
HAL Id: hal-03029429
https://inria.hal.science/hal-03029429

Submitted on 28 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-Evolving Code with Evolving Metamodels
Djamel Eddine Khelladi, Benoit Combemale, Mathieu Acher, Olivier Barais,

Jean-Marc Jézéquel

To cite this version:
Djamel Eddine Khelladi, Benoit Combemale, Mathieu Acher, Olivier Barais, Jean-Marc Jézéquel. Co-
Evolving Code with Evolving Metamodels. ICSE 2020 - 42nd International Conference on Software
Engineering, Jul 2020, Séoul, South Korea. pp.1-13. �hal-03029429�

https://inria.hal.science/hal-03029429
https://hal.archives-ouvertes.fr

Co-Evolving Code with Evolving Metamodels
Djamel Eddine Khelladi
CNRS, IRISA, Univ. Rennes

Rennes, France
djamel-eddine.khelladi@irisa.fr

Benoit Combemale
Université Toulouse & Inria Rennes

Rennes, France
benoit.combemale@irisa.fr

Mathieu Acher
Univ. Rennes, Inria, IRISA

Rennes, France
mathieu.acher@irisa.fr

Olivier Barais
Univ. Rennes, Inria, IRISA

Rennes, France
olivier.barais@irisa.fr

Jean-Marc Jézéquel
Univ. Rennes, Inria, IRISA

Rennes, France
jean-marc.jezequel@irisa.fr

ABSTRACT
Metamodels play a significant role to describe and analyze
the relations between domain concepts. They are also cor-
nerstone to build a software language (SL) for a domain and
its associated tooling. Metamodel definition generally drives
code generation of a core API. The latter is further enriched
by developers with additional code implementing advanced
functionalities, e.g., checkers, recommenders, etc. When a SL
is evolved to the next version, the metamodels are evolved
as well before to re-generate the core API code. As a result,
the developers added code both in the core API and the SL
toolings may be impacted and thus may need to be co-evolved
accordingly. Many approaches support the co-evolution of
various artifacts when metamodels evolve. However, not the
co-evolution of code. This paper fills this gap. We propose a
semi-automatic co-evolution approach based on change prop-
agation. The premise is that knowledge of the metamodel
evolution changes can be propagated by means of resolutions
to drive the code co-evolution. Our approach leverages on the
abstraction level of metamodels where a given metamodel
element has often different usages in the code. It supports
alternative co-evaluations to meet different developers needs.
Our work is evaluated on three Eclipse SL implementations,
namely OCL, Modisco, and Papyrus over several evolved
versions of metamodels and code. In response to five dif-
ferent evolved metamodels, we co-evolved 976 impacts over
18 projects.A comparison of our co-evolved code with the
versioned ones shows the usefulness of our approach. Our
approach was able to reach a weighted average of 87.4% and
88.9% respectively of precision and recall while supporting
useful alternative co-evolution that developers have manually
performed.

ACM Reference Format:
Djamel Eddine Khelladi, Benoit Combemale, Mathieu Acher,
Olivier Barais, and Jean-Marc Jézéquel. 2020. Co-Evolving Code
with Evolving Metamodels. In 42nd International Conference
on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 13 pages.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
2020.

1 INTRODUCTION
Model-Driven Engineering (MDE) has proven to be effec-
tive in the development and maintenance of large scales
systems [20, 21]. Notably, by easing the task of building
Software languages (SLs) and their tooling that can play a
significant role in all phases of development processes [46].

When comes the time to specify a SL, the metamodel
is pivotal and a central artifact [21]. It introduces the do-
main concepts, which are later used as a cornerstone to build
the expected tooling (e.g., editor, checker, compiler, data
access layers, etc.). Regular Expressions, CSS, GraphViz are
examples of SLs that use an explicit initial specification to
later drive the development of the corresponding tooling [10].
However, it is often overlooked that metamodels are inputs
for complex code generators that leverage on the abstractions
used in metamodels (e.g., bidirectional references, contain-
ments, . . .) to generate complex and industrial code that
may include advanced architecture and different ways to
manipulate instances.

As a prominent example, Eclipse Modeling Framework
(EMF) [45] supports the generation of Java code consisting
of a core API (both generic and domain-specific), adapters,
serialization facilities, and an editor, all from metamodels.
This code can be used to load and manipulate the model
instances. More importantly, it is often enriched by developers
to offer additional functionalities and on top of which the
SLs’ toolings are further developed.

Today, many Eclipse projects1 leverage on the code gen-
erated by EMF to support developers in various tasks (e.g.,
developing advanced editors, specific model transformations,
etc.). As a result, many languages have been developed using
EMF and its ecosystem, such as BPMN [41] or UML [43]. In
all these examples, the initial core API generated with EMF
have been complemented, either manually or through other
tools from the EMF ecosystem, to provide advanced func-
tionalities and tooling such as simulation, debuging, etc. A
metamodel and its corresponding implementation are hence
a corner stone when building a SL and its tooling.

One of the foremost challenges to deal with in MDE is
the evolution of metamodels and its impact on artifacts that
use metamodels as a foundation. As a result of a metamodel
evolution, the core API is re-generated and may impact the

1Cf. https://marketplace.eclipse.org

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Djamel Eddine Khelladi, Benoit Combemale, Mathieu Acher, Olivier Barais, and Jean-Marc Jézéquel

additional code implemented by developers. Hence, it may
need to be co-evolved accordingly. Knowing that other pro-
jects/SLs can depend on the impacted code, it is essential to
efficiently co-evolve it whenever the metamodel evolves. In
the last decade, the co-evolution challenge has been exten-
sively addressed in MDE. However, the literature so far has
focused on the co-evolution between metamodel and models
[5, 11, 18, 24, 25, 49], constraints [2, 6, 27, 33], and transfor-
mations [12, 13, 23, 32, 34]. To the best of our knowledge,
there exist no work that aims at supporting the co-evolution
between metamodels and code.

This paper contributes in filling this gap. We propose a
semi-automatic approach to co-evolution of code when the
metamodels evolve. The co-evolution propagates the meta-
model changes to the code. Change propagation showed to be
efficient in many domains, such as in the context of artifact
recommendation or co-evolution of models or transformations
[7, 9, 32]. This paper leverages on the knowledge provided
by the metamodel changes during evolution which are propa-
gated by means of code co-evolution. For example, knowing
that a property p in the metamodel is moved from one class
to another through a reference ref, it is likely that the navi-
gation path to p will also be updated in the code by either
extending it with ref or reducing it. The current approach
first runs an impact analysis to identify all impacts at the
code level.

Our approach leverages on the abstraction level of meta-
models where a given metamodel element has often a complex
implementation in the code with various usages of such a code.
For example, for a single metamodel class, an interface and
a class are generated in the code, but also a method creation
in the factory class, etc. Our impact analysis is designed to
identify all impacted usages of a given changed metamodel
element. Then, we propose a catalog of resolutions that is
used as a basis for our code co-evolution in response to meta-
model evolution. Developers can select among our supported
alternative resolutions.

Our approach with the proposed resolutions are evaluated
on three Eclipse EMF-based SL implementations, namely
OCL [37], Modisco [36], and Papyrus [38], which have been
developed for more than 10 years and have been evolved
several times. We collected projects consisting of both original
and evolved versions of metamodels and code. Thus, we
evaluated to what extent can our approach correctly co-evolve
the projects’ code in response to the metamodels evolutions.
Within our case studies, 477 changes were considered on
five metamodels, which caused 976 impacts on 18 projects.
When comparing our performed co-evolution to the expected
co-evolution from the original to the evolved versions of the
projects, our approach showed to support useful alternative
co-evolutions that developers have manually performed. Our
approach reached a weighted average (by the number of
metamodels changes) of 87.4% and 88.9% respectively of
precision and recall of co-evolution. Our approach also showed
to be useful by maintaining imapacted code while it was
unnecessary deleted.

