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Abstract
Dynamic Binary Instrumentation (DBI) is a well-established
approach for analysing the execution of applications at the
level of machine code. DBI frameworks implement a runtime
system capable of modifying running applications without
access to their source code. These frameworks provide APIs
used by DBI tools to plug in their specific analysis and instru-
mentation routines. However, the dynamic instrumentation
needed by these DBI tools is either challenging to implement,
and/or introduces a significant performance overhead.

An added complexity beyond the well studied scenario of
x86 and x86-64, is that state-of-the-art Arm systems (i.e. Arm
v8) introduced a distinct 64-bit execution mode with a new
redesigned instruction set. Thus, Arm v8 is a computer archi-
tecture which contains three instruction sets. This further
complicates the development of DBI tools which can work
for both 32-bit Arm (includes the A32 and T32 instruction
sets), and 64-bit (the A64 instruction set).

This paper presents the design of a novel DBI framework
API that provides support both for portable (across A32, T32
and A64), and for native-code-level analysis and instrumen-
tation, which can be intermixed freely. This API allows DBI
tool developers to balance performance and productivity
at a fine-grain level. The API is implemented on top of the
MAMBO DBI system.

CCS Concepts • Software and its engineering → Just-
in-time compilers; Runtime environments.

Keywords Dynamic Binary Instrumentation, Memory Er-
ror Checking, Online Cache Simulation, Arm
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1 Introduction
Dynamic Binary Instrumentation (DBI) frameworks provide
APIs which are used by external tools to implement dynamic
code analysis and instrumentation. For example, well-known
tools for detecting memory errors rely on DBI frameworks
such as Valgrind [18], Pin [13] and DynamoRIO [3]. Further
examples of tools implemented using DBI frameworks in-
clude microarchitectural simulators [6, 14, 15], development
tools such as memory error checkers [2, 18] and application
analysis tools such as taint tracers [7]. The design of such
an API is a three-way trade-off between programming ease,
flexibility and performance. Furthermore, architectures sup-
porting multiple instruction sets and ISA heterogeneity raise
the question of how to implement portable instrumentation
efficiently.
This paper presents the functionality required to imple-

ment efficiently common DBI tasks and to show a novel API
which provides it in a portable manner, while also allowing
low level access to the machine code, for detailed analysis
or for generating high performance instrumentation. The
proposed API is based on two layers: a low level layer al-
lows code analysis and generation directly at the machine
code level for full control. On top of the low level layer, a
high level layer allows the development of portable instru-
mentation using: (1) a generic RISC-like instruction set for
generating instrumentation, which is efficiently mapped by
the runtime to any of the supported native instruction sets,
(2) code analysis functions which abstract the decoding of ap-
plication code, and (3) code generation helpers for a number
of common DBI tasks, such as updating counters at runtime.
The use of the two layers can be interleaved inside a single
block of instrumentation, such that the boilerplate code (e.g.
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pushing register values on the stack) can be generated using
the high level, while specialised or performance-critical code
can be implemented separately for each instruction set to
take advantage of their specific features.
We have implemented the API on top of the existing Dy-

namic Binary Modification (DBM) system MAMBO [8], with
support for AArch32 - both the A32 and T32 instruction sets
- and AArch64 using the A64 instruction set. We did this by
extending the existing API of MAMBO - which exposed to
the plugins the same low level functionality used internally
- by allowing the plugins to observe new execution events
specifically selected to facilitate the implementation of in-
strumentation tasks, and with an abstracted and portable
layer for code analysis and generation.

The contributions of this paper are:
• identifying the requirements for a general purpose DBI
API;

• proposing an API design which emphasises conve-
nience and portability for the common building blocks
of DBI, while allowing low level control over performance-
critical or specialised instrumentation;

• implementing this API on top of an open source DBM
system; and

• implementing practical DBI tools (a memory error
checker and an online cache simulator) using this API
and evaluating their performance against similar tools.

In the evaluation, both DBI tools are compared for multi-
threaded scaling and single threaded performance against
state-of-the-art tools in Valgrind andDynamoRIO. The exper-
iments demonstrate comparable or improved performance
compared to state-of-the-art implementations.

2 Related Work
In 1994Hollingsworth et al. [10] proposed a highly abstracted
and partly ISA-independent dynamic instrumentation model,
in which users define their instrumentation tools using a
predefined set of metrics (e.g. processor usage, execution
counters) that can be measured for predefined resources (such
as processing cores). However, this is not a general-purpose
approach because it is limited to the resources and metrics
supported by the DBI system.
More recently, a number of other DBI systems have de-

fined APIs related to the API that we propose. Valgrind [17] is
a free software DBI framework for heavyweight instrumen-
tation. Its design prioritises convenience and developer pro-
ductivity over performance. In particular, Valgrind is notable
for using a Disassemble-and-Resynthesise (D&R) code scan-
ner, which lifts the native code to a single-static-assignment
Intermediate Representation (IR) level. The IR is then used
for code analysis and inserting instrumentation and is com-
piled back to native code at runtime. This approach allows
implementing ISA-independent instrumentation, however
the abstraction hides away the original instruction stream,

which makes it challenging to implement certain types of
DBI tools, such as microarchitectural simulators, which need
access to the original code of the application. Furthermore,
this approach does not allow developers to use explicitly ISA-
specific features, which can often be useful for minimising
the overhead of the instrumentation. Valgrind serialises all
application threads to simplify its usage, however this comes
at a high cost by forgoing performance improvements on
multicore machines, as shown in our evaluation (Section 7).

