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ABSTRACT
We present a framework for quantitative security modeling and
analysis of highly customizable attack scenarios, which resulted as a
spin-off from our research in software product line engineering. The
graphical security models are based on attributed attack-defense
diagrams to capture the structure and properties of vulnerabilities,
defenses and countermeasures—with notable similarities to feature
diagrams—and on probabilistic models of attack behavior, capable
of capturing resource constraints and attack effectiveness. In this
paper, we provide an overview of the framework that is described
in full technical detail in twin papers, which present the formal
syntax and semantics of the domain-specific language and showcase
the associated tool with advanced IDE support for performing
analyses based on statistical model checking. The properties of
interest range from average cost and success probability of attacks
to the effectiveness of defenses and countermeasures. Here we
illustrate the capabilities of the DSL and the tool by applying them
to an example scenario from the security domain. This shows how
techniques from variability modeling can be applied to security. We
conclude with a vision and roadmap for future research.

CCS CONCEPTS
• Software and its engineering → Specification languages;
Formal methods; Software product lines; Extra-functional
properties; • Security and privacy → Formal methods and
theory of security; Formal security models.

KEYWORDS
Variability models, graphical security models, attack-defense trees,
quantitative security, statistical model checking, formal analysis
tools
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1 INTRODUCTION
The scope of this paper is to show how variability modeling and
analysis techniques can be applied in the security domain. We are
primarily interested in graphical representations for attack sce-
narios, and in analyzing the feasibility of an attack scenario on a
specific system. An attack scenario is a set of attack steps, each of
them representing the element of a successful attack. Depending on
the product under attack, on existing vulnerabilities, and on avail-
able resources, the scenario may slightly vary. To make a parallel
with software product lines, one can view each attack scenario as a
product, and a set of attack scenarios as a product line.

Graph-based security models offer an intuitive mean to represent
vulnerabilities in complex software-intensive systems, which can
then be used for formal analysis. Many such models are based on
attack trees [29, 33], which are conceptually very similar to feature
diagrams as we know them. Essentially, an attack tree is an and/or
tree, whose nodes represent goals and whose sub-trees represent
sub-goals. For instance, when modeling the risk assessment of ma-
licious system access, the root represents the main threat under
analysis, i.e. the system being accessed by an attacker, with each of
its children representing possible ways of enacting such a threat,
and possibly decorated with an estimation of the cost that the at-
tacker would have to pay to succeed in enacting the corresponding
action. Classical analyses of such trees concern computing proper-
ties related to the cost for an attacker to succeed.

Attack trees suffer from the same limitation as feature diagrams,
that is they do not permit to specify an order in variability selec-
tion. This is problematic as attack scenarios must be evaluated on
concrete systems, which are reacting in a dynamic defense manner
to successive and ordered attack steps. In order to mitigate this
problem, we combine attack trees with a behavioral model, just
like feature diagrams have been combined with featured transition
systems [14, 15]. More precisely, the graphical security model for
quantitative security modeling we propose here is based on declar-
ative attributed attack-defense trees [21, 22] to model the structure
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and properties (in the form of attributes) of vulnerabilities, defenses
and countermeasures on the one hand, and on procedural proba-
bilistic models [1, 4, 13, 26, 31] to capture attack behavior, modeling
resource constraints and attack effectiveness, on the other hand. To
make a parallel with software product lines, we are in the situation
where attack trees represent variability in the products, and then
probabilistic models represent the behavioral process to select at-
tack steps towards a successful attack scenario of the tree, while
dynamically reacting to countermeasures.

One limitation of the current approach is that security engineers
do not have the skills to work with those formal representations.
This calls for a new DSL model that encompasses both variability
and behavioral aspects of both attack scenarios and systems’ reac-
tivity. To do so, we propose to extend a domain specific language
(DSL) that we recently offered in the context of software product
lines [9, 35]. Our goal really is to offer a high-level DSL equipped
with a formal semantics, which is hidden to the end user by a
multi-platform one-click-install integrated development environ-
ment (IDE) for the DSL. Through tool-chaining with the statistical
analyzer MultiVeStA [34], the overall framework offers a means
to study properties like the success probability and average cost
of attacks or the effectiveness of defenses and countermeasures.
As such, the framework we propose can be seen as a recast for
the security domain of a recent approach for software product line
engineering [9, 35], which was indirectly applied to a confined
security scenario—yet with limitations that required intermediate
encoding into security notions.

