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ABSTRACT

Interactive machine learning techniques have a great potential to
personalize media recognition models for each individual user by
letting them browse and annotate a large amount of training data.
However, graphical user interfaces (GUISs) for interactive machine
learning have been mainly investigated in image and text recognition
scenarios, not in other data modalities such as sound. In a scenario
where users browse a large amount of audio files to search and an-
notate target samples corresponding to their own sound recognition
classes, it is difficult for them to easily navigate through the overall
sample structure due to the non-visual nature of audio data. In this
work, we investigate the design issue for interactive sound recogni-
tion by comparing different visualization techniques ranging from
audio spectrograms to deep learning-based audio-to-image retrieval.
Based on an analysis of the user study, we clarify the advantages and
disadvantages of audio visualization techniques, and provide design
implications for interactive sound recognition GUIs using a massive
amount of audio samples.

CCS CONCEPTS

¢ Human-centered computing — Human computer interac-
tion (HCI).
KEYWORDS

Sound Recognition; Interactive Machine Learning; Visualization

ACM Reference Format:

Tatsuya Ishibashi, Yuri Nakao, and Yusuke Sugano. 2020. Investigating
Audio Data Visualization for Interactive Sound Recognition. In 25tk In-
ternational Conference on Intelligent User Interfaces (IUI *20), March
17-20, 2020, Cagliari, Italy. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3377325.3377483

1 INTRODUCTION

While recent advances in deep neural networks have dramatically
improved the performance of media recognition tasks, it is still diffi-
cult to provide pre-trained models that meet diverse requirements
of individual users. There is still a huge gap between actual and
required recognition performances, and in most of the application
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Figure 1: In this work, we comparatively investigate how to vi-
sualize audio data in an interactive sound recognition system
that allows users to browse a large amount of unlabelled data.

scenarios, the recognition target often varies depending on the user.
In order to address these limitations, there is a growing interest in in-
teractive machine learning techniques [3]. In contrast to conventional
machine learning techniques assuming the existence of labeled (or
sometimes unlabeled) training data, users are directly involved in the
incremental model update process of interactive machine learning by
inspecting intermediate models and annotating training samples. In
this way, interactive machine learning provides a way for individual
users to examine the model training process, and adjust the behavior
of the trained models so that they meet their own requirements. The
key challenge is to design input and visualization frameworks where
even novice users without machine learning expertise can interact
with machine learning models in an intuitive manner.

However, one of the key limitations of existing studies is that
most of them focused on image- or text-related tasks [17-19, 29, 38].
Images and texts are unique in the way that the meaning of individual
samples are visually obvious, and even non-expert users can easily
interpret the content by, e.g., looking at thumbnail images. This
characteristic makes it easy to grasp the overview of a large amount
of data, and the prior works proposed GUIs which allows users to
browse candidate images and texts for annotating training data. In
contrast, most of the other media such as sensor data and audio files
are difficult to be visualized, and it is not a trivial task to interpret
the meaning of individual data. Therefore, while sound recognition
can be applied to a wide range of applications [13, 40, 47] and has a
good potential for interactive customization, it is more challenging to
design an interactive environment than image recognition scenarios.
While there exists a spectrogram as a way of visualizing sound
characteristics that has been commonly used by expert users [9, 16,
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41], it is not clear whether it is beneficial in the context of interactive
machine learning for novice users.

The goal of this work is to investigate the issue of sample vi-
sualization for designing interactive sound recognition GUIs. As
shown in Fig. 1, we examine a scenario where a large amount of
unlabelled audio samples are presented to users so that they can
navigate through the samples and annotate samples according to
their own target recognition categories. Audio samples are plotted in
a two-dimensional space computed according to their feature simi-
larities, and hierarchically clustered so that users can easily navigate
through the samples. The most important design challenge here is
how to make it possible for users to grasp a whole structure of the
audio samples and to quickly interpret the semantic meanings of
individual samples. To investigate the efficient visualization strategy,
we compare several different visualization cues to represent samples
and clusters in our GUI. They include audio spectrograms, thumb-
nail images obtained from reference videos, abstract audio class
labels estimated from a pre-trained classifier, and cross-modal con-
version using the state-of-the-art audio-to-image retrieval method [7].
Throughout an analysis of user study, we summarize the advantages
and disadvantages of each cue and how they affect the user interac-
tion.

The contribution of this work is summarized as follows. First, to
the best of our knowledge, this is the first work to investigate the de-
sign of interactive machine learning system for sound classification.
We propose and examine a novel interactive framework for train-
ing sound classification models from a large amount of unlabeled
samples. Second, we provide a detailed analysis of user behaviors
and questionnaires based on the user study, and clarify how novice
users perform the interactive sound classification task and how each
visualization influences the interactions. Finally, based on the analy-
sis, we discuss design implications for interactive sound recognition
GUIs.

2 RELATED WORK

Our work extends existing interactive machine learning literature
through visualization scheme, and also related to sound annotation
techniques for professional users.

