
Misbehaviour Prediction for Autonomous Driving Systems
Andrea Stocco

Università della Svizzera Italiana
Lugano, Switzerland
andrea.stocco@usi.ch

Michael Weiss
Università della Svizzera Italiana

Lugano, Switzerland
michael.weiss@usi.ch

Marco Calzana
Università della Svizzera Italiana

Lugano, Switzerland
marco.calzana@usi.ch

Paolo Tonella
Università della Svizzera Italiana

Lugano, Switzerland
paolo.tonella@usi.ch

ABSTRACT

Deep Neural Networks (DNNs) are the core component of modern
autonomous driving systems. To date, it is still unrealistic that a
DNN will generalize correctly in all driving conditions. Current
testing techniques consist of offline solutions that identify adver-
sarial or corner cases for improving the training phase, and little
has been done for enabling online healing of DNN-based vehicles.

In this paper, we address the problem of estimating the confi-
dence of DNNs in response to unexpected execution contexts with
the purpose of predicting potential safety-critical misbehaviours
such as out of bound episodes or collisions. Our approach SelfOr-
acle is based on a novel concept of self-assessment oracle, which
monitors the DNN confidence at runtime, to predict unsupported
driving scenarios in advance. SelfOracle uses autoencoder and
time-series-based anomaly detection to reconstruct the driving sce-
narios seen by the car, and determine the confidence boundary of
normal/unsupported conditions.

In our empirical assessment, we evaluated the effectiveness of
different variants of SelfOracle at predicting injected anomalous
driving contexts, using DNN models and simulation environment
from Udacity. Results show that, overall, SelfOracle can predict
77% misbehaviours, up to 6 seconds in advance, outperforming the
online input validation approach of DeepRoad by a factor almost
equal to 3.

1 INTRODUCTION

Self-driving cars are one of the emerging technologies nowadays,
and possibly the standard way of transportation in the future. Such
autonomous driving systems receive data from a multitude of sen-
sors, and analyze them in real time using deep neural networks
(DNNs) to determine the driving parameters for the actuators.

To test such complex software systems, companies perform a
limited number of expensive in-field tests, driving a car on real
world streets, or within closed-course testing facilities [10]. This
provides detailed sensor data of the vehicle that are recorded, played
back, and recreated within a simulator to obtain comprehensive
test scenarios. Simulation-based test scenarios allow re-testing new
autopilot releases on a large numbers of nominal conditions, as well
as challenging (e.g., adverse weather) and dangerous circumstances
(e.g., a pedestrian suddenly crossing the road), at a low cost [10].

The potentially unlimited number of testable driving scenarios,
combined with the lack of human interpretability of the internal
functioning of DNNs [2], makes it difficult to predict the vehicle’s

(mis-)behaviour with respect to unforeseen edge-case scenarios.
Misbehaviours span a wide range of situations, associated with
different degrees of severity, from cases where the car does not drive
smoothly (e.g., excessively high derivative of the steering angle over
time), to safety-critical failures and casualties [11, 12, 32, 33]. In
this respect, promptly detecting unexpected, untested behaviours
is of paramount importance, so as to make sure that human-driven
or self-healing corrective actions take place to ensure safety.

In this paper, we tackle the self-assessment oracle problem for
autonomous driving system, i.e., the problem of monitoring the con-
fidence level of a DNN-based autonomous driving system in order
to timely predict the occurrence of future misbehaviours. The prob-
lem is critical because a failure in detecting an unexpected condition
may have severe consequences (i.e., a fatal crash), whereas false
alarms, even if not dangerous, may cause driver’s discomfort and
negatively affect the driving experience. Creating a self-assessment
oracle that evaluates the confidence of a DNN at runtime, and pre-
dicts whether the system is within a low-confidence zone, is a
largely unexplored research problem.

Challenges arise because unexpected driving conditions are, by
definition, unknown at training time, otherwise they would be used
to train a better DNN [9]. As a consequence, the problem being
addressed belongs to the unsupervised class of data analysis, and we
have to infer the unexpected only by looking at the normal driving
scenarios. Moreover, the ensemble of possible misbehaviours for
a DNN-based system is vast and necessarily domain-dependent,
being associated with deviations from the functional requirements.

In recent years, researchers have proposed solutions for testing
autonomous driving systems software [1, 4, 5, 13, 14, 14, 26, 34, 42].
A number of approaches propose input generation techniques that
produce corner/adversarial cases, used to improve the robustness of
self-driving car modules by re-training [18, 26, 34, 42]. Other works
target test case generation to expose faults for extreme conditions,
such as the vehicle colliding with a pedestrian [5], or driving off
the road [13]. All these approaches concern offline solutions for
improving the robustness and reliability of DNNs, achieved by
enhancing the training data and the autopilot module, which are
extended to include underrepresented critical scenarios. To the best
of our knowledge, no existing work is focused on online confidence
estimation for self-driving vehicles with the aim of anticipating the
occurrence of misbehaviours so as to enable self-healing procedures
that can avoid future failures.

ar
X

iv
:1

91
0.

04
44

3v
1

 [
ee

ss
.S

P]
 1

0
O

ct
 2

01
9

In this paper, we propose a novel self-assessment oracle for au-
tonomous vehicles based on confidence estimation, probability distri-
bution fitting, and time series analysis. Our technique is implemented
in a tool called SelfOracle, which leverages reconstruction-based
techniques from the deep learning (DL) field to analyze spatiotem-
poral historical driving information. The reconstruction error is
used as a black-box confidence estimation for the DNN. During
probability distribution fitting, SelfOracle captures the behaviour
of the self-driving car under nominal conditions, and fits a Gamma
distribution to the observed data. Analytical knowledge of Gamma’s
parameters allows SelfOracle to estimate an optimal confidence
threshold, as a trade-off between prediction of all misbehaviours
(the stricter the threshold, the better), and probability of false alarms
(reduced when threshold is higher). By observing a decreasing con-
fidence trend over time, SelfOracle can anticipate a misbehaviour
by recognizing unexpected conditions timely enough to enable
healing actions (e.g., manual or automated disengagement).

We have evaluated the effectiveness of SelfOracle on the Udac-
ity simulator of self-driving cars [37], using DNNs available from
the literature. We have modified the simulator to being able to inject
unexpected driving conditions in a controllable way (i.e., day/night
cycle, rain, or snow). Such injected conditions are by construction
disjoint from those used to train the DNNs. In our experiments
on 72 simulations, SelfOracle is able to safely anticipate 77% out
of bound episodes/crashes, up to 6 seconds in advance. The corre-
sponding false alarm rate in nominal driving conditions is 1%. A
comparative experiment with the online input validation strategy
of DeepRoad [42] shows that SelfOracle achieves substantially
superior misbehaviour prediction on all the considered effective-
ness metrics (e.g., twice as high in terms of AUC-PR and almost
three times higher in terms of FPR).

Our paper makes the following contributions:

Technique An unsupervised technique for misbehaviour predic-
tion based on confidence estimation, probability distribution
fitting and time series analysis, implemented in the tool Self-
Oracle, which is available [35].

Simulator An extension of the Udacity simulator to inject unex-
pected driving conditions dynamically during the simulation.

Evaluation An empirical study showing that the reconstruction
error used by SelfOracle for time series analysis is a promis-
ing confidence metric for misbehaviour prediction, outper-
forming the online input validation approach of DeepRoad.

Dataset A dataset of 765 labeled simulation-based collision and
out-of-bound episodes that can be used to evaluate the per-
formance of prediction systems for autonomous driving cars.

2 BACKGROUND

DNN-based Autonomous Vehicles. Self-driving cars (SDC, here-
after) have benefited from many technological advancements both
in hardware and in software. Data gathered by LIDAR sensors, cam-
eras, and GPS are analyzed in real time by advanced Deep Neural
Networks (DNN) which govern over the actual maneuvers of the
car (i.e., steering, braking, acceleration). In order to manage a wide
variety of driving scenarios, SDCs necessitate a large amount of
driving data, combining nominal and adversarial scenarios [6].

To date, it is still unlikely for a DNN to generalize correctly to
the plethora of driving situations met everyday by human drivers.
As such, a component monitoring the confidence of the DNN may
promptly detect when the SDC is entering a low-confidence zone,
and activate healing strategies that bring the vehicle to a safe state.

