1905.07147v1 [cs.SE] 17 May 2019

arxXiv

Targeted Greybox Fuzzing
with Static Lookahead Analysis

Valentin Wiistholz
ConsenSys Diligence, Germany
valentin.wustholz @consensys.net

Abstract—Automatic test generation typically aims to generate
inputs that explore new paths in the program under test in order
to find bugs. Existing work has, therefore, focused on guiding the
exploration toward program parts that are more likely to contain
bugs by using an offline static analysis.

In this paper, we introduce a novel technique for targeted
greybox fuzzing using an online static analysis that guides the
fuzzer toward a set of target locations, for instance, located in
recently modified parts of the program. This is achieved by
first semantically analyzing each program path that is explored
by an input in the fuzzer’s test suite. The results of this
analysis are then used to control the fuzzer’s specialized power
schedule, which determines how often to fuzz inputs from the
test suite. We implemented our technique by extending a state-
of-the-art, industrial fuzzer for Ethereum smart contracts and
evaluate its effectiveness on 27 real-world benchmarks. Using an
online analysis is particularly suitable for the domain of smart
contracts since it does not require any code instrumentation—
adding instrumentation to contracts changes their semantics. Our
experiments show that targeted fuzzing significantly outperforms
standard greybox fuzzing for reaching 83% of the challenging
target locations (up to 14x of median speed-up).

I. INTRODUCTION

Automatic test generation is known to help find bugs
and security vulnerabilities, and therefore, improve software
quality. As a result, there has emerged a wide variety of test-
generation tools that implement techniques such as random
testing [1], [2], [3] and blackbox fuzzing [4], [5], greybox
fuzzing [6], [7] as well as dynamic symbolic execution [8],
[9] and whitebox fuzzing [10], [11], [12].

These techniques differ from each other in how much of
the program structure they take into account. In general, the
more structure a testing tool may leverage, the more effective
it becomes in discovering new paths, but the less efficient it
is in generating new inputs. For example, greybox fuzzing
lies in the middle of this spectrum between performance
and effectiveness in increasing coverage. In particular, it uses
lightweight runtime monitoring that makes it possible to
distinguish different paths, but it may not access any additional
information about the program under test.

What these techniques have in common is that, just like
any (static or dynamic) path-based program analysis, they
can usually only explore a subset of all feasible paths in a
program under test; for instance, in the presence of input-
dependent loops. For this reason, path-based program analyses
are typically not able to prove the absence of errors in a
program, only their existence.

Maria Christakis
MPI-SWS, Germany
maria @mpi-sws.org

To make bug detection more effective, existing work has
focused on guiding the exploration toward warnings reported
by a static analysis (e.g., [13], [14], [15]), unverified program
executions (e.g., [16], [17]), or sets of dangerous program
locations (e.g., [18]). The motivation behind these approaches
is to identify safe program paths at compile time and avoid
them at runtime. This is often achieved with an offline static
analysis whose results are recorded and used to prune parts of
the search space that is then explored by test generation.

The offline static analysis may be semantic, e.g., based on
abstract interpretation, or not, e.g., based on the program text
or its control-flow graph. A semantic analysis must consider
all possible program inputs and states in which a piece of code
may be executed. As a result, the analysis can quickly become
imprecise, thus impeding its purpose of pruning as much of the
search space as possible. For better results, one could resort to
a more precise analysis, which would be less efficient, or to a
more unsound analysis. The latter would limit the number of
considered execution states in order to increase precision, but
may also prune paths that are unsoundly verified [19].

Our approach. In this paper, we present a technique that
semantically guides greybox fuzzing toward rarget locations,
for instance, locations reported by another analysis or located
in recently modified parts of the program. This is achieved
with an online static analysis. In particular, the fuzzer invokes
this online analysis right before adding a new input to its test
suite. For the program path 7 that the new input explores (see
bold path in Fig. 1), the goal of the analysis is to determine a
path prefix . for which all suffix paths are unable to reach
a target location (e.g., T;; and T}, in Fig. 1). This additional
information allows the fuzzer to allocate its resources more
strategically such that more effort is spent on exercising
program paths that might reach the target locations, thereby
enabling targeted fuzzing. More precisely, this information
feeds into a specialized power schedule of the fuzzer that
determines how often to fuzz an input from the test suite.

We refer to our online static analysis as a lookahead analysis
since, given a path prefix 7, it looks for reachable target
locations along all suffix paths (sub-tree rooted at P; in
Fig. 1). We call the last program location of prefix .. a
split point (P; in Fig. 1). Unlike a traditional static analysis,
the lookahead analysis does not consider all possible execution
states at the split point when analyzing all suffix paths—only
the ones that are feasible along ... In other words, the

Tpre

Fig. 1: Execution tree of a program containing target
locations 7, and T,. The lookahead analysis analyzes a
path 7 (bold) to identify a prefix 7,.. such that no suffix
paths reach a target location.

lookahead analysis combines the precision of a path-sensitive
analysis along a feasible path prefix with the scalability of a
path-insensitive suffix analysis. Intuitively, for a given path ,
the precision of the lookahead analysis is determined by the
number of suffix paths that are proved not to reach any target
locations. Therefore, to optimize precision, the analysis tries
to identify the first split point (P; in Fig. 1) along 7 such that
all targets are unreachable. Note that the lookahead analysis
may consider any program location along 7 as a split point.
When combining greybox fuzzing with an online lookahead
analysis, we faced four main challenges, which we address in
this paper. In particular, we provide answers to the following
questions: (1) How can the lookahead analysis effectively
communicate its results to the fuzzer? (2) How lightweight
can the analysis be to improve the effectiveness of the fuzzer
in reaching target locations without having a negative impact
on its performance? (3) How can the analysis be invoked from
a certain split point along a path? (4) What are suitable split
points for invoking the analysis to check all suffix paths?
Our implementation uses HARVEY, a state-of-the-art, indus-
trial greybox fuzzer for Ethereum smart contracts, which are
programs managing crypto-currency accounts on a blockchain.
We extended HARVEY to incorporate BRAN, a new static-
analysis framework for smart contracts. A main reason for
targeting the domain of smart contracts is that adding code
instrumentation to contracts changes their semantics, and all
existing techniques that use an offline static analysis require
instrumentation of the program under test. Our experiments
on 27 benchmarks show that targeted fuzzing significantly
outperforms standard greybox fuzzing for reaching 83% of the
challenging target locations (up to 14x of median speed-up).
Contributions. We make the following contributions:

— We introduce a greybox-fuzzing algorithm that uses a

lightweight, online static analysis and a specialized power
schedule to guide the exploration toward target locations.

— We implement this fuzzing algorithm by extending the
HARVEY greybox fuzzer with BRAN, a static analysis
for smart contracts.

— We evaluate our technique on 27 real-world benchmarks
and demonstrate that our lookahead analysis and power
schedule significantly increase the effectiveness of grey-
box fuzzing in reaching target locations.

Outline. The next section provides background on greybox
fuzzing and smart contracts. In Sect. III, we give an overview
of our technique through an example. Sect. IV explains the
technical details, and Sect. V describes our implementation.
We present our experimental evaluation in Sect. VI, discuss
related work in Sect. VII, and conclude in Sect. VIII.

II. BACKGROUND

In this section, we review background on greybox fuzzing
and smart contracts.

A. Greybox Fuzzing

Greybox fuzzing [6], [7] is a practical test-generation tech-
nique that has been shown to be very effective in detecting
bugs and security vulnerabilities (e.g., [20]). Alg. 1 shows
exactly how it works. (The grey boxes should be ignored.)

A greybox fuzzer takes as input the program under test
prog and a set of seed inputs S. The fuzzer runs the program
with the seeds (line 1) and associates each input with the
unique identifier of the path it exercises, or PID. The PIDs
data structure, therefore, represents a map from a PID to the
corresponding input. Note that a path identifier is computed
with lightweight runtime monitoring that allows the fuzzer to
distinguish different program paths.

Next, the fuzzer selects an input from PIDs for mutation
(line 3), which is typically performed randomly. This input is
assigned an “energy” value, which indicates how long it should
be fuzzed (line 5). The input is then mutated (line 8), and the
program is run again with this new input (line 9). If the new
input exercises a path that has not been seen before, it is added
to PIDs with the corresponding path identifier (lines 10, 12).

This process terminates when a bound is reached, such as
a timeout or a number of generated inputs (line 2). When that
happens, the fuzzer returns a test suite comprising all inputs
in PIDs, each exercising a different path in the program.

B. Smart Contracts

Ethereum [21] is one of the most well known blockchain-
based [22], [23] computing platforms. Like a bank, Ethereum
supports accounts that store a balance (in digital assets) and
are owned by a user. More specifically, there is support for
two account types, namely user and contract accounts.

Contract accounts are not managed by a user, but instead
by a program. The program associated with a certain contract
account describes an agreement between the account and any
users that interact with it. For example, such a program could
encode the rules of a gambling game. To store information,

such as bets from various users, a contract account also comes
with persistent state that the program may access and modify.

A contract account together with its managing program
and persistent state is called a smart contract. However,
the term may also refer to the code alone. Ethereum smart
contracts can be developed in several high-level languages,
such as Solidity and Vyper, which compile to Ethereum Virtual
Machine (EVM) [24] bytecode.

Users interact with a smart contract, for instance to place a
bet, by issuing a transaction with the contract. The transaction
simply calls one of the contract functions, but in order to be
carried out, users need to provide a fee. This fee is called gas
and is approximately proportional to how much code needs to
run. Any transaction that runs out of gas is aborted.

III. OVERVIEW

We now give an overview of our approach through the
example of Fig. 2.