2.1 Interactive Machine Learning

Interactive machine learning allows users to train their personal
machine learning models through interaction and visual inspec-
tion [3, 18, 19]. The models are trained in an incremental manner
through user interactions, and users can construct personalized mod-
els through trial and error. Interactive machine learning systems are
expected to provide users simple and intuitive ways for examining
the model output and adding training data. In prior work, there have
been several attempts to present generic approaches for letting users
directly interact with machine learning models regardless of the
input modality via, e.g., confusion matrix [4, 30, 42]. However, most
of the existing interactive machine learning techniques have been
investigated in application-oriented ways, mainly in the fields of
image- or text-related machine learning tasks.

Interactive machine learning has been often used to incorporate
human knowledge into the process to compensate for the difficulty
in the pre-defined recognition task. In this case, users are expected
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to improve recognition model performance by providing additional
training data. In the image recognition domain, prior work allowed
users to provide feedback on recognition results, and to add new
sample annotations to the recognition model [15, 18]. Similarly, in-
teractive machine learning has been also employed in text-related
applications such as spam filtering and sentence proofing. Huang
et al. proposed a system to support writing and reading online re-
views [27]. Their system predicted and presented category score
to the reviewers, while they could make a correction to wrong pre-
dictions. Abstrackr [43] was another online system for screening
citations of systematic reviews. The system could improve its clas-
sification output of relevant citations based on the relevance labels
provided by users. While in these approaches users could improve
the performance of pre-defined recognition models, they did not
discuss the interaction during the model definition phase and users
were not allowed to define their own recognition models.

Model definition is one of the most essential parts in machine
learning, and interactive machine learning systems also tried to pro-
vide users a way to freely explore unlabeled samples to define their
own class labels. Enders et al. proposed a design for visual ana-
lytic interaction, where a large document dataset was displayed in
a 2D layout and users could perform data analysis on these dis-
tributed samples [17]. The system updated the corresponding pa-
rameters of the analytic reasoning, and the visualization was also
updated according to the parameters. Some prior work also tried
to design interactions for defining user-specific image recognition
models [5, 19, 23, 26, 36]. Cueflik [19] was an interface which al-
lows users to create personal rules for image search, and the authors
showed that users can perform the model definition task more ef-
ficiently when the best and worst matching samples are displayed.
Similarly, in order to let users easily find similar groups of train-
ing samples, there have been some visualization approaches using
two-dimensional feature embeddings [26, 36]. In Sharkzor [36], un-
labeled images were embedded into a two-dimensional space by
using the t-SNE algorithm [34], and users could perform rearrange-
ment and grouping operations directly on the embedded space.

While our work has a similar motivation to these prior work, we
explore the potential of interactive machine learning in the sound
recognition scenario. As summarized above, most prior works relied
on the visualization of training samples and recognition results,
which was relatively straightforward for texts and images. The key
research question in this work is whether it is possible to extend the
same idea to the audio data domain.

2.2 Sound Recognition and Annotation

Sound recognition has been applied to many applications including
intelligent noise-canceling systems [20, 46] and assistive devices for
deaf and hard-of-hearing people [10, 35]. While recent advances in
deep neural networks have also significantly improved the state-of-
the-art performance of generic sound recognition [21, 25], it still
has difficulties in accuracy and task diversity, and user adaptation
is often required to meet real-world demands. Therefore, there is a
great potential for interactive sound recognition systems. However, it
is more difficult to browse and annotate a large amount of audio data
than texts and images. Users cannot easily grasp the audio contents
at a glance, and need to listen to individual audio samples.
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Spectrogram has been commonly used for visualization in the
context of annotation systems for professional purposes such as
bioacoustic recordings [9, 16, 41]. It has been reported that expert
annotators do not even have to listen to audio signals, and perform
the annotation task only with spectrograms [41]. However, despite
the efficiency on identifying changes in the audio event, past studies
have also suggested that it requires some experiences to recognize
and interpret the visual patterns of spectrogram representation [12].
In the context of interactive machine learning for novice users, it
is not clear whether spectrograms can be used to inspect audio
contents and whether the spectrogram representation is the best way
for information visualization.

Cross-modal conversion or retrieval techniques have been also
actively investigated to visualize sounds by converting them into
images or texts with the similar semantic meanings [2, 32, 37, 45].
In recent years, deep learning-based approaches have been attract-
ing more attention and conversion/retrieval performance has been
greatly improved. Prior researches proposed to generate images from
sounds using Generative Adversarial Networks [14, 44], or learned
a deep feature representation which can be used for cross-modal
retrieval [8]. Arandjelovi¢ and Zisserman further proposed to learn
such a feature representation from a large collection of video clips
without human-annotated labels [6, 7]. However, the effectiveness
of these methods was evaluated only in an experimental laboratory
setup, and the usability of these state-of-the-art cross-modal con-
version techniques has never been investigated in the context of
interactive machine learning.