In self-driving cars, depending on the level of autonomy, the
self-healing procedure can either involve the human driver, or can
be delegated to an automated system.1 At both levels, early and
accurate misbehaviour prediction is an essential precondition to
enable safe healing, and an overall pleasant driving experience.
Confidence Measures in DNNs. The prediction must consider
DNN uncertainties originating from the measurements in response
to possible adverse environmental conditions in which the SDC
operates. The confidence level of a SDC can be measured through
white-box or black-box techniques. White-box monitoring of the
internal behaviour of a DNN component. For simple classifiers,
measuring softmax probabilities, or information theoretic metrics
such as entropy, and mutual information [27] may suffice. For more
complex networks such as those than operate on a SDC, softmax
probabilities and entropy are known to be unreliable confidence
estimators [41]. Moreover, white-box metrics require a transparent
access to the network, and substantial domain-knowledge for the
creation of nontrivial probabilistic models that approximate the
network’s uncertainty.

Black-box techniques, differently, model the SDC uncertainty by
monitoring the relation between the current input (images) and the
input data used during training. For instance, consider a SDC which
has been trained only with images representing highways. If images
representing a narrow city street are given to the DNN, the model
will still output steering angles, but ideally we would like to warn
the SDC of a drop in the confidence level. The main advantages of
black-box confidence metrics consist in being independent from
the specific SDC architecture, requiring no modifications to the
existing DNN model because they use information which is readily
available for analysis, and in being, therefore, highly generalizable.
In this paper, we focus on black-box confidence estimation, because
softmax probabilities and entropy are known to be unreliable con-
fidence estimators to model complex DNN networks [41]. We next
describe autoencoders and time series analysis, which are the main
building blocks of our approach.
Autoencoders. An autoencoder (AE) is a DNN designed to re-
construct its own input. It consists of two sequentially connected
components (an encoder, and a decoder) that are arranged sym-
metrically. The simplest form of autoencoder (SAE) is a three-layer
DNN: the input layer, the hidden layer, and the output layer. The
hidden layer encodes any given input x ∈ RD to its internal repre-
sentation (code) z ∈ RZ with a function f (x) = z. Usually Z ≪ D.
The output layer (decoder) decodes the encoded input with a re-
construction function д(z) = x ′, where x ′ is the reconstructed
input x . The autoencoder minimises a loss function L(x ,д(f (x))),
which measures the distance between the original data and its
low-dimensional reconstruction. A widely used loss function in
autoencoders is the Mean Squared Error (MSE).

The input and output layers of autoencoders have the same num-
ber of nodes. If multiple hidden layers are used, the architecture is

1https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety

2

 = 0.025θ Out of Bound!

M
SE

discrete time intervals t
0 50 100 150 200 250 300 350 400 450 500 550 600

e=0.0137

Lap 1 Lap 2 Lap 4

e=0.0267 e=0.0588

Lap 3

detection

Figure 1: Confidence levels of NVIDIA’s DAVE-2 [7] in response to changing driving scenarios. The picture shows frames cap-

tured during the execution of the SDC along one of our testing tracks, under different conditions: (Lap 1) sun, (Lap 2) light

rain, (Lap 3) sun, and (Lap 4) heavy rain. The picture juxtaposes the reconstruction error by the anomaly detector of SelfOr-

acle, which is used as a proxy for the DNN confidence. We can notice that the reconstruction error is low when the car drives

under sunny conditions (i.e., conditions similar to those observed during training), whereas the error increases moderately

with adverse conditions (the car does no longer follow the center of the road), and grows above a given threshold when facing

heavy rainy conditions at night time (which cause the SDC to drive off the road).

referred to as deep autoencoder (DAE). The surge of novel kinds
of DNNs has correspondingly produced variants of autoencoders
based on such architectures. For example, convolutional autoen-
coders [21] allow learning powerful spatial-preserving relationship
within images at a lower training time with respect to fully dense
layers. Another interesting proposal are variational autoencoders
(VAE) that are able to model the relationship between the latent
variable z and the input variable x by learning the underlying prob-
ability distribution of observations using variational inference [3].
Time Series Analysis. Traditional feedforward DNNs assume that
all inputs and outputs are independent of each other. However,
learning temporal dependencies between inputs or outputs is im-
portant in tasks involving continuous streams of data. Thus, a pre-
dictive model can take advantage of information from the previous
inputs/outputs, to enhance its predictive capability.

Time series analysis can be applied to the output sequence pro-
duced by a DNN to identify the trend and predict future values.
Among the numerous models available for time series analysis, the
most widely used ones are autoregressive (AR), integrated (I) and
moving average (MA) models, along with their combinations. An
AR model of order k predicts the next value xt as a linear combina-
tion of past values xt−1, . . . ,xt−k :

xt = α0 +
k∑
i=1

αixt−i + ϵt (1)

where coefficients α0, . . . ,αk can be estimated by the least square
method and ϵt represents the error term.

Processing of a sequence of inputs can be achieved by recurrent
neural networks (RNN) equipped with long short-term memory
(LSTM) [15], which is capable of dealing with both short and long
range dependencies. In LSTM, outputs are influenced not only by
the current input but also by the state of the RNN, which encodes
the entire history of past inputs. A forget gate layer of LSTM decides
what information to keep/remove from the previous network state

whereas an additive gate decides how to update the state based on
the current input.

3 PROBLEM FORMULATION

We focus on SDCs that perform behavioural cloning, i.e., the DNN
learns the lane keeping [13] behaviour from a human driver. Mod-
els such as the ones by NVIDIA [7] or the Udacity self-driving
challenge [38] are trained with visual inputs (i.e., images) from
car-mounted cameras that record the driving scene, paired with
the steering angles from the human driver. The DNN then “learns
how to drive” by discovering underlying patterns within the train-
ing images representing the shape of the road, and predicting the
corresponding steering angle.

For a classification problem (e.g., hand-written digit recognition),
a misbehaviour can be defined as an input that can be confidently
labeled by humans while it is misclassified by a DNN. Differently,
for a regression problem such a definition is more troublesome,
because there is no expected outcome for an individual output of
the DNN and it is only the overall behaviour resulting from the
DNN predictions that may or may not be acceptable, depending on
the specific application domain.

In steering angle prediction, it is challenging to decide if the
steering angle produced by a DNN is wrong, because the optimal
steering angle is generally unknown for a new test scenario and
even if it were known, the amount of difference between predicted
and expected steering angle that qualifies as an error is difficult to
decide a priori. It is instead more realistic to figure out whether a
chain of inaccurate predictions, regardless of the amount of devia-
tion from the optimal angles, ultimately leads to a misbehaviour of
the system.

In fact, the definition of misbehaviour should be decoupled from
the notion of correct/wrong DNN output, being instead linked to
the ability of a DNN of abstracting from the training examples and
learning how to drive in different ways/conditions. It is the task of
the DNN to generalize the training knowledge to make the model

3

training set
(nominal)

Reconstructor
image samples

x1 x2 x3

reconstructed

x′�1 x′�2 x′�3

—

reconstruction errors
training samples

(nominal)

Probability
Distribution Fitting

fitted Gamma
distribution

Threshold
Estimation

θ

Figure 2: Model Training under Nominal Driving Behaviour.

robust w.r.t. slightly different conditions from those observed in
the training set. For instance, if the SDC is facing a 90-degree bend,
the DNN may decide to steer at a certain steering angle θ if the car
speed is 60 mph, or θ

2 if the speed is 30 mph.

Definition 1 (Misbehaviour of a DNN). A DNN exhibits
a misbehaviour in a given test scenario if the overall system that
contains the DNN does not respect its requirements due to the outputs
produced by the DNN.

In the autonomous driving domain, there are many possible mis-
behaviours, associated with the different requirements that such
systems are supposed to realize. Safety requirement violations are
by far the most critical requirements, as a misbehaviour in the
steering component may cause a crash of the vehicle with potential
casualties. However, in general, a SDC might violate also other
driving requirements, e.g., related to ride comfort [8], such as ex-
cessive derivative of the steering angle, unstable movement around
the centerline, or excessive deceleration. All these could also be
considered as misbehaviours by our definition.