Over the last five years we developed an integrated modeling
and analysis approach for configurable systems such as software
product lines, based on a family of formal specification languages
(FLan [10], PFLan [6], and QFLan [7], surveyed in [8] and culminat-
ing in [9, 35]). In [10], we defined a basic feature-oriented language
FLan. Its distinguishing modeling feature that was maintained in all
improvements of the language to date is a clean separation between
configuration (in terms of features) and behavior (in terms of ac-
tions). This is achieved by a rich process algebra with an associated
store of constraints to dynamically confine the possible configu-
rations and behavior. In [6], we moved to probabilistic modeling
in PFLan by equipping actions with a rate to capture notions like
uncertainty and failure that permit the analysis of the likelihood of
installing features or of probabilistic behavior, resulting in the first
application of statistical model checking in software product line
engineering. In [7], we enriched PFLan with advanced quantitative
constraint modeling options regarding the cost of features (i.e. non-
functional feature attributes like price or reliability). We defined
quantitative constraints as arithmetic relations among attributes,
giving rise to rich action constraints and propositions constraining
the presence of features. In [9, 35], we presented the full QFLan
framework, including mature Java-based tool support with a mod-
ern IDE that extends the previous prototypical implementations
based on a Maude interpreter combined with the distributed statis-
tical model checker MultiVeStA [34] and SAT/SMT solving with Z3.
We refer to [9] for a detailed presentation of related approaches.

The aforementioned limitations in applying QFLan to the secu-
rity domain motivated the redevelopment from scratch of a DSL and
accompanying tool based on the main intuitions underlying [9, 35],
now tailored towards more general security scenarios. The novelty

of our approach concerns the framework’s unique (as far as we
know) dual declarative-procedural nature inherited from the FLan
family of feature-oriented languages, by which the combination of
structural diagrams and dynamic behavior allow to study the vul-
nerabilities of a system for specific classes of attackers. The dynamic
behavior is inspired by so called attack profiles specified in the form
of automata, describing possible attack steps and their costs (cf.,
e.g., [17, 19, 23, 25, 28]). It is important to note, however, that our
attack behavior is driven by global quantitative constraints on costs,
like “step A can be performed because the total costs of the steps per-
formed so far is less than X”, which is novel. The DSL combines
common features from established approaches, such as counter-
measures [32], attack detection rates [2], ordered attacks [12, 30],
and further common features from vulnerability analysis like attack
effectiveness. Furthermore, to remedy a limitation common to most
approaches, the DSL allows nodes to have multiple parents, which
is convenient to specify an attack (defense) node that affects multi-
ple defenses (attacks), or an attack (defense) node that refines many
attacks (countermeasures), without the need to duplicate nodes.

The statistical model checking analysis capabilities, via tool-
chaining with MultiVeStA, are based on executing a sufficient (and
minimal) set of probabilistic simulations of the behavioral attack
model to obtain statistical evidence (with a predefined level of statis-
tical confidence) of the quantitative properties being verified. Prop-
erties are formulated in MultiVeStA’s property specification lan-
guage MultiQuaTEx [34]. The advantages of statistical model check-
ing over exhaustive (probabilistic) model checking are manifold.
First, there is no need to generate the entire state space, thus offer-
ing improved scalability by avoiding the combinatorial state-space
explosion problem typical of model checking. In case of highly cus-
tomizable scenarios, this outweighs the disadvantage of refraining
from precise results (100% confidence) with exact analysis tech-
niques like (probabilistic) model checking. Second, statistical model
checking is known to scale better with hardware resources, since
the set of simulation runs to be executed offers an intrinsic way to
parallelize and distribute. In fact, MultiVeStA can run on multi-core
machines, clusters or distributed computers with a nearly linear
speedup. Finally, MultiVeStA can use one and the same set of sim-
ulation runs to check multiple properties at a time, resulting in
further reductions of computing time.