Example. The figure shows a constructed function Bar,
which is written in Solidity and contained in a smart contract.
(The comments should be ignored for now.) There are three
assertions in this function, on lines 14, 19, and 22. A compiler
will typically introduce a conditional jump for each assertion,
where one branch leads to a location that fails. Let us assume
that we select the failing locations (14, t19 , and ts2) of the
three assertions as our target locations. Note that any target
locations could be (automatically) selected based on various
strategies, e.g., recently modified code, assertions, etc. Out of
the above locations, t14 and t19 are unreachable, whereas too
is reachable when input parameter a has value 42.

Generating a test input that reaches location t39 is difficult
for a greybox fuzzer for two reasons. First, the probability of
generating value 42 for parameter a is tiny, namely 1 out of
2256 This means that, for the fuzzer to increase the chances of
reaching ¢,9, it would need to fuzz certain “promising” inputs
with a large amount of energy. However, standard greybox
fuzzers are agnostic to what constitutes a promising input that
is more likely to reach a target location when mutated.

Second, there are more than 100’000 program paths in
function Bar. In fact, the then-branch of the first if-statement
(line 5) contains two input-dependent loops (lines 11 and 16),
whose number of iterations depends on parameters w and z,
respectively. Recall that a greybox fuzzer generates new inputs
by mutating existing ones from the test suite. Therefore, the
larger the size of the test suite, the larger the space of possible
mutations, and the lower the chances of generating an input
that reaches the target location.

Existing work. As discussed earlier, there is existing work
that leverages the results of an offline static analysis to guide
automatic test generation toward unverified executions (e.g.,
[13], [14], [15], [16], [17]). To apply such a technique on
the example of Fig. 2, let us assume a very lightweight static
analysis that is based on abstract interpretation [25], [26] and
uses the simple constant-propagation domain [27]. Note that,
for each program variable, the constant-propagation domain
can only infer a single constant value. When run offline, this

function Bar (uint256 w, uint256 x, uint256 vy,

1
2 uint256 z, uint256 a) returns (uint256)
3

4 uint256 ret = 0;

5 if (x $ 2 == 0) { // if (x % 1000 != 42) {
6 ret = 256;

7 if (y $ 2 == 0) {

8 ret = 257;

9 }

10 w =w % ret;

1 while (w != 0) {

12 w——;

13 }

14 assert (w == 0); // drop this line

15 z = z % ret;

16 while (ret != 2z) {

17 zZ++;

18 }

19 assert (ret == z); // assert(x != 42 - w*z);
20 } else {

21 ret = 3xaxa + 7xa + 101;

22 assert (ret != 5687);

24 return ret;
25}

Fig. 2: The running example.

analysis is able to prove that target location ¢14 is unreachable.
This is because, after the loop on line 11, the analysis assumes
the negation of the loop condition (that is, 0), which
is equivalent to the asserted condition.

However, the analysis cannot prove that location ¢19 is also
unreachable. This is because, after the if-statement on line 7,
variable ret has abstract value T. In other words, the analysis
finds ret to be unconstrained since the constant-propagation
domain is not able to express that its value is either 256 or
257. Given that ret is T, z also becomes T (line 15). It is,
therefore, not possible for the analysis to determine whether
these two variables always have the same value on line 19
and verify the assertion. As a result, automatic test generation
needs to explore function Bar as if no static analysis had
previously run. To check whether the assertion on line 19
always holds, a testing tool would have to generate inputs
for all paths leading to it, thus including each iteration of the
loop on line 11.

On the other hand, an existing technique for directed
greybox fuzzing [18] performs lightweight instrumentation of
the program under test to extract a distance metric for each
input, which is then used as feedback for the fuzzer. So,
the instrumentation encodes a static metric that measures the
distance between the instrumented and the target locations
in the control-flow graph. In our example, such metrics are
less effective since all instructions are relatively close to the
target locations, and the control-flow graph alone is not precise
enough to determine more semantic reachability conditions.
In addition, when directly fuzzing bytecode or assembly,
a control-flow graph might not be easily recoverable, for
instance due to indirect jumps.

Lookahead analysis. In contrast, our approach alleviates
the imprecision of a static analysis by running it online and

does not require a control-flow graph. Our greybox fuzzer
invokes the lookahead analysis for each input that is added
to the test suite. Starting from split points (e.g., P, P;—1, and
P; in Fig. 1) along an explored program path, the analysis
computes a path prefix (mp..) for which all suffix paths do
not reach any target location (e.g., T, and T}). We refer to
such a path prefix as a no-target-ahead prefix (see Def. 2 for
more details). As we explain below, the lookahead analysis
aims to identify short no-target-ahead prefixes.

As an example, let us consider the constant-propagation
analysis and an input for function Bar with an even value
for x (thus making execution take the then-branch of the first
if-statement on line 5). Along the path exercised by this input,
the analysis fails to show that both target locations ¢14 and 19
are unreachable for the suffix paths starting from line 7. In fact,
the analysis is as imprecise as when run offline on the entire
function. However, it does verify the unreachability of the
target locations for all suffix paths from line 9 by propagating
forward the constant value of variable ret (either 256 or
257, depending on the value of y). Out of the many paths
with an even value for x, the two no-target-ahead prefixes
until line 9 (through the then- and else-branches of the if-
statement on line 7) are actually the shortest ones for which
the lookahead analysis proves that target locations t14 and 19
are unreachable.

Power schedule. The no-target-ahead prefixes computed by
the lookahead analysis are used to control the fuzzer’s power
schedule [28], which assigns more energy to certain inputs
according to two criteria.

First, it assigns more energy to inputs that exercise a rare
(i.e., rarely explored) no-target-ahead prefix. The intuition is
to fuzz these inputs more in order to increase the chances of
flipping a branch along the rare prefix, and thereby, reaching
a target location. Note that flipping a branch in a suffix
path can never lead to a target location. For this reason, our
power schedule no longer distinguishes inputs based on the
program path they exercise, but rather based on their no-target-
ahead prefix. To maximize the chances of discovering a target
location with fuzzing, the lookahead analysis tries to identify
the shortest no-target-ahead prefixes, which are shared by the
most suffix paths.

For the example of Fig. 2, consider the two no-target-ahead
prefixes (until line 9) that we discussed above. Consider also
the no-target-ahead prefix until the successful branch of the
assertion on line 22. The inputs that exercise these prefixes
are dynamically assigned roughly the same energy by our
schedule—if one of them is exercised more rarely than the
others, it is given more energy. This makes reaching target
location 242 significantly more likely than with standard power
schedules based on path identifiers, which assign roughly the
same energy to each input exercising one of the thousands of
paths in Bar.

Second, our power schedule also assigns more energy to
inputs exercising rare split points in a no-target-ahead prefix,
similarly to how existing work assigns more energy to rare
branches [29]. The intuition is the following. Any newly

discovered no-target-ahead prefix is by definition rare—it has
not been fuzzed before. Since it is rare, the power schedule
will assign more energy to it, as discussed above. However,
there are programs where new no-target-ahead prefixes can
be easily discovered, for instance due to an input-dependent
loop. In such cases, a power schedule only focusing on rare
prefixes would prioritize these new prefixes at the expense of
older ones that explore rare program locations, such as split
points. For this reason, when a split point in a no-target-ahead
prefix becomes rare, the power schedule tries to explore it
more often.

As an example, consider the code in Fig. 2 while taking the
comments into account, that is, replace lines 5 and 19 with the
comments and drop line 14. The assertion on line 19 holds, but
the constant-propagation analysis is too weak to prove it. As a
result, for any path through this assertion, its no-target-ahead
prefix has to include line 19. However, new no-target-ahead
prefixes are very easily discovered; for instance, by exploring a
different number of iterations in any of the two loops. So, even
if at some point the fuzzer discovers the path that successfully
exercises the assertion on line 22, its no-target-ahead prefix
will quickly become less rare than any new prefixes going
through the loops. The corresponding input will, therefore, be
fuzzed less often even though it is very close to revealing
the assertion violation. By prioritizing rare split points, for
instance line 21, our power schedule will assign more energy
to that input. This increases the chances of mutating the value
of a to be 42 and reaching target ¢55.

Both of these criteria effectively guide the fuzzer toward
the target locations. For Fig. 2, our technique generates a test
that reaches ¢4 in 27s on average (between 13 and 48s in 5
runs). Standard greybox fuzzing does not reach t52 in 4 out of
5 runs, with a timeout of 300s. The target location is reached
in 113s during a fifth run, so in 263s on average. For this
example, our technique achieves at least a 10x speed-up.

Why smart contracts. While our approach could be applied
to regular programs, it is particularly useful in the context of
smart contracts. One reason is that, in this setting, combining
an offline static analysis with test generation using code
instrumentation would change the program semantics. Recall
that a transaction with a smart contract is carried out when
users provide enough gas, which is roughly proportional to
how much code is run. Since instrumentation consumes gas at
execution time, it could cause a testing tool to report spurious
out-of-gas errors. Another reason is that most deployed smart
contracts are only available as bytecode, and recovering the
control-flow graph from the bytecode is challenging.

IV. TECHNIQUE

In this section, we describe our technique in detail by first
formally defining a lookahead analysis (Sect. IV-A). We then
discuss how to integrate such an analysis with greybox fuzzing
to enable a more targeted exploration of the search space
(Sect. TV-B). Lastly, we present a concrete algorithm for a
lookahead analysis based on abstract interpretation.

A. Lookahead Analysis

Let us first define a prefix and a no-target-ahead prefix of
a given path.

Definition 1 (Prefix). Given a program P and a path 7 in P,
we say that 7, is a prefix of 7 iff there exists a suffix p such
that m = concat(mpre, p).

Note that, in the above definition, p may be empty, in which
case T = Tppe.