There have been a few attempts for enabling efficient annota-
tion of a large amount of audio samples [22, 31, 39]. Shuyang et al.
proposed an idea to use clustering results based on auditory character-
istics for fast annotations [39]. When a user assigned a class label on
the representative sample of a cluster, all samples in the same cluster
were labeled as the same class. Some researches have also reduced
the annotation cost by using semi-automated approaches [22, 31].
In these methods, samples similar to the user-labeled ones and im-
portant samples around the decision boundary were presented to the
user. While these studies have only discussed the visual layout of
audio samples, we extensively investigate the interpretability issue
of auditory signals in interactive machine learning including the
sample browsing and model definition phase.

3 INTERACTIVE SOUND RECOGNITION

Figure 2 illustrates the basic overview of our GUI for interactive
sound recognition. The interface consists of three components. The
left panel (Fig. 2 (a)) shows frames corresponding to user-defined
classes and annotated samples. The center panel shows the sample
and class embedding (Fig. 2 (b)), and the right panel shows details
of the selected sample (Fig. 2 (c)). The goal of our GUI is to let
users easily browse a large amount of audio files for labeling, and
train their personal sound recognition models.

All audio samples are embedded into two-dimensional space
according to their similarities in feature space, and hierarchically
clustered for a better overview. While this 2D hierarchical repre-
sentation shows the relative relationships between samples, the key
difficulty is how to visualize the actual contents of each sample and
cluster. Although we tentatively set speaker icons to show audio
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Figure 2: Overview of the GUI design for interactive sound
recognition. (a) The left panel shows frames corresponding
to user-defined classes and annotated samples. (b) The center
panel shows the sample and class embedding, and (c) the right
panel shows details of the selected sample. Audio samples are
illustrated with speaker icons, but in this work we examine dif-
ferent visualization techniques using this base GUI.

samples in feature space in Fig. 2, they are obviously not informa-
tive enough. The main purpose of this work is to investigate how
to visualize these audio samples in an intuitive manner for users.
In this section, we first describe the basic interaction flow of our
GUI. We then describe technical details of our visualization tech-
niques, followed by implementation details of our machine learning
backend.

3.1 User Interaction

Figure 3 illustrates the flow of our proposed interaction. Users first
define target classes in the left panel. Users can add boxes corre-
sponding to a new sound class, and define the class name in the
text boxes (Fig. 3 (1)). For each class, users can optionally set refer-
ence validation samples to quantitatively evaluate the classification
accuracy during interaction.

Users then add training data to these user-defined classes from the
set of unlabeled samples displayed in the center panel. All samples
are displayed in the form of hierarchical clusters, and users can both
move and zoom in/out through the sample visualization (Fig. 3 (2)).
In our implementation, we use the t-SNE algorithm [34] to compute
the sample embedding in the center panel. Samples with similar au-
dio features become close to each other in the 2D embedding space.
Clustering is directly performed on the embedded 2D coordinates,
and the hierarchical structure is obtained by applying k-means clus-
tering multiple times to the cluster centroids. The embedded features
are further clustered using the k-means algorithm [33]. Users can
move the sample cluster horizontally and vertically by drag opera-
tion, and zoom in (out) the sample hierarchy by rotating the mouse
wheel up (down). The panel shows the corresponding sample clusters
according to the zoom level. The panel shows sample clusters with
their representative samples at higher levels of the sample hierarchy,
and higher hierarchy shows fewer, more high-level clusters. At the
lowest level, the panel shows individual audio samples.

When users double-click individual audio samples, they can play
the audio file and check details of each data at the right panel (Fig.



1UI 20, March 17-20, 2020, Cagliari, Italy

Tatsuya Ishibashi, Yuri Nakao, and Yusuke Sugano

O
~27.8%

o [k © e
) <y Py
R
Wind o E—
PR

03:53

Figure 3: The overall usage flow of our proposed system. 1) Users first define target classes in the left panel. 2) They then browse
unlabeled samples through the visualization, and 3) check individual samples in detail. 4) They can select and add positive samples
to the user-defined classes. 5) Every training process, the left panel shows the accuracy of each class and the overall accuracy for the
validation data, and 6) This further shows current estimation results on individual samples. Users repeat this labeling and training
process to update the model until it achieves the desired performance.

3.2 (3)). The right panel shows an audio player to playback the data,
together with the enlarged view of the visualization cue. In order to
add positive samples to the user-defined classes, users first select
target samples by ctrl-clicking individual samples or right-dragging
the target area. These selected samples can be added to one of the
user-defined classes by clicking the target class frame in the left
panel (Fig. 3 (4)). Similarly, users can also select the lowest cluster
and add all the samples belonging to the cluster. Then the colors
of the samples border are assigned with the same color as the user-
defined classes on the left panel. Users can also remove the samples
from classes by ctrl-click.