Synopsis. In this paper, we give an overview of the framework
that will be described in full detail in twin papers where we will
(i) present the formal syntax of the domain-specific language with
its semantics based on weighted transition systems and (ii) show-
case the associated tool with advanced IDE support for performing
analyses based on statistical model checking. In Sect. 2, we illus-
trate the capabilities of the framework by applying it to an example
scenario from the security domain. This shows how techniques
from variability modeling can be applied in that domain. Sect. 3
concludes the paper with a vision and roadmap for future research.
Related work is cited throughout the paper wherever appropriate.

2 EXAMPLE SCENARIO
Our example is based on the safe lock scenario from Schneier’s
seminal work on attack trees [33], which we extend slightly to
better illustrate our approach.
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Figure 1: Attack-defense diagram

According to Schneier, an attack tree is a tree whose nodes
represent attacks, with the root representing an attacker’s global
goal. Child nodes represent refinements of this goal, meaning leaf
nodes represent attacks that cannot be refined any further. Schneier
distinguishes only two types of nodes, OR nodes and AND nodes,
modelling alternative (disjunctive) ways of achieving the same goal
and different (conjunctive) steps towards achieving the same goal,
respectively. Upon the addition of attributes, like the cost of an
attack, the value of attacks (such as the cost of the cheapest attack
or all the attacks that less than a certain value) can be synthesized.

2.1 Structure
The example scenario, an extension of Schneier’s safe lock scenario
from [33], is depicted as an attack-defense diagram in Figure 1.
Circles denote attack nodes, i.e. (sub-)goals to be accomplished to
succeed in the attack. The goal is to open a safe, the root OpenSafe,
which can be accomplished by BruteForce or OpenLock attacks.
The latter can in turn be obtained via LearnPIN or GuessPIN attacks.
LearnPIN requires two conditions, in a given order: first to find the
owner of the PIN, and then to force her/him to reveal it.

In most related approaches (such as, e.g., ADTrees [21] supported
by the ADTool [20]), attack nodes are divided into attack actions,
which represent operations performed by an attacker, and attack
goals, which are implicitly activated under the conditions specified
by the attack diagram’s structure (i.e., an attack goal is automat-
ically activated when the necessary sub-goals become activated).
We, instead, require attack nodes to be explicitly activated by at-
tack behavior. Thus, an attacker that has accomplished GuessPIN
must still explicitly accomplish also OpenLock. This implies very
fine-grained modeling of the dynamics of an attack and of reac-
tive defenses, since the activation of GuessPIN might activate the
countermeasure Lockdown, which in turn will affect OpenLock.

Besides attack nodes, our framework also exhibits defense and
countermeasure nodes, to model static and dynamic defensive mea-
sures, respectively. The defense Reinforced (denoted by a rectan-
gle) is permanently active against BruteForce attacks. Defenses
can be disabled by attack nodes: if the attacker uses a LaserCutter,
s/he can break Reinforced. However, some defenses are reactive,
responding to the detection of an attack attempt (cf. [32]). Such

is the countermeasure Lockdown (denoted by a diamond), which
can be triggered by GuessPIN attacks (denoted by a dotted arrow)
and which, once it has been activated, affects OpenLock attacks
(denoted by a dashed line). Countermeasures offer limited, reactive
defender behavior, whereas defense nodes are considered active by
default. These defensive measures enable interesting analyses on
the effectiveness and cost/benefits of a defense or of an attack, like
“is it worth defending/attacking the system in a given way?”.

DSL Code 1 shows how the nodes of our example scenario are
declared. Note that when declaring a countermeasure node it is
also necessary to specify which attack nodes can trigger it.

begin attack nodes
OpenSafe BruteForce OpenLock GuessPIN
LearnPIN FindOwner ForceOwner LaserCutter

end attack nodes

begin defense nodes
Reinforced

end defense nodes

begin countermeasure nodes
Lockdown = { GuessPIN }

end countermeasure nodes

Code 1: Nodes

In our framework, the diagrams structure nodes according to
two types of relations: refinements specify how an offensive (defen-
sive) node is structured into offensive (defensive) sub-nodes, while
role-changes specify how an offensive (defensive) node is opposed
by a defensive (offensive) node. Each node has at most one refine-
ment and at most one role-change. In Figure 1, edges are implicitly
directed downwards. Different from most approaches, nodes can
have multiple parents, which is convenient to specify one attack
(defense) node that affects multiple defenses (attacks), or an attack
(defense) node that refines many attacks (countermeasures).