DynamoRIO [3] is a free software low overhead DBI frame-
work which provides a flexible instrumentation API. Its API
provides facilities both for inserting inline instrumentation
and for calling C/C++ functions. Its code generation API
has some support for ISA-independent code analysis and
generation, based on an IR specific to each architecture. Cer-
tain classes of IR instructions are only available on a sub-
set of the supported platforms. On Arm, DynamoRIO uses
thread-shared code caches, limiting the scalability of multi-
threaded instrumentation, especially for tools which collect
thread-private data as they are required to perform expen-
sive runtime thread-level-storage lookups, e.g. memory error
checking.
Pin [13] is a proprietary DBI framework developed by

Intel for the x86 and x86-64 architectures. Its API has a nar-
row usage model: instrumentation is done at a high level
of abstraction, with two usage models. The first model is to
insert calls to functions implemented in C/C++, which can
have high overhead compared to inline instrumentation. The
second model is to use a Buffering API, for collecting runtime
data in buffers which are periodically batch processed by
C/C++ functions. The latter model is not suitable for DBI
tools which need to process data in real-time, e.g. memory
error checking. Pin++ [9] is a framework which may be used
on top of Pin to improve the developer productivity using
object-oriented design and template metaprogramming.

Dyninst [4, 19] is a free software framework for patching
applications. As opposed to the other systems discussed in
this section and to MAMBO, it is based on code patching,
rather than DBM. Its modification system is not guaranteed
to maintain correctness because of the code discovery prob-
lem: for non-trivial programs, it is impossible to accurately
determine which locations contain code and which loca-
tions contain data ahead of time. Therefore it is susceptible
to incomplete coverage, when code is misidentified as data
and incorrect modification, when data is misidentified as
code [11]. Additionally, static code patching cannot be used
on Just-In-Time compiled and self-modifying code (e.g. JVM
and V8 for Javascript).

Lui et al. [12] developed a workload analysis methodology
which provides a unified abstraction layer on top of multiple
DBI systems (and other types of application analysis tools).
Their system provides separate implementations for each
supported DBI system, using their native APIs.
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We have considered implementing an API compatible with
an existing DBI system for MAMBO. However, in practice
the APIs of DBI systems are coupled with the internal imple-
mentation of such systems (e.g. the API of Valgrind works
on IR because Valgrind uses a D&R approach). Therefore,
attempting to reimplement an existing API for a different
DBI system would constitute a larger engineering challenge.
Furthermore, we could minimise the complexity of the API
by refining its scope to the features required for the Arm ar-
chitecture (i.e. an architecture with separate 32-bit and 64-bit
execution modes and three separate but similar instruction
sets).

3 API Design and High Level Overview
DBI consists of an analysis pass, in which the code of the
application is inspected (e.g. to identify instructions of a spe-
cific type in the application) and an instrumentation pass, in
which instrumentation code is inserted at specific locations
in the application. A high level overview is shown in Figure
1: DBI frameworks work by scanning the code of the appli-
cation and then passing it to the plugin. The plugin analyses
and instruments the code, before returning control back to
the DBI framework, which translates the code as necessary
to maintain correct execution. Code is processed at the level
of basic blocks (BBs) - single-entry and single-exit linear
regions. To minimise overhead, the resulting instrumented
code is stored in a code cache, fromwhere it can subsequently
execute directly. This processing and the execution of the
instrumented code are interleaved at runtime.

Figure 1. DBI overview.

The programming model is event-driven, with plugins
registering callback functions (event handlers) for specific
events. The API defines when these callbacks are executed in
relation to the triggering event and to each other, with these
constraints being designed to facilitate ease of use. Events
are further discussed in Section 4.

The instrumented application, the runtime system, and the
plugin execute in the same process and address space. Mem-
ory allocated in a plugin event handler can be accessed by
the inserted instrumentation and vice versa. Shared buffers
are the main communication mechanism between instru-
mentation and event handlers.

Plugins can analyse the code either by using architecture-
independent decoding helpers, that are provided by the API

for specific classes of instructions (e.g. branches, loads and
stores) or by inspecting the instruction set-specific opcodes
and, optionally, by decoding the full instructions using in-
struction decoding helpers.
Instrumentation is inserted at specific locations in the

application, selected at the granularity of instructions, ba-
sic blocks or functions, using the relevant API event type.
Instrumentation can be done at three levels of abstraction:

• native code, when the plugin explicitly selects each
machine instruction to be emitted;

• generic RISC code, which automatically generates the
corresponding native instruction for a number of com-
mon operations (e.g. add, multiply); or

• using helpers to generate commonDBI tasks (e.g. atom-
ically incrementing a counter).

4 API Events
Table 1 summarises the events provided by the API, with
entries in bold marking the new events and descriptions
in italics marking new or extended functionality for pre-
existing events. Plugins can register callback functions for
any combination of events. Events without a registered call-
back are ignored. Thread, Exit and Virtual memory are raised
for specific system calls and therefore could be considered
subsets of the Syscall events. However, they are either used
ubiquitously (Thread and Exit) or involve intercepting and
abstracting a larger number of system calls (Virtual memory).
The pre and post Basic Block, Instruction and Function

events are raised as part of the code scanning process, which
takes place when control in the application is passed to code
which does not yet have a translation in the code cache.
These events allow the plugins to analyse the application
code and/or to insert their instrumentation.