In this paper, we focus on the prediction of two safety-critical
misbehaviours: (1) collisions, and (2) out-of-bound episodes (OBEs).
The rationale for this choice are as follows. First, they represent
the vital requirement to be satisfied and thoroughly tested (i.e., the
car should stay in lane and avoid whatsoever collision), without
which autonomous driving vehicles would be hardly accepted in
production. Moreover, leveraging a simulation environment such
as Udacity’s [37], allows us to: (1) safely test such critical scenarios,
(2) precisely define, observe and measure them, in order to support
crash analysis and reproduction.

Thus, the problems we want to address in this paper are: (1) rec-
ognizing when a self-driving car is within a low-confidence area
because of an unexpected execution context, and (2) predicting
such situation timely enough so as to take countermeasures before
the vehicle may crash or drive off road.

4 APPROACH

The goal of our approach is to monitor the confidence level of a
SDC as it runs and to promptly predict whether drops in confi-
dence correlate with potential future misbehaviours. Our approach
works in an end-to-end fashion, analyzing directly the input data
as retrieved by the car (an image from the center camera), mak-
ing the approach independent from the specific architecture of the
self-driving component, requiring no modifications to the existing
DNN model, and being therefore, highly generalizable.

The main working assumption is that a prediction model trained
on normal data should learn the normal time series patterns. When
the model is used on a SDC in the field, it should worsen its perfor-
mance as the car approaches previously unseen regions as compared
to normal, known regions (Figure 1). Then, what’s needed is a way
to set up a good decision boundary in order to timely alert the
human driver (NHTSA Level 4) or the main self-driving component
(NHTSA Level 5) about triggering self-healing.

We now detail each step of our approach, which consists of two
main phases: (1) model training under nominal driving behaviour,
and (2) field usage of the trained model.

4.1 Training of SelfOracle under Nominal

Driving Behaviour

Figure 2 illustrates the training phase of our approach, which con-
sists of several steps.

4.1.1 Reconstructor. The first step consists in retrieving a model of
normality from the training driving scenarios. Thus, in the training
set, we capture the visual input stream of the SDC under nominal
situations.

Then, we train our driving scenario reconstructor with such “nor-
mal” instances. Let us consider a training set X = {x1,x2, . . . ,xn }
of n image frames, where the index i ∈ [1 : n] of xi ∈ X represents
the discrete time t .

Depending on the considered architecture, a reconstructor can be
singled-image or sequence-based. For singled-image reconstructors,
only one image frame is considered at a time.When the discrete time
is t = i , xi is the input and the reconstructor recreates it into x ′i . For
sequence-based reconstructors, assuming k image frames preceding
xi are used to reconstruct xi , the sequence ⟨xi−k , . . . ,xi−1⟩ is the
input used to output x ′i , a prediction of the actual current frame xi .
For instance, for k = 3 and i = 4, the reconstructor considers the
sequence ⟨x1,x2,x3⟩ in order to predict the current frame x4.

At the end of this task, each reconstruction error ei = d(xi ,x ′i)
can be computed, where d is a proper distance function (e.g., Eu-
clidean distance). This results in the set of reconstruction errors
E = {e1, e2, . . . , en }, available for all elements in the training set
X = {x1,x2, . . . ,xn }.

4.1.2 Probability Distribution Fitting. We build a model of normal-
ity for the reconstruction errors E = {e1, e2, . . . , en } collected in
nominal driving conditions. We use probability distribution fitting
to obtain a statistical model of normality and using such model we
determine a threshold θ that brings the expected false alarm rate

4

in nominal conditions below some acceptable, configurable level ϵ
(e.g., ϵ = 10−3 or ϵ = 10−4).

The reconstruction error e = d(x ,x ′) can be computed by com-
paring the individual pixels of the images x and x ′ and taking
the mean pixel-wise squared error. Assuming images have width
W , height H and C channels (usually, 3 RGB channels for colour
images), the reconstruction error is defined as follows:

d(x ,x ′) = 1
WHC

W ,H,C∑
i=1, j=1,c=1

(x[c][i, j] − x ′[c][i, j])2 (2)

With some reasonable approximation, we can assume that the
pixel-wise error e[c][i, j] = x[c][i, j] − x ′[c][i, j] follows a normal
distribution with pixel dependent variance: e[c][i, j] ∼ N(0,σc,i, j).
Correspondingly, the sumof the squares of pixel-wise errors e[c][i, j]
will be a gamma distribution: e = d(x ,x ′) ∼ Γ(α , β). We get a
gamma instead of a χ2 distribution because pixel-wise errors have
different (channel/pixel dependent) and non-unitary variances.
Definition ofGammaDistribution.Gamma is a probabilitymodel
for a continuous variable on [0,∞) which is widely used in engi-
neering, science, and business, to model continuous variables that
are always positive and have skewed distributions.

The probability density function of a random variable x ∼ Γ(α , β)
is:

f (x) = βα

Γ(α)x
α−1e−βx x > 0; α , β > 0 (3)

where α is the shape parameter (which affects the shape of the dis-
tribution), β is the rate parameter (or inverse scale, which stretch-
es/shrinks the distribution) and Γ is the gamma function. When
α is large, the gamma distribution closely approximates a normal
distribution with the advantage that the gamma distribution has
non-zero density only for positive real numbers.

The gamma function Γ can be seen as a solution to the interpola-
tion problem of finding a smooth curve that connects the points
(n,m) withm = (n − 1)! at any positive integer value for n. Such
a definition was extended to all complex numbers with a positive
real part by Bernoulli, as a solution to the following integral:

Histogram and theoretical densities

data

D
en

si
ty

0.02 0.04 0.06 0.08 0.10 0.12

0
10

20
30

40
50

gamma

0.02 0.04 0.06 0.08 0.10 0.12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F

gamma

0.02 0.04 0.06 0.08

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

gamma

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

gamma

Figure 3: FittedGammadistribution of reconstruction errors

from a VAE on the Dave2 dataset.

Γ(z) =
∫ ∞

0
xz−1e−xdx R(z) > 0; (4)

Fitting the Gamma Distribution. One powerful method to es-
timate the parameters of a (gamma) distribution that fit the data
(reconstruction errors) best is by maximum likelihood estimation
(MLE). The likelihood function reverses the roles of the variables:
in Equation 3, the values of x are known, so they are the fixed
constants, whereas the unknown variables are the parameters α
and β . MLE involves calculating the values of these parameters
so as to obtain the highest likelihood of observing the values of x
when the given parameters are supplied to f .

Under the assumption of independence of the data, the likeli-
hood of the data given the parameters of the distribution is con-
veniently defined as the logarithm of the joint probability of the
data for a given choice of the parameters. In the case of a gamma
distribution, with a dataset consisting of reconstruction errors
E = {e1, e2, . . . , en }, we get:

L(α , β ;E) = 1
n

n∑
i=1

log f (ei |α , β) = (5)

n(α − 1)log e − n log Γ(α) − nα log β − ne/β (6)

where e (log e) is the mean (log) reconstruction error over E. To find
the values of parameters α and β that maximize L we have to find
a solution to the equations: (1) ∂L/∂α = 0; (2) ∂L/∂β = 0. The
second equation can be easily solved analytically, resulting in β =
e/α . By substituting the value of β into the first equation we get an
equation that unfortunately cannot be solved analytically. However,
the Newton method can iteratively converge to the solution quite
quickly. The output of such numerical estimation will be the pair
of parameters α and β of the gamma distribution that best fit the
reconstruction errors.
Example of Threshold Estimation. Let us consider a set of re-
construction errors. Figure 3 shows the histogram of those produced
on the Dave2 dataset when the reconstructor is a VAE. On such
dataset the MLE method estimates the following gamma parame-
ters: α = 15; β = 392. With these parameter values, the plot of the
gamma distribution is the red line in Figure 3. We can notice a good
agreement between the histogram and the estimated probability
distribution.

Let us assume that we are willing to accept a false alarm rate
ϵ = 10−2. The threshold θ with a probability mass above the thresh-
old equal to 10−2 can be easily obtained as the inverse of the cu-
mulative gamma distribution F (x): θ = F−1(1 − ϵ). This ensures
that the cumulative probability of values ≤ θ is 1 − ϵ , leaving only
a probability of ϵ to the tail following θ . We use the estimated θ
as threshold to distinguish anomalous conditions (reconstruction
error ≥ θ) from normal ones (reconstruction error < θ).