This paper is structured as follows. Section 2 introduces a
background and a motivating example. Section 3 presents our
overall approach. Section 4 details our evaluation results Sec-
tion 5 threats to validity. Section 6 discusses related work and
how our work distinguishes from code migration approaches.
Finally, Section 7 concludes the paper and reflects on future
works.

2 BACKGROUND AND MOTIVATING
EXAMPLE

This section first gives a background on the role of meta-
models when building SLs and their toolings and discusses
the scenarios of co-evolution that arises between metamod-
els and code. After that, it introduces an example taken
from the OCL case study in Eclipse of metamodel and code
co-evolution to motivate our work.

2.1 Background
Figure 1 depicts an SL structure and usage as in practice,
for instance, as in the Eclipse platform. Metamodels are
cornerstones when building a SL and its toolings [14, 47].
Metamodels define the aspects of a business domain, i.e. the
main concepts, their properties, and relationships between
them [3].

Once the metamodels are carefully specified, working piece
of code is generated consisting of a core API [45], which is
often enriched with additional code to offer more advanced
functionalities. For instance, methods defined in classes in
the metamodel, are generated without their bodies, which
developers must implement. This part consists of enriching
the generated core API. Developers also integrate additional
classes to implement advanced functionalities (language ser-
vices, language tooling, . . .). This code is built on top of the
generated core API.

Take for example the Regular Expression SL. From its
metamodel the generated core API allows to parse a given
regular expression and to manipulate it problematically (nav-
igate in the AST, modifies it, etc.). However, no advanced
functionalities are provided, such as the interpretation and
evaluation of the given regular expression. This is the tooling
that developers will add on top of the core API. Both depend
and uses the generated core API from the metamodel, as
shown in Figure 1.

When the metamodel evolves, the same part of the gener-
ated code can be re-generated again. As a consequence, the
code manually integrated by developers may be impacted
and may need to be co-evolved accordingly as well. The next
section illustrates these challenges on a real-world use case.

2.2 Motivating Example
To motivate our work, this section introduces an example
of metamodel and code co-evolution taken from the imple-
mentation of the OMG standard Object Constraint Language
(OCL) [37, 42] in the Eclipse platform, which has evolved
several times in the last years. OCL is a declarative language
based on first-order logic, to define constraints on models, i.e.,

Co-Evolving Code with Evolving Metamodels ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 1: An SL structure and evolution in the Eclipse plat-
form.

conditions that must hold on the models. Part of the OCL
implementation is the OCL Pivot which provides the unified
merged OCL functionality for the Ecore or UML metamodel
instances. The OCL Pivot is implemented as an SL with a
metamodel consisting of 111 classes in the version of 3.2.2.

Figure 2 depicts a small excerpt of the Pivot meta-
model (6 out of 111 metaclasses). It illustrates the do-
main concepts Property, MultiplicityElement, Model,
NamedElement, Namespace and ClassifierType. From all
of these metaclasses, a first code is generated (i.e., core API),
consisting of interfaces, classes, a factory, a package, etc. List-
ing 1 shows a snippet of the generated interfaces and classes
for the metamodel excerpt in Figure 2 for the OCL Pivot
SL. It is further enriched by the developers with a validation
functionality in the new class PivotValidator, as shown in
Listing 2. Another SL, namely OCL Base, also leverages on
the OCL Pivot and its generated interfaces and classes in a
conversion functionality from OCL Pivot to OCL Base, as
shown in Listing 3.

In version 3.4.4, the OCL Pivot metamodel evolved
significantly with various changes, among which, develop-
ers: 1) deleted the metaclasses MultiplicityElement and
Model along with their properties, 2) renamed the method
validateCompatibleInitialiser in the class Property to val-
idateCompatibleDefaultExpression, 3) renamed the class
ClassifierType to MetaClass, and 4) pushed the property
ownedRule from NamedElement to Namespace. Naturally, the
Code of Listing 1 was re-generated from the evolved version
of the metamodel, which impacted the existing code depicted
in Listings 2 and 3. The different caused impacts are under-
lined in red and their co-evolution is underlined in green in
Listings 4 and 5 corresponding to version 3.4.4.

For some impacts, the co-evolution can be unique. For
example, the renamed method validateCompatibleInitialiser
to validateCompatibleDefaultExpression or the renamed class
ClassifierType to MetaClass are propagated by develop-
ers to the code level as well and renamed in the Java class
PivotValidator (lines 2 and 6 in Listing 4). However, some
other impacts can be co-evolved in many different ways. In-
deed, in the class Pivot2CSConversion, due to the deleted
properties lower, upper, isOrdered, isUnique in the class

Figure 2: Excerpt of the Pivot metamodel.

MultiplicityElement, two different co-evolutions were ap-
plied. The navigation paths to the methods getLower() and
getUpper() were deleted without deleting the whole variable
declaration statement (lines 7 and 8 in Listing 3). Whereas,
the whole statement of the method call refreshQualifiers is
deleted rather than deleting the navigation paths to the meth-
ods getIsOrdered() and getIsUnique() (lines 12 and 13 in List-
ing 3). In the class PivotValidator the import and the whole
method is deleted due to the delete of MultiplicityElement
(lines 3 and 12 in Listing 2). Here we already see that a
delete change in the metamodel can be co-evolved in different
manners to cover different possible co-evolutions to different
parts of the code.

Similar situation can even occur for the same impact-
ing change. Take the pushed property ownedRule from
NamedElement to Namespace. In the method refreshClassifier,
the call to getOwnedRule() is replaced by getOwnedInvari-
ant() (line 17 in Listing 3). Whereas, for the same impacted
call to getOwnedRule() in the method refreshTypedElement,
its whole statement of the method call visitDeclarations is
deleted (line 22 in Listing 3). Other possible co-evolution
could also be to introduce a cast or a cast with an if test of
the type. This emphasizes the fact that developers should be
involved in the co-evolution process to decide which alterna-
tives should be applied.

Listing 1: Excerpt of the generated code in the SL
org.eclipse.ocl.examples.pivot.

1 // MultiplicityElement Interface
2 public interface MultiplicityElement extends Element

{ ... }
3 // Property Interface
4 public interface Property extends Feature , ... {
5 ...
6 boolean validateCompatibleInitialiser (

DiagnosticChain diagnostics , Map <Object ,
Object > context);

7 ...
8 }
9 // PropertyImpl Class

10 public class PropertyImpl implements Property {
11

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Djamel Eddine Khelladi, Benoit Combemale, Mathieu Acher, Olivier Barais, and Jean-Marc Jézéquel

12 public boolean validateCompatibleInitialiser (
DiagnosticChain diagnostics , Map <Object ,
Object > context) {

13 try {...} catch (InvalidValueException e)
{...}

14 }
15 }

Listing 2: Excerpt of the additional internal code in the SL
org.eclipse.ocl.examples.pivot.

1 // Provides validation support
2 import org.eclipse.ocl.examples.pivot.ClassifierType;
3 import org.eclipse.ocl.examples.pivot.MultiplicityElement;
4 public class PivotValidator extends ObjectValidator {
5 ...
6 public boolean validateProperty_

validateCompatibleInitialiser (...) {
7 return property .validateCompatibleInitialiser(dia ,

con);
8 }
9

10 public boolean validateClassifierType (Classifier
Type classifierType , ...) { ... }

11
12 public boolean validateMultiplicityElement (Multi

plicityElement multiplicityElement, ...) { ... }
13 }

Listing 3: Excerpt of the additional external code in the SL
org.eclipse.ocl.examples.Base.

1 // Supports conversion of OCL Pivot to OCL Base
2 public class Pivot2CSConversion extends ... {
3 ...
4 public TypedElementCS

refreshTypedMultiplicityElement (...) {
5 ...
6 if (csTypeRef != null) {
7 int lower = object .getLower(). intValue ();
8 int upper = object .getUpper(). intValue ();
9 ...

10 }
11 ...
12 refreshQualifiers (... , object .getIsOrdered() ?