Figure 2. The order in which API events may be delivered.

Figure 2 shows the order in which events may be deliv-
ered to a plugin in each thread. Each box represents a type
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Table 1. Summary of DBI events. The column Inst. marks the events which allow the insertion of instrumentation code.

Event name Type Inst. Description Purpose
Init pre N runs before the application is loaded allocating global resources, initialising global data, shaping

the address space for shadow memory
Thread pre N runs before each application thread is started tracking active threads; allocating and initialising thread-

private resources
post N runs just before any application thread exits

either via thread termination or application
exit

tracking active threads; aggregating and outputting data
from thread-level analysis and instrumentation; releasing
thread-private resources

Exit pre N runs just before the application exits aggregating and outputting data from application-wide
analysis and instrumentation

Syscall pre N runs before a system call of the application is
passed to the OS or internal DBI emulation
routines

inspecting and/or modifying system call arguments; emu-
lating system calls in the plugin without passing them to
the DBI system or the OS

post N runs after a system call has been executed,
before passing the result to the application

inspecting or modifying the return value of system calls

Virtual memory post N abstracts OS system calls which map, unmap
or change the permissions of virtual memory

particularly useful for implementing shadow memory

Basic block pre Y runs just before scanning a single-entry and
single-exit code region

can generate basic block-level instrumentation

post Y runs after scanning a single-entry and single-
exit code region

can be used to backpatch instrumentation in the basic
block based on information not available earlier (e.g. basic
block size)

Instruction pre Y runs before an instruction in the application
is copied or translated to the code cache

inserting instruction-level instrumentation before the as-
sociated instruction has executed

post Y runs after an instruction in the application
was copied or translated to the code cache

inserting instruction-level instrumentation after the asso-
ciated instruction has executed

Function pre Y runs before the entry point of a specific func-
tion is translated to the code cache

inserting instrumentation which executes before specific
functions; replacing specific functions

post Y creates a wrapper around specific functions
to intercept their return to the callee

inserting instrumentation which executes immediately
after specific functions return

Code cache flush pre N runs before the DBI code cache is flushed allows plugins to release resources associated with specific
parts of the code cache

of event, while the Running state represents the execution
of the instrumented code. It is important to underline the
difference between the callback functions, which execute
according to the provided model, and the instrumentation
that they might insert, which executes in the Running state
only, interleaved with the application code. The arrows show
the allowed ordering, with the blue arrows representing con-
ditional transitions. For example, a Virtual Memory event is
delivered between the pre and post Syscall events only if the
application executes a system call related to virtual memory
management.

Events of the same type are not nested, as shown in Figure
2. After a Pre Basic Block event, it is guaranteed that the
matching Post Basic Block will be delivered before any other
Pre Basic Block event. This property holds even if execution
is interrupted by asynchronous events (e.g. by signals to the
application) during the scanning of a basic block. It allows
plugins to maintain persistent data across events in a sim-
ple thread-private structure. A common usage pattern is to
initialise structures related to the analysis of a basic block
using the Pre Basic Block event, update these structures in
each Pre Instruction event and then process the results in the
Post Basic Block event.

The interaction of application threads and API events can
lead to subtle bugs or a challenging programming model
if not carefully designed. In the proposed API, we have at-
tempted to move as much of the burden of handling threads
to the underlying runtime system and to simplify the model
exposed to the end-user. Towards that end, the Pre Thread
and Post Thread callbacks are guaranteed to execute for ev-
ery single thread used by the application, including the ini-
tial thread and all threads active at the time the application
exits. This model facilitates the development of multithread-
scalable plugins by providing a convenient event to allocate
and initialise thread-private resources in Pre Thread. Further-
more, by delivering the Post Thread event to all active threads
at the time the application exits, it removes the burden of
tracking application threads in each plugin. This event allows
each instrumented thread to collate its results in a global data
structure before the execution of the global Exit event call-
back. The thread-private analysis and instrumentationmodel
is further supported by API functions for managing thread-
private data (the mambo_set_thread_plugin_data() and
mambo_get_thread_plugin_data() functions), facilities
for atomic operations on variables, a thread-private code
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cache which allows the direct encoding of pointers to thread-
private data in the instrumentation, and compatibility with
standard POSIX mutexes.

5 Code Analysis and Generation
The main tasks of a typical DBI tool are to analyse the code
of the application to determine if and where to insert its
instrumentation and then to generate the appropriate in-
strumentation code. Our API provides several abstraction
layers and supporting infrastructure to facilitate portable
and efficient code analysis and generation.

5.1 Code Analysis
Generating instrumentation often requires the analysis of
the application code. While ISA-specific decoding can be
used directly, some classes of instructions are 1) commonly
analysed and 2) non-trivial to decode due to the number
or complexity of the available encodings, and should be ab-
stracted by the API. For example, memory operations meet
these criteria, by 1) being analysed for a wide range of DBI
use cases (e.g. hardware simulation and application analysis)
and 2) being available in most ISAs under a variety of en-
codings to support different size of transfers and addressing
modes.