4.2 Usage Scenario

Figure 4 shows how SelfOracle is used online for misbehaviour
prediction after model training (i.e., after fitting the gamma distri-
bution and estimating the threshold θ). Misbehaviour prediction is
executed online as the SDC drives. In this phase, the SDC generates
data continuously and the reconstructor recreates the incoming

5

Normal

image stream —

xtxt−1xt−2 x′�t

y

n

Novel/
Anomaly

x′�t−1x′�t−2

y = f(et, et−1, …, et−k+1)reconstructed
Reconstructor y > θ

Anomaly
Detector

t_{detect}

Simulator

Figure 4: Usage Scenario of SelfOracle.

stream of images. The sequence of reconstruction errors is passed
through the autoregressive model f and the resulting, filtered error
is compared against the threshold θ , which determines whether
an anomaly is detected or not. In the former case, self-healing is
triggered and the SDC is brought to a safe state.

4.2.1 Time-aware Anomaly Score Prediction. The reconstruction
error et at time t might be susceptible to single-frame outliers,
which are not expected to have a big impact on the driving of
the car, but would indeed make the misbehaviour predictor falsely
report an anomalous context. For this reason, we smooth such noisy
oscillations by applying an autoregressive filter: the sequence of
reconstruction errors is passed to a module that performs time
series-analysis. In Figure 4, this corresponds to the AR filter f . The
output of this filter, instead of the raw reconstruction error et , is
compared with the threshold θ to recognize unexpected driving
conditions. In our experiments we used a simple AR model (see
Equation 1) with α0 = 0 and αi = 1/k for i = 1, . . . ,k .

5 EMPIRICAL EVALUATION

5.1 Research Questions

We consider the following research questions:
RQ1 (effectiveness): How effective is SelfOracle in predicting
anomalies for autonomous vehicles? What are the best reconstruc-
tors to use?
RQ2 (prediction):How does the misbehaviour predictions of Self-
Oracle change aswe increase the reaction period (i.e., we anticipate
the time of prediction)?
RQ3 (comparison): How does SelfOracle compare with Deep-
Road’s [42] online input validation?

5.2 Self Driving Car Models

We evaluate our framework on three existing DNN-based SDCs:
NVIDIA’s DAVE-2 [7], Epoch [31], and Chauffeur [30]. We choose
these models because they are publicly available, thus they can be
trained and evaluated on the simulator. Moreover, they have been
objects of study of other testing works [26, 34]. DAVE-2 consists
of three CNNs, followed by five fully-connected layers. Chauffeur
uses a CNN to extract the features of input images, and a RNN to
predict the steering angle from 100 previous consecutive images.
Epoch consists of a single CNN model.

5.3 Simulation Platform

A major problem in anomaly detection research is the lack of la-
beled benchmark datasets [9], and the self-driving car domain is no
exception. Unlike previous works [26, 34, 42], we cannot rely on

existing driving image datasets such as the ones released by Udac-
ity [39], because they lack any episode of crash, or cars driving off
road whatsoever. Moreover, our definition of misbehaviour (Sec-
tion 3) requires the creation of a set of “controllable” unexpected
conditions that may potentially cause them, along with a way to
precisely record them. Thus, to investigate the effectiveness of our
approach in predicting safety-critical misbehaviours, we evaluated
SelfOracle in the Udacity simulator [37].

The Udacity simulator is developed with Unity [40], a popular
cross-platform game engine. The simulator provides two default
tracks, for testing DNNs models. The simulator executes in two
modes: (1) training mode, in which the user manually controls the
car while the simulator records her actions, and (2) autonomous
mode, in which the car is controlled by an external agent, such as
a DNN-based autonomous driving system. Moreover, we added
a third track [36] to the existing set, and we implemented two
additional components, namely, an unexpected context generator,
and a collision/OBE detection system.

5.3.1 Unexpected Context Generator. First, we developed a method
to gradually inject unseen conditions during testing mode (i.e.,
conditions diverse from the training mode’s defaults). The first
condition deals with illumination and introduces a day/night cycle
component to gradually change the light condition of the track
during the simulation. The effect is customizable and consists of
smooth increase/decrease of brightness/darkness over a fixed pe-
riod (60 s in our experiments). The second kind of unexpected
condition deals with weather. We implemented rain, snow and mist
effects, with a variable intensity during the simulation. For the im-
plementation, we used a specific Unity component called Particle
System [25] which can simulate the physics of a cluster of parti-
cles with high performance. Rain particles emission rate ranges
between a minimum of 100 (light rain) to a maximum of 10,000
particles/s (heavy rain); fog between [100..2,000] particles/s, and
snow between [100..800] particles/s. Figure 5 shows a few examples.

Figure 5: (top) Day/night cycle (sunrise, day, night) and (bot-

tom) weather effects (snowy Lake Track, foggy Jungle Track,

and rainy Mountain Track).

6

5.3.2 Collision/OBE Detection System. Following our definition of
safety-critical misbehaviours, we implemented an automated colli-
sion/OBE detection system (ACODS) that records any unwanted
interaction of the SDC with the environment, allowing us to experi-
ment the effectiveness of SelfOracle at anticipating such episodes
during the occurrence of unexpected scenarios (Section 5.3.1).

Figure 6: Simulator crash/OBE detection.

We implemented ACODS based on colliders, which are consol-
idated building blocks of modern game engines to simulate the
physical interaction between objects. We approximate the car body
with a geometry mesh, and implemented a collider callback that
informs the simulator of any physical interaction of the car with
scene objects. When the car “hits” the road, then it means the car is
actually on track, whereas when the car “collides” with any other
object, the callback registers whether it is a crash against some
object (Figure 6 (left)), or whether it is an OBE (Figure 6 (right)).

Secondly, we implemented an automatic restart mechanism that
restores the SDC to a safe position after a crash/OBE, allowing us
to record multiple simulations without the need for manual restart.

5.4 Procedure

5.4.1 Data Generation (Training Set). Training data were collected
by the authors in training mode by performing 10 laps on each
track, following two different track orientations (normal, reverse).
Overall, we obtained a dataset of 124,638 training images (at 10-13
fps), divided as follows: 32,243 for Track 1 (Lake), 51,422 for Track 2
(Jungle), and 40,973 for Track 3 (Mountain). Differences depend on
the track lengths. To allow a smooth driving and a correct behaviour
capture (i.e., lane keeping), the maximum driving speed was set to
30 mph, the default in the Udacity simulator.

5.4.2 SDC Model Setup & Training. All SDCs models were trained
on 41,546 images from the central camera. We used data augmenta-
tion as a consolidated practice for building more reliable and gen-
eralizable SDCs, limiting the lack of image diversity in the training
data. Specifically, 60% of the data was augmented through different
image transformation techniques (e.g., flipping, translation, shadow-
ing, brightness). We cropped the images to 66 x 200, and converted
them from RGB to YUV colour space. All SDC models were trained
for 500 epochs with batch size of 256 on a machine featuring an
i9 processor, 32 GB of memory, and an Nvidia GPU 2080 TI with
11GB of memory. Basically, the training was meant to create solid
models for testing, i.e., able to drive multiple laps on each track
under nominal conditions without showing any misbehaviour in
terms of crash/OBE.

5.4.3 Evaluation Set. To collect the evaluation data, we executed
72 simulations (2 laps each) in autonomous mode (3 SDC x 8 condi-
tions x 3 tracks). As in data generation, the maximum speed was

set to 30 mph. Specifically, for each SDC and for each track, we per-
formed 1 simulation in the same normal conditions as the training
set. This allows us to estimate the number of false alarms (false pos-
itives) in nominal conditions. Second, we performed 4 simulations
activating in turn a single unexpected condition: day/night cycle,
rain, snow, fog. Third, we performed 3 simulations activating in
turn a combined condition: day/night cycle + rain, day/night cycle
+ snow, day/night cycle + fog.

In our experiments, we used a value of 60 s both for the day/night
cycle and for the loop between the minimum and maximum in-
tensity of the effects. This value was chosen empirically given the
relatively short speed of the SDC, and the small length of the tracks,
and allowed us to test the behaviour of the SDC on each of the
track subsets under all possible conditions. For example, the bridge
part of Track1 (Lake) has been driven on under both dawn/day/-
sunset/night conditions (day/night cycle) and minimal/maximal
intensity of rain/fog/snow.