Lines 2-4 of DSL Code 2 set the hierarchical constraints of our
example. The squared brackets of OAND indicate that order matters:
LearnPIN requires FindOwner and ForceOwner in that order.
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1 begin attack diagram
2 OpenSafe -> { BruteForce , OpenLock }
3 OpenLock -> { GuessPIN , LearnPIN }
4 LearnPIN -OAND -> [ FindOwner , ForceOwner ]
5 BruteForce -> { Reinforced }
6 Reinforced -> { LaserCutter }
7 OpenLock -> { Lockdown }
8 end attack diagram

Code 2: Attack-defense diagram

Inspired by other formalisms that support both attack and de-
fensive mechanisms (cf., e.g., [21]), our framework offers a role-
changing relation to describe which attack a countermeasure or de-
fense works against (e.g. Reinforced defends against BruteForce)
or vice versa (e.g. LaserCutter neutralizes Reinforced). Lines 5-7
of DSL Code 2 show that attack, defense, and countermeasure nodes
can additionally have a role-changing relation with a child of the
opposite role, an opponent node that affects its activation.

Our framework offers OR, AND, OAND (ordered AND), and k-out-
of-n refinements for attack and countermeasure nodes, whereas
defense nodes cannot be refined as they model static, atomic de-
fenses. Actually, countermeasures are also atomic, but we allow to
refine them with defense nodes to permit reactive defense nodes: de-
fense nodes refining a countermeasure become effective only upon
(attack detection and) activation of the refined countermeasure.

AND and OR refinements originate from the seminal works on
attack trees [33]. OpenSafe and OpenLock have OR refinements. The
k-out-of-n refinements are inspired by [32], expressing that only
a certain number of the sub-attacks are required, which is useful
syntactic sugar for modeling scenarios related to voting or sensors.
OAND refinements stem from [12, 30], adding a sequential aspect.
This can be interpreted in two ways: either the children can only be
activated in a given order or they can be activated in any order, but
only the correct order satisfies the relation. Our OAND refinements
adopt the latter, since orders of attacks can be modeled in an attack
behavior, and it might be interesting to model an attacker that does
not know the right order of attacks. Learning the PIN requires to
first find the owner and then force her/him.

As in many other approaches (cf., e.g., [22]), attack nodes can be
decorated with attributes such as cost or detection rates of attacks.
The cost of (attempting) an attack can be used to impose constraints,
like the maximum cost, which facilitates quantitative analyses that
are gaining in popularity [5, 6, 27]. DSL Code 3 shows the attribute
Cost used in our example to denote the cost of attempting an attack.
The default value is 0, e.g. Cost(GuessPIN) = 0.

begin attributes
Cost = { LaserCutter = 200, FindOwner = 20,

ForceOwner = 10, Reinforced = 250 }
end attributes

Code 3: Attributes

One is usually interested in computing the cumulative attribute
value for the entire scenario. Often, the cost associated to a (sub-
system rooted in a) node is the sum of the costs of its active descen-
dants [33]. However, the total cost of an attack is not given only

by the costs of successful sub-attacks, as this would be a best-case
scenario where the attacker never fails. Therefore, in our frame-
work the actual value of an attribute of an attack node considers
both successful and failed attack attempts. Furthermore, we allow
to specify attributes also for defensive nodes.

An attack detection rate determines the probability for an attack
attempt, i.e. the execution of a succ(·) or fail(·) action, to be
detected, and it triggers the activation of the affected countermea-
sures, in the sense that higher detection rates lead to more likely
activation of countermeasures. The default value is 0, i.e. an attack
is undetectable. DSL Code 4 specifies this property for our example.

begin attack detection rates
BruteForce = 0.5, OpenLock = 0.1,
GuessPIN = 0.8, LearnPIN = 0.3,
FindOwner = 0.6, ForceOwner = 0.7,
LaserCutter = 0.6

end attack detection rates

Code 4: Attack detection rates

Countermeasures are triggered when attacks are detected. In-
spired by the notion of noticeability from [2], the detection rate of
an attack can be explicitly specified to denote how likely it is for
the defender to notice that an attack was attempted, affecting the
activation of countermeasures. In [2], this property is also used to
constrain the stealthiness of an attacker. We therefore allow the
addition of explicit constraints on the attack behavior (see below).