Definition 2 (No-target-ahead prefix). Given a program P,
target locations 7', and a prefix 7. of a path in P, we say that
Tpre 1S & no-target-ahead prefix iff the suffix p of every path
7w = concat(Tpre, p) in P does not contain a target location
TeT.

Note that any path 7 in a program P is trivially a no-target-
ahead prefix since there cannot be any target locations after
reaching the end of its execution.

For a given no-target-ahead prefix, the analysis computes a
lookahead identifier (LID) that will later be used to guide the
greybox fuzzer.

Definition 3 (Lookahead identifier). Given a no-target-ahead
prefix mpre, the lookahead identifier) is a cryptographic hash
hash(Tpre).

The above definition ensures that it is very unlikely that two
different no-target-ahead prefixes map to the same lookahead
identifier.

Unlike a path identifier (PID) in standard greybox fuzzing,
which is computed purely syntactically, a LID captures a
no-target-ahead prefix, which is computed by semantically
analyzing a program path. As a result, two program paths
with different PIDs may share the same LID. In other words,
lookahead identifiers define equivalence classes of paths that
share the same no-target-ahead prefix.

Definition 4 (Lookahead analysis). Given a program P, an
input I, and a set of target locations T, a lookahead analysis
computes a lookahead identifier A for the corresponding no-
target-ahead prefix m,,. (of path 7 exercised by input /) and
a set of split points SPs along mpye.

Any analysis that satisfies the above definition is a sound
lookahead analysis. For instance, one that simply returns the
hash of path 7 exercised by input I and all locations along
m is trivially sound. For a given input, the precision of the
analysis is determined by the length of the no-target-ahead
prefix, and thereby, the number of suffix paths that are proved
not to contain any target locations. In other words, the shorter
the no-target-ahead prefix for a given input, the more precise
the lookahead analysis.

B. Fuzzing with Lookahead Analysis

The integration of greybox fuzzing with a lookahead analy-
sis builds on the following core idea. For each input in the
test suite, the lookahead analysis determines a set of split
points, that is, program locations along the explored path. It

Algorithm 1: Greybox fuzzing with lookahead analysis.
Input: Program prog, Seeds S, Target locations 7'

1 PIDs < RUNSEEDS(SS, prog)

> while =INTERRUPTED() do

5 input < PICKINPUT(PIDs)

4+ energy < 0

s mazEnergy < ASSIGNENERGY (input)

o mazEnergy < LOOKAHEADASSIGNENERGY (input)

7

8

while energy < maxEnergy do
input’ < FUZZINPUT(input)
0 PID’ <+ RUN(input’, prog)
0 it ISNEW(PID’, PIDs) then
1 LID, SPs <+ LOOKAHEADANALYZE(prog, input’,T)
1 PIDs < ADD(PID’,input’, LID, SPs, PIDs)

13 energy < energy + 1
Output: Test suite INPUTS(PIDs)

then computes a no-target-ahead prefix, which spans until one
of these split points and is identified by a lookahead identifier.
The fuzzer uses the rarity of the lookahead identifier as well
as of the split points that are located along the no-target-ahead
prefix to assign energy to the corresponding input.

The grey boxes in Alg. 1 highlight the key extensions we
made to standard greybox fuzzing. For one, our algorithm
invokes the lookahead analysis on line 11. This is done for
every new input that is added to the test suite and computes
the LID of the no-target-ahead prefix as well as the split
points SPs along the prefix. Both are stored in the PIDs data
structure for efficient lookups (e.g., when assigning energy).

We also replace the existing power schedule on line 5 with
a specialized one given by LOOKAHEADASSIGNENERGY
(line 6). As discussed in Sect. III, our power schedule assigns
more energy to inputs that exercise either a rare LID or a rare
split point along a no-target-ahead prefix. We define the new
power schedule in the following.

Definition 5 (Rare LID). Given a test suite with LIDs A, a
LID)\ is rare iff

fuzz(N) < rarity_cutoff,

where fuzz(\) measures the number of fuzzed inputs that
exercised A so far and rarity_cutoff = 2* such that

27! < mj N) < 2n,
<)I\Illélll\fuzz() <

For example, if the LID with the fewest fuzzed inputs has
been explored 42 times, then any LID that has been explored
less than 2° times is rare.

The above definition is inspired by an existing power
schedule for targeting rare branches [29] that introduced such
a dynamically adjusted rarity_cutoff . Their experience shows
that this metric performs better than simply considering the n
LIDs with the lowest number of fuzzed inputs as rare.

Definition 6 (Rare split point). Given a test suite with split
points SPs along the no-target-ahead prefixes, a split point p
is rare iff

fuzz(p) < rarity_cutoff,

Algorithm 2: Lookahead algorithm.
Input: Program prog, Input input, Target locations T'
1 7 < RUN(input, prog)
> 1+ 0
3 SPs + (D
4+ while 7 < |7| do
s if ISSPLITPOINT(%, 7v) then
6 Tpre — m[0..7 + 1]
7 SPs < SPsU{ml[i]}

8 ¢, loc < PREFIXINFERENCE(Tpre)

9 if ARETARGETSUNREACHABLE(prog, loc, ¢, T) then
10 return COMPUTEHASH(7pre), SPs

1 i —i+1

i return COMPUTEHASH(7), SPs
Output: Lookahead identifier A\, Split points SPs

where fuzz(p) measures the number of fuzzed inputs that
exercised p so far and rarity_cutoff = 2° such that

271 < min fuzz(p') < 2%
p/espsf () <

Power schedule. Our power schedule is defined as follows
for an input I with LID A and split points SPs along the
no-target-ahead prefix:

{min(?elec“d(”, K), if XisrareV 3p € SPs - p is rare

1, otherwise.

In the above definition, selected(I) denotes the number of
times that I was selected for fuzzing (line 3 in Alg. 1), and
K is a constant (1024 in our implementation). Intuitively, our
power schedule assigns little energy to inputs whose LID is
not rare and whose no-target-ahead prefix does not contain
any rare split points. Otherwise, it assigns much more energy,
the amount of which depends on how often the input has been
selected for fuzzing before. The energy grows exponentially up
to some bound K, similarly to the cut-off-exponential schedule
in AFLFast [28].

C. Lookahead Algorithm

Alg. 2 shows the algorithm for the lookahead analysis,
which is implemented in function LOOKAHEADANALYZE
from Alg. 1 and uses abstract interpretation [25], [26].

First, the lookahead analysis executes the program input
concretely to collect the exercised path 7 (line 1 in Alg. 2).
Given path 7, it searches for the shortest no-target-ahead prefix
Tpre DY iterating over possible split points p (lines 4-11). Let
us explain these lines in detail.

On line 5, the algorithm calls a predicate ISSPLITPOINT,
which is parametric in which locations constitute split points.
All locations along 7 could be split points, but to narrow down
the search, the implementation may consider only a subset of
them, for instance, at conditional jumps.

At each split point, the analysis performs two separate
steps: (1) prefix inference and (2) suffix checking. The prefix
inference (line 8) statically analyzes the prefix mp. using
abstract interpretation to infer its postcondition ¢. This step

essentially executes the prefix in the abstract for all possible
inputs that exercise this path.

Given condition ¢, the analysis then performs the suffix
checking to determine if all target locations are unreachable
(line 9). This analysis performs standard, forward abstract
interpretation by computing a fixed-point. If all target locations
are unreachable, the analysis terminates and returns a non-
empty LID by computing a hash over the program locations
along the path prefix 7, (line 10). This ensures that the
analysis returns as soon as it reaches the first split point for
which all targets are unreachable. In addition, it returns the
set of all split points along prefix 7.

Even though off-the-shelf abstract interpreters are not de-
signed to perform prefix inference and suffix checking, it is
relatively straightforward to extend them. Essentially, when
invoking a standard abstract interpreter on a program, the
path prefix is always empty, whereas our lookahead analysis
is partially path-sensitive (i.e., for the prefix, but not the
suffix). Due to this partial path-sensitivity, even an inexpensive
abstract domain (e.g., constant propagation or intervals) might
be able to prove unreachability of a certain target location,
which would otherwise require a more precise domain (for an
empty prefix).

Split points. In practice, it is important to choose split
points with care since too many split points will have a
negative impact on the performance of the lookahead analysis.
In our implementation, we only consider split points when
entering a basic block for the first time along a given path.
The intuition is that the lookahead analysis should run every
time “new code” is discovered. Our experiments show that this
design decision results in negligible overhead.

Calls. To keep the lookahead analysis lightweight, the
suffix-checking step is modular. More specifically, any calls
to other contracts are conservatively treated as potentially
leading to target locations. (Note that inter-contract calls are
used very sparingly in smart contracts and that intra-contract
calls are simply jumps.) In contrast, during the prefix-inference
step, we compute a summary LID for the callee context by
recursively invoking the lookahead algorithm on the callee.
This requires separating the parts of path 7 (from Alg. 2)
that belong to the caller and the callee. It is also necessary to
conservatively model the effect of a call on the caller context
(e.g., by havocking return values).

V. IMPLEMENTATION

Our implementation extends HARVEY [30], [31], an existing
greybox fuzzer for Ethereum smart contracts. It is actively
used at ConsenSys Diligence, one of the largest blockchain-
security consulting companies, and is one of the tools that
power the MythX analysis platform. For our purposes, we in-
tegrated HARVEY with BRAN, our new abstract-interpretation
framework for EVM bytecode, which is open source'.

BRAN is designed to be scalable by performing a
very lightweight, modular analysis that checks functional-
correctness properties. Unlike other static analyzers for EVM

Uhttps://github.com/Practical-Formal-Methods/bran

https://github.com/Practical-Formal-Methods/bran

bytecode (e.g., Securify [32] and MadMax [33]), BRAN runs
directly on the bytecode without having to reconstruct the
control-flow graph or decompile to an intermediate language.
BRAN is equipped with a constant-propagation domain [27],
which is commonly used in compiler optimizations. It handles
all opcodes and integrates the go-ethereum virtual machine to
concretely execute any opcodes with all-constant arguments.