Boolean .TRUE : null);
13 refreshQualifiers (... , object .getIsUnique() ?

null : Boolean . FALSE);
14 return csElement ;
15 }
16
17 protected ClassifierCS refreshClassifier (...) {
18 ...
19 refreshList (csElement . getOwnedConstraint () ,

visitDeclarations (ConstraintCS .class ,
object .getOwnedRule(), null));

20 ...
21 }
22
23 public TypedElementCS refreshTypedElement (...) {
24 ...
25 refreshList (csElement . getOwnedConstraint () ,

visitDeclarations (ConstraintCS .class ,
object .getOwnedRule(), null));

26 return csElement ;
27 }
28 }

Listing 4: Excerpt of the additional internal code in the SL
org.eclipse.ocl.examples.pivot.

1 // Provides validation support
2 import org.eclipse.ocl.examples.pivot..MetaClass;
3 public class PivotValidator extends ObjectValidator {
4 ...
5 public boolean

validateProperty_validateCompatibleInitialiser
(...) {

6 return property .validateCompatibleDefaultExpres
sion(dia , con);

7 }
8
9 public boolean validateClassifierType (MetaCLass

metacLass , ...) { ... }
10 }

Listing 5: Excerpt of the additional external code in the SL
org.eclipse.ocl.examples.Base.

1 // Supports conversion of OCL Pivot to OCL Base
2 public class Pivot2CSConversion extends

AbstractConversion implements PivotConstants {
3 ...
4 public TypedElementCS

refreshTypedMultiplicityElement (...) {
5 ...
6 if (csTypeRef != null) {
7 int lower;
8 int upper;
9 ...

10 }
11 ...
12 return csElement ;
13 }
14
15 protected ClassifierCS refreshClassifier (...) {
16 ...
17 refreshList (csElement . getOwnedConstraint () ,

visitDeclarations (ConstraintCS .class ,
object .getOwnedInvariant(), null));

18 ...
19 }
20
21 public TypedElementCS refreshTypedElement (...) {
22 ...
23 return csElement ;
24 }
25 }

3 APPROACH
This section presents our approach of code co-evolution with
evolving metamodels. Figure 3 shows our overall co-evolution
process of code. It first identifies the metamodel changes
and then runs an impact analysis on the code 1 . Here,
we bridge the gap between the two abstraction levels of
metamodels and code. Then a change propagation-based co-
evolution is applied 2 . The developer is involved throughout
the co-evolution to decide among alternatives, similarly as
developers would choose among quick fixes in today’s IDEs
to fix code errors. Finally, the chosen resolutions are applied
to co-evolve the code 3 .

Co-Evolving Code with Evolving Metamodels ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 3: Overall approach [𝐼𝑛: an impact in the code, 𝑅𝑛: a
resolution].

3.1 Change Detection and 1 : 𝑛 Impact Analysis
Before we start co-evolving code, we run an impact analysis
to detect the code parts that must be co-evolved.

The starting point of our impact analysis is the changes ap-
plied during the metamodel evolution. Numerous approaches
exists in the literature, such as [4, 29, 30, 35, 48, 50]. To not
restrict our approach to a particular detection approach, we
define a Change interface (see Figure 3) that serves to bridg-
ing existing change detection approaches with our internal
representation of metamodel changes. Thus, we can replace
a given detection approach with another one.

The change interface considers both atomic and complex
changes [19]. Atomic changes are additions, removals, and
updates of a metamodel element. Complex changes consist in
a sequence of atomic changes combined together. For example,
push property is a complex change where a property is moved
from a superclass to its subclasses. This is composed of two
atomic changes: delete a property and add a property.

With the detected metamodel changes, we run an impact
analysis [22] on the code. To this end, we parse the code to
access the Abstract Syntax Tree (AST). We then establish a
mapping between the metamodel elements 𝑒1, ..., 𝑒𝑛 and the
code AST nodes corresponding to 𝑒1, ..., 𝑒𝑛, as illustrated in
Algorithm 1.

In contrast to the co-evolution of metamodel and mod-
els/transformations/constraints that considers a 1 : 1 rela-
tionship between the metamodel elements and their use in
the impacted artifacts. Our impact analysis considers a 1 : 𝑛
relationship where a metamodel element is used in 𝑛 different
forms at the code level.

Indeed, take for example the class Property in the OCL
Pivot metamodel. At the code level, an interface Property
and a class PropertyImpl are generated. But also in the

Algorithm 1 Code impact analysis
1: function ConstructMappingTable(Set<MME>

mmElements, Set<CE> cElements)
2: Map<MME, List<CE>> mTable;
3: for all mme𝑖 ∈ mmElements do
4: List<CE> cList;
5: for all ce𝑖 ∈ cElements do
6: if mme𝑖.isTypeOf(Class) then
7: if (ce𝑖.name = mme𝑖.name ∨
8: ce𝑖.name = mme𝑖.name+"Impl" ∨
9: (ce𝑖.name = "create"+mme𝑖.name ∧

10: ce𝑖.class.isFactory()) . . .) then
11: cList.add(ce𝑖)
12: end if
13: else
14: if mme𝑖.isTypeOf(Attribute) then
15: if ((ce𝑖.name=mme𝑖.name ∨
16: ce𝑖.name="get"+mme𝑖.name ∨
17: ce𝑖.name=’set’+mme𝑖.name) ∧
18: ce𝑖.class=mme𝑖.class) . . .) then
19: end if
20: cList.add(ce𝑖)
21: else . . . //Operations, References, Ennum,

etc.
22: end if
23: end if
24: mTable.put(mme𝑖, cList)
25: end for
26: end for
27: end function

classes PivotFactoryImpl and PivotPackageImpl, respec-
tively the methods createProperty() and getProperty() are gen-
erated. All this 𝑛 code correspondences of the class Property
are identified in Algorithm 1 (Lines 5-11). Other metamodel
elements also have 𝑛 code correspondences, such as attributes.
For example, for the attribute implicit in the class Property,
a getter and a setter getImplicit()/setImplicit() are generated,
but also the method getProperty_Implicit() is generated in
the class PivotPackageImpl (handled in Algorithm 1 (Lines
13-20)).

Therefore, one change in the metamodel may impact its
𝑛 different usages. Our 1 : 𝑛 impact analysis leverages on
the power of abstraction of the metamodels [28] to identify
those 𝑛 impacts on the code to co-evolve. We leverage on the
knowledge of how the core API code is generated to cover
all 𝑛 different usages of a given metamodel element. Finally,
the impact analysis consists in accessing for each impacting
metamodel change on an element 𝑒𝑖, the set of impacted code
parts and their impacted AST nodes.

3.2 Code Co-evolution
Algorithm 2 illustrates the overall co-evolution process. It
first retrieves the impacted code parts by a given metamodel
change from the mapping table computed by our impact

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Djamel Eddine Khelladi, Benoit Combemale, Mathieu Acher, Olivier Barais, and Jean-Marc Jézéquel

Algorithm 2 Code co-evolution
1: function Code_Co-Evolution(Set<changes> changes,

Map<MME, List<CE>> MT, ResolutionCatalog RC)
2: for all c ∈ changes do
3: List<CE> codeImpacts ← MT.get(c.element)
4: for all cImpact ∈ codeImpacts do
5: resolutions ← RC.getResolutions(cImpact, c)
6: if resolutions.size > 1 then
7: res ← UserDecision(resolutions)
8: else
9: if resolutions.size = 1 then

10: res ← resolutions.first()
11: end if
12: end if
13: cImpact.apply(resolution)
14: end for
15: end for
16: end function

analysis (line 3). Then for each impact, it proposes the appro-
priate resolutions that can propagate the impacting change
(line 5). A developer can choose among the alternative resolu-
tions which one fits her needs. This acts as a user acceptance
of the resolution to be applied (line 7). Finally, the chosen
resolution is applied on the impacted code part (line 13).

Table 1 depicts our resolutions that propagate to the code
metamodel changes that are known to be impacting [22].
The resolutions are inspired from the co-evolution of other
artifacts, such as models, constraints, or transformations
[2, 5, 6, 11–13, 15, 18, 23–25, 27, 32–34, 49], where they
showed to be efficient and useful. Nonetheless, they are further
adapted to fit the code co-evolution.