When users add samples to the user-defined classes, the classifi-
cation model is re-trained using the current training data. Once the
user-defined classification model is updated, the left panel shows
the accuracy of each class and the overall accuracy for the valida-
tion data (Fig. 3 (5)). In addition, the right panel also shows the
class probability scores (Fig. 3 (6)). Users repeat this labeling and
training process to update the model until it achieves the desired
performance.

3.2 Sample and Cluster Visualization

Based on the interaction design described above, we examine four
visualization cues listed in Fig. 4 for samples and clusters.

Video Thumbnail. 1f the audio sample is taken from a video clip,
it is possible to extract a representative frame as a thumbnail image.
Although this visualization is not always applicable to audio samples,
we can at least insert a few video data with thumbnail images as
references. In our implementation, the middle frame of the original
video (if available) is extracted as the thumbnail image representing
the audio data.
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Spectrogram. As discussed earlier, spectrogram has been com-
monly used to visualize audio characteristics. Audio spectrograms
can be obtained by applying a short-time Fourier transformation
to the waveforms of audio samples. We adopt hanning window as
window function. The number of data points used in each block
for the Fourier transformation is 256 and the number of points of
overlap between blocks is 128. The power scale is expressed in dB.

Semantic Representation. Another potential approach is to present
textual descriptions of each audio data. Since describing diverse au-
dio data is still a difficult task and it is a chicken-and-egg problem
to provide descriptions exactly matching the user demand, we use
classification results with highly abstract sound categories. In our
implementation, we pre-trained a generic sound classifier using the
AudioSet dataset [21]. In order to provide high-level abstract under-
standings of audio characteristics, we took seven semantic categories
("Human sounds", "Animal", "Music", "Sounds of things", "Natural
sounds", "Source-ambiguous sounds" and "Channel, environment
and background") from the highest level of the AudioSet ontology.
Once trained, this classifier can be used to estimate semantic class
probabilities of arbitrary audio samples. We use estimated class prob-
abilities to represent individual samples and clusters. The probability
scores of clusters are computed from the averages of probability
scores of all samples belonging to the cluster.

Audio-to-Image Retrieval. While thumbnail images are only avail-
able for audio samples taken from videos, we can also convert
arbitrary audio samples to images by using cross-modal retrieval
techniques. In this work, we use the state-of-the-art audio-to-image
retrieval method [7] to obtain images representing the semantic
meaning of audio data. This method learns two convolutional neural
networks that embed both audio and image data into a unified 128-
dimensional feature representation so that their Euclidean distance
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Figure 4: Examples of visualization cues used in this work. Each column shows visualization results of the same audio sample using

the technique denoted on the leftmost column.

can be used to discriminate whether two embedded features are taken
from the same video source. In other words, this method obtains
the cross-modal feature representation in a self-supervised manner,
by training the network to classify matching audio and image pairs
from randomly shuffled ones. As a result, this feature representa-
tion can be used for audio-to-image retrieval; we compute the 128D
feature from individual audio samples, and retrieve images whose
128D features are closest to the audio feature. Each sample cluster
is represented using images retrieved from the most audio sample
closest to the centroid.

3.3 Feature Extraction and Classification

The audio features for sound recognition are extracted using the
VGGish convolutional neural network [25] pre-trained on the Au-
dioSet dataset [21]. Audio spectrograms are obtained by applying a
short-time Fourier transformation to the waveforms, and the spec-
trograms are then integrated into 64 mel-spaced frequency bins and
transformed into mel-spectrograms. The mel-spectrograms are fed
into the VGGish network, and audio features are calculated for ev-
ery second. The output feature vector from the VGGish network is
1024-dimensional, and it is then reduced to 128-dimensional repre-
sentation by applying PCA [28] and whitening.

In order to train the sound classifier, we chose the Random Forest
algorithm [11] considering the ease of hyperparameter tuning and
computational cost. Given the user-defined classes, the multi-class
Random Forest classifier is trained on the 128-dimensional feature
vectors. The number of trees in a random forest is set to be 100, and
each tree is expanded until all leaves are less than two samples.
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4 EXPERIMENTS

We conduct a user study to verify the effectiveness of our interaction
design for sound recognition and examine how each visualization
influences the interactive machine learning process. We asked partici-
pants to search and annotate training samples for classifying multiple
sound categories, and compare the usability scores, classification
performances, and user interaction logs under different visualization.

Throughout the user study, we used audio samples from the Au-
dioSet dataset [21]. As the classification target, we selected four
sound categories: child, bird, wind, and siren. These four classes
were selected from the AudioSet ontology as reasonably abstract au-
dio categories which are not too similar to each other. We manually
selected 2,000 audio samples from the unbalanced train subset of
the AudioSet dataset, 500 clips per category, as validation data. We
further picked three sets of 10,000 audio samples from the AudioSet
as unlabeled data. They were randomly selected from the balanced
train and evaluation subsets of the AudioSet dataset, while balanced
to contain equal amounts of samples corresponding to the four target
classes. We randomly trimmed the original data to three seconds.
The task for participants is to classify the four target classes by using
the interactive system to search and annotate corresponding samples
from the 10,000 unlabeled samples.