Load and store analysis can be divided into three problems:
identifying the instruction, determining the data size and
determining the base address of the accessed memory. The
result of the first two can be established at code scanning
time. Our API introduced the functions mambo_is_load(),
mambo_is_store() and mambo_get_ld_st_size() to per-
form this analysis in a portable manner. The address of most
loads and stores can only be determined at runtime and must
be instrumented to obtain their address for each execution.
In the API, the function mambo_calc_ld_st_addr() is pro-
vided for this purpose. It sets the address in a register chosen
by the user and it can instrument any type of load or store,
on any of the supported instruction sets.
The API also introduced portable analysis

functions for branch instructions: the function
mambo_get_branch_type() returns a bitwise field, which
contains either the flag BRANCH_NONE or a combination of one
or more flags indicating various ISA-independent properties
of a branch, such as: BRANCH_DIRECT, BRANCH_INDIRECT,
BRANCH_CONDITIONAL, BRANCH_CALL, BRANCH_RETURN and
ISA-specific flags such as BRANCH_TBZ (Test bit and Branch
if Zero). For direct branches, the API returns the target
address using the mambo_get_branch_target() function,
while for indirect branches, the target address at each
execution can be obtained via instrumentation inserted by
mambo_calc_branch_target().

Another portable analysis function returns the input and
output register sets used by each instruction, via the func-
tion mambo_get_inst_regs([...], inset, outset). This

function may be used to implement data flow and register
liveness analysis.

5.2 Register Management
The API introduced an ISA-independent register naming
scheme: the registers reg0 to reg10 map to the first 11 gen-
eral purpose on each supported architecture (i.e. r0 to r11
on AArch32 and x0 to x11 on AArch64). This allows devel-
opers to explicitly use these registers in code which can be
compiled for either platform. This set was selected as the
intersection of general purpose registers without a dedicated
function between the two architectures. In particular, the
set includes all the general purpose registers used to pass
arguments and return values following either the 32 or 64-bit
Application Binary Interface (ABI). Furthermore, aliases are
also defined for the Program Counter, Stack Pointer and Frame
Pointer registers (pc, sp and fp respectively). Additionally,
the register alias es is defined as the first calleE-Saved regis-
ter according to each ABI, to allow plugins to better handle
function calls in a portable manner. The addition and sub-
traction operations are defined on the register type, which
allows plugins to select registers relative to a provided alias,
for example es+1. The API further defines the full set of na-
tive registers (i.e. r0-r15 on AArch32 and x0-x31 on AArch64)
for ISA-specific code generation. The regset type is also de-
fined to represent sets of registers using a bitwise mask (for
example the set of registers pushed or popped by an instruc-
tion). For each defined register, its mask is also defined as
m_[register name], for example m_reg0 for reg0.
The API also provides register allocation and deal-

location routines (mambo_get_scratch_regs() and
mambo_free_scratch_regs()) which should be used when
the instrumentation does not depend on using specific
registers. This offloads spilling and restoring register values
or register liveness analysis from the plugin developer.
This functionality also allows the DBI system to allocate
dead registers to the instrumentation, which can be used
efficiently, without spilling and restoring their original
values. Note that these register allocations are ephemeral
and can only be used in a given contiguous block of
instrumentation code - the DBI system checks for matching
allocated and freed registers at runtime.

5.3 Code Generation
Code generation helpers use the register management in-
frastructure to abstract some the common building blocks of
DBI. Table 2 summarises the types of code generation helpers
introduced by the API. For example, the reserve_branch and
local_branch class of helpers are used to insert short-range
branches inside a block of instrumentation.

5.4 Function Names and Symbols
DBI operates at the machine code level, independently from
the high level implementation language or the runtime of
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Table 2. Description of the code generation helpers.

Type Description
set_reg generate a specific value in a given register, which can be as large as its native size
push & pop push and pop sets of registers according to the ABI of the platform
branch insert various types of conditional and unconditional branches to a given address
reserve_branch reserve space for a branch to be inserted at a later time
safe_fcall generate a function call to a specific address, preserving the value of caller-saved registers - allows calls to functions

following the platform ABI to be inserted anywhere in application code
fcall generate a function call to a specific address - for calling functions which preserve the register state internally
local_branch generate a branch from a previously reserved space to the current position in the code cache
counter_incr update counters in memory; optionally atomic; 64-bit version available for 32-bit machines
proc generate 3 register data processing instructions (common arithmetic and bitwise instructions)
proc_i generate 2 register + immediate data processing instructions

the instrumented application. However, executable files and
libraries often include information about the mapping of
constructs from the high level language (e.g. function names
and variables) onto the executable image. On GNU/Linux,
virtually all executables and dynamic libraries are distributed
as ELF files, which provide this information using symbols.
Symbols map from a name in the high level source code
(a string) to a type (FUNC for functions, OBJECT for data),
an address and a size. For some types of instrumentation it
is required or convenient to have access to this high level
information (e.g. function names are used by the memory
error checker described in Section 6). Therefore, the API
introduced the functionality for handling this information.
However, it is important to clarify that this information is
not necessarily present in every file and should be considered
untrusted user input. The symbol-related functionality of the
API is provided in a best-effort manner and plugins should
gracefully handle missing information if possible.
The main function provided to plugins is

get_symbol_info_by_addr(), which returns the symbol
data associated with an address, if available. It can be used
to obtain the name of a function and the file from which it
was loaded, based on the address of any instruction which is
part of that function. The get_backtrace() API function
can obtain the call backtrace in a program, based on a frame
pointer.
The API also allows instrumenting the entry and exit

points of specific functions based on their name, providing
function hooking and replacement functionality. This was
implemented by associating each pair of pre and post Func-
tion event handlers with a function name. For example, to
register the pre and post Function callbacks for printf(), a
plugin would call:

mambo_register_function_cb(ctx, "printf",
&pre_printf_handler, &post_printf_handler);