Prefix length. During our preliminary experiments with the
integration of HARVEY and BRAN, we observed that the prefix
length may become quite large, for instance in the presence
of input-dependent loops. However, the running time of the
lookahead analysis is proportional to the prefix length, and
our goal is to keep the analysis as lightweight as possible.
For this reason, our implementation ignores any split points
after the first 8'192 bytecode locations of the prefix. Note
that this design decision does not affect the soundness of the
lookahead analysis; it only reduces the search space of prefixes
and might result in considering the entire path as the no-target-
ahead prefix.

VI. EXPERIMENTAL EVALUATION

We now evaluate our technique on real-world Ethereum
smart contracts. First, we discuss the benchmark selection
(Sect. VI-A) and describe our experimental setup (Sect. VI-B).
We then evaluate the effectiveness of the static lookahead
analysis in greybox fuzzing (Sect. VI-C) and identify potential
threats to the validity of our experiments (Sect. VI-D).

A. Benchmark Selection

We evaluated our technique on a total of 27 smart contracts,
which originate from 17 GitHub repositories. Tab. I gives an
overview. The first column lists a benchmark identifier for each
smart contract under test, while the second and last columns
provide the name and description of the containing project.
Note that a repository may contain more than one contract, for
instance including libraries; from each repository, we selected
one or more contracts for our evaluation. The third and fourth
columns of the table show the number of public functions
and lines of Solidity code in each benchmark. (We provide
links to all repositories as well as the changesets used for our
experiments in the appendix.)

It is important to note that the majority of smart contracts
are under 1’000 lines of code. Still, contracts of this size are
complex programs, and each of them might take several weeks
to audit. However, as it becomes clear from the example of
Fig. 2, code size is not necessarily proportional to the number
of feasible program paths or the difficulty to reach a particular
target location with greybox fuzzing.

The repositories were selected with the goal of ensuring a
diverse set of benchmarks. In particular, they include popular
projects, such as the ENS domain name auction, the Consen-
Sys multisig wallet, and the MicroRaiden payment service. In
addition to being widely known in the Ethereum community,
these projects are highly starred on GitHub (4’857 stars in total
on 2019-05-07, median 132), have been independently audited,
and regularly transfer large amounts of assets. Moreover, our

BIDs Name Functions | LoSC Description
1 | ENS 24 1205 | ENS domain name auction
2-3 | CMSW 49 503 | ConsenSys multisig wallet
4-5 | GMSW 49 704 | Gnosis multisig wallet
6 | BAT 23 191 | BAT token (advertising)
7| CT 12 200 | ConsenSys token library
8 | ERCF 19 747 | ERC Fund (investment fund)
9 | FBT 34 385 | FirstBlood token (e-sports)
10-13 | HPN 173 3065 | Havven payment network
14 | MR 25 1053 | MicroRaiden payment service
15 | MT 38 437 | MOD token (supply-chain)
16 | PC 7 69 | Payment channel
17-18 | RNTS 49 749 | Request Network token sale
19 | DAO 23 783 | The DAO organization
20 | VT 18 242 | Valid token (personal data)
21 | UScCC1 4 57 | USCC’17 entry
22 | USCC2 14 89 | USCC’17 (honorable mention)
23 | USCC3 21 535 | USCC’17 (3rd place)
24 | USCC4 7 164 | USCC’17 (Ist place)
25 | USCCS 10 188 | USCC’17 (2nd place)
26 | PW 19 549 | Parity multisig wallet
27 | BNK 44 649 | Bankera token
Total 662 | 12564

Table I: Overview of benchmarks. The third and fourth
columns provide the number of public functions and lines
of source code in each benchmark, respectively.

selection includes contracts from various application domains
(like auctions, wallets, and tokens), attacked contracts (namely,
The DAO and Parity wallet) as well as contracts submitted to
the first Underhanded Solidity Coding Contest (USCC) [34].
Entries in this contest aim to conceal subtle vulnerabilities.
For selecting these repositories, we followed guidelines on
how to evaluate fuzzers [35]. We do not randomly collect
smart contracts from the Ethereum blockchain since this would
likely contaminate our benchmarks with duplicates or bad-
quality contracts—that is, contracts without users, assets, or
dependencies, for instance, on libraries or other contracts.

B. Experimental Setup

Our experiments compare the integration of HARVEY and
BRAN (incl. three variants) with HARVEY alone to evaluate
the effectiveness of targeted fuzzing. The comparison focuses
on the time it takes for each configuration to cover a set of
target locations.

Targets. We randomly selected up to four target locations
for each benchmark. In particular, we picked contract locations
of varying difficulty to reach, based on when they were first
discovered during a 1h standard greybox-fuzzing run. So, we
randomly picked at most one newly discovered location, if one
existed, from each of the following time brackets in this order:
30-60m, 15-30m, 7.5-15m, 3.75-7.5m, and 1.875-3.75m.

Runs. We performed 24 runs of each configuration on the
27 benchmarks of Tab. I. For each run, we used a different
randomness seed, the same seed input, and a time limit of
1h (i.e., 3°600s). In our results, we report medians and use
Wilcoxon-Mann-Whitney U tests to determine if differences
in medians between configurations are statistically significant.

Machine. We used an Intel® Xeon® CPU @ 2.67GHz 24-
core machine with 50GB of memory running Debian 9.5.

C. Results

We now evaluate the effectiveness of our technique by
investigating five research questions.

RQ1: Effectiveness of targeted fuzzing. Tab. II compares
our baseline configuration A, which does not enable the static
lookahead analysis, with configuration B, which does. Note
that configuration A uses the cut-off-exponential power sched-
ule of AFLFast [28], whereas B uses our specialized schedule.
The first two columns of the table indicate the benchmark
and target IDs. Columns 3 and 4 show the median time (in
seconds) required to discover the first input that reaches the
target location (time-to-target) for both configurations, and
column 5 shows the speed-up factor. Column 6 shows the
p-value, which indicates the level of statistical significance;
here, we use p < 0.05 for “significant” differences. The
last two columns show Vargha-Delaney A12 effect sizes [36].
Intuitively, these measure the probability that configuration A
is faster than B and vice versa.

For 32 (out of 60) target locations, we observe significant
differences in time (i.e., p < 0.05), marked in bold in the
table. Configuration B significantly outperforms A for 31 (out
of 32) of these target locations, with a median speed-up of up
to 14x for one of the targets in benchmark 26. In general,
the results suggest that targeted fuzzing is very effective,
and unsurprisingly, its impact is most significant for difficult
targets (i.e., with high time-to-target for configuration A).
Specifically, for the 24 targets with Ty > 900 or Ts > 900,
configuration B is significantly faster for 20, with insignificant
differences between A and B for the remaining 4 targets.

Note that running the static analysis with an empty prefix
(resembling an offline analysis) on these benchmarks is not
able to guide the fuzzer at all. Since all our target locations are
reachable by construction, the analysis soundly reports them
as reachable. Therefore, the fuzzer still needs to explore the
entire contract to see if they indeed are.

RQ2: Effectiveness of lookahead analysis. To measure
the effect of the lookahead analysis, we created configuration
C, which is identical to configuration B except that the
analysis is maximally imprecise and inexpensive. Specifically,
ARETARGETSUNREACHABLE from Alg. 2 simply returns
false, and consequently, the computed LIDs capture entire
program paths, similarly to PIDs.

As shown in Tab. III, there are significant differences
between configurations B and C for 21 target locations.
Configuration B is significantly faster than C for 17 out of
21 targets, and they are equally fast for 2 of the remaining 4
target locations.

Interestingly, configuration C is faster than A (for all 12
target locations with significant differences). This suggests
that our power schedule regarding rare split points is effective
independently of the lookahead analysis.

RQ3: Effectiveness of power schedule. To measure the
effect of targeting rare LIDs and rare split points in our
power schedule, we created configuration D. It is identical
to configuration B except that it uses a variant of AFLFast’s
cut-off-exponential power schedule [28]. The original power

BID Target ID Ta Ty Ta/Ts P Al2, Al2g
1 79145a51:35ee 324.15 90.25 3.59 | 0.049 0.33 0.67
1 79145a51:bd4 32.69 69.53 0.47 | 0.130 0.63 0.37
2 060a46¢9:d03 | 3385.55 706.71 4.79 | 0.000 0.20 0.80
2 060a46¢9:e29 161.66 106.57 1.52 | 0.197 0.39 0.61
2 060a46¢9:16a5 701.39 339.86 2.06 | 0.008 0.27 0.73
2 060a46¢9:1f11 346.06 63.14 5.48 | 0.000 0.11 0.89
3 | 708721b5:1485 396.11 394.54 1.00 | 0.477 0.44 0.56
3 708721b5:4ac | 2292.00 775.93 2.95 | 0.000 0.19 0.81
3 | 708721b5:1ca0 | 1248.59 817.76 1.53 | 0.005 0.26 0.74
3 | 708721b5:1132 413.00 216.72 1.91 | 0.003 0.24 0.76
4 9b8e6b2a:d08 | 3600.00 867.65 4.15 | 0.000 0.15 0.85
4 9b8e6b2a:18f0 | 1657.33 432.50 3.83 | 0.002 0.24 0.76
4 9b8ebb2a:1fee 143.96 47.13 3.05 | 0.062 0.34 0.66
4 9b8e6b2a:553 | 3600.00 833.70 432 | 0.001 0.22 0.78
5 5a3e5a7f:c09 | 3600.00 | 1282.42 2.81 | 0.000 0.08 0.92
5 5a3e5a7f:23f 900.53 466.99 1.93 | 0.017 0.30 0.70
5 5a3eSa7f:1da8 | 1355.07 646.41 2.10 | 0.000 0.16 0.84
5 Sa3e5a7f:1d67 | 1497.96 524.08 2.86 | 0.000 0.15 0.85
6 387bdf82:da7 61.66 22.70 2.72 | 0.089 0.36 0.64
8 e2aedada:15a7 | 2592.56 | 1135.37 2.28 | 0.002 0.24 0.76
8 e2aedada:17bb | 1783.03 612.39 291 | 0.001 0.22 0.78
8 e2aedada:d71 73.93 47.89 1.54 | 0.307 0.41 0.59
8 e2aedada:13a8 258.14 74.87 3.45 | 0.035 0.32 0.68
9 dada6ee2:1693 334.82 49.38 6.78 | 0.000 0.13 0.87
9 dada6ee2:bee 225.12 72.14 3.12 | 0.000 0.19 0.81
9 dada6ee2:90e 84.62 50.39 1.68 | 0.338 0.42 0.58

