O(n) time, since LF can be computed in constant time and all the dictionaries and predecessor
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structures can be implemented with bitvectors. We can also use these ideas to obtain a slightly
faster construction for the structures of Theorem 4, which extract substrings of T .

Lemma 20. Let T [i−1..i] be within a phrase. Then it holds that φ(i−1) = φ(i)−1 and T [i−1] =
T [φ(i)− 1].

Proof. The fact that φ(i − 1) = φ(i) − 1 is already proved in Lemma 14. From that proof it also
follows that T [i− 1] = BWT [p] = BWT [p− 1] = T [j − 1] = T [φ(i)− 1]. ut

Lemma 21. Let T [i − 1..i + s] be within a phrase, for some 1 < i ≤ n and 0 ≤ s ≤ n − i. Then
there exists j 6= i such that T [j − 1..j + s − 1] = T [i − 1..i + s − 1] and [j − 1..j + s] contains the
first position of a phrase.

Proof. The proof is analogous to that of Lemma 15. By Lemma 20, it holds that T [i′−1..i′+s−1] =
T [i− 1..i+ s− 1], where i′ = φ(i). If T [i′ − 1..i′ + s] contains the first position of a phrase, we are
done. Otherwise, we apply Lemma 20 again on [i′− 1..i′+ s], and repeat until we find a range that
contains the first position of a phrase. This search eventually terminates because φ is a permutation
with a single cycle. ut

We can then find the primary occurrences for all the blocks in Theorem 4 analogously as for
DISA (Theorem 6). We traverse T with φ (i.e., we traverse the BWT right to left, using Lemma 3
to compute φ each time). This time we index the blocks and half-blocks using their right extreme,
collecting all those that end at the current position i of T . Then, at each position i, we use the
predecessor structures on T to find the nearest sampled position preceding i + 1, to determine
which collected blocks and half-blocks have found their primary occurrence. We can similarly fill
the required values of T with a final traversal of BWT , accessing L′. Therefore, we can build these
structures within the same cost of Theorem 6.

Finally, the construction for LCP access in Theorem 7 is a direct combination of Theorem 5
(i.e., SA) and Lemma 5 (i.e., PLCP extension, with s = log(n/r)). In Section 8.3 we saw how
to build the latter in O(n) time and space. Within O(n) space, we can also build the structure of
Theorem 7 in O(n) time. We can, however, build the structure of Lemma 5 within O(r log(n/r)+rs)
space if we first build SA, ISA, and the extraction structure. The classical linear-time algorithm
[64] is as follows: we compare T [SA[2]..] with T [SA[1]..] until they differ; the number ` of matching
symbols is LCP [2]. Now we jump to compute LCP [Ψ(2)], where Ψ(p) = ISA[(SA[p] mod n) + 1] is
the inverse of LF [53]. Note that LCP [Ψ(2)] = lcp(T [SA[Ψ(2)]..], T [SA[Ψ(2)−1]..]) = lcp(T [SA[2]+
1..], T [SA[Ψ(2)−1]..]) and, if ` > 0, this is at least `−1 because T [SA[2]+1..] already shares the first
`−1 symbols with some lexicographically smaller suffix, T [SA[1] + 1..]. Thus the comparison starts
from the position ` onwards: LCP [Ψ(2)] = `−1+ lcp(T [SA[Ψ(2)]+`−1..], T [SA[Ψ(2)−1]+`−1..]).
This process continues until the cycle Ψ visits all the positions of LCP .