The Function event handlers are allowed to insert instru-
mentation and may use any of the available code generation
helpers, similarly to the Instruction and Basic Block event

handlers. Instrumentation inserted in the pre and post Func-
tion events executes before entry to the associated function
and after return from the associated function, respectively.
Furthermore, the pre Function instrumentation may pass data
to the post Function instrumentation by creating a new stack
frame, although functions which receive arguments on the
stack (an uncommon case on Arm) need special handling;
automating this handling is a topic of future work.

6 Case Study: Memory Error Checking
Using the API introduced in this paper, we have implemented
amemory error checker, which we call M-memcheck. It instru-
ments applications to detect two common classes of memory
errors: out-of-bounds memory accesses and invalid frees.

We are interested in detecting out-of-bounds accesses in-
side mapped memory pages, which cannot be detected by
the operating system via page mapping exceptions. To detect
these types of errors, M-memcheck tracks the valid memory
allocations at any given time and is able to check efficiently
whether each memory access of the application is fully con-
tained in one or more such allocations. This is achieved using
shadow memory [5, 7, 16].

6.1 Shadow Memory
Each byte of virtual memory (VM) available to the appli-
cation is shadowed by a bit in memory which determines
whether it is part of a valid allocation. This is achieved by re-
serving the top half of the VM range. On AArch32 machines
running Linux, addresses above 3 GiB are reserved by the
kernel, therefore the available VM size is reduced by only 1
GiB compared to uninstrumented execution, allowing most
applications to execute correctly. On 64-bit architectures, the
VM range is large enough that halving it is not expected
to raise issues for most applications. We reserve half of the
VM range as opposed to only 1/8 (the size required for the
shadow memory itself) to simplify the runtime calculation
of the shadow memory address, as shown in Listing 1, where
address is the address of the checked memory access (dy-
namic value), MSB is the bitwise mask for the most significant
bit of virtual addresses on the platform, access_size is the
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size of the memory operation in bytes (known at instrumen-
tation time), shadow_addr is the shadow memory address to
load (byte-addressed) and shadow_mask is the bitwise mask
to apply to the value loaded from the shadow memory to
select the relevant shadow bits before checking their validity.

shadow_addr = ((address & (~MSB)) >> 3) | MSB;
shadow_mask = ((1 << access_size) - 1) << (address & 7);

Listing 1. Calculating the shadow memory address corre-
sponding to VM addresses

The VM is shaped by reserving its top half in the Init event
of the instrumentation API. To facilitate the implementation
of shadow memory, the API guarantees that the Init callback
executes before either of the following operations: 1) the
loading of the application and 2) allocating the stack used by
the initial thread of the application, therefore ensuring that
both the image of the executable and any of its allocations
are constrained by the VM shaping done in the Init event
handler.
Table 3 shows an example VM layout for a dynamically

linked Hello world application running on AArch64 under
M-memcheck. Entries 8, 10 and 11 are created by the OS at the
time MAMBO is loaded. Then, M-memcheck maps entries 1,
6, 7, 9 and 12 in its Init handler, as part of its shadowmemory
implementation. Afterwards, MAMBO loads the application,
dynamic linker and allocates a stack for the application (en-
tries 5, 4, and 3, respectively), which are constrained by the
VM shaping done by M-memcheck. At runtime, the standard
library is also loaded (entry 2).

Table 3. Example VM layout for a dynamically linked
hello_world executable under M-memcheck (AArch64). The
mappings in bold belong to the shadow memory / VM shap-
ing implementation.

ID Mapping VM range
1 reserved (alias) 0x3fb7fff000 - 0x3fb8001000
2 libc.so 0x3ffdfaf000 - 0x3ffe0f5000
3 [stack] 0x3ffe10a000 - 0x3ffe122000
4 ld.so 0x3ffff7e000 - 0x3ffffac000
5 hello_world 0x3ffffac000 - 0x3ffffbe000
6 shadow memory 0x4000000000 - 0x4800000000
7 reserved 0x4800000000 - 0x7000000000
8 MAMBO 0x7000000000 - 0x70000c2000
9 reserved 0x70000c2000 - 0x7fb7fff000
10 [vvar] 0x7fb7fff000 - 0x7fb8000000
11 [vdso] 0x7fb8000000 - 0x7fb8001000
12 reserved 0x7fb8001000 - 0x8000000000

6.2 Function Hooks
The shadow memory is updated whenever 1) a heap manage-
ment function (e.g. malloc or free) executes successfully or 2)
the application directly executes a memory allocation system

call (e.g. mmap, munmap). However, the heap management
functions use the same system calls internally to obtain or
release memory from/to the OS. Hence, it is necessary to
distinguish between executions of these system calls from
heap management functions and directly by the application.
In M-memcheck, this was implemented using the Function
event to insert instrumentation hooks before and after the
heap management functions, thus: before entry to such a
function, a thread-private counter is incremented by one
and on return from such a function, the same thread-private
counter is decremented by one. This thread-private counter
is initialised with value 0 in the pre Thread event handler.
Therefore, a non-zero value of this counter indicates that
execution in the associated thread is within a heap manage-
ment function. We use this property to ignore the memory
allocation systems calls executed by the heap management.