For example, resolutions 𝐶𝑅15, 𝐶𝑅16, 𝐶𝑅17 aims to co-
evolve the different code impacts of changing a property
type in the metamodel. To react to delete changes in the
metamodels, we propose to delete different granularities of
the impacted code, such as deleting the direct element, its
direct parent expression (whole call path), or its instruction.
Here we make sure that no error is introduced by further
propagating the resolutions when necessary (e.g., to update
method calls due to delete of a parameter) and by adding a
cast (e.g., to the expression using a deleted property).

Note that, similarly as for code repair approaches [39], we
do not claim completeness of our catalog of resolutions. It
rather represents meaningful propagations of the metamodel
changes at the code level. Enriching our catalog with other
resolutions is left for future work. However, as we will show in
section 4, the catalog of resolutions in Table 1 is sufficient and
useful in practice, and allows to correctly co-evolve impacted
code w.r.t. the developers intent.

3.3 Prototype Implementation
Our approach’s Java implementation handles Ecore/EMF
metamodels and Java code. It interfaces with our previous
work of change detection [26] to then run an impact analysis

on the code. For each impacted part, we propose resolutions.
The resolutions are implemented in Java. Both the impact
analysis and the resolutions work on the JDT API2 to parse
and to manipulate the code, application of resolutions.

4 EVALUATION
This section presents the evaluation results of our co-evolution
approach. First, we present the dataset and evaluation pro-
cess. Then, we present the research questions and discuss
the obtained results. Time performance of the co-evolution
is measured as well.

4.1 Data Set
This section presents the used data set in our evaluation.
Our data set covers three case studies covering three differ-
ent language implementations in Eclipse, namely OCL [37],
Modisco [36], and Papyrus [38].

These languages have been developed for more than 10
years and have been evolved several times. OCL is a stan-
dard language defined by the Object Management Group
(OMG) to specify First-order logic constraints. Modisco is an
Academic initiative to support development of model-driven
tools, verification, and transformation of existing software
systems. Papyrus is an industrial project led by CEA3 to sup-
port model-based simulation, formal testing, safety analysis,
etc. Thus, our data set covers standard, academic, and indus-
trial languages. We considered original and evolved versions
of the case studies, as shown in Table 2.

The three case studies cover code co-evolution in response
to five evolved metamodels respectively, two in the OCL
language, one in the Modisco Language, and two in the
Papyrus language, as shown in Table 2. The total of applied
metamodel changes was 477 in the five metamodels.

For those three case studies, we collected 15 Java projects
that were impacted by those five evolving metamodels (i.e.,
projects that are dependent on the metamodels’ generated
core API). We collected the original and evolved Java code
of those projects. Three projects were impacted by two meta-
models. Thus, in total we considered 18 projects’ co-evolutions
due to the five evolved metamodels.

All evolutions in our case studies of the metamodels and
code have been performed manually by developers between
the different releases that we collected. Thus, we considered
the manual code co-evolution as the reference (i.e., ground
truth) to which we compare our performed co-evolution.

Table 2 gives details about the selected case studies in
particular about their metamodels and the applied changes
during evolution. Table 3 further gives details on the size
of the projects and code of the original versions that we
co-evolve.

2Eclipse Java development tools (JDT):
https://www.eclipse.org/jdt/core/
3http://www-list.cea.fr/en/

Co-Evolving Code with Evolving Metamodels ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Catalog of resolutions that propagates the metamodel changes.

Impacting Metamodel Changes Proposed Code Resolutions

◇ Delete property p

▷𝐶𝑅1 Remove the direct use of p (e.g., label = s.name + s.m1().p.m2() → label = s.name + ((Type_Of_P) s.m1()).m2())
▷𝐶𝑅2 Remove the statement using p (i.e., if, loop, assignment, etc.)
▷𝐶𝑅3 Remove the whole call path of p (e.g., label = s.name + s.m1().m2().p → label = s.name)
▷𝐶𝑅4 Replace the whole call path of p with a default value (e.g., id = s.id + s.m1().m2().p → id = s.id + 0)
▷𝐶𝑅5 Replace p with another property p’ (can be given as input by the developer)

◇ Delete class C

▷𝐶𝑅1 Remove the direct use of the type c (e.g., extending/implementing c, in method argument/returned
type and not the whole method declaration. Calls to the updated methods are subsequently updated)
▷𝐶𝑅2 Remove the statements using the type C (e.g., import, variable declaration, method argument/returned type,
method declaration, type instantiation, etc. Calls to the deleted variables and methods are subsequently removed)
▷𝐶𝑅5 Replace C with another type C’

◇ Rename element e ▷𝐶𝑅6 Rename e in the code

◇ Generalize property p
multiplicity from a single
value to multiple values

▷𝐶𝑅7 Introduce a for loop statement to iterate on a collection (e.g., lng.p.value → for(v in lng.p) {v.val})
▷𝐶𝑅8 Retrieve the first value of a collection (e.g., value = lng.p → value = lng.p.toArray()[0])

◇ Move property 𝑝𝑖 from
class S to T through ref
◇ Extract class of properties 𝑝1,
..., 𝑝𝑛 from S to T through ref

▷𝐶𝑅9 Extend navigation path of 𝑝𝑖 (e.g., lng.𝑝𝑖 → lng.ref.𝑝𝑖)
▷𝐶𝑅10 Reduce navigation path of 𝑝𝑖 (e.g., lng.ref.𝑝𝑖 → lng.𝑝𝑖)
▷𝐶𝑅11 Extend navigation path of 𝑝𝑖 and add a for loop (e.g., lng.𝑝𝑖 → for(v in lng.ref) {v.𝑝𝑖})
▷𝐶𝑅5 Replace 𝑝𝑖 with another property 𝑝′

𝑖

◇ Push property p from
class Sup to Sub1,...,Sub𝑛

▷𝐶𝑅12 Introduce a type test with an If statement (e.g., t.name = s.p.name →
𝑖𝑓𝑠.𝑝.𝑖𝑠𝑡𝑦𝑝𝑒𝑜𝑓𝑆𝑢𝑏1) {t.name = (Sub1 s).p.name} ... 𝑒𝑙𝑠𝑒 𝑖𝑓𝑠.𝑝.𝑖𝑠𝑡𝑦𝑝𝑒𝑜𝑓𝑆𝑢𝑏𝑛 {t.name = (Sub𝑛 s).p.name})
▷𝐶𝑅13 Cast p to one specific sub class 𝑆𝑢𝑏𝑖 (e.g., t.name = s.p.name → t.name = ((𝑆𝑢𝑏𝑖)s).p.name)
▷𝐶𝑅5 Replace p with another property p’

◇ Inline class S to T
with properties 𝑝1, ..., 𝑝𝑛

▷𝐶𝑅14 Change the class type from S to T (e.g., List<S> l = ...; → List<T> l = ...;)
▷𝐶𝑅10 Reduce navigation path of 𝑝𝑖 (e.g., lng.ref.𝑝𝑖 → lng.𝑝𝑖)

◇ Change property p type
from S to T

▷𝐶𝑅15 Change variable declaration type initialized with p from S to T (e.g., S var = s.p; → T var = s.p;)
▷𝐶𝑅16 Add a cast of p when used as argument of a method (e.g., mCall(p) → mCall((ExpectedType) p))
▷𝐶𝑅17 Cast the value for the setter of p to T (e.g., s.setP(v); → s.setP((T) v);)

Table 2: Details of the metamodels and their evolutions.