Overall, we obtained a dataset of 778,592 images, divided as
follows: 188,032 for Track 1 (Lake), 260,064 for Track 2 (Jungle),
and 208,064 for Track 3 (Mountain) with unknown conditions and
33,088 for Track 1, 46,272 for Track 2 and 43,072 for Track 3 in
known conditions.

5.4.4 SelfOracle’s Configurations. We used four autoencoders
taken from existing guidelines [16]: (1) SAE (simple autoencoder
with a single hidden layer), (2)DAE (deep five layers fully-connected
autoencoder), (3) CAE (convolutional autoencoder alternating con-
volutional and max-pooling layers), and (4) VAE (variational au-
toencoder).

All autoencoders take as input a single image. We added images
taken by the side cameras of the car (left, right) to allow better
generalization, even though, during testing, autoencoders are not
used for prediction. Lastly, we performed further data augmentation
on 60% of the inputs, as described in Section 5.4.2.

As an additional sequence-based reconstructor, we also imple-
mented an LSTM consisting of two LSTM-layers and one convolu-
tional layer. For implementation details, we made our code publicly
available in the replication package accompanying this paper [35].
Baseline.We use the input validation technique of DeepRoad [42]
as baseline for SelfOracle. Unfortunately, authors did not make
their code available; therefore, we implemented of our own ver-
sion according to the description in the paper. For input validation,
DeepRoad uses the pre-trained VGG19 ImageNet classifier [28]
to extract style and feature vectors from a given image. Principal
Component Analysis (PCA) is then used to reduce all style and
feature vectors, concatenated into a matrix, to three dimensional
representations, which support distance/similarity estimation. To
allow a fair comparison, we integrated it within SelfOracle as
reconstructor. However, unlike autoencoders, DeepRoad is compu-
tationally very expensive and memory demanding (due to the size
of the matrix supplied to PCA). In the paper, authors reduced their
training set to 600 images, which were resized to 120x90. During
input validation, the three dimensional representation of an online
input image is compared to the nominal images by measuring the
average of the top-100 minimum distances from the training set.

Our own implementation relaxed the restrictions above by con-
sidering a training set consisting of 3,000 randomly sampled images

7

Figure 7: Labelling of Anomalous and Normal Windows in Driving Stream.

(i.e., 5× improvement w.r.t. the original implementation described
in the paper), resized to 224x224, which is the default input size for
VGG19 [17]. Keeping the fraction of the training set (16) constant,
we compute similarity based on the average of the top-500 minimal
distances. For implementation details, we made our code publicly
available in the replication package accompanying this paper [35].

5.5 Evaluation of Simulation Results

To allow a fair comparison with our baseline DeepRoad, we evalu-
ated all approaches offline, by splitting the evaluation set of recorded
images inwindows of consecutive frames, which we labelled as either
anomalous or normal (Figure 7). In anomalous windows, SelfOra-
cle is expected to predict the shortly-following misbehavior.

5.5.1 Labelling of Anomaly and NormalWindows in Evaluation Data.

Let X = {x1,x2, . . . ,xn } be the sequence of considered images
(frames). Misbehaviors are represented asmj ∈ {0, 1}, wheremj =

1 iff a misbehavior is recorded at x j ∈ X . We define a healing
period as a sequence of h misbehaviour-free frames following a
misbehaviour at time t . We define a reaction period as a sequence
of r misbehaviour-free frames preceding a misbehaviour at time t ′
and not intersecting any healing period. We define an anomalous
window as a consecutive misbehaviour-free frames followed by
a reaction period that does not intersect any healing period. We
define a normal window as b consecutive misbehaviour-free frames
followed by an anomalous window, or a normal window that does
not intersect any healing period. This is illustrated graphically in
Figure 7. Formally, assuming any misbehavior recorded at time
t ∈ [1:n], i.e.,mt = 1:

• window xt+1 to xt+h is labelled as healing period ifmt = 1
andmj = 0 ∀j ∈ [t + 1:t + h];

• furthermore, the window xt+1 to xk−1 is also labelled as
healing period ifmk = 1 with k > t and k − t − 1 < h, and
mj = 0 ∀j ∈ [t + 1:k − 1];

• window xt−r to xt−1 is labelled as reaction period iffmt = 1,
mj = 0 ∀j ∈ [t − r :t − 1] and no healing period contains any
frame from xt−r to xt−1;

• window xi to xi+a−1 is labelled as anomaly window iff a
reaction period starts at xi+a ,mj = 0 ∀j ∈ [i:i + a − 1] and
no healing period contains any frame from xi to xi+a−1;

• window xi to xi+b−1 is labelled as normal window iff an
anomaly or a normal window starts at xi+b , mj = 0 ∀j ∈
[i:i + b − 1] and no healing period contains any frame from
xi to xi+b−1.

Moreover, ifmj = 0 for all j ∈ [k :n], all consecutive windows
of size b starting within xk to xn−r−a−1 which do not intersect
any healing period are labelled as normal. The labelling described
above ensures that after the last misbehavior in a sequence, h heal-
ing images are ignored (i.e., not labeled) before another anomaly or
normal window is defined. h must be chosen high enough that the

car is back safely on the road when the next windows are labelled.
Furthermore, r images occur in between an anomaly window in
which the system is supposed to predict the upcoming misbehav-
ior, and the actual misbehavior. This period would, in practice, be
used by the self-healing system to execute countermeasures against
the predicted future misbehavior. Intuitively, misbehavior predic-
tion is expected to be much harder as the value of r increases. In
our experiments, we set the value of n = b = 30 frames (i.e., nor-
mal/anomalous windows), which is ≈3s.2 The size of the healing
window was set to h = 60 (> 5s) frames, and the size of the reaction
window to r = 50 (> 4s) frames.

5.5.2 Metrics used for Analysis. If the loss score for an image is
higher than the automatically estimated threshold θ (Section 4.2),
SelfOracle triggers an alarm. Consequently, a true positive is
defined when SelfOracle triggers an alarm during an anomalous
window, early enough to predict a misbehavior. Conversely, a false
negative occurs when SelfOracle does not trigger an alarm during
an anomalous window, thus failing at predicting a mis-behaviour in
time for triggering self-healing. A false positive represents a false
alarm by SelfOracle, whereas true negative cases occur when
SelfOracle detects correct detection of normality.

We assume that a single alarm immediately starts the self healing
system, such that multiple consecutive alarms within the healing
time have no effect. Correspondingly, once a FP occurs and the self
healing system is running, additional consecutive FP windows have
no effect in practice and are thus excluded from our analysis.

Our goal is to achieve (1) high recall, or true positive rate (TPR,
defined as TP/TP+FN), i.e., true alarms, while (2) minimizing the
complement of specificity, or false positive rate (FPR, defined as
FP/TN+FP), i.e., labelling safe situations as unsafe. We are also
interested in F1-score (F1 = 2 · Precision×RecallPrecision+Recall) because, in practice,
it is informative to have a high F1-score at a given threshold.

We also consider two widely adopted threshold-independent
metrics for evaluating classifiers at various thresholds settings such
as AUC-ROC (area under the curve of the Receiver Operating Char-
acteristics), and AUC-PRC (area under the Precision-Recall curve).

5.6 Results

Effectiveness (RQ1). Table 1 presents the effectiveness results on a
per-SDCmodel basis. Columns 2 and 3 show threshold-independent
measures of AUC-PRC and AUC-ROC. The remaining of the table
shows the effectiveness metrics across two confidence thresholds
that we found interesting for analysis and correspond to ϵ = 0.05
and ϵ = 0.01 (at lower values of ϵ , both FPR and TPR get close to
zero, making the misbehaviour predictor useless).

Overall, LSTM and VAE are the best performing reconstructors
on the AUC-PRC and AUC-ROCmetrics. Columns 12 and 21 (Nomi-
nal/FPR) show FPR under conditions similar to those of the training
2In our setting, Udacity frame rate was approximately 10/12 fps.

8

Table 1: Evaluation Results for all variants of SelfOracle across all SDCs. Best strategies are highlighted.