In [20, 21], an attack node is disabled if it is affected by a defense.
However, a common conception in security is that nothing is ever
100% secure. Therefore, we offer the notion of defense effectiveness
to specify the effectiveness of a defensive node against any com-
bination of attack nodes and attack behavior. The rationale is that
different attackers might be affected differently by a defense, even
when attempting the same attack (e.g. a security guard is efficient
against a thief, but not against a military attack). Defense effective-
ness is given as a probability of how likely an attack is thwarted.
The default value is 0, i.e. the defense has no effect. The defense
effectiveness in our example is given by DSL Code 5.

begin defense effectiveness
Reinforced(ALL , BruteForce) = 0.95
Lockdown(ALL , OpenLock) = 0.8

end defense effectiveness

Code 5: Defense effectiveness (ALL denotes any attacker)

2.2 Behavior
Defensive behavior is reactive while an attacker is proactive. Our
framework allows to fine tune the described security scenario
by defining attack behavior, implicitly constrained by the attack-
defense diagram. Explicit attack behavior enables the analyses of
specific attacker types such as script kiddies, insiders, hackers, and
government agencies. The main advantage in analyzing specific
attacker types is the ability of evaluating system vulnerabilities for
the attacker types that make more sense for the considered security
scenarios. Furthermore, it allows for novel types of analysis that
complement the classical best- and worst-case evaluations of attack
graphs (e.g. the bottom-up evaluation in ADTool [20]).
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Figure 2: Attack behavior

The combination of explicit (probabilistic) attacker behavior and
attack-defense diagrams was mainly motivated by our work on
configurable systems, like product lines [9, 35]. We applied it to a
restricted class of attack trees in [9], with limitations that motivated
the present work. The diagrams in [9, 35] denote sets of products
sharing optional features. Each feature is a node which is installed
by a configurator process similarly to how attack nodes are added
by an attacker. However, the diagrams are simpler than those con-
sidered here, with only one type of node and one type of refinement
and without notions corresponding to defense effectiveness, attack
detection rates, fail(·) actions, and transition guards (see below).

Attack behavior is modeled as a transition system whose transi-
tions are decorated with the action being executed, weights (used
to compute the probability of executing the action), and possibly
guards (conditions on the action’s executability). Figure 2 sketches
the behavior of an attacker with three possible strategies: stratGP,
stratBF, and stratLP, which involve GuessPIN, BruteForce, and
LearnPIN attacks, respectively. The first of these strategies, stratGP,
tries the following attacks: GuessPIN (abbreviated by stratGP_GP),
OpenLock (stratGP_OL), and OpenSafe (stratGP_OS).

Our framework supports user-defined actions for scenario-specific
behavior not directly related to the activation of nodes, like choose,
which denotes the action of choosing a strategy, as well as built-in
actions, like succ(·) or fail(·), which denote the success or failure
of an attack attempt, respectively. An attack attempt is modeled by
a probabilistic choice between succ(·) and fail(·) actions, where
transition weights determine the success likelihood, together with
(the effectiveness of) the involved defenses. This is exemplified in
Figure 2 by the transitions outgoing from state stratGP_GP. Attack
behavior can also model attempts of an attacker to obtain informa-
tion about the sceanrio (like, e.g., whether an attack succeeded).
This is done using actions query(·). Finally, a succeeded attack
can be removed with remove(·), which may turn out useful in
the presence of OAND relations, since it allows an attacker to apply
backtracking strategies to try different attack sequences.

DSL Code 6 shows the user-defined actions of our example:
choose is executed when selecting the attack strategy, try when
attempting an attack, and success when the attack has succeeded.

begin actions
choose try success

end actions

Code 6: Actions

Informally, a behavior is executed as follows: at each step we
consider the outgoing transitions from the current state of the
behavior which are admitted by the attack diagram and by further
constraints discussed next. Among those, we use their relative
weights to probabilistically choose one (e.g., from start to stratGP
with probability 1

1+2+10 ).
Attack behavior may be constrained by hierarchical constraints,

quantitative constraints, action constraints, and transition guards.
Hierarchical constraints are due to attack diagrams. Quantitative
constraints are Boolean expressions involving (inequalities or arith-
metic expressions over) reals, attributes, and variables. In the ex-
ample, we constrain the total cost of attacks and the number of
attempts, which is particularly interesting when combined with the
fact that attack behavior may model failed attacks, by the quantita-
tive constraints given in DSL Code 7: “the accumulated cost of an
attack may not exceed 250” and “an attacker may not attempt more
than 15 attacks”.