Case study Evolved
metamodels Versions Atomic changes

in the metamodel
Complex changes
in the metamodel

OCL

Pivot.ecore in project
ocl.examples.pivot

3.2.2 to
3.4.4

Deletes: 2 classes, 16 properties, 6 super types
Renames: 1 class, 5 properties
Property changes: 4 types; 2 multiplicities
Adds: 25 classes, 121 properties, 36 super types
Total = 218

1 pull property
2 push properties
Total = 3

Base.ecore in project
ocl.examples.xtext.base

3.1.0 to
3.4.4

Deletes: 4 classes, 11 properties, 17 super types
Renames: 1 property
Property changes: 2 type
Adds: 10 classes, 38 properties, 19 super types
Total = 102

5 moves properties
1 push property
2 extract class
2 extract super class
Total = 10

Modisco Benchmark.ecore in project
modisco.infra.discovery.benchmark

0.9.0 to
0.13.0

Deletes: 6 classes, 19 properties, 5 super types
Renames: 5 properties
Adds: 7 classes, 24 properties, 4 super types
Total = 70 changes

4 moves property
6 pull property
1 extract class
1 extract super class
Total = 12

Papyrus

ExtendedTypes.ecore in project
papyrus.infra.extendedtypes

0.9.0 to
1.1.0

Deletes: 10 properties, 2 super types
Renames: 3 classes, 2 properies
Adds: 8 classes, 9 properties, 8 super types
Total = 42

2 pull property
1 push property
1 extract super class
Total = 3

Configuration.ecore in project
papyrus.infra.queries.core.configuration

0.9.0 to
1.1.0

Deletes: 6 classes, 7 properties, 4 super types
Total = 17 none

4.2 Evaluation Process
We evaluate our change propagation-based co-evolution of
code by measuring the correctness of our co-evolution. We

compare for the same set of code how it was manually co-
evolved by developers against our proposed co-evolution. In
this experiment, we measure the correctness of our approach
by using the two metrics precision and recall that vary from
0 to 1, i.e., 0% to 100%. They are defined as follows:

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Djamel Eddine Khelladi, Benoit Combemale, Mathieu Acher, Olivier Barais, and Jean-Marc Jézéquel

Table 3: Details of the projects and their impacts caused by the metamodels evolution.

Evolved
metamodels

Projects to co-evolve in response to the
evolved metamodels

𝑁𝑜 of
packages

𝑁𝑜 of
classes

𝑁𝑜 of
LOC

𝑁𝑜 of Impacted
classes

𝑁𝑜 of total
impacts

OCL
Pivot.ecore

𝑃 1 ocl.examples.pivot
𝑃 2 ocl.examples.xtext.base

22
12

439
181

74002
17599

47
9

532
30

OCL
Base.ecore

𝑃 3 ocl.examples.xtext.base
𝑃 4 ocl.examples.xtext.completeocl
𝑃 5 ocl.examples.xtext.essentialocl
𝑃 6 ocl.examples.xtext.oclinecore
𝑃 7 ocl.examples.xtext.oclinecore.ui
𝑃 8 ocl.examples.xtext.oclstdlib

12
14
17
15
10
14

181
83
135
46
25
58

17599
33807
30920
45862
55648
38639

21
9
15
3
3
1

136
16
44
10
6
2

Modisco
Benchmark.ecore

𝑃 9 modisco.infra.discovery.benchmark
𝑃 10 gmt.modisco.java.discoverer.benchmark
𝑃 11 modisco.java.discoverer.benchmark
𝑃 12 modisco.java.discoverer.benchmark.javaBenchmark

3
8
10
3

28
21
28
16

2333
1947
2794
1654

0
3
5
7

0
13
24
58

Papyrus
ExtendedTypes.ecore

𝑃 13 papyrus.infra.extendedtypes
𝑃 14 papyrus.infra.extendedtypes.emf
𝑃 15 papyrus.uml.tools.extendedtypes

7
5
5

37
12
15

2057
374
725

8
5
5

47
14
14

Papyrus
Configuration.ecore

𝑃 16 papyrus.infra.queries.core.configuration
𝑃 17 papyrus.infra.extendedtypes
𝑃 18 papyrus.infra.extendedtypes.emf

4
7
5

23
37
12

1045
2057
374

0
4
4

0
12
18

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑃 𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ∩ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑃 𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑃 𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ∩ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

The 𝑃 𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 are the resolutions applied by
our approach (from Table 1) and the 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
are the actual manually performed resolutions by developers.

Note that we also studied to confirm the metamodel
changes from version 1 to version 2. Based on those changes
we run an impact analysis to identify the impacted parts of
the code that will be co-evolved.

4.3 Research Questions
This section defines two research questions (RQs) to assess
in particular the applicability, correctness, and the usefulness
of our work. The research questions are as follows:

RQ1: To what extent and how fast can our co-evolution
approach handle the impacted parts of the code? If we cannot
propose a co-evolution for all impacted parts due to evolving
metamodels, we can conclude that our change propagation-
based co-evolution of code is insufficient. This assesses the
overall applicability of our co-evolution approach.

RQ2: To what extent does our approach correctly co-evolve
the impacted code? This measures its correctness level with
the precision and recall metrics, i.e., to which extent it pro-
poses the expected resolutions from developers. It also allows
us to assess its usefulness. For alternative resolutions, we
select the one as close as possible to the expected resolution
to be able to compare them afterward.

RQ3: Can our approach still propose relevant co-evolution
when it fails to propose the expected one by developers?
This aims to investigate, when our co-evolution diverges from

Figure 4: Frequency of the applied resolutions.

the expected one, whether our proposed resolutions are still
useful to developers.

4.4 Results
We now discuss the results w.r.t. our research questions.

4.4.1 RQ1. With our impact analysis, we were able to find
the impacted code parts by the 477 metamodel changes
for which resolutions were proposed by our co-evolution ap-
proach. One to five resolutions were proposed for each im-
pact in the code. To co-evolve all impacted parts, a total
of 983 resolutions were applied during the change propaga-
tion. This shows the applicability of our co-evolution ap-
proach that was able to handle all different impacts in the
code caused by the metamodel evolution changes. Table 4
gives the list of the applied resolutions for each co-evolved
project during co-evolution. In total, the 972 applied resolu-
tions were covered by 11 resolution types from our catalog
in Table 1, namely 𝐶𝑅1, 𝐶𝑅2, 𝐶𝑅3, 𝐶𝑅5, 𝐶𝑅6, 𝐶𝑅6, 𝐶𝑅9,
𝐶𝑅11, 𝐶𝑅12, 𝐶𝑅15, 𝐶𝑅16, 𝐶𝑅17. These resolutions allowed

Co-Evolving Code with Evolving Metamodels ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 4: Number of applied resolutions in our code co-
evolution for each project and per evolved metamodel.

Evolved
metamodels

Co-evolved
projects

𝑁𝑜 of applied
resolutions

OCL
Pivot.ecore

𝑃 1
𝐶𝑅1 : 3, 𝐶𝑅2 : 57, 𝐶𝑅3 : 298,
𝐶𝑅5 : 19, 𝐶𝑅6 : 108, 𝐶𝑅12 : 18,
𝐶𝑅15 : 15, 𝐶𝑅16 : 3, 𝐶𝑅17 : 11

𝑃 2
𝐶𝑅2 : 10, 𝐶𝑅3 : 8, 𝐶𝑅5 : 2,
𝐶𝑅6 : 5, 𝐶𝑅12 : 2, 𝐶𝑅15 : 1
𝐶𝑅16 : 1, 𝐶𝑅17 : 1

OCL
Base.ecore

𝑃 3

𝐶𝑅1 : 3, 𝐶𝑅2 : 91, 𝐶𝑅3 : 5,
𝐶𝑅5 : 18, 𝐶𝑅6 : 1, 𝐶𝑅9 : 10,
𝐶𝑅11 : 1, 𝐶𝑅12 : 1, 𝐶𝑅15 : 7
𝐶𝑅16 : 3, 𝐶𝑅17 : 1

𝑃 4 𝐶𝑅2 : 10, 𝐶𝑅5 : 6

𝑃 5 𝐶𝑅1 : 1, 𝐶𝑅2 : 25, 𝐶𝑅5 : 17,
𝐶𝑅9 : 1, 𝐶𝑅11 : 1, 𝐶𝑅12 : 1

𝑃 6 𝐶𝑅2 : 9, 𝐶𝑅3 : 1
𝑃 7 𝐶𝑅1 : 1, 𝐶𝑅2 : 5
𝑃 8 𝐶𝑅5 : 2

Modisco
Benchmark.
ecore

𝑃 9 𝑛𝑎

𝑃 10 𝐶𝑅2 : 13
𝑃 11 𝐶𝑅2 : 24

𝑃 12 𝐶𝑅1 : 2, 𝐶𝑅2 : 28,
𝐶𝑅5 : 20, 𝐶𝑅6 : 8

Papyrus
ExtendedTypes.
ecore

𝑃 13 𝐶𝑅2 : 1, 𝐶𝑅6 : 47
𝑃 14 𝐶𝑅6 : 16
𝑃 15 𝐶𝑅6 : 14

Papyrus
Configuration.
ecore

𝑃 16 𝑛𝑎

𝑃 17 𝐶𝑅2 : 12
𝑃 18 𝐶𝑅2 : 18

us to cover different possible co-evolution for the different
impacting metamodel changes. Note that all occurrences of
𝐶𝑅1 were due to deleted classes (DC) in the metamodels
that were used in the code by subclasses (i.e., extends DC).
Figure 4 further shows the frequency of each applied resolu-
tion. As some impacting change types did not occur in our
case studies, their resolutions were never applied, such as
𝐶𝑅7, 𝐶𝑅8, 𝐶𝑅14.