We can simulate this algorithm, traversing the whole virtual array LCP [1..n] but writing only
the O(rs) cells that are at distance s from a run border. We first build P+, P−, and LCP ′ as for
Lemma 5. We then traverse T backwards virtually, using LF , in time O(n log logw(n/r)), spotting
the positions in P± = P+ ∪ P−. Say we find p ∈ P± and the previous p′ ∈ P± was found d steps
ago. This means that p′ = Ψd(p) is the next relevant suffix after p along the LCP algorithm. We
store next[f(p)] = 〈p′, d〉, where next is a table aligned with LCP ′. Once this pass is complete,
we simulate the algorithm starting at the last relevant p value we found: we compute LCP [p] = `
and store LCP ′[f(p)] = `. Then, if next[f(p)] = 〈p′, d〉, we set p = p′ and ` = max(1, ` − d).
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Along the process, we carry out O(rs) string comparisons for a total of O(n) symbols. Each string
comparison takes time O(log(n/r)) in order to compute ISA. We extract the desired substrings of
T by chunks of log(n/r) symbols, so that comparing ` symbols costs O(`+ log(n/r)). Overall, the
traversal takes time O(n+ rs log(n/r)), plus the O(n log logw(n/r)) time to compute next. Added
to the O(n log r + n log logw(n/r)) time needed in Section 8.3 to build the sampling structures, we
have a total time of O(n log r+n log logw(n/r) + rs log(n/r)), within O(r log(n/r) + rs) space. For
s = log(n/r), as required in Theorem 7, the space is O(r log(n/r)) and the time is in O(n log r +
n log logw(n/r)), because O(rs log(n/r)) = O(r log2(n/r)) ⊆ O(n).

Finally, to obtain optimal counting and locating in space O(r log(n/r)), we only need to care
about the case r ≥ n/ log n, so the allowed space becomes Ω(n log log n) bits. In this case we
use an O(n)-bit compressed suffix tree enriched with the structures of Belazzougui and Navarro
[12, Lem. 6]. This requires, essentially, the suffix tree topology represented with parentheses, edge
lengths (capped to O(log log n) bits), and mmphfs on the first letters of the edges towards the nodes’
children. The parentheses and edge lengths are obtained directly left-to-right, with a sequential
pass over LCP [64, 106]. If we have O(n log n) bits for the construction (which can be written as
O(r log(n/r) log n/ log log n) space), the first letters are obtained directly from the suffix array and
the text, all in O(n) time. The construction of the mmphfs on (overall) O(n) elements can be done
in O(n) expected time. We need, in addition, the structures to extract substrings of T and entries
of SA, and a compact trie on the distinct strings of length log(n/r) in T . With O(n) space, the
other structures of Section 8.4 are built in O(n+ r(log log σ)2) expected time.

8.7 Suffix tree

The suffix tree needs the compressed representations of SA, ISA, and LCP . While these can be built
in O(r log(n/r)) space, the suffix tree construction will be dominated by the O(n) space needed to
build the RLCFG on DLCP in Lemmas 18 and 19. Therefore, we build SA, ISA, and LCP in O(n)
time and space.

Starting from the plain array DLCP [1..n], the RLCFG is built in O(log(n/r)) passes of the
O(n)-time algorithm of Jeż [57]. This includes identifying the repeated pairs, which can also be
done in O(n) time via radix sort. The total time is also O(n), because the lengths of the strings
compressed in the consecutive passes decrease exponentially.

All the fields l, d, p, m, n, etc. stored for the nonterminals are easily computed in O(r log(n/r)) ⊆
O(n) time, that is, O(1) per nonterminal. The arrays L, A, and M are computed in O(r) time and
space. The structure RMQM is built in O(r) time and bits [36]. Finally, the structures used for
solving PSV′ and NSV′ queries on DLCP ′ (construction of the tree for the weighted level-ancestor
queries [36], supporting the queries themselves [72], and the simplification for PSV/NSV [37]), as
well as the approximate median of the minima [35], are built in O(r) time and space, as shown by
their authors.

The construction of the predecessor data structures for the weighted level-ancestor queries
requires creating several structures with O(r) elements in total, on universes of size n, having at
least n/r elements in each structure. The total construction time is then O(r log logw r). Note that
this predecessor structure is needed only for PSV′/NSV′, not for PSV/NSV, and thus it can be
omitted unless we need the operation LAQS .

