
Is Rust Used Safely by Software Developers?
Ana Nora Evans

AnaNEvans@virginia.edu
University of Virginia

Bradford Campbell
bradjc@virginia.edu
University of Virginia

Mary Lou Soffa
soffa@virginia.edu

University of Virginia

Abstract
Rust, an emerging programming language with explosive growth,
provides a robust type system that enables programmers to write
memory-safe and data-race free code. To allow access to amachine’s
hardware and to support low-level performance optimizations, a
second language, Unsafe Rust, is embedded in Rust. It contains
support for operations that are difficult to statically check, such
as C-style pointers for access to arbitrary memory locations and
mutable global variables. When a program uses these features, the
compiler is unable to statically guarantee the safety properties
Rust promotes. In this work, we perform a large-scale empirical
study to explore how software developers are using Unsafe Rust in
real-world Rust libraries and applications. Our results indicate that
software engineers use the keyword unsafe in less than 30% of Rust
libraries, but more than half cannot be entirely statically checked
by the Rust compiler because of Unsafe Rust hidden somewhere
in a library’s call chain. We conclude that although the use of the
keyword unsafe is limited, the propagation of unsafeness offers
a challenge to the claim of Rust as a memory-safe language. Fur-
thermore, we recommend changes to the Rust compiler and to the
central Rust repository’s interface to help Rust software developers
be aware of when their Rust code is unsafe.

ACM Reference Format:
Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is Rust
Used Safely by Software Developers?. In Proceedings of 42nd International
Conference on Software Engineering (ICSE ’20). ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3377811.3380413

1 Introduction
Programming languages directly impact the reliability, safety, and
correctness of software, and their features impact the prevalence of
bugs in actual software. A relatively new programming language,
Rust, is explicitly designed to help programmers write more reli-
able software by using the compiler to help reduce memory and
data race errors. Rust is referred to as a “safe” systems program-
ming language, indicating that its type system, ownership model,
automatic memory management without garbage collection, and
static compiler make it well suited for writing lower-level or core
software without the common bugs that can plague code written
in C and C++ [15, 29, 30].

The design aspects that make Rust safe, such as no arbitrary
pointers or arbitrary type casting, however, would also make writ-
ing most or all low-level code impossible. Operations such as config-
uring hardware or reading a network socket involve manipulating
memory in ways that the compiler cannot guarantee to be safe.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
2020. ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380413

Therefore, Rust includes an “escape hatch” with the unsafe key-
word1 that allows programmers to deactivate some (but not all) of
the Rust compiler’s checks for certain regions of code. This function-
ality was originally described as “pragmatic safety” [14] when Rust
was first introduced, and allows developers to use their own discre-
tion when writing Rust code. Part of the justification for allowing
Unsafe Rust code is that uses of unsafe would be easy to locate and
audit, and that developers can decide how much unchecked code
they are willing to accept in their software.

Modern software development leverages and builds upon li-
braries, which often use yet other libraries. Auditing software for
uses of unsafe requires auditing all dependent libraries, a poten-
tially cumbersome task. This overhead is mitigated, however, if
usage of unsafe is scarce and easy to locate in the Rust software
ecosystem, or if making a determination about the validity of the
unsafe usage is typically straightforward. Therefore, understand-
ing how developers are actually using unsafe is necessary to eval-
uate whether “pragmatic safety” is valid and if Rust provides a safe
programming environment in practice.

Our study is further motivated by recent interest in Rust as a
safe alternative to C for systems software [3, 6, 8, 20, 21, 24, 33] and
by the development of formal definitions for Rust’s type system
(including Unsafe Rust). For example, the Rust Belt project [18]
proposes formal tools for verifying Unsafe Rust, and Oxide [39]
presents a formalization of a language very similar to Rust. The
Rust open source community recently formed a new Rust working
group to create a “Unsafe Code Guideline Reference” to help guide
developers [36]. These are encouraging steps, and understanding
how Unsafe Rust is being used by developers will help guide the
successful formation of these strategies.

To acquire this understanding, we perform a large-scale study
and an analysis of publicly available Rust libraries and application
code. We first determine how frequently the unsafe keyword is
used. Then we analyze the call graph of every function in our data
set to identify if at any point the function may use code that is
not safe and not checked by the compiler. This analysis enables us
to find code that looks safe, but is actually Unsafe Rust. To better
understand how developers are using unsafe, we also identify the
underlying code behavior that necessitates the use of Unsafe Rust
to analyze the frequency of the various unsafe operations. Further,
we observe the use of Unsafe Rust over time to see if there are
evolving changes in the community.

To perform this analysis, we developed and implemented an
algorithm for constructing an extended call graph of Rust functions
that uses the type information to increase the call graph precision.
Building a call graph for Rust is difficult, however, as Rust’s run-
time polymorphism and higher order functions complicate statically
building a call graphwithoutmissing edges or adding extra edges. In

1Rust keywords are green and boldedwhile the safe and unsafe conditions are italicized.

1

https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/3377811.3380413

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa

our approach, we identify these ambiguities, and build two versions
of the call graph by applying both a conservative (assume the call
will be to unsafe code) and an optimistic (assume the call we be
to code statically checked to be safe) analysis to help bound the
use of Unsafe Rust in Rust libraries. We then traverse and analyze
the resulting extended call graph to determine how unsafeness
propagates in real-world Rust code.

After analyzing over 85% of the valid Rust libraries available
at the start of our study, we find that 29% contain at least one
explicit use of unsafe. When considering the dependency tree,
however, that number increases to around 50%, meaning half of
Rust libraries use Unsafe Rust or rely on other libraries that use
Unsafe Rust. Narrowing down to just the most used and downloaded
libraries increases the use of Unsafe Rust, as around 60% of popular
crates include Unsafe Rust. The majority of unsafe uses in the
Rust ecosystem are to call other Rust functions that are marked
unsafe. We find that only 22% of these unsafe functions are to
external libraries implemented in C, suggesting that a majority
of the Unsafe Rust is actually from Rust code where the software
developer decided to disable the compiler checks. Finally, we see
negligible increases in the frequency of unsafe used over the past
ten months.

Based on these findings, we propose several recommendations
to help realize the original vision of “pragmatic safety” in Rust, in-
cluding programmer-assisted automated checks, additional tooling
to help developers identify uses of unsafe, and more visible code
reviews to audit uses of unsafe. These changes would allow devel-
opers to better exploit the benefits of Unsafe Rust while managing
its risks to overall software reliability.

The contributions of this paper are:

• A large-scale study and analysis of unsafe use in the Rust
software ecosystem.

• A call graph construction algorithm which handles generic
polymorphism.

• Findings that indicate that a majority of crates are not guar-
anteed by the compiler be memory-safe and data-race free.

• Highlights of our findings indicate that unsafe function calls
are the most common use of unsafeness, which is caused
through library dependencies rather than the use of the
unsafe keyword, and the most downloaded crates have more
unsafe code than other other crates;

• Recommendations to enhance the Rust compiler and its
ecosystem to help developers understand when they are
using Unsafe Rust in their software.

Section 2 contains a brief introduction to Rust, Unsafe Rust (see
Section 2.3), the Rust software ecosystem (see Section 2.6), and the
terms we define to facilitate discussion throughout of paper (see
Section 2.5). In Section 3 we present the research questions that
guided our experiment and the selection criteria for the Rust code
that comprises our data set. Section 4 contains the approach to
answering the research questions. In Section 5 we define the data
set we used in the experiments, and the answers to the research
questions based on the experimental results. We conclude with our
recommendations (see Section 6), threats to validity (see Section 7),
related work (see Section 8) and conclusions (see Section 9).