The parsing of the project’s code took from couple of
seconds to a minute for the largest project. For each impacting
metamodel change, the detection of the impacted code parts
took from milliseconds to few seconds, and the application
of each resolution was a matter of less than half a second.
The evaluation was run on a Windows 7 PC with a Core i7
3.4GHz and 16GB RAM.

4.4.2 RQ2. The metamodel changes present in our case stud-
ies (see Table 2 columns 5 and 6) covered different types of
changes and evolution scenarios. In particular the impacting
changes for which we proposed resolutions in Table 1. To

Figure 5: Precision measurement for our code co-evolution.

assess to what extent can our approach correctly co-evolve
the impacted code w.r.t. the manual co-evolution of the code
that developers went through, we measured precision and
recall.

Figure 5 depict the reached precision and recall in our 18
scenarios of metamodel evolution and code co-evolution. The
projects [P9] and [P16] were not impacted by any metamodel
evolution with no performed co-evolution. Thus, we did not
measure precision and recall for them. For the rest of the
projects, both the measured precision and recall varied from
48% to 100%. Our code co-evolution was able to reach respec-
tively the average of 94,5% and 95,5% of precision and recall.
However, as the size of the projects and the metamodels’
evolution varied from small to large, we computed a weighted
average to better characterize precision and recall. We com-
puted the weighted average by the number of the metamodel
changes for each project, resulting in a weighted average of
87.4% and 88.9% of precision and recall. This means that our
applied resolutions propagating the impacting metamodel
changes covered the expected resolutions by the developers in
88.9% and were correct in 87.4%. This shows that the catalog
of resolutions in Table 1 showed to be both sufficient and
useful in co-evolving code in our case studies while meeting
the developer’s co-evolution needs.

4.4.3 RQ3. We further looked into the cases where our pro-
posed resolutions mismatched the expected resolutions, i.e.,
the cause of lowering precision and recall. We observed that
for all those impacts in the code caused by non-delete changes
in the metamodels, the expected resolutions applied in the
co-evolution by the developers were to delete the impacted
code. Rather than to delete them, our co-evolution approach
was able to successfully maintain them.

For example, in the project [P12], we observed that 28
impacted parts of the code were due to move and rename
changes in the metamodel. Listing 6 shows an excerpt of
two impacted part of the code from the project [P12] due
to: 1) rename discoveryError to discoveryErrors, and 2) Our
co-evolution approach was able to maintain impacted parts
of the code, whereas, the developers’ manual co-evolution
consisted in deleting them as the whole project was deleted
in the new version. The applied resolutions were replacing
the call to discoveryDate to a call from its new class and
renaming discoveryError, as shown in Listing 8.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Djamel Eddine Khelladi, Benoit Combemale, Mathieu Acher, Olivier Barais, and Jean-Marc Jézéquel

Similarly, in the project [P1], we observed the same cases of
41 deleted code impacted by the metamodel changes rename,
push property, and type change. Listing 7 shows an excerpt
of two impacted part of the code from the project [P1] due
to: 1) push property ownedRule and 2) change type of the
property specification. The developer manual co-evolutions
consisted in deleting the statements where they were used.
Instead, we maintained them by changing the type of the
variable declaration and by introducing an if statement with
a cast, as shown in Listing 9.

The above observations show that developers unnecessarily
deleted many impacted parts in the code, while our approach
instead successfully maintain them during co-evolution. This
is the cause of lowering precision and recall in our case studies,
e.g., 48% in the project [P12]. From our point of view, it
is surprising to delete code statements, whereas it would
have been possible to maintain them (e.g., with rename,
move, or push resolutions). This obviously hints on the lack
of co-evolution support. Otherwise, they would have been
easily maintained in the new version. Another explanation
is that the code functionality (or its requirement) became
unnecessary in the new version, which explains its deletion.

Whereas these cases lower precision and recall, we do
not consider it as wrong co-evolution. It could actually be
preferred over simply deleting the impacted code. Indeed, it
is more relevant to propagate a rename of a method than
to delete its call elsewhere in the code, which our approach
was able to achieve for those cases. Nonetheless, it could be
possible that for some case simply deleting the impacted code
(by non-delete metamodel changes) is desired. In future work,
we could propose delete resolutions as an alternative for any
impacted code. That is why it is essential for developers to
guide the co-evolution process and decide which resolutions
best fit their needs.

Listing 6: Excerpt of the impacted code in the project P12.
1 // in the class CDOProjectDiscoveryImpl
2 if (baseClass == Discovery . class) {
3 switch (baseFeatureID) {
4 case BenchmarkPackage .DISCOVERY__DICOVERY_DATE: return

...;
5 ...
6 case BenchmarkPackage .DISCOVERY__DISCOVERY_ERROR: return

...;
7 default : return 1;
8 }

Listing 7: Excerpt of the impacted code in the project P1.
1 // in the class InvocationBehavior
2 ...
3 ValueSpecification valueSpecification = constraint .get

Specification();
4 if (valueSpecification instanceof ExpressionInOCL) {

... }
5 ...
6 // in the class AbstractDelegatedBehavior
7 ...
8 for (Constraint constraint : namedElement .getOwne

dRule()) {
9 ...

10 } ...

Listing 8: Excerpt of the co-evolved code in the project P12.
1 // in the class CDOProjectDiscoveryImpl
2 if (baseClass == Discovery . class) {
3 switch (baseFeatureID) {
4 case BenchmarkPackage .DISCOVERY_ITERATION__DICOVERY_DATE:

return ...;
5 ...
6 case BenchmarkPackage .DISCOVERY__DISCOVERY_ERRORS: return

...;
7 default : return 1;
8 }

Listing 9: Excerpt of the co-evolved code in the project P1.
1 // in the class InvocationBehavior
2 ...
3 OpaqueExpression valueSpecification = constraint .getSpeci

fication();
4 if (valueSpecification instanceof ExpressionInOCL) {

... }
5 ...
6 // in the class AbstractDelegatedBehavior
7 ...
8 if(namedElement instanceof Namespace){
9 for (Constraint constraint : (Namespace

namedElement).getOwnedRule()) {
10 ...
11 }
12 } ...

5 THREATS TO VALIDITY
This section discusses threats to validity [51].

5.1 Internal Validity
To measure precision and recall, we had to analyze the de-
velopers manual co-evolution to identify the expected res-
olutions. To reduce the risk of misidentifying an expected
resolution, for each impacted part of the code, we investigated
the whole co-evolved class. In case we did not find it, we
further searched in other classes in case the original impacted
part of the code was moved into another class. Thus, we
aimed at reducing the risk of missing any correspondence
between the original and evolved impacted parts of the code.
Moreover, as our co-evolution relies on the quality of detected
metamodel changes. We analyzed each detected change and
checked whether it occurred between the original and evolved
metamodels to alleviate the risk of relying on an incorrect
metamodel change.