10 | d98d1d6b:1f10 | 1124.84 281.45 4.00 | 0.004 0.26 0.74
10 | d98d1d6b:401a 164.12 153.95 1.07 | 0.861 0.48 0.52
10 | d98d1d6b:3cdd | 1669.91 1817.05 0.92 | 0.729 0.53 0.47
10 | d98d1d6b:3ce8 | 3600.00 | 3600.00 1.00 | 0.713 0.47 0.53
11 3ae06fbe:34db | 3600.00 | 3600.00 1.00 | 0.105 0.38 0.62
11 3ae06fbe:3de2 150.22 81.77 1.84 | 0.557 0.45 0.55
11 3ae06fbe:3ef3 284.34 395.15 0.72 | 0.703 0.47 0.53
11 3ae06fbe:10b2 238.35 142.03 1.68 | 0.228 0.40 0.60
12 0203d94d:713 76.82 60.27 1.27 | 0910 0.49 0.51
14 | b8c706d1:125¢ | 3600.00 | 3600.00 1.00 | 0.085 0.39 0.61
14 | b8c706d1:3479 290.73 299.26 0.97 | 0.861 0.52 0.48
14 | b8c706d1:2023 34.65 43.72 0.79 | 0.992 0.50 0.50
15 06efla9c:27ce | 3365.87 467.90 7.19 | 0.000 0.10 0.90
15 06efladc:b4 1 100.00 73.83 1.35 | 0.877 0.49 0.51
15 06efla9c:al6 71.00 39.46 1.80 | 0.106 0.36 0.64
17 1c57401c:efl 186.24 218.20 0.85 | 0.101 0.64 0.36
17 1¢57401¢:558 45.72 111.38 041 | 0.130 0.63 0.37
18 acObfSee:15e4 | 1827.66 321.36 5.69 | 0.000 0.12 0.88
18 acObf5ee:171b 176.36 48.04 3.67 | 0.000 0.16 0.84
18 acObf5ee:15e0 133.84 27.80 4.81 | 0.001 0.22 0.78
18 acObf5ee:70c 24.87 61.47 0.40 | 0.036 0.68 0.32
20 | 54142e12:1555 29.57 15.42 1.92 | 0.298 0.41 0.59
23 d047b56e:5fb 42.01 20.70 2.03 | 0.279 0.41 0.59
24 b9ebdb99:40c 980.79 139.78 7.02 | 0.000 0.13 0.87
24 b9ebdb99:3d1 282.28 57.21 4.93 | 0.000 0.18 0.82
25 f1e90£8f:9fd 316.48 24.61 12.86 | 0.000 0.09 0.91
26 a788e7af:1f07 | 1778.07 130.34 13.64 | 0.000 0.07 0.93
26 a788e7af:1e29 | 2005.67 336.04 5.97 | 0.000 0.12 0.88
26 a788e7af:544 395.22 47.84 8.26 | 0.140 0.38 0.62
26 a788e7af:32b 44.67 45.92 097 | 0.813 0.48 0.52
27 | 9473c978:1541 | 2445.87 324.46 7.54 | 0.020 0.31 0.69
27 9473c¢978:e33 | 1493.03 637.16 234 | 0.023 0.31 0.69
27 | 9473c978:150e 178.11 97.60 1.82 | 0.120 0.37 0.63
27 9473c978:8e8 102.29 150.72 0.68 | 0.236 0.60 0.40

Table II: Comparing time-to-target between configuration
A (w/o lookahead analysis) and B (w/ lookahead analysis).

schedule assigns energy to an input I based on how often
its PID has been exercised. In contrast, our variant is based
on how often its LID has been exercised and corresponds to
using the results of the lookahead analysis with a standard
power schedule.

However, as shown in Tab. IV, configuration B is faster
than configuration D for 28 of 30 targets (with significant dif-
ferences). This indicates that our power schedule significantly
reduces the time-to-target, thus effectively guiding the fuzzer.

Nonetheless, configuration D is faster than A for all 6 targets
with significant differences. This shows the effectiveness of the
lookahead analysis independently of the power schedule.

RQ4: Scalability of lookahead analysis. One key design
decision for using an online static analysis as part of a

BID Target ID Tc Ts Tc /TB P Al2, Al2g BID Target ID Tp Ty TD/TB P Al2, Al2g
1 79145a51:35ee 223.45 90.25 248 | 0.718 0.47 0.53 1 79145a51:35ee 252.95 90.25 2.80 | 0.030 0.32 0.68
1 79145a51:bd4 69.07 69.53 0.99 | 0.658 0.46 0.54 1 79145a51:bd4 64.12 69.53 0.92 | 0.688 0.53 0.47
2 060a46c9:d03 | 2164.66 706.71 3.06 | 0.005 0.27 0.73 2 060a46c9:d03 | 1734.13 706.71 245 | 0.013 0.29 0.71
2 060a46¢9:e29 156.18 106.57 1.47 | 0.338 0.42 0.58 2 060a46¢9:e29 246.00 106.57 2.31 | 0.042 0.33 0.67
2 060a46¢9:16a5 854.32 339.86 2.51 | 0.042 0.33 0.67 2 060a46¢9:16a5 579.02 339.86 1.70 | 0.120 0.37 0.63
2 060a46¢9:1f11 56.01 63.14 0.89 | 0.926 0.49 0.51 2 060a46¢9:1f11 219.87 63.14 3.48 | 0.000 0.19 0.81
3 | 708721b5:1485 527.02 394.54 1.34 | 0.797 0.48 0.52 3 | 708721b5:1485 337.42 394.54 0.86 | 0.781 0.52 0.48
3 708721b5:4ac | 2000.32 775.93 2.58 | 0.007 0.27 0.73 3 708721b5:4ac | 1553.51 775.93 2.00 | 0.013 0.29 0.71
3 | 708721b5:1ca0 77597 817.76 0.95 | 0.327 0.42 0.58 3 | 708721b5:1ca0 | 1001.05 817.76 122 | 0.183 0.39 0.61
3 | 708721b5:1132 298.71 216.72 1.38 | 0.317 0.41 0.59 3 | 708721b5:1132 353.12 216.72 1.63 | 0.049 0.33 0.67
4 9b8e6b2a:d08 | 3600.00 867.65 4.15 | 0.000 0.07 0.93 4 9b8e6bb2a:d08 | 1353.86 867.65 1.56 | 0.030 0.32 0.68
4 9b8e6b2a:18f0 | 1288.76 432.50 2.98 | 0.008 0.28 0.72 4 9b8e6b2a:18f0 | 1008.23 432.50 2.33 | 0.033 0.32 0.68
4 9b8ebb2a:1fee 88.80 47.13 1.88 | 0.557 0.45 0.55 4 9b8ebb2a:1fee 172.58 47.13 3.66 | 0.002 0.24 0.76
4 9b8e6b2a:553 | 3508.27 833.70 421 | 0.000 0.10 0.90 4 9b8e6b2a:553 | 2464.13 833.70 2.96 | 0.000 0.16 0.84
5 5a3eS5a7f:c09 | 3600.00 | 1282.42 2.81 | 0.000 0.09 0.91 5 5a3e5a7f:c09 | 3381.14 | 1282.42 2.64 | 0.001 0.21 0.79
5 5a3e5a7f:23f | 2102.80 466.99 4.50 | 0.000 0.19 0.81 5 5a3e5a7f:23f 515.76 466.99 1.10 | 0.220 0.40 0.60
5 5a3eSa7f:1da8 | 1961.40 646.41 3.03 | 0.001 0.21 0.79 5 5a3eSa7f:1da8 | 1197.92 646.41 1.85 | 0.002 0.24 0.76
5 Sa3e5a7f:1d67 | 1977.32 524.08 3.77 | 0.001 0.22 0.78 5 Sa3e5a7f:1d67 855.79 524.08 1.63 | 0.003 0.25 0.75
6 387bdf82:da7 20.35 22.70 0.90 | 0.317 0.59 0.41 6 387bdf82:da7 110.41 22.70 4.86 | 0.000 0.18 0.82
8 e2aedada:15a7 | 2381.94 | 1135.37 2.10 | 0.004 0.26 0.74 8 e2aedada:15a7 | 2194.73 | 1135.37 1.93 | 0.002 0.24 0.76
8 e2aedada:17bb 915.16 612.39 1.49 | 0.071 0.35 0.65 8 e2aedada:17bb | 1021.35 612.39 1.67 | 0.101 0.36 0.64
8 e2aedada:d71 30.51 47.89 0.64 | 0.571 0.55 0.45 8 e2aedada:d71 82.30 47.89 1.72 | 0.097 0.36 0.64
8 e2aedada:13a8 91.11 74.87 1.22 | 0.845 0.48 0.52 8 e2aedada:13a8 188.01 74.87 2.51 | 0.051 0.34 0.66
9 dada6ee2:1693 253.55 49.38 5.13 | 0.000 0.18 0.82 9 dada6ee2:1693 279.31 49.38 5.66 | 0.001 0.23 0.77
9 dadab6ee2:bee 111.31 72.14 1.54 | 0.038 0.32 0.68 9 dada6ee2:bee 195.79 72.14 2.71 | 0.006 0.27 0.73
9 dada6ee2:90e 49.37 50.39 0.98 | 0.628 0.54 0.46 9 dada6ee2:90e 45.93 50.39 091 | 0.992 0.50 0.50