2 Background
First, we provide a working example that will be referenced through-
out the paper. We then describe the key features of Safe Rust and
Unsafe Rust that are relevant to our study. Next, we define terms
that we use to categorize Rust code. Finally, we provide some back-
ground information about the general Rust software ecosystem.

2.1 Working Example
Figure 1(a) shows a set of functions in pseudocode from several
libraries selected to illustrate how unsafety can propagate in a code-
base. We will use these functions to explain concepts throughout
the paper.

The functions are organized in five different libraries. The start-
ing point is function foo() in Library1, which calls the function
bar() in Library2. The symbol :: separates the library name from
the function called from that library. In function bar() from Li-
brary2, the call to my_object.baz() is a run-time polymorphic
call to the method baz() of an instance implementing the interface
HasBaz. The interface HasBaz has two implementations in Library3
and Library5.

Figure 1(b) shows the resulting library dependency graph from
the example functions. A library depends on other libraries if it
uses functions from those libraries, and therefore requires the other
libraries to completely compile a binary.

For functions with run-time polymorphism we generate two
call graphs: conservative and optimistic (see Figure 1(b)). We will
explain this further in Section 4.

2.2 Safe Rust
Rust includes a few basic concepts that enable the compiler to en-
force safety guarantees. The ownership mechanism in Safe Rust
requires that a unique variable is the owner for every memory lo-
cation. Memory locations are immutable unless explicitly declared
otherwise. Variable assignment results in a copy or a transfer of
ownership, and once the variable loses ownership of the memory
location, that variable becomes unusable. To enable sharing, the
borrow mechanism allows creating memory aliases which permit
any number of read-only references and exactly one mutable one.
The foo() function in Figure 1(a) shows an example borrow oper-
ation. Together, the ownership and borrow mechanisms prevent a
large class of memory-safety errors and data races.

The definition of memory-safety used by Rust is similar to the
one proposed by Szekeres et al. [30]. A Rust program is memory-
safe if it is free of any memory errors such as dereferencing a null
or dangling pointer, reading or writing unaligned pointers, and
reading uninitialized memory [34]. Memory leaks are explicitly
considered defined behavior, and thus not memory errors.

For instances where program operation requires violating these
constraints, Unsafe Rust allows developers to assert to the com-
piler that they are manually implementing the necessary checks to
preserve memory-safety and data-race freedom.

2.3 Unsafe Rust
Unsafe Rust provides the necessary operations for low-level systems
programming, such as arbitrary memory accesses with C-style
pointers, invoking system calls, calling foreign functions (usually C
functions), executing inline assembly instructions, eliding bounds

2

Is Rust Used Safely by Software Developers? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

fn foo() {
x = MyObject::new() // x owns the object
y = x // Borrow occurs here
…
library2::bar()

}

fn bar() {
// my_obj implements
// “HasBaz”
HasBaz my_obj
my_obj.baz()

}

library1

library2

Impl HasBaz {
fn baz() {

a += 1
}

}

library3
Impl HasBaz {

fn baz() {
unsafe {

my_global = 4
qux()

}
}

}

library5

unsafe fn qux(b) {
my_obj = (Obj) b
return my_obj

}

library4

safe

declared unsafe

possibly unsafe

(a) Working example functions.

Library1

Library2

Library3 Library5

Library4

(b) Library1 dependency
graph.

foo

library2::bar

HasBaz::baz [Safe]

Op
tim

ist
ic

foo

library2::bar

HasBaz::baz [Unsafe]Co
ns
er
va
tiv
e

(c) foo() extended call
graph.

Figure 1: Working example of Rust functions in multiple libraries that are either safe, unsafe, or only appear safe.

checks for performance, and accessing global static memory. To
use any of these features, developers must mark the code with the
unsafe keyword. In Listing 1, unsafe is necessary for casting an
address to a Rust struct for memory-mapped IO, and to use global
variables to reference unique resources (e.g., COM1 port).

1 impl SerialPort {
2 pub unsafe fn new(base: usize)
3 -> &'static mut SerialPort {
4 &mut *(base as *mut Self)
5 }
6 }
7 pub static COM1: Mutex<SerialPort> =
8 Mutex::new(SerialPort::new(0x3F8));
9 pub unsafe fn init() {
10 COM1.lock().init();
11 }

Listing 1: Transmute
Within an unsafe region, the compiler still checks the Safe Rust

types, but the operations listed above are permitted as well. Unsafe
Rust does not grant the programmer complete freedom, but sub-
verting overall system safety is certainly possible. Programmers
using Unsafe Rust are responsible for writing code free of safety
violations and undefined behavior; however, what constitutes un-
defined behavior is currently not well specified and can change
with different versions of the compiler. This situation makes safely
using Unsafe Rust difficult.

2.4 Sources of Unsafe Rust
There are several sources of Unsafe Rust, including unsafe opera-
tions, unsafe functions, and unsafe traits.

2.4.1 Unsafe Operations A developer may directly use Unsafe
Rust by creating a code block labeled with the keyword unsafe,
which is required for the following operations:

(1) Calling a function marked unsafe, non-Rust external func-
tion, or a compiler intrinsic (a function whose implementa-
tion is handled specially by the compiler).

(2) Dereferencing a C-style pointer.
(3) Accessing a mutable global variable.
(4) Using inline assembly instructions.

(5) Accessing a field of a union type.
Function baz() in Library5 contains an example of Unsafe Rust

operation: an assignment to a global variable my_global, enclosed
in an unsafe block.

An example of a possibly dangerous unsafe function call is the
mem::transmute() function used to coerce the contents of an ar-
bitrary memory location into a specific Rust type. This is necessary
when raw data (such as from a network socket), but can easily vio-
late type-safety if used improperly. Further, the mem::transmute
function also makes use-after-free memory errors possible when it
is used to extend the compiler calculated code bounds where the
variable is live.

1 let mut hello = String::new();
2 let hello_ref: &mut String =
3 {let r: *mut String = &mut hello;
4 unsafe { &mut *r }}; //Undefined Behavior! A second mutable reference
5 hello.push_str("Hello ");
6 hello_ref.push_str("world!");
7 println!("{:?}", hello);

Listing 2: Multiple Mutable References
Using unsafe also makes mutable reference aliasing possible,

leading to undefined behavior. In the Rust Listing 2, using simplified
Rust syntax, two mutable references (hello and ref1) are created
to the same memory location using an unsafe block. Different
Rust versions are free to handle this differently, and do, as the
Rust compiler version 1.36.0 and the Rust Mid-Level Intermediate
Representation Interpreter (Miri) version 0.1.0 handle code with
multiple mutable references to the same string differently. If the
code is compiled and executed, the output the programmer may
expect ("Hello world!") is printed. However, when interpreted
by Miri an error is displayed, as Miri also includes numerous checks
of memory safety and that the aliasing rules for references are not
violated [17]. This suggests extensive care is required to use unsafe
with maintainable and reliable code.

If a block of code is marked unsafe, but does not actually contain
any unsafe operations, the the compiler emits a warning message.
We assume that the Rust developers remove necessary unsafe block
labels as a result.

3

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa

Safe
Possibly Unsafe

Declared
 Unsafe

Figure 2: Function annotation taxonomy.

2.4.2 Unsafe Functions A Rust function definition may be la-
beled with the unsafe keyword (for example the qux() function in
Figure 1(a)) to signal to a caller that preconditions must be satisfied
or memory-safety errors may occur. Thus, an unsafe function may
contain only Safe Rust operations but still be marked unsafe and
the compiler will not emit an warning because it is unable to dis-
tinguish between programmer’s intent and a mistake. For example,
a function that sets the length of a vector, Vector.set_length(),
will be marked unsafe despite only setting an internal field because
if it is called with a parameter larger than the capacity of the inter-
nal buffer, future vector operations may access unallocated memory.
This example also demonstrates how memory safety errors may
occur in Safe Rust code after any use of Unsafe Rust.