In addition, the suffix tree requires the construction of the compressed representation of PTDE
[37]. This is easily done in O(n) space and time by traversing a classical suffix tree.
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We note that, with O(n/B+log(n/r)) I/Os (where B is the external memory block size), we can
build most of the suffix tree in main memory space O(B + r log(n/r)). The main bottleneck is the
algorithm of Jeż [57]. The algorithm starts with two sequential passes on DLCP , first identifying
runs of equal cells (to collapse them into one symbol using a rule of the form X → Y t) and second
collecting all the distinct pairs of consecutive symbols (to create some rules of the form X → Y Z).
Both kinds of rules will add up to O(r) per pass, so the distinct pairs can be stored in a balanced
tree in main memory using O(r) space. Once the pairs to replace are defined (in O(r) time), the
algorithm traverses the text once again, doing the replacements. The new array is of length at most
(3/4)n; repeating this process O(log(n/r)) times will yield an array of size O(r), and then we can
finish. By streaming the successively smaller versions of the array to external memory, we obtain
the promised I/Os and main memory space. The computation time is dominated by the cost of
building the structures SA, ISA, and LCP in O(r log(n/r)) space: O(n(log r + log logw(n/r)). The
balanced tree operations add another O(n log r) time to this complexity.

The other obstacle is the construction of PTDE . This can be done in O(Sort(n)) I/Os, O(n)
computation, and O(r) additional main memory space by emulating the linear-time algorithm to
build the suffix tree topology from the LCP array [64]. This algorithm traverses LCP left to right,
and maintains a stack of the internal nodes in the rightmost path of the suffix tree known up
to now, each with its string depth (the stack is easily maintained on disk with O(n/B) I/Os).
Each new LCP [p] cell represents a new suffix tree leaf. For each such leaf, we pop nodes from
the stack until we find a node whose string depth is ≤ LCP [p]. The sequence of stack sizes is the
array TDE . We write those TDE entries to disk as they are generated, left to right, in the format
〈TDE [p],SA[p]〉. Once this array is generated on disk, we sort it by the second component, and
then the sequence of first components is array PTDE . This array is then read from disk left to
right, as we simultaneously fill the run-length compressed bitvector that represents it in O(r) space
[37]. The left-to-right traversal of LCP and SA is done in O(n) time by accessing their compressed
representation by chunks of log(n/r) cells, using Theorem 5 and Lemma 5 with s = log(n/r).

9 Conclusions

We have closed the long-standing problem of efficiently locating the occurrences of a pattern in a
text using an index whose space is bounded by the number of equal-letter runs in the Burrows-
Wheeler transform (BWT) of the text. The occ occurrences of a pattern P [1..m] in a text T [1..n]
over alphabet [1..σ] whose BWT has r runs can be counted in time O(m log logw(σ+n/r)) and then
located in O(occ log logw(n/r)) time, on a w-bit RAM machine, using an O(r)-space index. Using
space O(r log logw(σ + n/r)), the counting and locating times are reduced to O(m) and O(occ),
respectively, which is optimal in the general setting. Further, using O(rw logσ logw(σ+n/r)) space
we can also obtain optimal time in the packed setting, replacing O(m) by O(dm log(σ)/we) in the
counting time. Our findings also include O(r log(n/r))-space structures to access consecutive entries
of the text, suffix array, inverse suffix array, and longest common prefix array, in optimal time plus
a per-query penalty of O(log(n/r)). We upgraded those structures to a full-fledged compressed
suffix tree working in O(r log(n/r)) space and carrying out most navigation operations in time
O(log(n/r)). All the structures can be built in times ranging from O(n) worst-case to O(nw1+ε)
expected time and O(n) space, and many can be built within the same asymptotic space of the
final solution plus a single pass over the text.