6.3 Instrumentation and Error Reporting
Each memory load or store is instrumented with inline
code which loads the corresponding shadow memory bits
and then calls an error reporting function if any are
marked as invalid. This instrumentation is inserted us-
ing the pre-Instruction event, which allows us to check
whether the current instruction is a load or store using
the mambo_is_load_or_store() analysis helper. The in-
strumentation code which loads and checks the shadow bits
is generated by the check_shadow_mem() function, based
on the size of the transfer and using the data processing and
branch code generation helpers. This instrumentation sets
the value of reg1 to zero for a valid access (the common case)
or a non-zero value otherwise.
When an invalid access is detected by the inline instru-

mentation, the C function memcheck_error() is called with
the address, size, type (load/store) of access and the frame
pointer as arguments. It prints this information in human-
readable format to stderr.

7 Evaluation
7.1 Experimental Setup
The evaluation was done on two machines: an AppliedMicro
Merlin system with an 8-core X-Gene2 SoC and an NVIDIA
Jetson TX1 system with a 4-core (Cortex-A57) Tegra X1 SoC.
The Merlin system has 32 GiB RAM and runs Debian 9 with
Linux 4.9.0, while the TX1 system has 4 GiB RAM and runs
Ubuntu 16.04 LTS with Linux 3.10.

The workload consists of the PARSEC 3.0 benchmark suite
[1] compiled with GCC 6.3.0 using the native input set and
the pthreads configuration, except for the freqmine bench-
mark which does not have a pthreads implementation and
was built using the openmp configuration. To analyse multi-
threaded scaling, the number of threads is varied between
one and the number of cores on each system. The bench-
marks canneal and raytrace do not build on either AArch32
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or AArch64. The benchmark ferret contains a bug which
causes it to perform an out-of-bounds access, detected both
by Valgrind Memcheck and M-memcheck, and crash nonde-
terministically. Therefore it is not included in this evaluation.

The complexity of thememory error checker and of the on-
line cache simulator made it impractical to port and adapt our
implementation to each DBM system. Therefore, we evalu-
ated our implementation for MAMBO against the equivalent
tools available for DynamoRIO and Valgrind, while trying
to match the same functionality. However, we also ported
a set of lightweight plugins across the three DBM systems,
which will allow for a direct performance comparison.

7.2 Lightweight Plugins
To enable a direct performance comparison between DBM
systems and their APIs, we developed a set of specifications
for relatively simple plugins, which are straightforward to
implement using the architecture-independent / portable
functionality of various DBM APIs. The plugins insert low
and medium sparsity instrumentation - on average one or
fewer blocks of instrumentation per basic block - for common
tasks in the area of DBI-based performance analysis.

We implemented them for our API (MAMBO), for MAMBO
using only the pre-existing low level API (MAMBO-lowlevel) -
to show the effect on productivity of our API, for DynamoRIO
and Valgrind. The general architecture and as much of the
codebase as possible is shared between our three imple-
mentations, however we use the recommended approach
of doing various tasks under each API. For example, cor-
rect multithreaded execution of the dynamic counters we
insert is achieved in various ways: under MAMBO, we main-
tain thread-private counters and add the results to a global
value when threads terminate; under Valgrind, execution is
serialised by the system, removing the burden of synchroni-
sation from the developer; and under DynamoRIO we use
the option for generating synchronised accesses provided
by the dynamic counter API. The three plugins are: bbstat,
xorcount and brcount. The plugin bbstat prints the number
of basic blocks it has observed at code scanning time and
the distribution of their size in bytes, when the application
terminates. It consists only of an application exit handler
and a lightweight code analysis phase; it does not insert any
instrumentation. This plugin is intended to determine the
base overhead of a DBM system when a plugin is enabled
and receiving callbacks, without actually modifying the code
of the application.

The plugin xorcount inserts a dynamic execution counter
for each XOR instruction in the application and prints the
total per-application value when the application exits. The
aim of this plugin is to measure the overhead when inserting
sparse instrumentation (an average of less than one block of
instrumentation per basic block for most applications).
The plugin brcount inserts a dynamic execution counter

for each branch instruction in the application, maintaining

Table 4. Geometric mean slowdown relative to native exe-
cution on PARSEC 3.0 for the lightweight plugins.