Moreover, in the evaluation, when alternative resolutions
were proposed during co-evolution, we selected the one as
close as possible to the expected resolution to be able to
compare them afterward. Our goal in the evaluation was to
assess (RQ1) whether we can co-evolve the impacted code
and (RQ2) usefulness of our approach in terms of how far can
it allow a developer to reach the same manual co-evolution
of our case studies. Assessing how different developers would
co-evolve the same impacts, possibly diverging with different
resolutions, was not the goal of our evaluation. It is left for
a future user study where we would also investigate what
influences developers to select a given resolution over another

Co-Evolving Code with Evolving Metamodels ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

one. Still, We observed a start of an answer in (RQ3) where
alternative resolutions were actually relevant.

5.2 External Validity
We implemented and evaluated our approach for EMF/Ecore
metamodels and Java code. Other languages, such as C#
or C++, use different syntax but conceptually use the same
constructions as in Java. Although we think that the co-
evolution would be applicable for other languages, we cannot
generalize our results. Further experimentation on other lan-
guages is necessary. However, the only requirement to apply
our approach to other languages is to have access to the ASTs
of the parsed code and to adapt our resolutions to the new
ASTs’ structure.

Furthermore, our evaluation was performed on SLs and
their toolings in the Eclipse platform. Thus, we cannot gener-
alize our findings to all SLs or DSLs neither domain models
for instance. However, our approach could be used to co-
evolve Java code built on a generated API from a metamodel
or a domain model. This is the case for example for tools
such as JHipster that generates a complete and modern Web
app or microservice architecture based on a domain model
and a set of architectural choices. Further evaluations remain
necessary here.

5.3 Conclusion Validity
Our evaluation gave promising results, showing that our
code co-evolution is fast and useful with a weighted average
precision and recall respectively of 87.4% and 88.9%. The
evaluation results also showed the usefulness of our approach
and the proposed resolutions in our catalog in Table 1. Even
though we evaluated it on 18 scenarios of metamodel evo-
lution and code co-evolution. To have more insights and
statistical evidence, further evaluation is needed on more
case studies.

6 RELATED WORK
The main idea of change propagation was investigated for
different purposes, such as by Cubranic et al. [7] who used
it to recommend relevant software development artifacts, or
Demuth el al. [9] who used it for models co-evolution. In our
work we use change propagation to co-evolve code.

In this section, we present the main related work w.r.t.
co-evolution. Many approaches proposed to co-evolve models
[5, 11, 16, 18, 24, 25, 44, 49], constraints [2, 6, 27, 31, 33],
and model transformations [12, 13, 23, 32, 34]. Our work first
distinguishes by co-evolving code. It further distinguishes
with related work by performing a 1 : 𝑛 impact analysis.
Whereas, a 1 : 1 impact analysis is performed in the ap-
proaches of models/constraints/transformations co-evolution
[2, 5, 6, 11–13, 18, 23–25, 27, 32–34, 49].

In this paper, we focus so far the co-evolution on the
direction metamodel to code, which is not trivial. Yu et al.
[52] proposes to co-evolve the metamodels and the generated
API in both directions. However, they do not co-evolve the
additional code on top of it, which our approach does.

Existing approaches of code migration are related to our
work. We focus on the main existing approaches. Henkel
et al. [17] proposed an approach that captures refactoring
actions and replay them on the code to migrate. However,
they support only the changes renames, moves, and type
changes.

Nguyen et al. [40] also proposed an approach that guides
developers in adapting code by learning adaptation patterns
from previously migrated code. Similarly, Dagenais et al. [8]
also uses a recommendation mechanism of code changes by
mining them from previously migrated code. Anderson et al.
[1] proposed to migrate drivers in response to evolutions in
Linux internal libraries. It identifies common changes made
in a set of files to extract a generic patch that can be reused
on other code parts.

Our current work distinguishes from these code migration
approaches [1, 8, 17, 40] by considering and reasoning on the
changes at the metamodel level and not at the code level.
Thus, our approach treats way less changes to identify the
impacted parts in the code than code migration approaches
[1, 8, 17, 40]. This is possible thanks to the abstraction offered
by the metamodels. Whereas our work considers 𝑜𝑛𝑒 change
of a given element, 𝑛 changes must be considered in order
to fully migrate the code. To the best of our knowledge, our
work is the first attempt to address the challenge of code
co-evolution with evolving metamodels in SLs.

7 CONCLUSION
This paper proposed a code co-evolution approach when
metamodels evolve. It supports a change propagation-based
co-evolution by leverages on the metamodel changes and
propagates them on the code. Our code co-evolution was
evaluated on 15 projects and five metamodels from three
Eclipse language implementations and it was stress tested on
18 scenarios of metamodel evolution and code co-evolution.
It showed to be efficient and useful in co-evolving code with
a weighted average precision and recall respectively of 87.4%
and 88.9%.

As future work, we first plan to enrich our catalogue of
resolutions. Although, we envision and present our resolutions
similarly as code quick fixes or repair for developers to choose
from, we plan to explore ranking heuristics to ease the task
of selecting resolutions for developers. Building on that, we
can then propose a full automation based on the highest
ranked resolutions to compute co-evolutions plans. Finally,
we will evaluate our approach on more case studies other
than Eclipse language implementations.

ACKNOWLEDGMENTS
The research leading to these results has received funding
from the CNRS PEPS, and from the AIS Rennes Métropole
under grant no. 190270.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Djamel Eddine Khelladi, Benoit Combemale, Mathieu Acher, Olivier Barais, and Jean-Marc Jézéquel

REFERENCES
[1] Jesper Andersen and Julia L Lawall. 2010. Generic patch inference.

Automated software engineering 17, 2 (2010), 119–148.
[2] Edouard Batot, Wael Kessentini, Houari Sahraoui, and Michalis

Famelis. 2017. Heuristic-Based Recommendation for Meta-
model—OCL Coevolution. In 2017 ACM/IEEE 20th Interna-
tional Conference on Model Driven Engineering Languages and
Systems (MODELS). IEEE, 210–220.

[3] Jordi Cabot and Martin Gogolla. 2012. Object constraint language
(OCL): a definitive guide. In Formal methods for model-driven
engineering. Springer, 58–90.

[4] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio.
2009. Managing dependent changes in coupled evolution. In
Theory and Practice of Model Transformations. Springer, 35–
51.

[5] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso
Pierantonio. 2008. Automating co-evolution in model-driven engi-
neering. In Enterprise Distributed Object Computing Conference,
2008. EDOC’08. 12th International IEEE. IEEE, 222–231.

[6] Alexandre Correa and Cláudia Werner. 2007. Refactoring object
constraint language specifications. Software & Systems Modeling
6, 2 (2007), 113–138.

[7] Davor Čubranić and Gail C Murphy. 2003. Hipikat: Recommend-
ing pertinent software development artifacts. In Proceedings of the
25th international Conference on Software Engineering. IEEE
Computer Society, 408–418.

[8] Barthélémy Dagenais and Martin P Robillard. 2011. Recommend-
ing adaptive changes for framework evolution. ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 20,
4 (2011), 19.

[9] Andreas Demuth, Markus Riedl-Ehrenleitner, Roberto E Lopez-
Herrejon, and Alexander Egyed. 2016. Co-evolution of metamodels
and models through consistent change propagation. Journal of
Systems and Software 111 (2016), 281–297.

[10] Martin Fowler. 2010. Domain-specific languages. Pearson Edu-
cation.

[11] Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin.
2009. Managing model adaptation by precise detection of meta-
model changes. In Model Driven Architecture-Foundations and
Applications. Springer, 34–49.

[12] Kelly Garcés, Juan M Vara, Frédéric Jouault, and Esperanza
Marcos. 2014. Adapting transformations to metamodel changes
via external transformation composition. Software & Systems
Modeling 13, 2 (2014), 789–806.

[13] Jokin García, Oscar Diaz, and Maider Azanza. 2013. Model
transformation co-evolution: A semi-automatic approach. SLE
7745 (2013), 144–163.

[14] Richard C Gronback. 2009. Eclipse modeling project: a domain-
specific language (DSL) toolkit. Pearson Education.