4.1 Visualization Approaches

During experiments, we compare three approaches illustrated in
Fig. 5. Each 10,000 samples were clustered into four hierarchies in
our visualization, and Fig. 5 illustrates samples and clusters visu-
alized in the center panel (Fig. 2). The raw embeddings of 10,000
samples were first clustered into 1,000 clusters, and then their cluster
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Figure 5: Candidate visualization approaches in our experiments. Each column shows the samples or clusters visualized using each

approach.

centroid locations were clustered into 100 clusters, and then their
cluster centroid locations were further clustered into 10 clusters.
The rightmost column in Fig. 5 is the highest hierarchy where users
can see the entire sample distribution. As the user goes to the left
(lower) hierarchies, users can browse more fine-grained clusters and
individual samples at the lowest hierarchy.

Thumbnail & Spectrogram Since thumbnail images are not
always available and spectrograms alone are too difficult for
novice users to interpret, we combine these two visualization
cues as the first approach (Fig. 5 (a)). To obtain thumbnail
images, we use videos corresponding to the AudioSet sam-
ples from the YouTube-8M dataset [1]. In our experiments,
we assume 1,000 out of the 10,000 samples have the refer-
ence videos. These 1,000 samples are represented using the
corresponding thumbnail images, and the remaining 9,000
images are represented using spectrograms. The clustered rep-
resentation uses samples near the centroid as representative
samples, but thumbnail-associated samples are prioritized
over spectrogram-associated samples.

Semantic As the second approach, we visualize all samples and
clusters with the semantic class probabilities (Fig. 5 (b)). The
generic sound classifier is trained using 1-second audio data
from the unbalanced train subset of AudioSet, which is not
overlapping with the unlabelled samples in our experiments.
We extract audio features and train the Random Forest clas-
sifier in the same manner as described in Section 3.3. The
estimated class labels and their probabilities are used for vi-
sualization, and each sample and cluster shows class labels
with probabilities more than 20%.
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Retrieval As the last approach, we visualize samples and clus-
ters using audio-to-image retrieval results (Fig. 5 (c)). For
training the cross-modal feature embedding network, we use
500,000 1-second video clips from the YouTube-8M dataset,
which are part of the unbalanced train subset of AudioSet and
not overlapping with the unlabelled samples. The network
architecture and the training procedure follows the original
paper [7], but the audio and image sub-networks are each ini-
tialized weights by training auto-encoders in each modality.
We use the audio spectrogram computed from the middle one
second of the input audio sample, and candidate images for
image retrieval are taken from the same data used to train the
feature embedding network. Image retrieval during experi-
ments is done from the other two unlabelled sample subsets,
i.e., 10,000 audio samples in each sample set are visualized
with similar images taken from the videos corresponding to
the other 20,000 samples. Each sample is represented using
the four most similar images, and each cluster is represented
using the nine most similar images.

4.2 Procedure

We recruited eighteen (nine female) participants ranging from 18 to
25 (M = 22.06, SD = 2.09) years old from university mailing lists.
None of them had previous experience in either machine learning or
sound recognition technologies.

The study was conducted using a desktop computer with a 27"
4K monitor, and the participants used a headphone to preview audio
clips. The participants were first given a detailed explanation about
the task and the interactive machine learning system. They were
also encouraged to perform some dummy classification tasks to
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familiarize with the interfaces. All validation data were presented
to the participants before starting the task. After inspecting the
validation data, the participants freely used the system to annotate
unlabeled audio samples to accurately classify these test samples.
The participants could also check these validation samples during
experiments. In order to set a high standard on the task performance
and to encourage active engagement from participants, we instructed
them to perform the annotation task aiming at 70% classification
accuracy on validation datal. Regardless of whether or not this
goal was achieved, all sessions were forced to be 30 minutes. The
above process was repeated using each of the three visualization
approaches. The order of using visualization approaches and the
combination between visualizations and unlabelled sample sets was
counterbalanced among participants.

We recorded all possible user operation logs such as mouse click
and scrolling, and labeling results (selected samples for each target
class) together with timestamps. After each session, the participants
were asked to rate the perceived workload of the annotation task
using a questionnaire based on NASA-TLX [24]. We asked the
participants to rate 5 out of the NASA-TLX evaluation items, Mental
Demand, Temporal Demand, Effort, Performance, and Frustration,
in 10 levels. After all sessions, the participants were further asked
to rate each interface using subjective preference scores in 5-point
Likert scale. As the post-experiment questionnaire, we also asked
their subjective feedback on positive and negative aspects of each
interface in a free-form survey.

4.3 Results

In this section, we first summarize quantitative data obtained from
the interactive classification task performance, interaction logs, and
workload rating results. We then describe the results of preference
rating from participants, together with a summary of their subjective
feedback.