The number of runs in the BWT is an important measure of the compressibility of highly
repetitive text collections, which can be compressed by orders of magnitude by exploiting the
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repetitiveness. While the first index of this type [79, 80] managed to exploit the BWT runs, it
was not able to locate occurrences efficiently. This gave rise to many other indexes based on other
measures, like the size of a Lempel-Ziv parse [76], the size of a context-free grammar [68], the size of
the smallest compact automaton recognizing the text substrings [18], etc. While the complexities are
not always comparable [45], the experimental results show that our proof-of-concept implementation
outperforms all the space-efficient alternatives by one or two orders of magnitude in locating time.

This work triggered several other lines of research. From the idea of cutting the text into phrases
defined by BWT run ends, we showed that a run-length context-free grammar (RLCFG) of size
O(r log(n/r)) can be built on the text by using locally consistent parsing [57]. This was generalized
to a RLCFG built on top of any bidirectional macro scheme (BMS) [110], which allowed us to
prove bounds on the Lempel-Ziv approximation to the optimal BMS, as well as several other related
bounds between compressibility measures [45, 93]. Also, the idea that at least one occurrence of any
text substring must cross a phrase boundary led Kempa and Prezza [67] to the concept of string
attractor, a set of γ text positions with such a property. They prove that string attractors subsume
all the other measures of repetitiveness (i.e., γ ≤ min(r, z, g)), and design universal data structures
of size O(γ log(n/γ)) for accessing the compressed text, analogous to ours. Navarro and Prezza then
extend these ideas to the first self-index on attractors [94], of size O(γ log(n/γ)) ⊆ O(r log(n/r)),
yet they do not obtain our optimal query times.

On the other hand, some questions remain open, in particular regarding the operations that
can be supported within O(r) space. We have shown that this space is not only sufficient to rep-
resent the text, but also to efficiently count and locate pattern occurrences. We required, however,
O(r log(n/r)) space to provide random access to the text. This raises the question of whether effi-
cient random access is possible within O(r) space. For example, recalling Table 1, random access
in sublinear time is possible within O(g) space (g being the size of the smallest grammar) but it
has only been achieved in O(z log(n/z)) space (z ≤ g being the size of the Lempel-Ziv parse);
recall that r is incomparable with g and z. On the other hand, random access is possible within
O(γ log(n/γ)) space for any attractor of size γ, as explained. A more specific question, but still
intriguing, is whether we can provide random access to the suffix array of the text in O(r) space:
note that we can return the cells that result from a pattern search within this space, but accessing
an arbitrary cell requires O(r log(n/r)) space, and this translates to the size required by a suffix
tree. On the other hand, it seems unlikely that one can provide suffix array or tree functionality
within space related to g, z, or γ, since these measures are not related to the structure of the suffix
array: this is likely to be a specific advantage of measure r.

Finally, we are working on converting our index into an actual software tool for handling large
repetitive text collections, and in particular integrating it into widely used bioinformatic software.
This entails some further algorithmic challenges. One is to devise practical algorithms for building
the BWT of very large repetitive datasets within space bounded by the repetitiveness. While our
results in Section 8 are at a theoretical stage, recent work by Boucher et al. [19] may be relevant.
Offering efficient techniques to insert new sequences in an existing index are also important in a
practical context; there is also some progress in this direction [2]. Another important aspect is,
as explained in Section 7, making the index less sensitive to lower repetitiveness scenarios, as it
could be the case of indexing short sequences (e.g., sets of reads) or metagenomic collections. We are
working on a hybrid with the classic FM-index to handle in different ways the areas with higher and
lower repetitiveness. Finally, extending our index to enable full suffix tree functionality will require,
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despite our theoretical achievements in Section 6, a significant amount of algorithm engineering to
obtain good practical space figures.
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38. M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case access time. Journal

of the ACM, 31(3):538–544, 1984.
39. M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with fusion trees. Journal of

Computer and System Sciences, 47(3):424–436, 1993.
40. M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney. Efficient storage of high throughput DNA sequencing

data using reference-based compression. Genome Research, pages 734–740, 2011.
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