10 | d98d1d6b:1f10 139.34 281.45 0.50 | 0.093 0.64 0.36 10 | d98d1d6b:1f10 606.63 281.45 2.16 | 0.085 0.35 0.65
10 | d98d1d6b:401a 145.53 153.95 0.95 | 0.829 0.52 0.48 10 | d98d1d6b:3ce8 | 3600.00 | 3600.00 1.00 | 0.840 0.52 0.48
10 | d98d1d6b:3ce8 | 3600.00 | 3600.00 1.00 | 0.226 0.41 0.59 10 | d98d1d6b:401a 254.15 153.95 1.65 | 0.228 0.40 0.60
10 | d98d1d6b:3cdd | 3600.00 | 1817.05 1.98 | 0.146 0.38 0.62 10 | d98d1d6b:3cdd | 1956.69 | 1817.05 1.08 | 0.857 0.48 0.52
11 3ae06fbe:34db | 3600.00 | 3600.00 1.00 | 0.027 0.35 0.65 11 3ae06fbe:34db | 3591.91 | 3600.00 1.00 | 0.885 0.51 0.49
11 3ae06fbe:3de2 169.72 81.77 2.08 | 0.158 0.38 0.62 11 3ae06fbe:3de2 181.38 81.77 222 | 0.130 0.37 0.63
11 3ae06fbe:3ef3 182.77 395.15 0.46 | 0.135 0.63 0.37 11 3ae06fbe:3ef3 383.75 395.15 0.97 | 0.158 0.38 0.62
11 3ae06fbe:10b2 214.12 142.03 1.51 | 0.942 0.51 0.49 11 3ae06fbe:10b2 163.65 142.03 1.15 | 0.781 0.48 0.52
12 0203d94d:713 44.13 60.27 0.73 | 0.516 0.56 0.44 12 0203d94d:713 38.85 60.27 0.64 | 0.220 0.60 0.40
14 | b8c706d1:125¢ | 3600.00 | 3600.00 1.00 | 0.010 0.35 0.65 14 | b8c706d1:125¢ | 3600.00 | 3600.00 1.00 | 0.449 0.45 0.55
14 | b8c706d1:3479 108.30 299.26 0.36 | 0.110 0.64 0.36 14 | b8c706d1:3479 501.51 299.26 1.68 | 0.338 0.42 0.58
14 | b8c706d1:2023 40.71 43.72 0.93 | 0.845 0.52 0.48 14 | b8c706d1:2023 62.22 43.72 1.42 | 0.164 0.38 0.62
15 06efla9¢c:27ce | 2458.74 467.90 5.25 | 0.001 0.23 0.77 15 06efla9c:27ce | 2514.11 467.90 5.37 | 0.000 0.10 0.90
15 06efladc:b4 1 59.20 73.83 0.80 | 0.228 0.60 0.40 15 06efladc:b4 1 119.89 73.83 1.62 | 0.252 0.40 0.60
15 06efla9c:al6 57.15 39.46 1.45 | 0.529 0.45 0.55 15 06efla9c:al6 102.73 39.46 2.60 | 0.020 0.30 0.70
17 1c57401c:efl 104.23 218.20 0.48 | 0.009 0.72 0.28 17 1c57401c:efl 89.83 218.20 0.41 | 0.025 0.69 0.31
17 1¢57401¢:558 63.84 111.38 0.57 | 0.009 0.72 0.28 17 1¢57401¢:558 66.72 111.38 0.60 | 0.184 0.61 0.39
18 acObf5ee:15e4 719.04 321.36 2.24 | 0.007 0.27 0.73 18 acObf5ee:15e4 947.01 321.36 295 | 0.020 0.30 0.70
18 acObf5ee:171b 106.78 48.04 222 | 0.002 0.23 0.77 18 acObf5ee:171b 177.27 48.04 3.69 | 0.004 0.25 0.75
18 acObf5ee:15e0 21.29 27.80 0.77 | 0.370 0.58 0.42 18 acObf5ee:15e0 72.29 27.80 2.60 | 0.071 0.35 0.65
18 acObf5ee:70c 26.28 61.47 0.43 | 0.051 0.66 0.34 18 acObf5ee:70c 29.28 61.47 0.48 | 0.021 0.69 0.31
20 | 54142e12:1555 17.67 15.42 1.15 | 0.585 0.55 0.45 20 | 54142e12:1555 24.46 15.42 1.59 | 0.516 0.44 0.56
23 d047b56e:5fb 17.53 20.70 0.85 | 0.571 0.55 0.45 23 d047b56e:5fb 36.38 20.70 1.76 | 0.348 0.42 0.58
24 b9ebdb99:40c 178.49 139.78 1.28 | 0.138 0.37 0.63 24 b9ebdb99:40c 785.68 139.78 5.62 | 0.000 0.15 0.85
24 b9ebdb99:3d1 115.03 57.21 2.01 | 0.089 0.36 0.64 24 b9ebdb99:3d1 221.02 57.21 3.86 | 0.000 0.15 0.85
25 f1e90£8¢:9fd 114.00 24.61 4.63 | 0.000 0.16 0.84 25 f1e90£8f:9fd 232.58 24.61 9.45 | 0.000 0.01 0.99
26 a788e7af: 107 323.97 130.34 249 | 0.089 0.36 0.64 26 a788e7af:1f07 533.02 130.34 4.09 | 0.016 0.30 0.70
26 a788e7at:1e29 404.19 336.04 1.20 | 0.797 0.48 0.52 26 a788e7af:1e29 513.20 336.04 1.53 | 0.599 0.45 0.55
26 a788e7af:544 142.41 47.84 298 | 0.464 0.44 0.56 26 a788e7af:544 335.21 47.84 7.01 | 0.028 0.31 0.69
26 a788e7af:32b 40.09 45.92 0.87 | 0.992 0.50 0.50 26 a788e7af:32b 72.62 45.92 1.58 | 0.543 0.45 0.55
27 | 9473c978:1541 | 2320.70 324.46 7.15 | 0.210 0.39 0.61 27 | 9473c978:1541 1938.89 324.46 5.98 | 0.027 0.31 0.69
27 9473¢978:33 | 1824.92 637.16 2.86 | 0.052 0.34 0.66 27 9473¢978:¢33 | 1517.21 637.16 238 | 0.024 0.31 0.69
27 | 9473c978:150e 49.45 97.60 0.51 | 0.205 0.61 0.39 27 | 9473c978:150e 160.07 97.60 1.64 | 0.093 0.36 0.64
27 9473¢978:8e8 95.71 150.72 0.63 | 0.244 0.60 0.40 27 9473c978:8e8 112.27 150.72 0.74 | 0.543 0.55 0.45

Table III: Comparing time-to-target for configurations B
and C.

dynamic analysis (i.e., greybox fuzzing) was to make the static
analysis as lightweight and scalable as sensible. That is why
our lookahead analysis is modular and uses an inexpensive
constant-propagation domain.

Our results confirm that the running time of the lookahead
analysis is a tiny fraction of the total running time of the
fuzzer (0.09-105.93s of a total of 3600s per benchmark,
median 2.73s). This confirms that even a very lightweight
static analysis can boost the effectiveness of fuzzing.

RQS5: Effect on instruction coverage. In our evaluation,
there were no noticeable instruction-coverage differences be-
tween any of our configurations.

This indicates that our approach to targeted greybox fuzzing
mainly affects the order in which different program loca-

Table IV: Comparing time-to-target for configurations B
and D.

tions are reached. Even though we prioritize certain inputs
by assigning more energy to them, the fuzzer still mutates
them randomly and eventually covers the same instructions
as standard fuzzing. To avoid this, we would need to restrict
some mutations (e.g., ones that never discover new LIDs),
much like FairFuzz [29] restricts mutations that do not reach
rare branches.

D. Threats to Validity

We have identified the following threats to validity.

External validity. A potential threat to the validity of our
experiments has to do with external validity [37]. In particular,
our results may not generalize to other contracts or programs.
To alleviate this threat, we selected benchmarks from several,

diverse application domains. Moreover, in the appendix, we
provide the versions of all contracts used in our experiments
so that others can also test them. The results may also not
generalize to other target locations, but we alleviate this threat
by selecting them at random and with varying difficulty to
reach.

Internal validity. Internal validity [37] is compromised
when systematic errors are introduced in the experimental
setup. A common pitfall in evaluating randomized approaches,
such as fuzzing, is the potentially biased selection of seeds.
During our experiments, when comparing the different config-
urations of our technique, we consistently used the same seed
inputs for HARVEY.

Construct validity. Construct validity ensures that any
improvements, for instance in effectiveness or performance,
achieved by a particular technique are due to that technique
alone, and not due to other factors, such as better engineering.
In our experiments, we compare different configurations of
the same greybox fuzzer, and consequently, any effect on the
results is exclusively caused by their differences.

VII. RELATED WORK

Our technique for targeted greybox fuzzing leverages an
online static analysis to semantically analyze each new path
that is added to the fuzzer’s test suite. The feedback collected
by the static analysis is used to guide the fuzzer toward a set
of target locations using a novel power schedule that takes
inspiration from two existing ones [28], [29].