Conversely, a function containing unsafe operations may pro-
vide a safe interface. For example, array operations are commonly
implemented using C-style pointers and include their own safety
checks. In these cases Rust developers are expected to analyze the
code manually to ensure safety is preserved.

2.4.3 Unsafe Traits A Rust trait [34] describes an abstract in-
terface that types may implement. A trait may be declared unsafe
if it contains any unsafe method or its implementations must sat-
isfy an invariant. An example from the Rust standard library is
the trait Send, and any type that implements Send declares that
it is safe to change the ownership of the type to another thread.
An implementation of an unsafe trait, must be marked unsafe.
The programmer must ensure that the implementation satisfies the
trait’s invariant, as the compiler cannot automatically check this.

2.5 Function Taxonomy
To explain our analysis procedure and results, we clarify terms that
we use to label Rust code with regards to its safety of functions.
Declared unsafe: A Rust function whose declaration includes
the unsafe keyword is declared unsafe. In Figure 1(a) the qux()
function in Library4 is explicitly declared unsafe. A call to such a
function must be in an unsafe block or another declared unsafe
function. In our working example, the function baz() in Library5
calls qux() from an unsafe block.
Possibly unsafe: A Rust function that may execute Unsafe Rust.
A function may be possibly unsafe if: (1) it is declared unsafe; (2) it
contains an unsafe block; or (3) it calls a possibly unsafe function.
In Figure 1(a), the foo() function in Library1 is possibly unsafe
because it may use the baz() implementation from Library5.
Safe: A Rust function with compile-time guarantees of memory-
safety and data-race freedom is a safe function. The baz() function
in Library3 of Figure 1(a) is safe.

The relationship among the different sets is presented in Figure 2.
All Rust functions are either safe or possibly unsafe, and all declared
unsafe functions are possibly unsafe.

2.6 Rust Software Ecosystem
Crates are the unit of compilation in Rust, meaning they compile
individually and the build output may be a software library or an
binary application, depending on if the crate includes a main()
function. Crate compilation is managed by Rust’s build and pack-
age manager cargo. Crates typically rely on cargo, making the build
process standard in the Rust ecosystem and easing large-scale au-
tomated analysis. Publicly available Rust crates, either libraries or
applications, are typically published in crates.io, a central repository
of Rust software.

3 Research Methodology
In this section, we present the research questions that guide our
study and the selection criteria for the Rust code we explore.

3.1 Research Questions
The main goal of our study is to gain insights on the practical use
of Unsafe Rust by software engineers and the consequences for the
static safety guarantees of typical Rust code. The Rust compiler
generates some code with unsafe operations (e.g., the PartialEq
trait implementation of enumerations). Our analyses do not include
compiler generated unsafe and consider only code written by a
developer.

RQ1: How much do developers use Unsafe Rust?
We count the uses of the unsafe keyword for each of the four
abstractions (block, function, trait, and trait implementation). The
motivation of RQ1 is to understand how often Rust developers
explicitly use unsafe in their code, and, thus, lose the static safety
guarantees.

RQ2: How much of the Rust code is Unsafe Rust?
Unsafe Rust is necessary, but undermines the memory-safety and
data-race freedom guarantees. Since Unsafe Rust may modify an
arbitrary memory location, any use of Unsafe Rust in any depen-
dency compromises the static guarantees of the whole library. Rust
libraries that do not contain Unsafe Rust operations, but call func-
tions from external libraries that do, appear Safe Rust, but, in fact,
are not statically guaranteed safe. The goal of RQ2 is to determine
what percentage of the Rust libraries lack full safety compiler guar-
antees.

RQ3: What Unsafe Rust operations are used in practice?
We locate and count the different types of Unsafe Rust operations in
unsafe blocks and declared unsafe functions separately. The moti-
vation for RQ3 is to understand if interactions with C are the main
source of Unsafe Rust. If yes, then most Unsafe Rust can be elimi-
nated by implementing the libraries in Rust. If not, then the reason
for Unsafe Rust lies within Rust code itself, and may be necessary
for achieving the desired performance or for implementing low-
level libraries that interact with the operating system or directly
with hardware.

RQ4: What abstract binary interfaces (programming languages)
are used in the declared unsafe functions?
The motivation for RQ4 is to understand if most called unsafe
functions are from external libraries implemented in C or from
other Rust libraries.

RQ5: Does the use of Unsafe Rust change over time?
The motivation for RQ5 is to understand if the increased attention

4

crates.io

Is Rust Used Safely by Software Developers? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

in the past year from the research community and the efforts by
Rust language team to define and develop guidelines for use of
unsafe changed the habits of the Rust developers.

RQ6: Why do Rust developers use unsafe?
We surveyed Rust developers to understand their reasons for using
unsafe.

3.2 Data Selection
To understand unsafety in Rust, we analyze real-world, publicly
available Rust code. As the Rust tool chain provides robust sup-
port for libraries, Rust software extensively leverages community-
provided libraries to create larger projects. As such, we target
our analysis towards the libraries that comprise the Rust software
ecosystem.

To provide as wide of an analysis as possible, we include as many
libraries (Rust crates) in our study as possible. However, as with any
open ecosystem, there exists a “long-tail” of crates in Rust that are
small, largely unused projects, and these may not be representative
of the ecosystem at large. Therefore, we also perform our analysis
on only the “popular” crates in our data set as defined as having
the most downloads from the central Rust repository to identify
any differences between the entire data set and the subset that is
more frequently used.

Additionally, to compare crates contributed by the larger Rust
community with those developed by members of the core Rust
development team and Mozilla Research [32], we analyze the appli-
cation Servo [3], a web browser engine fromMozilla. Servo, endemic
of the larger Rust ecosystem, itself is implemented as a collection
of about fifty discrete crates, and together with all its dependencies,
compiling Servo involves compiling almost 400 different crates.

We include all Servo crates and their external dependencies in
our analysis of Servo because they are implicitly vetted by the Servo
team to be included in one of the flagship Rust applications.

4 Approach
Our approach to answer the research questions is to identify all oc-
currences of unsafe in Rust codebases, and then determine how the
unsafeness propagates to caller functions. First, we parse Rust code
from libraries to identify the keyword unsafe in blocks, functions,
traits, and trait implementations in a single crate, which can be ana-
lyzed independently of other crates. Next, we develop two versions
of an extended call graph for each library; one that is optimistic
and one that is conservative in terms of whether a polymorphic
function is safe or unsafe. Finally, we develop an algorithm to an-
alyze the extended call graph to propagate the unsafe condition
through the call graph to determine if a function is safe or possibly
unsafe. In this way, we can identify libraries that appear safe but
actually have potentially unsafe conditions that have propagated
up the call chain. Sources of imprecision in our analysis include
potential inclusion of dead code.

4.1 Extended Call Graph
In general, a program call graph [28] is a directed graph with a
node for each program function and an edge (f ,д) for one or more
potential calls of д from the function f . This simple construction
needs to be expanded if the language has polymorphism and high

order functions, as Rust does. Several algorithms for call graph con-
struction for other languages which have these features have been
proposed with different trade-offs between precision and running
time [5, 11, 25]. Our approach is similar to the one by Petrashko et
al. [25] in using the type information available at call site of not
only the Self type, but also of the static types of the parameters.
Each node of the call graph is extended to contain not only the func-
tion, but a list of generic type parameters and type substitutions
for those when available.