[15] Regina Hebig, Djamel Eddine Khelladi, and Reda Bendraou. 2015.
Surveying the corpus of model resolution strategies for metamodel
evolution. In 2015 Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 135–142.

[16] Regina Hebig, Djamel Eddine Khelladi, and Reda Bendraou. 2016.
Approaches to co-evolution of metamodels and models: A survey.
IEEE Transactions on Software Engineering 43, 5 (2016), 396–
414.

[17] Johannes Henkel and Amer Diwan. 2005. CatchUp! Capturing and
replaying refactorings to support API evolution. In Proceedings.
27th International Conference on Software Engineering, 2005.
ICSE 2005. IEEE, 274–283.

[18] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juer-
gens. 2009. COPE-automating coupled evolution of metamodels
and models. In ECOOP 2009–Object-Oriented Programming.
Springer, 52–76.

[19] Markus Herrmannsdoerfer, Sander D. Vermolen, and Guido
Wachsmuth. 2011. An Extensive Catalog of Operators for the
Coupled Evolution of Metamodels and Models. In Software Lan-
guage Engineering, Malloy, Staab, and Brand (Eds.). Springer,
163–182.

[20] John Hutchinson, Mark Rouncefield, and Jon Whittle. 2011.
Model-driven engineering practices in industry. In Proceedings
of the 33rd International Conference on Software Engineering.
ACM, 633–642.

[21] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar
Kristoffersen. 2011. Empirical assessment of MDE in industry. In
Proceedings of the 33rd International Conference on Software

Engineering. ACM, 471–480.
[22] Ludovico Iovino, Alfonso Pierantonio, and Ivano Malavolta. 2012.

On the Impact Significance of Metamodel Evolution in MDE.
Journal of Object Technology 11, 3 (2012), 3–1.

[23] Wael Kessentini, Houari Sahraoui, and Manuel Wimmer. 2018. Au-
tomated Co-evolution of Metamodels and Transformation Rules: A
Search-Based Approach. In International Symposium on Search
Based Software Engineering. Springer, 229–245.

[24] Wael Kessentini, Houari Sahraoui, and Manuel Wimmer. 2019. Au-
tomated metamodel/model co-evolution: A search-based approach.
Information and Software Technology 106 (2019), 49–67.

[25] Wael Kessentini, Manuel Wimmer, and Houari Sahraoui. 2018.
Integrating the Designer in-the-loop for Metamodel/Model Co-
Evolution via Interactive Computational Search. In Proceedings
of the 21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems. ACM, 101–111.

[26] Djamel Eddine Khelladi, Reda Bendraou, and Marie-Pierre Ger-
vais. 2016. Ad-room: a tool for automatic detection of refactorings
in object-oriented models. In ICSE Companion. ACM, 617–620.

[27] Djamel Eddine Khelladi, Reda Bendraou, Regina Hebig, and
Marie-Pierre Gervais. 2017. A semi-automatic maintenance and
co-evolution of OCL constraints with (meta) model evolution.
Journal of Systems and Software 134 (2017), 242–260.

[28] Djamel Eddine Khelladi, Benoit Combemale, Mathieu Acher, and
Olivier Barais. 2020. On the Power of Abstraction: a Model-Driven
Co-evolution Approach of Software Code. In 2020 IEEE/ACM
42st International Conference on Software Engineering: New
Ideas and Emerging Results (ICSE-NIER).

[29] Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques
Robin, and Marie-Pierre Gervais. 2015. Detecting complex changes
during metamodel evolution. In CAISE. Springer, 263–278.

[30] Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques
Robin, and Marie-Pierre Gervais. 2016. Detecting complex changes
and refactorings during (meta) model evolution. Information
Systems (2016).

[31] Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques
Robin, and Marie-Pierre Gervais. 2016. Metamodel and con-
straints co-evolution: A semi automatic maintenance of ocl
constraints. In International Conference on Software Reuse.
Springer, 333–349.

[32] Djamel Eddine Khelladi, Roland Kretschmer, and Alexander
Egyed. 2018. Change Propagation-based and Composition-based
Co-evolution of Transformations with Evolving Metamodels. In
Proceedings of the 21th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems. ACM,
404–414.

[33] Angelika Kusel, Juergen Etzlstorfer, Elisabeth Kapsam-
mer, Werner Retschitzegger, Johannes Schoenboeck, Wieland
Schwinger, and Manuel Wimmer. 2015. Systematic Co-Evolution
of OCL Expressions. In 11th APCCM 2015, Vol. 27. 30.

[34] Angelika Kusel, Jurgen Etzlstorfer, Elisabeth Kapsammer, Werner
Retschitzegger, Wieland Schwinger, and Johannes Schonbock.
2015. Consistent co-evolution of models and transformations. In
ACM/IEEE 18th MODELS. 116–125.

[35] Philip Langer, Manuel Wimmer, Petra Brosch, Markus Herrmanns-
dörfer, Martina Seidl, Konrad Wieland, and Gerti Kappel. 2013. A
posteriori operation detection in evolving software models. Jour-
nal of Systems and Software 86, 2 (2013), 551–566.

[36] MDT. 2015. Model Development Tools. MoDisco. http://www.
eclipse.org/modeling/mdt/?project=modisco.

[37] MDT. 2015. Model Development Tools. Object Constraints Lan-
guage (OCL). http://www.eclipse.org/modeling/mdt/?project=
ocl.

[38] MDT. 2015. Model Development Tools. Papyrus. http://www.
eclipse.org/modeling/mdt/?project=papyrus.

[39] Martin Monperrus. 2018. Automatic software repair: a bibliogra-
phy. ACM Computing Surveys (CSUR) 51, 1 (2018), 17.

[40] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson Jr,
Anh Tuan Nguyen, Miryung Kim, and Tien N Nguyen. 2010.
A graph-based approach to API usage adaptation. ACM Sigplan
Notices 45, 10 (2010), 302–321.

[41] OMG. 2015. Object Management Group. Business Process Model
And Notation (BPMN). https://www.omg.org/spec/BPMN/2.0/
About-BPMN/.

[42] OMG. 2015. Object Management Group. Object Constraints
Language (OCL). http://www.omg.org/spec/OCL/.

[43] OMG. 2015. Object Management Group. Unified Modeling Lan-
guage (UML). http://www.omg.org/spec/UML/.

Co-Evolving Code with Evolving Metamodels ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[44] Richard F Paige, Nicholas Matragkas, and Louis M Rose. 2016.
Evolving models in model-driven engineering: State-of-the-art and
future challenges. Journal of Systems and Software 111 (2016),
272–280.

[45] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Pa-
ternostro. 2008. EMF: eclipse modeling framework. Pearson
Education.

[46] Juha-Pekka Tolvanen and Steven Kelly. 2009. MetaEdit+: defining
and using integrated domain-specific modeling languages. In The
24th ACM SIGPLAN conference companion on OOPSLA. 819–
820.

[47] Arie Van Deursen, Paul Klint, and Joost Visser. 2000. Domain-
specific languages: An annotated bibliography. ACM Sigplan
Notices 35, 6 (2000), 26–36.

[48] Sander D Vermolen, Guido Wachsmuth, and Eelco Visser. 2012.
Reconstructing complex metamodel evolution. In Software Lan-
guage Engineering. Springer, 201–221.

[49] Guido Wachsmuth. 2007. Metamodel adaptation and model co-
adaptation. In ECOOP. Springer, 600–624.

[50] James R Williams, Richard F Paige, and Fiona AC Polack. 2012.
Searching for model migration strategies. In Proceedings of the
6th International Workshop on Models and Evolution. ACM,
39–44.

[51] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson,
Björn Regnell, and Anders Wesslén. 2012. Experimentation in
software engineering. Springer Science & Business Media.

[52] Yijun Yu, Yu Lin, Zhenjiang Hu, Soichiro Hidaka, Hiroyuki Kato,
and Lionel Montrieux. 2012. Maintaining invariant traceability
through bidirectional transformations. In 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 540–550.