AArch32 AArch64
DBM system Merlin TX1 Merlin TX1 LoC

bb
st
at MAMBO 1.12 1.20 1.15 1.23 58

MAMBO-lowlevel 1.12 1.20 1.15 1.23 108
DynamoRIO 1.35 1.44 1.29 1.44 46
Valgrind 3.93 4.95 5.19 6.49 55

xo
rc
ou

nt MAMBO 1.15 1.25 1.16 1.25 76
MAMBO-lowlevel 1.15 1.25 1.16 1.25 219
DynamoRIO 1.38 1.45 1.32 1.45 34
Valgrind 4.09 5.07 5.28 6.60 68

br
co
un

t MAMBO 1.65 1.82 1.60 1.82 75
MAMBO-lowlevel 1.65 1.82 1.60 1.82 438
DynamoRIO 1.95 2.17 1.74 2.00 73
Valgrind 4.44 5.65 6.07 7.10 94

separate counters for direct branches, indirect branches, and
returns. It prints the values of the three counters when the
application exits. This plugin is intended to measure the
overhead for medium density instrumentation (around 1
block of instrumentation for each basic block).
The counters used by the xorcount and brcount plugins

should be 1) 64-bit wide, to prevent overflowing in longer
running applications and 2) thread-safe. For MAMBO, we
used the emit_counter64_incr() API function and thread-
private counters. The Valgrind API is based on inserting
calls to C functions, therefore we implemented our coun-
ters using the uint64_t data type. DynamoRIO provides the
drx_insert_counter_update() function to insert dynamic
execution counters in an efficient and portable manner. How-
ever, we have encountered the following limitations in the
version under test: DynamoRIO silently inserted 32-bit coun-
ters in 32-bit applications, ignoring the DRX_COUNTER_64BIT
flag; and the atomic update option DRX_COUNTER_LOCK is not
supported on Arm (neither on AArch32, nor on AArch64).
Therefore, these two DynamoRIO plugins fail to fully im-
plement the intended behaviour at this time and their per-
formance may degrade when the missing API features are
implemented.

Table 4 shows the geometric mean slowdown introduced
by the plugins running in each of the three DBM systems,
compared to native execution, and the number of lines of
code (excluding comments and empty lines) used to imple-
ment them. In terms of performance, MAMBO starts with a
lower overhead compared to the other DBM systems and the
API we have developed allows us to maintain this advantage
as denser instrumentation is inserted.
The line count is significantly reduced by using our API

compared to the pre-existingMAMBOAPI. The line count for
the MAMBO implementation is generally similar to that of
the equivalent DynamoRIO and Valgrind implementations,
with two exceptions: the implementation of xorcount for
DynamoRIO is significantly shorter than those for MAMBO
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and Valgrind, because DynamoRIO translates all types of
native XOR instructions into a single XOR instruction in
its IR, which can then be trivially identified using a single
comparison. On the other hand, the IR of Valgrind contains
multiple types of XOR instructions, which therefore require
more elaborate rules to decode and identify. Similarly, the
MAMBO API does not provide an architecture-independent
abstraction for identifying XOR instructions and therefore
we had to write ISA-specific decoding rules. The second
exception is that the implementation of brcount for Valgrind
required significantly more code to implement compared
to the MAMBO and DynamoRIO implementations. This is
caused by the Valgrind API only exposing the application
code to the plugin after lifting it to an ISA-independent IR.
Therefore, to analyse the branch instructions in the native
code we had to reverse engineer the translation done by
Valgrind and implement more complex analysis to map from
the IR back to the native code. In addition to being more
complex, this plugin is also dependent on a specific version
of Valgrind - future versions might change the translation
of branch instructions and break the way we map from the
IR to the native instructions.

7.3 Memory Error Checking
We have also measured the performance of Valgrind
Memcheck [18] (version 3.13.0) and Dr. Memory [2]
(commit bcb36073a2c from July 2017). At the time this
evaluation was done, Dr. Memory was not available
for AArch64. On AArch32, Dr. Memory crashed when
running the benchmarks bodytrack, facesim, streamcluster,
vips and x264. For Valgrind Memcheck we used the ar-
guments –leak-check=no –undef-value-errors=no
–track-origins=no –keep-stacktraces=none
–show-mismatched-frees=no and for the Dr. Mem-
ory we used the argument -light to disable detection for
classes of errors not yet implemented in M-memcheck, such
as use of undefined values. Note that we have not reviewed
the code of these third party tools to determine whether
disabling detection for these classes of errors disables all
related instrumentation to obtain the maximum performance
improvement compared to the default configuration.
The benchmark dedup attempts to memory map a large

file (672 MiB), which fails on AArch32 under M-memcheck
on our systems, therefore was not included in the evalua-
tion. This is caused by the fragmentation introduced by the
shadow memory implementation; enough virtual memory is
available, however it is not available in a single contiguous
region due to address space layout randomisation. As a topic
of future work, we believe this problem can be avoided by
allowing the DBI system to allocate its heap in the regions
of memory above 2 GiB that are reserved but not otherwise
used by M-memcheck.

Table 5. Geometric mean slowdown relative to native exe-
cution on PARSEC 3.0 for memory error checkers.

AArch32 AArch64
Threads DBI framework Merlin TX1 Merlin TX1
1 MAMBO 4.5 4.5 4.2 4.4

Valgrind 9.6 11.3 10.5 12.7
2 MAMBO 4.5 4.5 4.4 4.4

Valgrind 18.9 22.0 20.5 24.0
4 MAMBO 4.6 4.5 4.3 4.4

Valgrind 41.8 40.1 43.2 41.3
8 MAMBO 4.9 N/A 5.1 N/A

Valgrind 86.8 N/A 77.2 N/A

The geometric mean slowdown introduced by Valgrind
Memcheck and M-memcheck is shown in Table 5. A compara-
ble geometric mean overhead could not be calculated for Dr.
Memory because it fails to run the full set of benchmarks. We
note that instrumentation built using Valgrind cannot scale
for multithreaded applications because the runtime system
serialises all threads: the slowdown introduced by Valgrind
Memcheck increases from 9.6 - 12.7 for one thread up to
77.2 - 86.8 for 8 threads. On the other hand, the slowdown
introduced by M-memcheck does not change significantly (4.2
- 4.6) between 1 and 4 threads, because the instrumentation
does not introduce a significant number of additional syn-
chronisation points between threads. When the number of
threads is increased to 8, the slowdown increases slightly (to
4.9 and 5.1 respectively), likely due to the additional pressure
on shared on-chip resources such as the last level cache. Nev-
ertheless, these results show good multithreaded scalability
potential for this type of instrumentation.