To generate a call graph, we use the Rust compiler to compile
the crate to an intermediate representation of Rust known as MIR
(Middle Intermediate Representation). We then use the "control flow
graphs" of functions obtained directly from the MIR representation
to run a context-sensitive analysis which uses type inference to
find the precise functions that can be called. This analysis starts at
the leaf terminal nodes of the control flow graph of a function. For
each terminal leaf node of the type “function call” we use the type
inference to determine the function call, given the type substitutions
in the calling context. If the method has no Self type or has a
Self (this) type that it is statically known, then only one edge is
introduced in the call graph in the actual implementation. If a node
with the calculated substitutions for generics of the called function
does not exist in the call graph, then we apply the substitutions
recursively and introduce new nodes in the call graph as needed. If
the Self type (i.e., this) is still unknown, then an edge to a node
parameterized by the Self type is introduced. In building the call
graph, when we encounter functions with generic type parameters,
we parameterize the call graph based on the generic type parameters
and instantiate a call with actual types available at the call site. The
nodes in our call graph are functions together with a set of type
substitutions of the generic type parameters when statically known.

If the precise functions of the call graph cannot be resolved at
compile-time (due to virtual dispatch and higher order functions),
we split into two approximations, and create two versions of the
call graph. We create a call graph of a conservative approximation
assuming that the unknown function is unsafe, and an optimistic
approximation of a call graph that assumes the potential function
is safe.

For efficiency, our call graph construction for a function termi-
nates when any unsafe usage is found, as the original function
must now be marked possibly unsafe and further calls will have no
impact. Similarly, we stop when we reach a virtual call or a function
pointer as our two approximations cover the two possible cases.

We generate extended call graphs for every function in every
crate, enabling this approach to work even for libraries which do
not contain a main function. These extended call graphs are for
individual libraries, and function calls to other libraries are explicitly
marked. In our analysis, we can then combine the extended call
graphs as needed without having to generate the call graphmultiple
times. Note, we stop our call graph construction at calls into the
Rust standard library. If the functions are declared unsafe we mark
them as unsafe; however, we consider the standard library trusted
and consider all other functions safe, even if their implementations
contain uses of unsafe.

To aid future reproducibility studies and extensions of our work,
we publish all the code used for this paper at https://github.com/

5

https://github.com/ananevans/icse2020
https://github.com/ananevans/icse2020
https://github.com/ananevans/icse2020

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa

ananevans/icse2020, including the call graph construction available
in the unsafe-analysis/src/implicit_unsafe/rta.rs folder.

4.2 Analysis on the Call Graph

Data: call graph
Result: list of possibly unsafe functions
for all function definitions do

if function has unsafe in body then
add function to possibly unsafe list;
add function’s call graph node to worklist

end
end
reverse the call graph;
while worklist not empty do

current_func = pop the first element of the worklist for
each neighbor of current_func do

if neighbor not in possibly unsafe list then
add function to possibly unsafe list;
add neighbor to worklist

end
end

end
Algorithm 1: Analysis on Call Graph

After the extended call graphs are constructed, we use them
to identify potentially unsafe functions in the Rust libraries. Our
approach starts at the bottom of the call graph with all functions
that contain unsafe blocks. We then work back up the call graph
to identify functions that may call any of these initial functions.
Our goal is to mark every function as either safe or possibly unsafe.

We start with a worklist initialized with all functions that con-
tain an unsafe block in their body. Note that we do not need to
consider the declared unsafe functions because they will necessarily
be called from within an unsafe block in another function. We iter-
atively remove a function from the worklist, and perform a reverse
propagation on the extended call graph to mark all of its callers as
possibly unsafe, and then add them to the worklist. The algorithm
completes when the worklist is empty, and all functions that have
not been marked possibly unsafe are deemed safe.

4.3 Example
Consider our working example from Figure 1 and assume we are
analyzing the safety of Library1. The library dependency graph
is given in Figure 1(b) and shows the order of compilation and
analysis in building the extended call graph. Function foo() in
Library1 calls a function bar() in Library2 and thus an edge is
placed between Library1 and Library2. Library2 specifies libraries
3 and 5 as dependencies, making the call to polymorphic function
baz() ambiguous. Finally, Library5 contains a call to qux() and
therefore Library4 is a dependency of Library5.

The extended call graph with external libraries merged is shown
in Figure 1(c). Because bar() calls the polymorphic function baz(),
we cannot precisely determine the exact call graph and split into an
optimistic call graph that assumes the unknown implementation of
HasBaz::baz() is in fact safe, and a conservative call graph that

assumes it is unsafe. To determine unsafety in the conservative
case, we start with the unknown function HasBaz::bar() in our
worklist since it is marked possibly unsafe. We then find all callers, in
this case library2::bar(), mark them as possibly unsafe, and add
them to the worklist. Iterating, we determine foo() calls bar()
and mark foo() possibly unsafe. This tells us that even though
foo() appears safe, in a conservative analysis it may in fact call
code which is not statically checked by the compiler.

5 Experiments and Results
We start with describing the experimental setup in Section 5.1
and continue with the detailed description of the data sets used
in our experiments (Section 5.2). We conclude with the results in
Section 5.3.

5.1 Experimental Setup
We execute the experiments using version “nightly-2018-09-11” of
the Rust compiler on Ubuntu 18.04. The 2019 version of the most
downloaded data set is compiled with version “nightly-2019-07-01”.

5.2 Data Sets
Our data selection criteria are presented in Section 3.2. Here we
present the libraries actually included in our study and describe
reasons why we are unable to include all Rust crates in our data
set.

At the start of our study, September, 2018, there were a total of
18,478 crates registered with the central Rust software repository.
We eliminated all of the crates that could not compile or was no
longer available. Note that Rust is under active development, and
a particular crate may compile with one version of the compiler
but not another. Afterwards, our data set contains 15,097 crates,
which represent 81% of the total registered crates, and 97% of the
registered crates that contain some Rust code and are syntactically
correct.

To obtain a “popular” subset, we fetch the per-crate downloads
numbers from crates.io and select the most downloaded crates that
account for ninety percent of the downloads from crates.io. These
500 or so crates form a group we call most downloaded. From these
most downloaded crates we were able to compile 473 crates.

To create a group of perhaps “higher quality” crates, we use the
crates that comprise the application Servo, a web browser engine
fromMozilla, as another group. Servo is implemented as a collection
of approximately fifty crates and together with all its dependencies,
it comprises almost four hundred crates. As Servo is created by
many of the same developers actively developing the Rust language
itself, we posit that it represents a more expertly developed piece of
Rust software. Note that the crates in this group do overlap partially
with the most downloaded and complete groups.

Finally, our fourth group contains the same crates as in the most
downloaded group, but with the crate’s contents as it existed in
June 2019 on crates.io, approximately ten months after the first
analysis.

5.3 Results
We provide answers the research questions from Section 3.1 based
on the results of our experiments.

6

https://github.com/ananevans/icse2020
https://github.com/ananevans/icse2020
unsafe-analysis/src/implicit_unsafe/rta.rs
crates.io
crates.io
crates.io

Is Rust Used Safely by Software Developers? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Abstraction
crates.io

(%)
Most

Downloaded (%)
Servo
(%)

Any 29.4 52.5 54
Blocks 27.5 47.7 51.7
Declared Unsafe
Functions 17.1 47.7 39.7

Traits 1.2 4.2 4.4
Trait
Implementations 5.9 14.8 18.2

Table 1: Percentage of Rust crates with Unsafe Rust based
on abstraction type.