ϵ = 0.05, 1 − ϵ = 0.95 ϵ = 0.01, 1 − ϵ = 0.99

Unexpected Nominal Unexpected Nominal

AUC-PRC↑ AUC-ROC↑ TP FP TN FN TPR↑ FPR↓ F1 Prec. FPR↓ TP FP TN FN TPR↑ FPR↓ F1 Prec. FPR↓
DAVE-2
VAE 0.354 0.902 149 304 1,970 47 0.760 0.134 0.459 0.329 0.042 107 183 2,959 89 0.546 0.058 0.440 0.369 0.003
DAE 0.330 0.891 104 210 2,679 92 0.531 0.073 0.408 0.331 0.041 21 55 4,063 175 0.107 0.013 0.154 0.276 0.010
SAE 0.336 0.891 138 260 1,877 58 0.704 0.122 0.465 0.347 0.050 108 183 2,665 88 0.551 0.064 0.444 0.371 0.002
CAE 0.290 0.821 6 22 4,208 190 0.031 0.005 0.054 0.214 0.024 0 0 4,282 196 0 0 n.a. n.a. 0
LSTM 0.357 0.903 16 34 3,990 177 0.083 0.008 0.132 0.320 0 7 12 4,119 186 0.036 0.003 0.066 0.368 0
DeepRoad 0.198 0.780 65 344 3,170 131 0.332 0.098 0.215 0.159 0.054 44 250 3,651 152 0.225 0.064 0.180 0.150 0.037

Epoch
VAE 0.391 0.904 158 331 1,952 51 0.756 0.145 0.453 0.323 0.049 106 169 2,858 103 0.507 0.056 0.438 0.386 0.001
DAE 0.399 0.895 112 188 2,720 97 0.536 0.065 0.440 0.373 0.042 24 34 3,653 185 0.115 0.009 0.180 0.414 0.010
SAE 0.386 0.883 147 284 2,026 62 0.703 0.123 0.459 0.341 0.050 120 175 2,838 89 0.574 0.058 0.476 0.407 0.002
CAE 0.310 0.822 6 23 3,661 203 0.029 0.006 0.050 0.207 0.020 0 0 3,731 209 0 0 n.a. n.a. 0
LSTM 0.385 0.879 23 34 3,503 175 0.116 0.010 0.180 0.404 0.001 7 13 3,592 191 0.035 0.004 0.064 0.350 0
DeepRoad 0.213 0.807 70 308 2,917 139 0.335 0.096 0.239 0.185 0.053 43 201 3,240 166 0.206 0.058 0.190 0.176 0.040

Chauffeur
VAE 0.242 0.951 98 392 3,700 23 0.810 0.096 0.321 0.200 0.049 81 267 5,391 40 0.669 0.047 0.345 0.233 0.002
DAE 0.203 0.944 78 281 5,045 43 0.645 0.053 0.325 0.217 0.051 13 95 7,730 108 0.107 0.012 0.114 0.120 0.009
SAE 0.241 0.931 96 354 3,650 25 0.793 0.088 0.336 0.213 0.056 86 240 5,177 35 0.711 0.044 0.385 0.264 0.003
CAE 0.172 0.909 7 34 8,127 114 0.058 0.004 0.086 0.171 0.023 0 0 8,229 121 0 0 n.a. n.a. 0
LSTM 0.240 0.945 11 41 7,879 111 0.090 0.005 0.126 0.212 0 4 12 8,035 118 0.033 0.002 0.058 0.250 0
DeepRoad 0.098 0.797 37 594 5,564 84 0.306 0.097 0.098 0.059 0.055 23 458 6,551 98 0.190 0.065 0.076 0.048 0.042

Totals
VAE 0.320 0.924 405 1027 7,622 121 0.770 0.119 0.414 0.283 0.046 294 619 11,208 232 0.559 0.052 0.409 0.322 0.002
DAE 0.301 0.911 294 679 10,444 232 0.559 0.061 0.392 0.302 0.045 58 184 15,446 468 0.110 0.012 0.151 0.240 0.009
SAE 0.312 0.907 381 898 7,553 145 0.724 0.106 0.422 0.298 0.052 314 598 10,680 212 0.597 0.053 0.437 0.344 0.002
CAE 0.255 0.864 19 79 15,996 507 0.036 0.005 0.061 0.194 0.022 0 0 16,242 526 0 0 n.a. n.a. 0
LSTM 0.329 0.915 50 109 15,372 463 0.098 0.007 0.149 0.315 0 18 37 15,746 495 0.035 0.002 0.063 0.327 0
DeepRoad 0.159 0.799 172 1246 11,651 354 0.327 0.097 0.177 0.121 0.054 110 909 13,442 416 0.209 0.063 0.142 0.108 0.040

set. Values are almost always near to zero and occasionally even
equal to zero (this is indicated by omitting the decimals) across
the variants of SelfOracle. This is an empirical validation of the
accuracy of the gamma distribution as a statistical model for the
reconstruction errors. In fact, at ϵ = 0.05 most FPR reported in
column 12 are very close to the theoretical value, 0.05 (see, e.g.,
rows under Totals). At ϵ = 0.01 some values drop to zero. This
means that in those configurations SelfOracle will raise no false
alarm when the SDC drives in nominal conditions. For instance,
with both thresholds, LSTM never raised false alarms within the
23,728 considered normal windows .

In terms of TPR (to be maximized) and FPR (to be minimized),
the best reconstructors are VAE and SAE, with comparable overall
performance: 77%, 11% (TPR, FPR of VAE) and 72%, 10% (SAE) at
ϵ = 0.05; 55%, 5% (VAE) and 59%, 5% (SAE) at ϵ = 0.01. It can be
noticed that FPR is higher than ϵ (10% vs 5% and 5% vs 1%) with
both reconstructors. This is expected, since we are measuring FPR
in tracks with injected anomalies. These tracks differ substantially
from the nominal tracks even in conditions not so extreme as to
cause amisbehaviour, hence inflating the FPR a bit. However, we can
notice that even in such non nominal conditions, the FPR remains
low and not too far from the theoretical prediction ϵ .

We can answer to RQ1 by noticing that with reconstructors
VAE and SAE we achieve a FPR in nominal conditions close to the
theoretical expectations (resp. 5% and 1%, in the two considered
configurations); that in anomalous conditions FPR increases by a
moderate amount (resp., +5% and +4%); and that the achieved TPR
is quite high (with VAE, SAE, resp. 77%, 72% and 55%, 59%).

Prediction (RQ2). Figure 8 shows the PRC-AUC of the various
configurations of SelfOracle over different reaction periods. The
general trend is that predictions get harder when the SDC is far
from a critical scenario, having a longer reaction period to prevent
the misbehavior, but quite surprisingly there is no drop in perfor-
mance as we move away from the misbehaviour. Our explanation
of this unexpected finding is that the tracks used for the evalu-
ation of the approach contain always a relatively high degree of
anomalous features, which might trigger a self-healing reaction. Oc-
casionally, the level of detected anomalies surpasses the threshold
and the misbehaviour predictor raises an alarm. Correspondingly,
although slightly reduced, the signals of an upcoming misbehaviour
exist in images quite far (even 60 frames or around 6s) from the
misbehaviour.

We can answer to RQ2 by noticing that the performance of
SelfOracle degrades smoothly as we anticipate the prediction
(AUC-PRC remains quite high even 6s before the misbehaviour), but
we should also remark that this result must be taken with care and
might be partially due to the characteristics of the considered tracks,
which contain a continuously and smoothly increasing degree of
injected anomalies by design.
Comparison (RQ3). In our experiments, SelfOracle is constantly
superior to DeepRoad at predicting misbehaviours. Results of AUC-
PRC andAUC-ROC show significant improvements across all thresh-
olds, and regardless of the technique being used and the reaction
period considered (in Figure 8, DeepRoad is the lowest curve). With
ϵ = 0.05 (resp. ϵ = 0.01), VAE and SAE (see Table 1) expose more
than twice the misbehaviours exposed by DeepRoad, with a TPR

9

Figure 8: Misbehavior prediction capability over time.

= 77%, 72% vs 32% (resp., 55%, 59% vs 20%), at comparable false
positive rate FPR = 11%, 10% vs 9% (resp., 5% vs 6%).