4.3.1 Quantitative Analysis. Figure 6 shows the transition of ac-
curacy and number of annotation operations during experimental
sessions. Horizontal axis corresponds to time in each experimental
session, and all plots show the mean values across all participants
at every 1 minute. Left vertical axis (bold solid line) corresponds
to the mean accuracy of the trained classifier, which is calculated
using the 2,000 (500 X 4 categories) validation data presented to the
participants. Following the evaluation protocol in prior work [25],
estimated class probabilities for each second are averaged over each
3-second audio clip and the class with the highest probability is
treated as the output for each audio clip. Right vertical axis (dashed
line) corresponds to the mean number of annotation operations by
participants, including both addition and removal to all of the target
classes. At the end of experiments, the Thumbnail & Spectrogram
approach shows the best accuracy with a significant difference from
the Semantic method (p < 0.05, Wilcoxon signed-rank test). The
Thumbnail & Spectrogram approach also achieves the largest number
of annotation operations, with a significant difference from the Re-
trieval method (p < 0.01, Wilcoxon signed-rank test). The instructed
performance target of 70% classification accuracy was achieved at
10 out of 18 x 3 sessions.

UIf the classifier is trained with labels provided by the AudioSet, i.e., if the users can
find all “ground-truth” samples belonging to each class, the mean accuracy is 80.8%.
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Figure 6: Transition of classifier accuracy (left, bold lines) and
number of annotation operations (right, dashed lines) during
experimental sessions. Horizontal axis corresponds to time in
each experimental session, and all plots show the mean values
across all participants at every 1 minute. Accuracy is calculated
using the validation data presented to the participants. Number
of annotation operations include both addition and removal to
all of the target classes.
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Figure 7: Mean classification accuracy with respect to the num-
ber of annotations. Each plot shows the mean accuracy at the
time with the same number of annotation operations given by
(at least nine) participants.

To provide another perspective on Fig. 6, Fig. 7 further shows the
mean accuracy with respect to the number of annotations. While the
vertical axis corresponds to the accuracy calculated in the same way
as Fig. 6, these plots show the mean accuracy at the time with the
same number of annotation operations given by participants. We plot
each line up to the point with more than nine participants, and thus
Thumbnail & Spectrogram has a longer plot than others. As can be
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Figure 8: Number of times participants played audio samples
during experiments. Each box plot corresponds to each visu-
alization approach, and the number of playing operations in-
cludes both individual samples and clusters.

seen, there is almost no difference between the three approaches with
the same number of annotations. This indicates that the superiority
of the Thumbnail & Spectrogram approach in classification accuracy
is brought mainly by the highest number of annotations.

To illustrate the differences in user behavior, Fig. 8 shows the
number of times participants played audio samples during experi-
ments. Each box plot corresponds to each visualization approach,
and the number of playing operations includes both individual sam-
ples and clusters. It can be seen that participants listened to more au-
dio samples while using the Semantic approach. In particular, there
is a significant difference from the Retrival approach (p < 0.05,
Wilcoxon signed-rank test). While both Semantic and Retrival ap-
proaches synthesize the representations without relying on auxiliary
video data, participants tend to annotate samples without listening
to them while using the Retrival approach.

Figure 9 visualizes the total time spent in each of the four hierar-
chies of sample clusters. Each stacked bar plot shows the mean total
time the participants spent in each of the four hierarchies. Users can
see the overview of the top 10 clusters at the highest hierarchy (top
in Fig. 9), while they can zoom into individual samples at the lowest
hierarchy (bottom in Fig. 9). Although the difference is not signif-
icant, participants tend to spend more time in the lower hierarchy
while using the Retrieval approach.

Figure 10 shows the summary of workload assessments by partic-
ipants. Each bar shows the mean rating of all participants, and the
error bars show their standard deviations. Overall, the Thumbnail &
Spectrogram approach achieves the best rating while the Semantic
approach achieves the worst. Especially, the Thumbnail & Spectro-
gram approach shows significantly better rating on performance than
the Retrieval and Semantic approaches (p < 0.05,0.01, Wilcoxon
signed-rank test). It also shows significantly better rating on frustra-
tion than the Semantic approach (p < 0.05, Wilcoxon signed-rank
test).
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Figure 9: Total time spent in each of the four hierarchies of sam-
ple clusters. Each stacked bar plot shows the mean total time
the participants spent in each of the four hierarchies, from bot-
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Figure 10: Summary of workload assessments by participants.
Each bar shows the mean rating of all participants, and the er-
ror bars show their standard deviations.

4.3.2 Subjective Feedback. Figure 11 shows 5-point Likert scale
preference scores for each approach from participants. Each bar
shows the mean score of all participants, and the error bars show
their standard deviations. The Thumbnail & Spectrogram approach
achieves the highest ratings among them, with the significant differ-
ence from the Semantic method (p < 0.01, Wilcoxon signed-rank
test). When we asked all participants which interface is the most
preferred, 11 out of 18 answered that the Thumbnail & Spectrogram
interface.