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
8

9

Unsafe Blocks

P
e

rc
e

n
t

o
f

C
ra

te
s

Figure 3: RQ1: Cumulative Distribution of Unsafe Blocks

5.3.1 RQ1: How much do developers use Unsafe Rust? Ta-
ble 1 shows the percentages of the crates use unsafe, broken down
by the type of abstraction. Overall, 29% of crates directly include
some sort of Unsafe Rust in them. More popular crates are more
likely to use unsafe as 52.5% of the most downloaded crates contain
Unsafe Rust. Of these, only a few crates (about 15-17%) explicitly
mark functions as unsafe (which then propagate the unsafe to
other portions of code). The unsafe trait and trait implementations
are used by only a relatively small number of crates. Compared to
the larger ecosystem, the crates that comprise the Servo project are
more likely to use Unsafe Rust.
Blocks: Figure 3 shows the cumulative distribution of unsafe blocks
per crate, with crates.io set in black and the most downloaded crates
in grey, and the maximum value capped at 99.5% of the crates for
clarity. The long tail of the CDF (Cumulative Distribution Function)
exists primarily because of autogenerated code, either from C to
Rust translators, hardware description files, or “safe” Rust wrappers
around C library functions.

The number of unsafe blocks per crate is small for the majority
of the crates, more than 90% of the crates have fewer than ten
unsafe blocks. The most downloaded crates use unsafemore often
than all crates. This occurs because these crates are more likely to
use unsafe to extract performance optimizations, and they often
exist to help interface with existing C libraries.

68.1%
70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

7

Declared Unsafe Functions

P
e

rc
e

n
t

o
f

C
ra

te
s

Figure 4: RQ1: Cumulative Distribution of Declared Unsafe
Functions

Functions: Figure 4 shows the cumulative distribution of declared
unsafe functions per crate for the crates.io set (in black) and most
downloaded crates (in dark grey), capped at 99%. A very small
number of crates have thousands of declared unsafe functions. These
crates are typically low-level support crates for embedded devices
or C library bindings.

As in the unsafe blocks case, the per-crate number of declared
unsafe functions is small with 90% of the crates containing fewer
than two declared unsafe functions.

While there is a compiler warning if a block is unsafe without
using any unsafe operation, no such warning is generated for func-
tions. One use of an unsafe function is to warn the library user
that preconditions must be satisfied, otherwise memory corruption
or a data-race may occur. We performed an additional analysis on
the declared unsafe functions to determine if the function uses an
unsafe operation. From all the crates with at least one declared
unsafe function, 84% of all crates.io and 71% of most downloaded
crates, all the declared unsafe functions are entirely Safe Rust. We
identity two possible reasons for which a declared unsafe function
executes no unsafe operations: (1) the library developer performed
a careful analysis and determined that preconditions are necessary
to prevent memory corruption and data races; or (2) the unsafe
attribute was incorrectly placed.
Traits: Declaring an unsafe trait is rare in the Rust ecosystem, with
only a little over one percent of crates making use the feature.
Implementations: As seen in Table 1, only six percent of all crates
provide an implementation of an unsafe trait. Almost 40% of those
are of two traits from the Rust standard library: Send (28%) and
Sync (13%). These traits are fundamental for Rust’s concurrency.
They do not have any declared methods, and they are used as a
declaration by the programmer that the objects implementing them
are safe to change ownership to another thread (Send) or can be
shared between threads (Sync).
Summary: Unsafe Rust is used in a little more than a quarter of
all crates, but the number of explicit unsafe uses per crate is small
for most crates. Despite the potential issues with using unsafe, the
most downloaded crates are more likely to use unsafe than the

7

crates.io
crates.io

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa

Analysis
crates.io

(%)
Most

Downloaded (%)
Conservative 44.8 38.9
Optimistic 53.8 43.9

Table 2: Percentage of Crates With Only Safe Functions

average crate. In general, developers tend to avoid exposing the
unsafety to other code by rarely marking functions as unsafe and
typically avoiding unsafe traits. However, the crates for Servo use
unsafe functions and unsafe traits two or three times as frequently
as general crates, which is consistent with the growing preference
in the Rust community that unsafe is encapsulated at a higher
level than individual functions. That is, exposing unsafe functions
is acceptable as long they are eventually enclosed within a safe
interface.

5.3.2 RQ2: Howmuch of the Rust code is Safe Rust? Table 2
presents the percentage of crates containing only safe functions,
when the unsafe generated by compiler is ignored and the standard
Rust library is considered entirely safe.

Figure 5 shows the cumulative distribution of the possibly unsafe
functions for all crates, capped at 95%. The optimistic analysis is
shown in light grey and the conservative analysis is shown in black.
The difference between the results of the two analyses is about 10%
for crates with a small number of possibly unsafe functions, and gets
smaller than 1% for crates with tens of possibly unsafe functions.

38.9%

47.3%
50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
6

Possibly Unsafe Functions

P
e

rc
e

n
t

o
f

C
ra

te
s

Figure 5: RQ2: Declared Safe and Possibly Unsafe Functions
Distribution

To better understand the difference between the perceived safety
(more than two thirds of the crates do not contain an unsafe ab-
straction, Table 1) and the static safety guarantees (less one third of
crates are entirely Safe Rust) of Rust, we inspected crate dependen-
cies. On average, across all crates in our dataset, a crate depends on
twelve other crates. As shown in Table 3, only 27% of total crates
contain no Unsafe Rust and only use dependencies which contain
no Unsafe Rust. Importantly, 38% of crates include no unsafe in
their own implementation, but rely on dependencies which do use
unsafe.

Dependencies
With Unsafe (%)

No Unsafe in
Dependencies (%)

Crate With
Unsafe 23 12

No Unsafe
in Crate 38 27
Table 3: Unsafe in Crate and Dependencies

crates.io
(%)

Most
Downloaded (%)

Servo
(%)

Unsafe
Function Call 79.3 66.9 74.9

Dereference
C-Style Pointer 16.2 19.5 21.5

Global Variable 3.7 11.1 0.21
Table 4: Unsafe Operations in Unsafe Blocks

crates.io
(%)

Most
Downloaded (%)

Servo
(%)

Unsafe
Function Call 89.2 64.0 78.2

Dereference
C-Style Pointer 6.7 26.0 19.1

Global Variable 3.9 9.8 1.1
Table 5: Unsafe Operations in Unsafe Functions

Summary: While only less then one third of crates directly use
unsafe, over half of crates include Unsafe Rust somewhere in the
aggregate source code once dependencies are considered. This illus-
trates the difference between Rust’s perceived safety and what is
actually statically guaranteed. This also burdens developers trying
to understand their software’s exposure to Unsafe Rust as 38% of
crates appear to avoid unsafe, yet contain it in their dependencies.

5.3.3 RQ3: What Unsafe Rust operations are used? Table 4
and Table 5 present the most frequent Unsafe Rust operations in
unsafe blocks and declared unsafe functions, respectively. Only
the Unsafe Rust operations present in more than 1% of crates are
displayed.

Primarily, a function may be declared unsafe because it contains
Unsafe Rust operations that are not enclosed in an unsafe block.
Other reasons for declaring a function unsafe are: it is imposed by
a trait, it has a precondition that must be satisfied, and it has a
C-Style pointer argument that can be invalid. These cases are not
directly using any Unsafe Rust operations, and thus were excluded
from the analysis.

We observe that calls to declared unsafe functions are a majority
of the Unsafe Rust operations used. The most downloaded crates
and Servo use C-style pointers with greater frequency. One possible
explanation is that these applications interface with C libraries for
speed or because those libraries are not yet available in Rust.
Summary: Calls to unsafe functions are the majority of the Unsafe
Rust operations. We need to understand if the functions are unsafe

8

Is Rust Used Safely by Software Developers? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

4.2%

21.4%

42.2%

66.6%

53.6%

8.7%

C
R
us

t

R
us

tIn
tri

ns
ic

Abstract Binary Interface

P
e

rc
e

n
ta

g
e

All Most Downloaded

Figure 6: RQ4: Calls of Declared Unsafe Functions

because they are implemented in C or they are Rust functions. This
is investigated in the next research question.