M-memcheck also introduces a significantly lower slow-
down for single threaded execution compared to Valgrind
memcheck. This is achieved both by using the low level code
generation layer of the API to insert efficient instrumentation
and because the DBI system itself (with no instrumentation)
has lower overhead.

Figure 3. Slowdown relative to native execution for memory
error checking - AArch32 (1 thread).

Figures 3 and 4 show the slowdown for each benchmark
on AArch32 for 1 and 4 threads, respectively. Each set of
results is labelled in the following format: [system] - [DBI
framework]. In all cases, the MAMBO implementation is
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Figure 4. Slowdown relative to native execution for memory
error checking - AArch32 (4 threads).

faster than the Valgrind and DynamoRIO implementations.
The slowdown varies significantly between benchmarks, de-
pending on the density of executed memory load and store
instructions and the locality of accesses. The highest slow-
down for M-memcheck is on the x264 benchmark, because it
continuously creates new threads which only execute for a
few seconds. The thread-private instrumentation model re-
quires instantiating new L1 cachemodels for each new thread
and instrumenting each private copy of the code cache, how-
ever the performance of M-memcheck remains competitive.

7.4 Online Cache Simulation
We have implemented an online cache simulator (i.e. the
workload and the simulation execute at the same time),
named M-cachesim, using the plugin API proposed in this
paper. It is configured to simulate a fairly typical Arm SoC
cache hierarchy: 32 KiB 2-way associative L1 data and in-
structions caches with Least Recently Used (LRU) replace-
ment policy and a globally shared 2 MiB 16-way associative
L2 cache with random replacement policy. All cache lines
are 64 bytes. For comparison, we have also measured the
performance of Valgrind Cachegrind [15] (version 3.13.0)
using similar settings.

Note that online cache simulators spend a significant part
of their execution time running the cache model, as opposed
to the instrumented application. On workloads with a high
density of memory accesses, we have observed up to 56%
of the execution time being taken by the cache model of
M-cachesim. The performance of the cache model itself is a
major contributor to the overall performance of the cache
simulator and the results presented in this section reflect
the aggregate performance of the DBI and cache model.
M-cachesim uses a different cache model than Cachegrind,
which we have designed to 1) allow more flexibility in config-
uring the simulated caches and the simulated cache topology,
2) accurately simulate accesses which span multiple cache
lines and 3) more accurately simulate the cache subsystems
implemented on existing physical Arm-based SoCs.
Figures 5 and 6 show the slowdown for each benchmark

on AArch64 for 1 and 4 threads, respectively. The single
thread performance is generally similar between the two

Figure 5. Slowdown relative to native execution for online
cache simulation - AArch64 (1 thread).

Figure 6. Slowdown relative to native execution for online
cache simulation - AArch64 (4 threads).

implementations, however M-cachesim has unusually high
overhead on the Merlin system for the dedup and freqmine
benchmarks. A preliminary investigation indicates that this
is caused by the cache model and not by the instrumen-
tation, however further work is needed. On 4 threads, the
improved scalability of M-cachesim over Cachegrind allows
it to achieve better performance on all benchmarks.

8 Summary and Conclusions
This paper has presented an API for a DBI framework, which
we have implemented on top of MAMBO [8]. This system
was implemented for Arm v8, which uses three instruction
sets (A32, T32 and A64). The API was designed to offer 1)
portability of the DBI tool, and 2) improved flexibility, e.g. by
allowing DBI tool developers to choose at a fine-grain level
between a detailed level of code analysis and instrumenta-
tion, or a simplified and portable level. This approach allows
DBI tool developers to improve their productivity by writing
portable code most of the time, while still allowing low level
analysis of the native code and native code instrumentation.
These features have been demonstrated using two exam-

ples DBI tools: a memory error checker (M-memcheck) and
an online cache simulator (M-cachesim), which have been
shown to have comparable or improved performance com-
pared to state-of-the-art implementations in DynamoRIO
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and Valgrind. Both DBI tools have shown significantly im-
proved multithreaded scaling compared to state-of-the-art
tools. For example, from 1 to 8 threads, the geometric mean
overhead of M-memcheck on AArch32 increased by only 8%,
while the overhead of Valgrind Memcheck increased by 804%
due to thread serialisation. Furthermore, the single thread
performance of M-memcheck, which uses a direct mapping
shadow memory, is also significantly improved; its geomet-
ric mean slowdown is between 2.1x and 2.9x lower than that
of Valgrind Memcheck. The single thread performance of
M-cachesim is similar to that of the fastest state-of-the-art
cache simulator, despite using a more complex cache model.
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