In contrast, the most closely related work [18] performs
an offline instrumentation of the program under test encoding
a static distance metric between the instrumented and the
target locations in the control-flow graph. When running a
given input, the instrumentation is used to obtain a dynamic
(aggregated) distance. This distance subsequently guides the
fuzzer toward the target locations.

Since a control-flow graph cannot always be easily re-
covered from EVM bytecode (e.g., due to indirect jumps),
our lookahead analysis directly analyzes the bytecode using
abstract interpretation [25], [26]. Our implementation uses the
constant-propagation domain [27] to track the current state of
the EVM (for instance, to resolve jump targets that are pushed
to the execution stack). Unlike traditional static analyses, it
aims to improve precision by performing a partially path-
sensitive analysis—that is, path-sensitive for a prefix of a
feasible path recorded at runtime by the fuzzer, and path-
insensitive for all suffix paths.

Guiding greybox fuzzers. Besides directed greybox
fuzzing [18], there is a number of greybox fuzzers that target
specific program locations [38], rare branches [29], uncovered
branches [39], [40], or suspected vulnerabilities [12], [41],
[42], [43]. While several of these fuzzers use an offline static
analysis to guide the exploration, none of them leverages an
online analysis.

Guiding other program analyzers. There is a large body
of work on guiding analyzers toward specific target loca-
tions [44], [45] or potential failures [13], [46], [47], [48], [14],

10

[15], [49], [16], [17], [50] by combining static and dynamic
analysis. These combinations typically perform an offline
static analysis first and use it to improve the effectiveness of a
subsequent dynamic analysis; for instance, by pruning parts of
the program. For example, Check 'n’ Crash [13] integrates the
ESC/Java static checker [51] with the JCrasher test-generation
tool [2]. Similarly, DyTa [14] combines the .NET static
analyzer Clousot [52] with the dynamic symbolic execution
engine Pex [53]. YOGI [47], [48] constantly refines its over-
and under-approximations in the style of counterexample-
driven refinement [54]. In contrast, our lookahead analysis
is online and constitutes a core component of our targeted
greybox fuzzer.

Hybrid concolic testing [55] combines random testing with
concolic testing [8], [9], [56]. Even though the technique
significantly differs from ours, it shares an interesting similar-
ity: it uses online concolic testing during a concrete program
execution to discover uncovered code on-the-fly. When suc-
cessful, the inputs for covering the code are used to resume
the concrete program execution.

Symbolic execution. In the context of symbolic execu-
tion [57], there have emerged numerous search strategies for
guiding the exploration; for instance, to target deeper paths (in
depth-first search), uncovered statements [58], or “less-traveled
paths” [59]. Our technique resembles a search strategy in that
it prioritizes exploration of certain inputs over others.

Compositional symbolic execution [60], [61] has been
shown to be effective in merging different program paths
by means of summaries in order to alleviate path explosion.
Dynamic state merging [62] and veritesting [63] can also
be seen as forms of summarization. Similarly, our technique
merges different paths that share the same lookahead identifier
for the purpose of assigning energy. The more precise the
lookahead analysis, the shorter the no-target-ahead prefixes,
and thus, the more effective the merging.

Program analysis for smart contracts. There is a growing
number of program analyzers for smart contracts, ranging from
random test generation frameworks to static analyzers and
verifiers [64], [65], [66], [67], [68], [69], [70], [71], [72], [33],
[73], [74]1, [75], [32], [76], [77], [78]. In contrast, we present a
targeted greybox fuzzer for smart contracts, the first analyzer
for contracts that incorporates static and dynamic analysis.

VIII. CONCLUSION

We have presented a novel technique for targeted fuzzing
using static lookahead analysis. The key idea is to enable
a symbiotic collaboration between the greybox fuzzer and
an online static analysis. On one hand, dynamic information
(i.e., feasible program paths) are used to boost the precision
of the static analysis. On the other hand, static information
about reachable target locations—more specifically, lookahead
identifiers and split points—is used to guide the greybox
fuzzer toward target locations. Our experiments on 27 real-
world benchmarks show that targeted fuzzing significantly
outperforms standard greybox fuzzing for reaching 83% of the
challenging target locations (up to 14x of median speed-up).

In future work, we plan to investigate other combinations
of dynamic and online static analysis; for instance, to guide
dynamic symbolic execution.

11

[1]
[2]
[3]

[4]

[5]
[6]

[7]
[8]
[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

(17]
(18]

[19]

[20]
(21]
[22]
[23]
[24]

[25]

[26]
[27]
[28]

[29]

[30]

[31]

REFERENCES

K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for random
testing of Haskell programs,” in /CFP. ACM, 2000, pp. 268-279.

C. Csallner and Y. Smaragdakis, “JCrasher: An automatic robustness
tester for Java,” SPE, vol. 34, pp. 1025-1050, 2004.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in /CSE. IEEE Computer Society, 2007, pp.
75-84.

“Peach Fuzzer Platform,” https://www.peach.tech/products/
peach-fuzzer/peach-platform/.

“zzuf—Multi-Purpose Fuzzer,” http://caca.zoy.org/wiki/zzuf.
“Technical “whitepaper” for AFL,” http://lcamtuf.coredump.cx/afl/
technical_details.txt.

“Libfuzzer—A library for coverage-guided fuzz testing,” https://llvm.
org/docs/LibFuzzer.html.

P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in PLDI. ACM, 2005, pp. 213-223.

C. Cadar and D. R. Engler, “Execution generated test cases: How
to make systems code crash itself,” in SPIN, ser. LNCS, vol. 3639.
Springer, 2005, pp. 2-23.

P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox
fuzz testing,” in NDSS. The Internet Society, 2008, pp. 151-166.

C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in OSDI. USENIX, 2008, pp. 209-224.

V. Ganesh, T. Leek, and M. C. Rinard, “Taint-based directed whitebox
fuzzing,” in ICSE. IEEE Computer Society, 2009, pp. 474-484.

C. Csallner and Y. Smaragdakis, “Check ’n’ Crash: Combining static
checking and testing,” in ICSE. ACM, 2005, pp. 422-431.

X. Ge, K. Taneja, T. Xie, and N. Tillmann, “DyTa: Dynamic symbolic
execution guided with static verification results,” in ICSE. ACM, 2011,
pp- 992-994.

M. Czech, M.-C. Jakobs, and H. Wehrheim, “Just test what you cannot
verify!” in FASE, ser. LNCS, vol. 9033. Springer, 2015, pp. 100-114.
M. Christakis, P. Miiller, and V. Wiistholz, “Guiding dynamic symbolic
execution toward unverified program executions,” in ICSE. ACM, 2016,
pp. 144-155.

K. Ferles, V. Wiistholz, M. Christakis, and I. Dillig, “Failure-directed
program trimming,” in ESEC/FSE. ACM, 2017, pp. 174-185.

M. Bohme, V. Pham, M. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in CCS. ACM, 2017, pp. 2329-2344.

B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhotdk, J. N. Amaral, B.-
Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Mgller, and D. Vardoulakis,
“In defense of soundiness: A manifesto,” CACM, vol. 58, pp. 4446,
2015.

“The AFL vulnerability trophy case,” http://lcamtuf.coredump.cx/afl/
#bugs.

“Ethereum white paper,” 2014, https://github.com/ethereum/wiki/wiki/
White-Paper.

M. Swan, Blockchain: Blueprint for a New Economy. O’Reilly Media,
2015.

S. Raval, Decentralized Applications: Harnessing Bitcoin’s Blockchain
Technology. O’Reilly Media, 2016.

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2014, http://gavwood.com/paper.pdf.

P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL. ACM, 1977, pp. 238-252.

P. Cousot and R. Cousot, “Systematic design of program analysis
frameworks,” in POPL. ACM, 1979, pp. 269-282.

G. A. Kildall, “A unified approach to global program optimization,” in
POPL. ACM, 1973, pp. 194-206.

M. Bohme, V. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as Markov chain,” in CCS. ACM, 2016, pp. 1032-1043.

C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in ASE. ACM, 2018, pp.
475-485.

V. Wiistholz and M. Christakis, “Learning inputs in greybox fuzzing,”
CoRR, vol. abs/1807.07875, 2018.

V. Wiistholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” CoRR, vol. abs/1905.06944, 2019.

https://www.peach.tech/products/peach-fuzzer/peach-platform/
https://www.peach.tech/products/peach-fuzzer/peach-platform/
http://caca.zoy.org/wiki/zzuf
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://gavwood.com/paper.pdf

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Biinzli, and
M. T. Vechev, “Securify: Practical security analysis of smart contracts,”
in CCS. ACM, 2018, pp. 67-82.

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “MadMax: Surviving out-of-gas conditions in Ethereum smart
contracts,” PACMPL, vol. 2, pp. 116:1-116:27, 2018.

“Underhanded solidity coding contest,” http://u.solidity.cc/.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz
testing,” in CCS. ACM, 2018, pp. 2123-2138.

A. Vargha and H. D. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” JEBS,
vol. 25, pp. 101-132, 2000.

J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external
validity in empirical software engineering,” in /CSE. IEEE Computer
Society, 2015, pp. 9-19.

H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye:
Towards a desired directed grey-box fuzzer,” in CCS. ACM, 2018, pp.
2095-2108.

Y. Li, B. Chen, M. Chandramohan, S. Lin, Y. Liu, and A. Tiu, “Steelix:
Program-state based binary fuzzing,” in ESEC/FSE. ACM, 2017, pp.
627-637.

M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao,
and J. Sun, “SAFL: Increasing and accelerating testing coverage with
symbolic execution and guided fuzzing,” in ICSE Companion. ACM,
2018, pp. 61-64.