5.3.4 RQ4: What type of unsafe functions are called? Fig-
ure 6 presents the distribution of the abstract binary interface of
the declared unsafe functions called from both declared unsafe func-
tions and unsafe blocks.

Among all crates from crates.io the most frequent calls are to
Rust unsafe functions (65%), followed by calls to C functions (22.5%)
and Rust intrinsics (special functions made available by the Rust
compiler). Among the Rust unsafe calls, 47.6% are calls to the Rust
Core Library. Of these unsafe functions in Core, 36.4% are of func-
tions in the ptr module used to manually manage memory through
C-style(raw) pointers and 40% are calls of functions that are unsafe
wrappers to SIMD instructions and architecture-specific intrinsics.
Thus, a significant source of Unsafe Rust is caused by the defini-
tion and use of C-style pointers, either by direct dereferencing or
by calling unsafe functions from the core::ptr module that allow
pointer arithmetic and access to the values stored at the pointer
location.

The most downloaded crates use the Rust intrinsics much more
frequently because intrisics provide operations used for I/O mem-
ory access and common atomic operations. The most downloaded
crates include more libraries that extend Rust with I/O access and
concurrency primitives. The very small number of C-style calls
in most downloaded crates is explained by the fact that the most
downloaded crates are more likely to contain crates that are wrap-
pers for commonly used libraries. From all the calls to Rust unsafe
functions, 47.2% are to function from the Rust Core Library of which
27% are to core::ptr functions. The wrappers to SIMD instructions
are significantly used, as the calls to Rust intrinsics are much higher.
Summary: Calls to C functions are not the majority of the calls
to unsafe functions. Implementing some C libraries in Rust, will
remove some Unsafe Rust operations, but the majority of unsafe
function calls are to Rust functions and Rust intrinsics. We conclude
that the unsafe code is not encapsulated behind the public interface
and the developers use the unsafe function when available.

Abstraction Same
(%)

Increase
(%)

Decrease
(%)

Blocks 82 10 8
Functions 87 7 6

Table 6: Unsafe Use in Most Downloaded Crates

5.3.5 RQ5: Does the use of Unsafe Rust change over time?
To answer RQ5, we count the number of unsafe blocks and func-
tions in the same set of most downloaded crates at two different
time points: September 2018 and June 2019. Since the Rust compiler
API changes frequently, we modified the Rust plugin to be able to
compile updated crates. However, unsafe is counted in the same
way, despite using two different versions of the tool.

A majority of crates (over 80%) contained the same number of
unsafe blocks and functions in both versions. Of the crates that
did change their unsafe usage, approximately half increased while
the other half decreased.
Summary: We conclude that there are no significant trends in
the use of unsafe over a period of ten months, with only a small
increase in the use of unsafe.

5.4 RQ6: Why do Rust developers use unsafe?
To answer the RQ6 research question, we created a survey and
posted it on the Rust Subreddit [1], and collected data from twenty
respondents. The survey asked why they use unsafe and how they
ensure correctness when using unsafe.

The first question asked Rust developers to select one or more
reasons for why they use unsafe in their code. A majority (55%) in-
dicated the use Unsafe Rust for higher performance, with Safe Rust
being too restrictive as the next most common reason (40%). The
other reasons selected include: the Safe Rust alternative is too ver-
bose or complicated (25%), needed to make the code compile (10%),
and faster to write code with Unsafe Rust (5%). Further, respondents
provide other reasons, including: implementing fundamental data
structures, custom concurrency primitives and system calls, inter-
action with specialized hardware, and integration with C or other
languages.

To expand on the general reasons for using Unsafe Rust, the next
question asked what operations the developers use that require the
unsafe keyword. Of the respondents, 45% report using unsafe to
call a non-syscall external C function, 25% to call an unsafe Rust
function, 25% to work with C-style pointers, and 5% to work with
SIMD intrinsics. No respondents selected to perform a system call
or to access a static variable.

The final question asked the Rust developers for the steps they
take to increase their confidence that their Unsafe Rust code is
correct. Most respondents (65%) indicated they read the code very
carefully, until they convince themselves that the code is correct.
Another frequently used technique (55% selected this option) is
adding runtime checks to prevent memory corruption. Half of the
respondents write more unit tests for the function or method that
uses unsafe Rust. Other steps developers take to increase confidence
in the correctness of their unsafe code include: having discussions
with experienced Rust developers in person or online, reading the
documentation and Rust books, creating theoretical proofs, using

9

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa

available test generation, running fuzzing and analysis tools, and
using Miri [17].
Summary:We conclude that the Rust developers use Unsafe Rust
mostly because Safe Rust is too restrictive and to achieve better per-
formance, but they are aware of the potential challenges when using
unsafe and they use more care, test more thoroughly, and deploy
tools and analysis to increase confidence in their code correctness.

6 Towards a Safer Rust
Our analysis shows that while publicly available Rust libraries rarely
use the unsafe keyword (even very popular libraries), most of them
are still not Safe Rust, because of unsafe use in dependencies.

For Rust users that require more robust and reliable checking
of their code, future improvements to the Rust compiler or the
associated tool infrastructure are required. A particularly ambitious
mechanism would be to require an automatic correctness proof (in
the style of Verifiable C [4]) for every use of unsafe. Jung et al. [18]
used this approach to formally prove the correctness of a handful
of Rust functions. The Rust functions were manually translated
to a simplified version of the language, called λRust and using
the Iris framework [19] the authors provided machine-checked
proofs of correctness of several libraries and uncovered a previously
unknown soundness bug in Rust. This approach is unlikely to scale
to all Rust code, but may be feasible for the standard library or other
commonly used libraries to help minimize the amount of code that
is not checked for safety.

Another more feasible short-term approach is to address only
unsafe function calls, which is the most common use of unsafe.
Here, programmers could annotate function calls with suitable pre-
and post-conditions they expect to hold when calling the func-
tion. Various static and dynamic checks then check the code to
ensure the conditions are satisfied. This annotation would enable
programmers to safely use functions that are intrinsically unsafe
(i.e., configuring a hardware peripheral) or optimize performance
with unsafe. However, this approach does add an additional burden
for programmers and, possibly, run time overhead.

Another approach is to aid programmers in reasoning about
the safety of any external code they use. Rust already includes a
compiler directive that generates an error if unsafe is used, yet
we discovered a library that included the directive but still used
unsafe by overriding it at the function-level. Strengthening tools
so programmers have automated checks on unsafe code in depen-
dencies would significantly help programmers manually audit their
codebase to better enable “pragmatic safety”. For example, the Rust
compiler should be able to identify functions in a given library that
are implicit safe, and print a possible call chain that includes calls
to Unsafe Rust. Implementing this in the compiler would make this
tool easy to use, and it would remain up to date as the internal
compiler API changes.

The development of the above mentioned tools requires a defini-
tion of what Unsafe Rust actually means and which behaviors are
undefined. Despite Rust 1.0 being around for four years, the guide-
lines on how to write unsafe Rust code are still preliminary [35].
As this effort progresses, developing tools around Unsafe Rust will
be more manageable and maintainable.