begin quantitative constraints
{ sum(Cost) < 250 }
{ AttackAttempts < 15 }

end quantitative constraints

Code 7: Quantitative constraints

Finally, action constraints act as guards on any transition exe-
cuting the given action, while transition guards constrain single
transitions. DSL Code 8 shows the action constraints of our exam-
ple: “an attacker is not allowed to attempt using a laser cutter if the
cost already exceeded 100”.

begin action constraints
do(succ(LaserCutter)) -> {sum(Cost) < 100}
do(fail(LaserCutter)) -> {sum(Cost) < 100}

end action constraints

Code 8: Action constraints

The framework’s real-valued variables model context informa-
tion, thus allowing for rich descriptions of the state of the system,
of an attacker, and of the defenses, and they greatly facilitate the
analysis phase. Variables can be updated as side effects when exe-
cuting the model, i.e. memory updates which label transitions. This
allows one to model scenarios where variable updates are not tied
to specific nodes or actions. DSL Code 9 shows the only variable of
our example, used to count the attack attempts.

begin variables
AttackAttempts = 0

end variables

Code 9: Variables

Attack behavior is completed by specifying the attacker to use
and pre-accomplished attacks. This enriches expressiveness, be-
cause one can assign an initial advantage to an attacker. Indeed, an
attack-defense diagrammodels all possible attacks, but some attack-
ers (e.g., insiders) might already have access to critical components.
This is convenient because it allows one to ignore sub-trees of the
diagram without explicitly removing them.
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1 begin attacker behavior
2 begin attack
3 attacker = clever
4 states = start , finish , stratForce , stratF_OpenSafe , stratF_BruteForce , stratF_LaserCutter ,
5 stratLearnPIN , stratLP_OpenSafe , stratLP_OpenLock , stratLP_LearnPIN , stratLP_FindOwner ,
6 stratLP_ForceOwner , stratGuessPIN , stratGP_GuessPIN , stratGP_OpenSafe , stratGP_OpenLock
7 transitions =
8 //Pick a strategy:
9 start -(choose , 1)-> stratGuessPIN ,
10 start -(choose , 2)-> stratForce ,
11 start -(choose , 10) -> stratLearnPIN ,
12 // Strategy GuessPIN:
13 stratGuessPIN -(try , 1, allowed(GuessPIN) and !has(GuessPIN))-> stratGP_GuessPIN ,
14 stratGP_GuessPIN -(succ(GuessPIN), 1, {AttackAttempts=AttackAttempts +1}) -> stratGuessPIN ,
15 stratGP_GuessPIN -(fail(GuessPIN), 15, {AttackAttempts=AttackAttempts +1}) -> stratGuessPIN ,
16 stratGuessPIN -(try , 10, allowed(OpenLock) and !has(OpenLock))-> stratGPOpenLock ,
17 stratGP_OpenLock -(succ(OpenLock), 10, {AttackAttempts=AttackAttempts +1}) -> stratGuessPIN ,
18 stratGP_OpenLock -(fail(OpenLock), 1, {AttackAttempts=AttackAttempts +1}) -> stratGuessPIN ,
19 stratGuessPIN -(try , 10, allowed(OpenSafe) and !has(OpenSafe))-> stratGP_OpenSafe ,
20 stratGP_OpenSafe -(succ(OpenSafe), 10, {AttackAttempts=AttackAttempts +1}) -> stratGuessPIN ,
21 stratGP_OpenSafe -(fail(OpenSafe), 1, {AttackAttempts=AttackAttempts +1}) -> stratGuessPIN ,
22 stratGuessPIN -(success , 100, has(OpenSafe))-> finish
23 // Strategies Force and LearnPIN ...
24 end attack
25 end attacker behavior
26
27 begin init
28 clever = { FindOwner }
29 end init