I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for overflows: A guided fuzzer to find buffer boundary violations,” in
Security. USENIX, 2013, pp. 49-64.

Y. Li, S. Ji, C. Lv, Y. Chen, J. Chen, Q. Gu, and C. Wu,
“V-Fuzz: Vulnerability-oriented evolutionary fuzzing,” CoRR, vol.
abs/1901.01142, 2019.

A. B. Chowdhury, R. K. Medicherla, and R. Venkatesh, “VeriFuzz:
Program aware fuzzing—(competition contribution),” in TACAS, ser.
LNCS, vol. 11429. Springer, 2019, pp. 244-249.

K.-K. Ma, Y. P. Khoo, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in SAS, ser. LNCS, vol. 6887. Springer, 2011, pp. 95-111.
P. D. Marinescu and C. Cadar, “KATCH: High-coverage testing of
software patches,” in ESEC/FSE. ACM, 2013, pp. 235-245.

M. B. Dwyer and R. Purandare, “Residual dynamic typestate analysis
exploiting static analysis: Results to reformulate and reduce the cost of
dynamic analysis,” in ASE. ACM, 2007, pp. 124-133.

A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur, “The YOGI
project: Software property checking via static analysis and testing,” in
TACAS, ser. LNCS, vol. 5505. Springer, 2009, pp. 178-181.

P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali, “Compositional
may-must program analysis: Unleashing the power of alternation,” in
POPL. ACM, 2010, pp. 43-56.

L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler, “GRT:
Program-analysis-guided random testing,” in ASE. IEEE Computer
Society, 2015, pp. 212-223.

D. Devecsery, P. M. Chen, J. Flinn, and S. Narayanasamy, “Optimistic
hybrid analysis: Accelerating dynamic analysis through predicated static
analysis,” in ASPLOS. ACM, 2018, pp. 348-362.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata, “Extended static checking for Java,” in PLDI. ACM, 2002,
pp. 234-245.

M. Fihndrich and F. Logozzo, “Static contract checking with abstract
interpretation,” in FoVeOOS, ser. LNCS, vol. 6528. Springer, 2010, pp.
10-30.

N. Tillmann and J. de Halleux, “Pex—White box test generation for
NET,” in TAP, ser. LNCS, vol. 4966. Springer, 2008, pp. 134-153.
E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. WVeith,
“Counterexample-guided abstraction refinement,” in CAV, ser. LNCS,
vol. 1855. Springer, 2000, pp. 154-169.

R. Majumdar and K. Sen, “Hybrid concolic testing,” in ICSE.
Computer Society, 2007, pp. 416-426.

K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools,” in CAV, ser. LNCS, vol. 4144.
Springer, 2006, pp. 419-423.

J. C. King, “Symbolic execution and program testing,” CACM, vol. 19,
pp. 385-394, 1976.

S. Park, B. M. M. Hossain, I. Hussain, C. Csallner, M. Grechanik,
K. Taneja, C. Fu, and Q. Xie, “CarFast: Achieving higher statement
coverage faster,” in FSE. ACM, 2012, p. 35.

IEEE

12

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
(771
[78]

Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less
traveled paths,” in OOPSLA. ACM, 2013, pp. 19-32.

P. Godefroid, “Compositional dynamic test generation,” in POPL.
ACM, 2007, pp. 47-54.

S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven composi-
tional symbolic execution,” in TACAS, ser. LNCS, vol. 4963. Springer,
2008, pp. 367-381.

V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” in PLDI. ACM, 2012, pp. 193-204.
T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in /ICSE. ACM, 2014, pp. 1083—
1094.

L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in CCS. ACM, 2016, pp. 254-269.

K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Zanella-Béguelin, “Formal verification of smart
contracts: Short paper,” in PLAS. ACM, 2016, pp. 91-96.

N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum
smart contracts,” in POST, ser. LNCS, vol. 10204. Springer, 2017, pp.
164-186.

T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in SANER. 1EEE Computer Society, 2017, pp.
442-446.

I. Sergey and A. Hobor, “A concurrent perspective on smart contracts,”
in FC, ser. LNCS, vol. 10323. Springer, 2017, pp. 478-493.

B. Jiang, Y. Liu, and W. K. Chan, “ContractFuzzer: Fuzzing smart
contracts for vulnerability detection,” in ASE. ACM, 2018, pp. 259-
269.

K. Chatterjee, A. K. Goharshady, and Y. Velner, “Quantitative analysis
of smart contracts,” in ESOP, ser. LNCS, vol. 10801. Springer, 2018,
pp. 739-767.

S. Amani, M. Bégel, M. Bortin, and M. Staples, “Towards verifying
Ethereum smart contract bytecode in Isabelle/HOL,” in CPP. ACM,
2018, pp. 66-77.

L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts,” CoRR, vol. abs/1809.03981, 2018.

S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar, “Online detection of effectively callback free
objects with applications to smart contracts,” PACMPL, vol. 2, pp. 48:1—
48:28, 2018.

S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing safety
of smart contracts,” in NDSS. The Internet Society, 2018.

I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” pp. 653-663, 2018.
“Echidna,” https://github.com/trailofbits/echidna.

“Manticore,” https://github.com/trailofbits/manticore.

“Mythril,” https://github.com/ConsenSys/mythril-classic.

http://u.solidity.cc/
https://github.com/trailofbits/echidna
https://github.com/trailofbits/manticore
https://github.com/ConsenSys/mythril-classic

All tested smart contracts are open source. Tab. V provides the changeset IDs and links to their repositories.

APPENDIX

BIDs Name Changeset ID Repository
1 | ENS 5108£51d656£201dc0054e55t5fd000d00ef9ef3 https://github.com/ethereum/ens
2-3 | CMSW | 2582787a14dd861b51df6f815fab122ff51fb574 https://github.com/ConsenSys/MultiSigWallet
4-5 | GMSW | B8ac8ba7effe6c3845719¢480defbSf2ecafd2fd4 https://github.com/gnosis/MultiSigWallet
6 | BAT 15bebdc0642dac614d56709477c7¢c31d5¢993ael https://github.com/brave-intl/basic-attention-token-crowdsale
7| CT 1f62e1ba3bf32dc22fe2de94a9ee486d667edef2 https://github.com/ConsenSys/Tokens
8 | ERCF ¢7d025220a1388326b926d8983e47184e249d979 | https://github.com/ScJa/ercfund
9 | FBT 2e71053e0656b0ceba7e229e1d67c09f271191dc https://github.com/Firstbloodio/token
10-13 | HPN 540006e0e2e5ef729482ad8bebcf7eafcd5198c2 https://github.com/Havven/havven
14 | MR 527eb90c614f4178b269d48ea063eb49ee0f254 https://github.com/raiden-network/microraiden
15 | MT 7009cc95afta5a2a41a013b85903b14602c25b4f https://github.com/modum-io/tokenapp-smartcontract
16 | PC 515c1b935ac43afcobf54fcaff68cf8521595b0b https://github.com/mattdf/payment-channel
17-18 | RNTS 6c39082eff65b2d3035a89a3f3dd94bde6ccab0f https://github.com/RequestNetwork/RequestTokenSale
19 | DAO £347¢0e177edcfd99d64fe589d236754fa375658 https://github.com/slockit/DAO
20 | VT 30ede971bb682f245e5be11f544e305ef033a765 https://github.com/valid- global/token
21 | USCCI | 3b26643a85d182a9b8f0b6fe8c1153f3bd510a96 https://github.com/Arachnid/uscc
22 | USCC2 | 3b26643a85d182a9b8f0b6fe8c1153f3bd510a96 https://github.com/Arachnid/uscc
23 | USCC3 | 3b26643a85d182a9b8f0b6fe8c1153f3bd510a96 https://github.com/Arachnid/uscc
24 | USCC4 | 3b26643a85d182a9b8f0b6fe8c1153f3bd510a96 https://github.com/Arachnid/uscc
25 | USCCS5 | 3b26643a85d182a9b8f0bofe8c1153f3bd510a96 https://github.com/Arachnid/uscc
26 | PW 657da22245dcfe0Ofelcccc58ee8cd86924d65cdd https://github.com/paritytech/contracts
27 | BNK 97f1¢3195bc6f4d8b3393016ecf106b42a2b1d97 https://github.com/Bankera-token/BNK-ETH- Contract

Table V: Smart contract repositories.

13

https://github.com/ethereum/ens
https://github.com/ConsenSys/MultiSigWallet
https://github.com/gnosis/MultiSigWallet
https://github.com/brave-intl/basic-attention-token-crowdsale
https://github.com/ConsenSys/Tokens
https://github.com/ScJa/ercfund
https://github.com/Firstbloodio/token
https://github.com/Havven/havven
https://github.com/raiden-network/microraiden
https://github.com/modum-io/tokenapp-smartcontract
https://github.com/mattdf/payment-channel
https://github.com/RequestNetwork/RequestTokenSale
https://github.com/slockit/DAO
https://github.com/valid-global/token
https://github.com/Arachnid/uscc
https://github.com/Arachnid/uscc
https://github.com/Arachnid/uscc
https://github.com/Arachnid/uscc
https://github.com/Arachnid/uscc
https://github.com/paritytech/contracts
https://github.com/Bankera-token/BNK-ETH-Contract

	I Introduction
	II Background
	II-A Greybox Fuzzing
	II-B Smart Contracts

	III Overview
	IV Technique
	IV-A Lookahead Analysis
	IV-B Fuzzing with Lookahead Analysis
	IV-C Lookahead Algorithm

	V Implementation
	VI Experimental Evaluation
	VI-A Benchmark Selection
	VI-B Experimental Setup
	VI-C Results
	VI-D Threats to Validity

	VII Related Work
	VIII Conclusion
	References
	Appendix