The Rust library ecosystem tool, crates.io, should also help alert
developers to uses of unsafe. Anecdotally, over 100 unsound uses
of unsafe in a popular Rust web framework, Actix [31], were only
discovered and partially fixed by the Rust community after an
online post by a concerned user [37]. Even a year later, the library
still contains uses of unsafe, with soundness concerns still present.
Motivated by this example, we propose the following changes to
the crates.io interface: i) a new tag or badge for crates that include
Unsafe Rust; ii) a dependency tree for each library with the crates
that use Unsafe Rust clearly marked; and iii) a list of code reviews
for any Unsafe Rust. Previous research established that code review
in open source software communities is common and successful in
eliminating a large number of errors [7, 26, 27]. Alami et al. [2] find
that open source software developers develop a mature attitude
to negative feedback and improve their code through a cycle of
review, rejection, and improvement.

The implementation of our proposals will help the community
inspect libraries and help guide new Rust developers onwhatUnsafe
Rust code to trust.

7 Threats To Validity
The internal validity threats we identify are confounding factors
and sampling bias. The Unsafe Rust segments we identify may be
in unreachable or dead code that may not ever be executed for a
particular library. Future work can use additional static analysis
tools to identify uses of unsafe that reside in unreachable code.
Sampling bias is also a possibility. We intended to be inclusive in the
libraries we analyze, and we believe the way we segmented crates
is makes our analysis representative of the larger Rust ecosystem.
The crates included in our study are the ones that could be compiled
on an Ubuntu operating system, and doe not include crates that
need Windows and MacOS libraries.

Rust is under active development and it is possible that program-
ming style and use of Unsafe Rust changes in time. We identify this
as an external validity threat. The percentage of safe libraries may
change when considering only “newer” libraries.

8 Related Work
We present throughout the paper related work relevant to the mo-
tivation and techniques used. In this section, we focus on related
work that investigates how software engineers use various features
in other programming languages.

C/C++ language features: Eyolfson et al. analyze the use of
const annotations in seven medium and large open source C++
projects and find that software developers use correct annotations
in most cases, missing immutability labels in only 6% of the unanno-
tated methods [13]. In Rust, the variables are immutable by default,
and the programmers opt-in by labeling a variable as mutable. This
study suggests that C++ programmers are using language features
to write software with fewer errors. In our study, we observe the
same tendency as the majority of crates are free of direct uses of
Unsafe Rust.

Casalnuovo et al. [9] studied many C/C++ projects to measure
the programmers’ use of assert. They find that a majority of the
projects use more than a minimal number of assert statements.

10

crates.io
crates.io

Is Rust Used Safely by Software Developers? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

The use increases with the length of time the developer is directly
involved with that function. If Rust developers behave similarly,
then over time the number of assertion statements in Rust code
should increase, helping to protectUnsafe Rust operations. However,
developers may instead view assertions as not needed in Rust.

Undefined behavior can be particularly problematic in code as the
compiler can correctly generate machine code that does not match
the programmer’s expectations. As with the case of using undefined
integer overflow to check a buffer’s length [12], undefined behavior
can lead to security vulnerabilities. Wang et al. [38] implement a
tool to detect undefined behavior based on differences resulting
from the compiler optimization level used. They find that 40% of
the 8,575 DebianWheezy packages that contain C/C++ code exhibit
this behavior, and identify 160 real bugs in production open source
code.

Further, understanding undefined behavior can be difficult, as
Memarian et al. [23] demonstrate by surveying over 200 experienced
C developers and asking 85 difficult questions about the semantics
of C. The researchers conclude that in many instances there was
no agreement among the participants on the actual code behavior.
As Unsafe Rust can easily introduce undefined behavior into Rust
code, these case studies suggest Unsafe Rust should be used very
cautiously.

Java: Java is a safe language, but the runtime provides a “back-
door” that permits the circumvention of Java’s safety guarantees to
enable high-performance systems-level code. Mastrangelo et al. [22]
perform a large-scale analysis of Java bytecode to determine how
these unsafe capabilities are used in real world. The authors deter-
mine that 25% of the Java code analyzed depends on unsafe Java
code. One explanation for why the 25% of the analyzed Java code
lacks safety because of use of unsafe API may be that it is not an
integral part of the language, like in Rust, and it is not exposed by
the java standard libraries. Huang et al. [16] study unsafe crash
patterns and implement a bytecode-level transformation that intro-
duces runtime checks to help diagnose and prevent some memory
errors caused by the use of the unsafe API.

Swift: Swift, introduced byApple, is intended to replaceObjective-
C, introduced a new error handling mechanism using exceptions
that is not present in Objective-C. Cassee et al. [10] execute a large-
scale study to identify if Swift developers switched to the new
mechanism. They find that about half of the projects do not use
the new error handling mechanism. Of the projects that do, some
follow some guidelines, but most do not follow the more complex
error-handling recommendations. This fallback to known patterns
may also exist in Rust systems code, as many Rust systems develop-
ers likely have experience writing C. That is, Rust developers may
use Unsafe Rust to enable using the C-style code patterns they are
familiar with. Further studies are required to understand if this is
the case.

9 Conclusions
In this research, we explore whether Rust is, in fact, being used to
ensure memory safety and avoid concurrency bugs. To answer a
number of research questions, we develop a technique to construct
an extended call graph for Rust and an analysis that determines
whether functions possibly include Unsafe Rust or not, depending

on their dependencies.We conduct a number of experiments on Rust
code, using the results to answer our research questions. Across our
dataset, we find that a majority of crates include functions which
are possibly unsafe. We also find that unsafe function calls are the
most common use of unsafeness, and the unsafeness is through
library dependencies rather than through the use of the keyword
unsafe. Perhaps nonintuitively, we find that the most downloaded
crates have more unsafe code than other crates. From these results,
it is difficult for users to know if their code is safe, and thus we
present recommendations for helping users understand when they
are using Unsafe Rust in their software.

11

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa

References
[1] 2020. Rust Subreddit. https://www.reddit.com/r/rust/. (2020).
[2] Adam Alami, Marisa Leavitt Cohn, and Andrzej Wasowski. 2019. Why Does

Code Review Work for Open Source Software Communities?. In Proceedings of
the 41st International Conference on Software Engineering (ICSE ’19). IEEE Press,
Piscataway, NJ, USA, 1073–1083.

[3] Brian Anderson, Lars Bergstrom, Manish Goregaokar, Josh Matthews, Keegan
McAllister, Jack Moffitt, and Simon Sapin. 2016. Engineering the Servo Web
Browser Engine Using Rust. In Proceedings of the 38th International Conference on
Software Engineering Companion (ICSE ’16). ACM, New York, NY, USA, 81–89.

[4] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah
Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. 2014. Program Logics
for Certified Compilers. Cambridge University Press, New York, NY, USA.

[5] David F. Bacon and Peter F. Sweeney. 1996. Fast Static Analysis of C++ Virtual
Function Calls. In Proceedings of the 11th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA ’96). ACM,
New York, NY, USA, 324–341.

[6] Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Aurojit Panda,
Zvonimir Rakamarić, and Leonid Ryzhyk. 2017. System Programming in Rust:
Beyond Safety. In Proceedings of the 16th Workshop on Hot Topics in Operating
Systems (HotOS ’17). ACM, New York, NY, USA, 156–161.

[7] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-
ern Code Reviews in Open-source Projects: Which Problems Do They Fix?. In
Proceedings of the 11th Working Conference on Mining Software Repositories (MSR
2014). ACM, New York, NY, USA, 202–211.

[8] Kevin Boos and Lin Zhong. 2017. Theseus: A State Spill-free Operating System.
In Proceedings of the 9th Workshop on Programming Languages and Operating
Systems (PLOS’17). ACM, New York, NY, USA, 29–35.