Most participants relied on visual inspection to browse unlabelled
samples, and thus they preferred visualization approaches using im-
ages. Eight participants mentioned that they could imagine actual
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Figure 11: 5-point Likert scale preference scores from partici-
pants. Each bar shows the mean score of all participants, and
the error bars show their standard deviations.

sounds from thumbnail images. However, at the same time, there
were three participants who commented that the thumbnail images
did not match the actual sound contents. Similarly, there was some
positive feedback on the audio-to-image retrieval results for sample
browsing. Eleven participants mentioned that they could imagine
the actual sounds from the visualization using audio-to-image re-
trieval. Eight participants also mentioned that, from audio-to-image
retrieval results, they could guess where their target audio samples
are in the overall distribution. One participant commented: “If was
easy to comprehend the visual commonality between audio samples,
because each audio was represented by multiple images.” However,
some participants also mentioned negative aspects of the audio-
to-image retrieval, mainly in terms of correspondence with actual
sound contents. Fifteen participants commented that they were con-
fused because the audio-to-image retrieval results did not match
the audio samples. One participant said: “The actual sounds were
often different from the sounds I imagined from the visualization. The
matching accuracy in my impression was about 50%. During the last
half (of the experimental session), I didn’t refer to the visualization
much.” There were also two participants who mentioned about the
information overload with too many images: “There was too much
information on the screen. The lower (sample cluster) hierarchy I
went, the more the visualization got crowded and difficult to grasp. 1
was a little tired of browsing.”

Eight participants mentioned that they could also guess where
their target audio samples are from the semantic representation of
sample clusters. One participant stated: “If I just want to grasp the
overview, I could quickly recognize from the text description what
kind of sound data is distributed there,” and another said: “Even
though the information is rough, text has relatively stronger power
of expression (than image representation).” However, seven partici-
pants commented that they were confused because the class proba-
bilities often did not match the audio contents. Four participants also
mentioned that it was difficult to imagine sounds from non-visual
representation.
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Interestingly, ten participants suggested that the spectrograms
worked complementary to thumbnails and improved the under-
standing of visualization. They mentioned that the sounds could
be roughly guessed with thumbnails, and the spectrograms can be
used to understand the characteristics of the audio samples. One par-
ticipant said: “As I kept looking at the spectrograms and listening to
the actual sounds, I could gradually understand how to narrow down
the search to the target samples. For example, I could guess samples
with discrete patterns appearing in the spectrograms are not what
I want.” Similarly, another participant also said: “I could roughly
grasp the actual contents of audio samples from thumbnail images,
and the magnitude of the sound from spectrograms. (The spectro-
grams were) Especially helpful when I was searching for sounds of
.” However, this seems to depend on the user characteristics, and
three participants commented that it was difficult to imagine sounds
from the spectrograms. One participant stated: “I could not imagine
(actual sounds) by only looking at spectrograms, and I couldn’t help
searching for thumbnails.”

Overall, eight participants provided positive feedback on the
base visualization approach to map audio samples into the two-
dimensional space using t-SNE. One participant stated: “Similar
samples were arranged close to each other, and I can select and
annotate multiple samples together.”” Two participants also positively
mentioned the cluster structure and their visualization. They com-
mented that such a hierarchical structure made it easy to grasp the
characteristics of a group of audio samples and helped them decide
where to explore.

One participant also said: “I was enjoying that the system displays
the current model accuracy immediately, and I feel it provided good
feedback.” However, there was some negative feedback regarding the
accuracy display and model behavior. Three participants, including
the one gave the positive comment above, mentioned that they felt
frustrated when the classification accuracy dropped down even with
“correct” annotations according to their standards. One of them stated:
“Annotations for child and bird classes were particularly difficult. In
the former case, 1 felt that the accuracy had dropped when I added
voices of crying babies and talking infants. In the latter case, the
same thing happened when I added the sound of chirping birds and
noisy crowing.”

5 DISCUSSIONS

Throughout the user study, we found some key characteristics of the
visualization cues we examined. These findings also lead to some
design implications for the future development of interactive sound
recognition systems.

5.1 Key Findings

According to the qualitative performance and user feedback, Thumb-
nail & Spectrogram approach was the best among our candidate
designs. We assume that this is because the combination of thumb-
nail and spectrogram has produced a synergistic effect when jointly
used with the similarity-based sample embedding. While users can
understand the acoustic characteristics (high or low frequency, dis-
crete or continuous pattern) from spectrograms, it is difficult for
novice users to guess their semantic meanings. In contrast, thumb-
nail images can serve as a rough indicator of the semantic meanings,
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while the details of the actual sound contents are completely omitted.
In this way, users could grasp the overview of sample distribution
from thumbnail images, and at the same time rely on spectrograms
to infer the characteristics of individual audio samples. However, as
discussed earlier, thumbnail representation requires that the audio is
taken from a video clip, and it is not always possible to obtain the
corresponding thumbnail for arbitrary audio data. It is still an open
question to design an interface for large-scale audio data annotation
without any reference visual information.