Code 10: Attack behavior

DSL Code 10 sketches the attack behavior clever. It has a start
and a finish state, and some intermediate ones (Lines 4-6). Lines 9-
11 show that start can evolve into three states: stratGuessPIN,
stratForce, and stratLearnPIN, each implementing an attack
strategy involving only the corresponding attacks. As shown in
Line 11, the latter strategy has the highest weight, viz. 10, and hence
it is chosen with higher probability. Lines 12-22 detail the simplest
strategy, stratGuessPIN. The transitions in Lines 13-15 try to add
GuessPIN: if the constraints allow it (allowed(GuessPIN)) and
it has not been added yet (!has(GuessPIN)), then Line 13 exe-
cutes the user-defined action try to move to the intermediate state
stratGP_GuessPIN. Once there, given that it is unlikely to guess
a PIN, it either succeeds with weight 1 or fails with weight 15
(Lines 14-15) and then returns to stratGuessPIN. Notably, the tran-
sitions with succ and fail increment variable AttackAttempts,
which hence counts the attack attempts performed so far. Lines 16-
18 and Lines 19-21 are similar, but regard OpenLock and OpenSafe.
Lines 27-29 complete the specification with an initial status: the
specific attacker used, clever, and the pre-accomplished attacks,
FindOwner.

2.3 Analysis
We now illustrate two quantitative security analysis capabilities of
our framework’s tool on the example’s customizable probabilistic

attack scenario. Recall that statistical model checking is offered via
tool-chaining with MultiVeStA, which allows to estimate properties
like the average of real-valued observations on the model behavior.

To begin with, we compute the probability for each attack that it
is attempted first and that it succeeds, as well as the average steps
performed to attempt the first attack. DSL Code 11 expresses these
nine properties (one probability per attack node plus the average
number of steps, cf. Lines 3-5): query specifies the properties to
be evaluated in the first state when AttackAttempts == 1. Each
property can be an arithmetic expression of nodes (evaluating to 1
or 0 if the node is active or not, respectively), variables, attributes
(evaluated with respect to the attacker), or steps, evaluated as the
performed simulation steps. The guard is a Boolean expression with
(in)equalities of such arithmetic expressions.

1begin analysis
2query = eval when { AttackAttempts == 1 } :
3{ OpenSafe , BruteForce , OpenLock , Guess -
4PIN , LearnPIN , FindOwner , ForceOwner ,
5LaserCutter , steps[delta = 0.5] }
6default alpha = 0.05 delta = 0.1
7parallelism = 1
8end analysis

Code 11: First kind of analysis supported
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MultiVeStA estimates the expected value E[x] of each property
as the mean x of n independent probabilistic simulation runs, with
n large enough (but minimal) to satisfy an (α ,δ ) confidence interval
(CI): E[x] belongs to [x − δ/2,x + δ/2] with statistical confidence
(1 − α ) · 100%. The CI is specified with default alpha and delta
(but a property-specific δ can be used, as for steps). The keyword
parallelism specifies the number of local processes to be launched
to distribute the simulation runs.

Table 1 shows the results for the analysis of first attack. The
probability of achieving OpenSafe, OpenLock, or LearnPIN on first
attempt is 0. This is due to the hierarchical constraints from the
attack-defense diagram (e.g. accomplishing LearnPIN requires ac-
complishing FindOwner and ForceOwner). The probability of ac-
complishing BruteForce or GuessPIN is low because the attacker
is more likely to try the strategy for LearnPIN. Also, BruteForce
attempts are likely to fail due to the high defense effectiveness of
Reinforced. FindOwner, part of the initial configuration (cf. DSL
Code 10), has probability 1. On average, 3 steps are necessary to
first attempt an attack. This is consistent with DSL Code 10: first
a strategy is chosen (Lines 9-11), then try is executed towards an
intermediate state (e.g. Line 13) where an attack is attempted (e.g.
Lines 14-15). The analysis required 400 simulation runs and ran
in 1.22 seconds

Next, we analyse properties over time. In DSL Code 12, we com-
pute the probability for each attack that it is successfully attempted
and the probability of activating the two defensive nodes, while
we are no longer interested in the average steps (cf. Lines 3-5). As
shown in Line 2, this requires to change the condition whenwith the
steps of interest: from 1 to 50, increasing by 1. As a result, we are
evaluating 50 × 10 properties. The analysis required 560 simulation
runs and ran in 19 seconds.