[9] Casey Casalnuovo, PremDevanbu, Abilio Oliveira, Vladimir Filkov, and Baishakhi
Ray. 2015. Assert Use in GitHub Projects. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway,
NJ, USA, 755–766.

[10] Nathan Cassee, Gustavo Pinto, Fernando Castor, and Alexander Serebrenik. 2018.
How Swift Developers Handle Errors. In Proceedings of the 15th International
Conference on Mining Software Repositories (MSR ’18). ACM, New York, NY, USA,
292–302. https://doi.org/10.1145/3196398.3196428

[11] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis. In ECOOP’95 — Object-
Oriented Programming, 9th European Conference, Åarhus, Denmark, August 7–11,
1995, Mario Tokoro and Remo Pareschi (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 77–101.

[12] C. R. Dougherty and R. C. Seacord. C. 2008. C compilers may silently discard
some wraparound checks. https://www.kb.cert.org/vuls/id/162289/. (2008).

[13] Jonathan Eyolfson and Patrick Lam. 2019. How C++ Developers Use Immutabil-
ity Declarations: An Empirical Study. In Proceedings of the 41st International
Conference on Software Engineering (ICSE ’19). IEEE Press, Piscataway, NJ, USA,
362–372.

[14] Patrick Gaydon. 2010. Project Servo, Technology from the past come to save the
future from itself. http://venge.net/graydon/talks/intro-talk-2.pdf. (2010).

[15] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-
Miner: Uncovering Memory Corruption in Linux. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018.

[16] Shiyou Huang, Jianmei Guo, Sanhong Li, Xiang Li, Yumin Qi, Kingsum Chow,
and Jeff Huang. 2019. SafeCheck: Safety Enhancement of Java Unsafe API. In
Proceedings of the 41st International Conference on Software Engineering (ICSE ’19).
IEEE Press, Piscataway, NJ, USA, 889–899.

[17] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2019. Stacked
Borrows: An Aliasing Model for Rust. Proc. ACM Program. Lang. 4, POPL, Article
Article 41 (Dec. 2019), 32 pages. https://doi.org/10.1145/3371109

[18] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017.
RustBelt: Securing the Foundations of the Rust Programming Language. Proc.
ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017), 34 pages.

[19] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,
and Derek Dreyer. 2018. Iris from the ground up: A modular foundation for
higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

[20] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer
Safely and Efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP ’17). ACM, New York, NY, USA, 234–251.

[21] Yi Lin, Stephen M. Blackburn, Antony L. Hosking, and Michael Norrish. 2016.
Rust As a Language for High Performance GC Implementation. In Proceedings of
the 2016 ACM SIGPLAN International Symposium on Memory Management (ISMM
2016). ACM, New York, NY, USA, 89–98.

[22] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias
Hauswirth, and Nathaniel Nystrom. 2015. Use at Your Own Risk: The Java
Unsafe API in the Wild. In Proceedings of the 2015 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). ACM, New York, NY, USA, 695–710.

[23] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David
Chisnall, Robert N. M. Watson, and Peter Sewell. 2016. Into the Depths of
C: Elaborating the De Facto Standards. SIGPLAN Not. 51, 6 (June 2016), 1–15.
https://doi.org/10.1145/2980983.2908081

[24] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. 2016. NetBricks: Taking the V out of NFV. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation (OSDI’16).
USENIX Association, Berkeley, CA, USA, 203–216.

[25] Dmitry Petrashko, Vlad Ureche, Ondřej Lhoták, and Martin Odersky. 2016. Call
Graphs for Languages with Parametric Polymorphism. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2016). ACM, New York, NY, USA, 394–409.

[26] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German. 2012. Contemporary
Peer Review in Action: Lessons from Open Source Development. IEEE Software
29, 6 (Nov 2012), 56–61.

[27] P. Rigby, D. German, and M. Storey. 2008. Open source software peer review
practices. In 2008 ACM/IEEE 30th International Conference on Software Engineering.
541–550.

[28] B. G. Ryder. 1979. Constructing the Call Graph of a Program. IEEE Trans. Softw.
Eng. 5, 3 (May 1979), 216–226.

[29] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert,
Per Larsen, and Michael Franz. 2018. SoK: Sanitizing for Security. CoRR
abs/1806.04355 (2018). arXiv:1806.04355 http://arxiv.org/abs/1806.04355

[30] L. Szekeres, M. Payer, T. Wei, and D. Song. 2013. SoK: Eternal War in Memory. In
2013 IEEE Symposium on Security and Privacy. 48–62.

[31] The Actix Team. 2018. Actix. https://github.com/actix/actix. (2018).
[32] The Mozilla Research Team. 2020. Mozilla Research. https://research.mozilla.org/.

(2020).
[33] The Redox Team. 2018. Redox. https://www.redox-os.org/. (2018).
[34] The Rust Team. 2018. The Rust Language Reference. https://doc.rust-lang.org/

reference/index.html. (2018).
[35] The Rust Team. 2018. Unsafe Code Guidelines Reference. https://rust-lang.github.

io/unsafe-code-guidelines/. (2018).
[36] The Rust Team. 2019. Unsafe Code Guidelines. https://github.com/rust-lang/

unsafe-code-guidelines. (2019).
[37] tx4414. 2018. Unsafe Rust in actix-web, other libraries. https://www.reddit.com/

r/rust/comments/8s7gei/unsafe_rust_in_actixweb_other_libraries/. (2018).
[38] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.

2013. Towards Optimization-safe Systems: Analyzing the Impact of Undefined
Behavior. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 260–275. https://doi.
org/10.1145/2517349.2522728

[39] Aaron Weiss, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed. 2019.
Oxide: The Essence of Rust. CoRR abs/1903.00982 (2019). arXiv:1903.00982
http://arxiv.org/abs/1903.00982

12

https://www.reddit.com/r/rust/
https://doi.org/10.1145/3196398.3196428
https://www.kb.cert.org/vuls/id/162289/
http://venge.net/graydon/talks/intro-talk-2.pdf
https://doi.org/10.1145/3371109
https://doi.org/10.1145/2980983.2908081
http://arxiv.org/abs/1806.04355
http://arxiv.org/abs/1806.04355
https://github.com/actix/actix
https://research.mozilla.org/
https://www.redox-os.org/
https://doc.rust-lang.org/reference/index.html
https://doc.rust-lang.org/reference/index.html
https://rust-lang.github.io/unsafe-code-guidelines/
https://rust-lang.github.io/unsafe-code-guidelines/
https://github.com/rust-lang/unsafe-code-guidelines
https://github.com/rust-lang/unsafe-code-guidelines
https://www.reddit.com/r/rust/comments/8s7gei/unsafe_rust_in_actixweb_other_libraries/
https://www.reddit.com/r/rust/comments/8s7gei/unsafe_rust_in_actixweb_other_libraries/
https://doi.org/10.1145/2517349.2522728
https://doi.org/10.1145/2517349.2522728
http://arxiv.org/abs/1903.00982
http://arxiv.org/abs/1903.00982

	ICSE_2020_orig.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Working Example
	2.2 Safe Rust
	2.3 Unsafe Rust
	2.4 Sources of Unsafe Rust
	2.5 Function Taxonomy
	2.6 Rust Software Ecosystem

	3 Research Methodology
	3.1 Research Questions
	3.2 Data Selection

	4 Approach
	4.1 Extended Call Graph
	4.2 Analysis on the Call Graph
	4.3 Example

	5 Experiments and Results
	5.1 Experimental Setup
	5.2 Data Sets
	5.3 Results
	5.4 RQ6: Why do Rust developers use unsafe?

	6 Towards a Safer Rust
	7 Threats To Validity
	8 Related Work
	9 Conclusions
	References