While reimplementing DeepRoad, we noticed its high computa-
tional cost that makes it quite unsuitable for online misbehaviour
prediction. SDC manufacturers use much larger training datasets
than the one we used for our empirical study and differently from
autoencoders such as VAE and SAE, DeepRoad is quite sensitive to
the size of the training set, which must be sub-sampled dramatically
to make the approach applicable. On the contrary, autoencoders
seem a very promising option, given their relatively simple archi-
tecture. In particular, SAE is very efficient, yet it has comparable
performance as the more sophisticated VAE. Hence, as an input vali-
dation framework, DeepRoad has shown to be both computationally
very expensive and inaccurate, which makes it less promising and
desirable than SelfOracle for online misbehaviour prediction.

Our answer to RQ3 is that SelfOracle outperforms DeepRoad
in all respects: computational cost, accuracy of misbehaviour pre-
diction (see TPR) and minimization of false alarms (see FPR and
AUC-PRC).

5.7 Threats to Validity

Internal validity. We compared all variants of SelfOracle and
DeepRoad under identical parameter settings, and on the same
evaluation set. The main threat to internal validity concerns our
custom implementation of unexpected conditions within the sim-
ulator. However, this was a mandatory choice, since we are not
aware of open source driving simulators that can inject unexpected
execution contexts in a controllable way. Another possible threat
may be the choice and the training of our own SDCs, which may
exhibit a large number of misbehaviour if trained inadequately. We
mitigated this threat by training and fine-tuning the best publicly
available driving models. Our own implementation of DeepRoad
may be another threat to internal validity, that we mitigated by
developing an implementation which improves the original one by
processing 5× more information.
External validity.We used a limited number of self-driving sys-
tems in our evaluation, as well as tracks, which pose a threat in
terms of generalizability of our results. We tried to mitigate this

threat by choosing popular subjects developed with real-world
frameworks (e..g, Keras).
Reproducibility. All our results, the source code of SelfOracle,
the simulator, and all subjects are available [35], making the evalu-
ation repeatable and our results reproducible.

6 RELATEDWORK

Adversarial InputGeneration.Adversarial generation approaches
aim at generating inputs that trigger inconsistencies between mul-
tiple autonomous driving systems [26], or between the original and
transformed driving scenarios [23, 34, 42]. These works exploit the
well-known fragility of DNNs to adversarial examples. Therefore,
their main use-case concerns the identification of underrepresented
scenarios in the training data (e.g., snowy weather condition) to
support re-training and better generalization after re-training. The
only comparable technique is the online input validation of Deep-
Road [42], for which we carried out an explicit comparison in our
empirical study, finding poor performance when used for online
misbehaviour prediction.

Despite the different goal (test generation vs misbehaviour pre-
diction), we share with these works the problem of how to empiri-
cally validate the proposed technique in the absence of a precise
oracle that defines the expected behaviour of a self-driving car. The
prevalent choice in test generators [23, 26, 34, 42] is to address
the oracle problem by differential testing, i.e., by comparing the
behaviours of multiple DNNs, or by metamorphic testing, i.e., by
comparing the behaviour before and after applying a metamorphic
transformation to the input. Approaches based on verification are
also being under investigation [14]. In this paper, we adopt a precise
definition of DNN misbehaviour, which gives us a very accurate
functional oracle, with no need for differential testing, metamorphic
testing, or verification.
Search-based Generation. Abdessalem et al. [1, 4, 5] combine
genetic algorithms and machine learning to test a pedestrian detec-
tion system. Mullins et al. [22] use Gaussian processes to drive the
search towards yet unexplored regions of the input space, whereas
Gambi et al. [13] propose AsFault, a search-based test generator
for autonomous vehicles based on procedural content generation.
AsFault uses search operators which mutate and recombine road
segments to construct road networks for testing the lane keeping
functionality of self-driving cars. Their goal is to generate extreme
and challenging roads, maximizing the number of observed OBEs,
while our goal is to avoid OBEs by predicting misbehaviours.
Anomaly Detection for Time Series.Anomaly detection for self-
driving vehicles has been studied from a security perspective. For
example, Narayanan et al. [24] use a Hidden Markov Model to de-
tect malicious behaviours from real vehicles, and issue alerts while a
vehicle is in operation. Taylor et al. [29] use LSTM neural networks
to detect car’s controller area network (CAN) bus attacks, whereas
Marchetti et al. [20] used an information theoretic approach. Lin
et al. [19] used the Mahalanobis distance between multiple sen-
sor data to identify unusual events in Unmanned Aerial Vehicles
(UAVs). However, their approach is not image-based and thus is not
comparable with our work. Moreover, ours is the first approach
that detects unexpected driving conditions for the prediction of
misbehaviours of an autonomous vehicle to enable self-healing.

10

7 CONCLUSIONS AND FUTUREWORK

In this paper, we studied the problem of estimating the confidence
of the DNN-based autonomous in response to unexpected execution
contexts. Our tool SelfOracle was able to anticipate by several
seconds many potentially safety-critical misbehaviours, such as out
of bound episodes or collisions, with a low false alarm rate, outper-
forming the input validator of DeepRoad. Future work concerns
devising novel metrics of DNN confidence, including white-box
ones, with a potential for hybridization. It would be also interesting
to characterize and predict other kind of misbehaviours (e.g., deriv-
ative of steering angle) as well as implementing confidence-guided
self-healing within the simulator. We believe that our promising re-
sults in online misbehaviour detection, united with the availability
of a labeled dataset of crashes and a simulation environment, can
foster novel approaches for online prediction and self-healing of
autonomous driving systems.

REFERENCES

[1] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and
Thomas Stifter. 2018. Testing Autonomous Cars for Feature Interaction Failures
Using Many-objective Search. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE 2018). ACM, New York, NY,
USA, 143–154. https://doi.org/10.1145/3238147.3238192

[2] David Alvarez-Melis and Tommi S. Jaakkola. 2018. Towards Robust Interpretabil-
ity with Self-Explaining Neural Networks. In Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS). 7786–7795.

[3] Jinwon An and Sungzoon Cho. 2015. Variational Autoencoder based Anomaly
Detection using Reconstruction Probability.

[4] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. 2016. Testing advanced
driver assistance systems using multi-objective search and neural networks. In
2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE). 63–74.

[5] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. 2018. Testing Vision-
Based Control Systems Using Learnable Evolutionary Algorithms. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). 1016–
1026. https://doi.org/10.1145/3180155.3180160

[6] BGR Media, LLC. 2018. Waymo’s self-driving cars hit 10 million miles. https://
techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles. On-
line; accessed 18 August 2019.

[7] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning for
Self-Driving Cars. CoRR abs/1604.07316 (2016). http://arxiv.org/abs/1604.07316

[8] Georg Burkhard, S. Vos, N. Munzinger, E. Enders, and D. Schramm. 2018. Require-
ments on driving dynamics in autonomous driving with regard to motion and
comfort. In 18. Internationales Stuttgarter Symposium, Michael Bargende, Hans-
Christian Reuss, and JochenWiedemann (Eds.). Springer Fachmedien Wiesbaden,
Wiesbaden, 683–697.

[9] Guilherme O. Campos, Arthur Zimek, Jörg Sander, Ricardo J. Campello, Barbora
Micenková, Erich Schubert, Ira Assent, and Michael E. Houle. 2016. On the
Evaluation of Unsupervised Outlier Detection: Measures, Datasets, and an Em-
pirical Study. Data Min. Knowl. Discov. 30, 4 (July 2016), 891–927. https:
//doi.org/10.1007/s10618-015-0444-8

[10] Vinton G. Cerf. 2018. A Comprehensive Self-driving Car Test. Commun. ACM
61, 2 (Jan. 2018), 7–7. https://doi.org/10.1145/3177753

[11] Electrek. 2016. A Google self-driving car caused a crash for the
first time. https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-
autopilot-nhtsa-probe/. Online; accessed 18 August 2019.

[12] Electrek. 2016. Tesla Model S driver crashes into a van while on Autopilot.
https://electrek.co/2016/05/26/tesla-model-s-crash-autopilot-video/. Online;
accessed 18 August 2019.

[13] Alessio Gambi, MarcMueller, andGordon Fraser. 2019. Automatically Testing Self-
driving Cars with Search-based Procedural Content Generation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2019). ACM,NewYork, NY, USA, 318–328. https://doi.org/10.1145/3293882.
3330566

[14] Divya Gopinath, Guy Katz, Corina S. Păsăreanu, and Clark Barrett. 2018. Deep-
Safe: A Data-Driven Approach for Assessing Robustness of Neural Networks.
In Automated Technology for Verification and Analysis, Shuvendu K. Lahiri and
Chao Wang (Eds.). Springer International Publishing, Cham, 3–19.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.