1 begin analysis
2 query = eval from 1 to 50 by 1 :
3 { OpenSafe , BruteForce , OpenLock , Guess -
4 PIN , LearnPIN , FindOwner , ForceOwner ,
5 LaserCutter , Lockdown , Reinforced }
6 default alpha = 0.05 delta = 0.1
7 parallelism = 1
8 end analysis

Code 12: Second kind of analysis supported

Figure 3 depicts the probability over time of successful attacks.
The probability of OpenSafe grows, until approaching 1 at step 30.
By that point in time, all probabilities have stabilized and hence we
truncated the plots. Note that GuessPIN has the lowest probability,
closely followed by BruteForce and LaserCutter, while the other
probabilities stabilize close to 0.8.

Figure 4 shows that the probabilities of disabling Reinforced
and activating Lockdown are low. This is because attacks affecting
both of these defensive nodes are performed with a low probability.

In the future, we intend to investigate and integrate additional
analysis capabilities. We also plan to increase the tool’s usability
by providing a collection of attack libraries and import and export
support for existing formats, considering at least the model-driven
engineering approach of the generic ATTop tool [24].

3 VISION AND ROADMAP
We conclude by presenting several parts of our approach for which
we envision possibilities for extensions and improvements and
possible means to achieve them.

One part concerns the model itself. Currently, our framework
considers a dynamic model of attack behavior and a structural
model of available attack and defense features. First, let us look
at the attack/defense model. The model is very useful to describe
correlations between goals, such as “if a goal A is accomplished, then
subsequently a goal B must be accomplished”. This correlation of
goals is viewed by [3] as a ‘correlation of steps’. We could make this
more explicit in our DSL by adding temporal steps in the feature
description (like ^ or □, inspired by temporal logic [4, 13]).

Furthermore, so far we can make hypotheses concerning the
presence or absence of attack and defense attributes in a system,
but it would be interesting to add further variability explicitly in the
DSL. The goal would be to be able to distinguish products (system
variants or scenarios) with from products without those specific
attack or defense attributes and, moreover, to provide a temporal
correlation among those attributes. In the end, this would allow
reasoning on presence/absence, quantities, and temporalities, which
could be described in a domain-specific logic. This would require us
to distinguish between action constraints and attribute constraints
(and define the latter explicitly as language constructs in the DSL).

Concerning temporalities we could consider introducing tem-
poralities between attack and defense steps. This would allow us
to describe fine-grained correlations such as “if attack step (or, in
fact, any step) A is performed, then defense step B is performed in less
than X units of time”. In such case, X could even be parameterized
per product (system variant, i.e. customized security scenario). This
would lead to a notion of ‘reactive features’.

Another aspect that would be interesting to extend is the be-
havioral attack model. Our current model is purely probabilistic.
It would be worthwhile to investigate the introduction of non-
determinism aspects typical of Markov decision processes. The
non-deterministic transitions could be labeled with Boolean for-
mulae, similar to the feature expressions that label the transitions
of featured transition systems [14, 15]. This would allows us to
consider different kind of problems such as that of synthesizing
the best attacker or to formulate statements like “all attackers with
feature A satisfy a given property”. The latter could be achieved by
combining our approach with Uppaal Stratego [16].

Regarding requirements we believe it should be possible to con-
sider the full linear temporal logic LTL. Technically, this can be
done by combining our behavioral models with Büchi automata
and look for lassos (cf. [18]). This would allow us to express more
generic properties such as “if a person has the authorization to enter
and wants to enter, then (s)he will eventually enter”.

Finally, most of the properties we have checked with our frame-
work so far are with respect to logical requirements. Recently, sta-
tistical model checking has also been used to compare the behavior
of two systems via simulation [25]. We could imagine to compare
the behavior of two attackers via simulation, or the effect of two
attackers on two different attack-defense diagrams. It would also
be interesting to see whether we can derive the attackers with the
best chance of success (e.g. leave some of the weights off the edges
and rather derive them).
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Table 1: Results for the analysis of first attack (cf. DSL Code 11)

OpenSafe BruteForce OpenLock GuessPIN LearnPIN FindOwner ForceOwner LaserCutter steps

0 0.013 0 0.013 0 1 0.27 0.056 3

Figure 3: Probability of successful attacks (over time, cf. DSL Code 12)

Figure 4: Probability of active defensive nodes (over time, cf. DSL Code 12)
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