Both semantic class probabilities and audio-to-image retrieval
results have an advantage that they can efficiently guide users to
browse a large amount of audio data and find the target samples.
This can be seen from the user feedback on Semantic and Retrieval
approaches, and from less time user spent in higher sample hier-
archy (Fig. 9). Compared to the fully data-driven video thumbnail
representation, these learning-based methods provide stronger ab-
stractions of sound contents and represent high-level overviews of
the semantic meanings. However, while users could roughly guess
the sound category from semantic class probabilities, it was far more
difficult to imagine the actual details of the audio data than visual
representation. Therefore, as shown in Fig. 8, users played and lis-
tened to many audio samples while using the Semantic approach.
This could have influenced the lower ratings with NASA-TLX as
shown in Fig. 10, and indicates a strong disadvantage of textual
representation especially when applied to scenarios users cannot
listen to audio samples.

In contrast, according to the user feedback, the Retrieval approach
was more beneficial for grasping the overview of the sample distri-
bution, and users did not have to listen to many samples with the
audio-to-image retrieval. Participants spent more time in lower hier-
archies (Fig. 9), and eight participants commented that they could
imagine where the target samples are located in the distribution. This
indicates that the cluster structure was visualized in a more organized
way, and users could browse the sample distribution more quickly.
One of the potential reasons is that the visualization in the Retrieval
approach is more unified and continuous than in the Thumbnail &
Spectrogram approach, while providing more concrete information
than the Semantic approach. The audio-to-image retrieval method
is built upon a deep feature representation based on both visual and
acoustic similarities, and visually similar images also tend to be
close to each other in the cross-modal feature space. This improves
the similarities between images inside the 2D audio embedding, and
make the visualization more continuous than with thumbnail images
which fully depends on individual video data. However, the obvious
disadvantage of audio-to-image retrieval is that the technique itself
is addressing a quite challenging task, and visualization results are
not satisfactory enough even with the state-of-the-art method. The
actual sound is often different from the one imagined from visualiza-
tion, which gave negative impressions to users as can be seen from
NASA-TLX rating and subjective feedback.

5.2 Design Implications and Future Work

Our study indicates that each visualization has both advantages and
disadvantages, and it is important to combine different visualization
techniques for better visualization. First, spectrograms are beneficial
for the purpose of understanding details of the sound characteristics
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even for novice users. While spectrograms alone cannot tell the
meaning of sound, it helps the visualization when jointly used with
other visualization techniques to describe individual samples.

Second, visual representations like thumbnail and audio-to-image
retrieval work complementary to spectrograms by conveying the
semantic meaning of sound to users in more intuitive ways. Audio-
to-image retrieval can provide a more unified overview of the sample
distribution because of its stronger abstraction power and continu-
ous nature in the cross-modal feature space. Such a learning-based
visualization has the potential to make the annotation process more
efficient by appropriating the overall sample structure in the 2D
embedding. Thumbnail images are, if available, also effective to give
more concrete pictures of audio data especially at lower levels of the
sample hierarchy, and can compensate for the lack of accuracy in
audio-to-image retrieval.

Third, on the other hand, it is possible that text representation of
semantic sound categories makes the process of annotation more
efficient as a supplementary information. While user-defined target
classes are expected to be different from them, information about pre-
defined class probabilities can be helpful to understand the semantic
meaning of sound data more quickly than visual representations. It
can be, for example, also used to visualize representative regions for
each pre-defined sound category in the background of the sample
distribution, rather than representing individual samples and clusters.

It is an important future work to investigate further possibilities
to jointly use different visualization techniques. Learning-based vi-
sualization techniques also have a large design space and room for
technical improvement, and various audio-to-image conversion and
textual sound description techniques in general should be examined
too. The optimal design can also vary according to the target appli-
cation scenarios and user characteristics, and there will be required
more studies focusing on specific task domains.

One of the most important application domains is accessibility,
and there is a good potential of interactive, personalized sound
recognition for deaf and hard-of-hearing (DHH) users. While we
believe this study provides some insights such as the limitation of text
representation, the optimal design for DHH users could be further
different, also depending on whether the target user has congenital
or acquired hearing loss. Since even in our experiments we observed
some user-specific tendencies, it will be also important to investigate
approaches for user adaptation.

6 CONCLUSION

In this work, we conducted a comparative study of audio visualiza-
tion techniques for interactive sound recognition. Our proposed GUI
visualizes the distribution of audio samples using two-dimensional
feature embedding and hierarchical clustering, while each sample
or cluster is represented by different visualization cues. Through
the user study, we clarified the advantages and disadvantages of
each visualization technique, and draw some design implications for
efficient audio data visualization in interactive sound classification.
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