8.1735
[16] keras. [n.d.]. Building Autoencoders in Keras. https://blog.keras.io/building-

autoencoders-in-keras.html. Online; accessed 21 August 2019.
[17] Keras. [n.d.]. VGG19. https://keras.io/applications/#vgg19/. Online; accessed 21

August 2019.
[18] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System Test-

ing Using Surprise Adequacy. In Proceedings of the 41st International Conference
on Software Engineering (ICSE ’19). IEEE Press, Piscataway, NJ, USA, 1039–1049.
https://doi.org/10.1109/ICSE.2019.00108

[19] R. Lin, E. Khalastchi, and G. A. Kaminka. 2010. Detecting anomalies in unmanned
vehicles using the Mahalanobis distance. In 2010 IEEE International Conference
on Robotics and Automation. 3038–3044. https://doi.org/10.1109/ROBOT.2010.
5509781

[20] M. Marchetti, D. Stabili, A. Guido, and M. Colajanni. 2016. Evaluation of anomaly
detection for in-vehicle networks through information-theoretic algorithms. In
2016 IEEE 2nd International Forum on Research and Technologies for Society and
Industry Leveraging a better tomorrow (RTSI). 1–6. https://doi.org/10.1109/RTSI.
2016.7740627

[21] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. 2011. Stacked
Convolutional Auto-Encoders for Hierarchical Feature Extraction. In Artificial
Neural Networks and Machine Learning – ICANN 2011, Timo Honkela, Włodzisław
Duch, Mark Girolami, and Samuel Kaski (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 52–59.

[22] Galen E. Mullins, Paul G. Stankiewicz, R. Chad Hawthorne, and Satyandra K.
Gupta. 2018. Adaptive generation of challenging scenarios for testing and evalu-
ation of autonomous vehicles. Journal of Systems and Software 137 (2018), 197 –
215. https://doi.org/10.1016/j.jss.2017.10.031

[23] S. Müller, D. Hospach, O. Bringmann, J. Gerlach, and W. Rosenstiel. 2015. Robust-
ness Evaluation and Improvement for Vision-Based Advanced Driver Assistance
Systems. In 2015 IEEE 18th International Conference on Intelligent Transportation
Systems. 2659–2664. https://doi.org/10.1109/ITSC.2015.427

[24] Sandeep Nair Narayanan, Sudip Mittal, and Anupam Joshi. 2016. OBD SecureAl-
ert: An Anomaly Detection System for Vehicles. In IEEE Workshop on Smart
Service Systems (SmartSys 2016).

[25] particle-system 2019. Unity3d Particle System. https://docs.unity3d.com/
ScriptReference/ParticleSystem.html.

[26] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA,
1–18. https://doi.org/10.1145/3132747.3132785

[27] Claude Elwood Shannon. 1948. A Mathematical Theory of Communication. The
Bell System Technical Journal 27, 3 (7 1948), 379–423. https://doi.org/10.1002/j.
1538-7305.1948.tb01338.x

[28] Karen Simonyan and Andrew Zisserman. [n.d.]. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. ([n. d.]). arXiv:cs.CV/1409.1556v6
VGGNet, https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3.

[29] A. Taylor, S. Leblanc, and N. Japkowicz. 2016. Anomaly Detection in Automobile
Control Network Data with Long Short-Term Memory Networks. In 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA). 130–139.
https://doi.org/10.1109/DSAA.2016.20

[30] Team Chauffeur. 2016. Steering angle model: Chauffeur. https://github.
com/udacity/self-driving-car/tree/master/steering-models/community-
models/chauffeur. Online; accessed 18 August 2019.

[31] Team Epoch. 2016. Steering angle model: Epoch. https://github.com/udacity/
self-driving-car/tree/master/steering-models/community-models/cg23. Online;
accessed 18 August 2019.

[32] The Verge. 2016. A Google self-driving car caused a crash for the first
time. https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-
crash-report. Online; accessed 18 August 2019.

[33] The Verge. 2019. Tesla hit with another lawsuit over a fatal Autopilot
crash. https://www.theverge.com/2019/8/1/20750715/tesla-autopilot-crash-
lawsuit-wrongful-death. Online; accessed 18 August 2019.

[34] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated
Testing of Deep-neural-network-driven Autonomous Cars. In Proceedings of the
40th International Conference on Software Engineering (ICSE ’18). ACM, New York,
NY, USA, 303–314. https://doi.org/10.1145/3180155.3180220

[35] SelfOracle 2019. Mis-Behaviour Prediction for Autonomous Driving Systems.
https://github.com/icse2020submission/misbehavior-prediction/.

[36] track3 2019. Unity3D Snow Mountain Track. https://assetstore.unity.com/
packages/3d/environments/roadways/mountain-race-track-53775.

[37] Udacity. 2017. A self-driving car simulator built with Unity. https://github.com/
udacity/self-driving-car-sim. Online; accessed 18 August 2019.

[38] Udacity. 2017. Udacity self-driving car’s challenge. https://github.com/udacity/
self-driving-car/. Online; accessed 18 August 2019.

[39] Udacity. 2017. Udacity self-driving car’s datasets. https://github.com/udacity/self-
driving-car/tree/master/datasets. Online; accessed 18 August 2019.

[40] unity 2019. Unity3D. https://unity.com.

11

https://doi.org/10.1145/3238147.3238192
https://doi.org/10.1145/3180155.3180160
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/s10618-015-0444-8
https://doi.org/10.1007/s10618-015-0444-8
https://doi.org/10.1145/3177753
https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe/
https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe/
https://electrek.co/2016/05/26/tesla-model-s-crash-autopilot-video/
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://keras.io/applications/#vgg19/
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1109/ROBOT.2010.5509781
https://doi.org/10.1109/ROBOT.2010.5509781
https://doi.org/10.1109/RTSI.2016.7740627
https://doi.org/10.1109/RTSI.2016.7740627
https://doi.org/10.1016/j.jss.2017.10.031
https://doi.org/10.1109/ITSC.2015.427
https://docs.unity3d.com/ScriptReference/ParticleSystem.html
https://docs.unity3d.com/ScriptReference/ParticleSystem.html
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/DSAA.2016.20
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/cg23
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/cg23
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://www.theverge.com/2019/8/1/20750715/tesla-autopilot-crash-lawsuit-wrongful-death
https://www.theverge.com/2019/8/1/20750715/tesla-autopilot-crash-lawsuit-wrongful-death
https://doi.org/10.1145/3180155.3180220
https://github.com/icse2020submission/misbehavior-prediction/
https://assetstore.unity.com/packages/3d/environments/roadways/mountain-race-track-53775
https://assetstore.unity.com/packages/3d/environments/roadways/mountain-race-track-53775
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car/
https://github.com/udacity/self-driving-car/
https://github.com/udacity/self-driving-car/tree/master/datasets
https://github.com/udacity/self-driving-car/tree/master/datasets
https://unity.com

[41] V. T. Vasudevan, A. Sethy, and A. R. Ghias. 2019. Towards Better Confidence
Estimation for Neural Models. In ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 7335–7339. https://doi.org/
10.1109/ICASSP.2019.8683359

[42] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
2018. DeepRoad: GAN-based Metamorphic Testing and Input Validation Frame-
work for Autonomous Driving Systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE 2018). ACM,
New York, NY, USA, 132–142. https://doi.org/10.1145/3238147.3238187

12

https://doi.org/10.1109/ICASSP.2019.8683359
https://doi.org/10.1109/ICASSP.2019.8683359
https://doi.org/10.1145/3238147.3238187

	Abstract
	1 Introduction
	2 Background
	3 Problem formulation
	4 Approach
	4.1 Training of SelfOracle under Nominal Driving Behaviour
	4.2 Usage Scenario

	5 Empirical Evaluation
	5.1 Research Questions
	5.2 Self Driving Car Models
	5.3 Simulation Platform
	5.4 Procedure
	5.5 Evaluation of Simulation Results
	5.6 Results
	5.7 Threats to Validity

	6 Related Work
	7 Conclusions and Future Work
	References

