
BCFA: Bespoke Control Flow Analysis for CFA at Scale
Ramanathan Ramu1

Microsoft
Redmond, Washington

ramu.rm2013@gmail.com

Ganesha B Upadhyaya2
Harmony

Mountain View, California
ganeshau@iastate.edu

Hoan Anh Nguyen3
Amazon

Seattle, Washinton
nguyenanhhoan@gmail.com

Hridesh Rajan
Dept. of Computer Science, Iowa State University

Ames, Iowa
hridesh@iastate.edu

ABSTRACT
Many data-driven software engineering tasks such as discovering
programming patterns, mining API specifications, etc., perform
source code analysis over control flow graphs (CFGs) at scale. Ana-
lyzing millions of CFGs can be expensive and performance of the
analysis heavily depends on the underlying CFG traversal strategy.
State-of-the-art analysis frameworks use a fixed traversal strategy.
We argue that a single traversal strategy does not fit all kinds of
analyses and CFGs and propose bespoke control flow analysis (BCFA).
Given a control flow analysis (CFA) and a large number of CFGs,
BCFA selects the most efficient traversal strategy for each CFG.
BCFA extracts a set of properties of the CFA by analyzing the code
of the CFA and combines it with properties of the CFG, such as
branching factor and cyclicity, for selecting the optimal traversal
strategy. We have implemented BCFA in Boa, and evaluated BCFA
using a set of representative static analyses that mainly involve
traversing CFGs and two large datasets containing 287 thousand
and 162 million CFGs. Our results show that BCFA can speedup the
large scale analyses by 1%-28%. Further, BCFA has low overheads;
less than 0.2%, and low misprediction rate; less than 0.01%.
ACM Reference Format:
Ramanathan Ramu1, Ganesha BUpadhyaya2, HoanAnhNguyen3, andHridesh
Rajan. 2020. BCFA: Bespoke Control Flow Analysis for CFA at Scale. In
42nd International Conference on Software Engineering (ICSE ’20), May 23–
29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3377811.3380435

1 INTRODUCTION
Data-driven techniques have been increasigly adopted in many
software engineering (SE) tasks: API precondition mining [19, 27],

1 At the time this work was completed, Ramanathan Ramu was a graduate student at
Iowa State University. 2 At the time this work was completed, Ganesha Upadhyaya
was a graduate student at Iowa State University. 3 At the time this work was completed,
Dr. Hoan Nguyen was a postdoctoral researcher at Iowa State University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380435

API usage mining [1, 40], code search [26], discovering vulnerabili-
ties [38], to name a few. These data-driven SE tasks perform source
code analysis over different program representations like source
code text, abstract syntax trees (ASTs), control-flow graphs (CFGs),
etc., at scale. For example, API precondition mining analyzes mil-
lions of methods that contain API call sites to capture conditions
that are often checked before invoking the API. The source code
mining infrastructures [5, 10, 14] have started supporting CFG-level
analysis to facilitate variety of data-driven SE tasks.

Performance of source code analysis over CFGs heavily depends
on the order of the nodes visited during the traversals: the traversal
strategy. Several graph traversal strategies exist from the graph
traversal literatures, e.g., depth-first, post-order, reverse post-order,
topological order, worklist-based strategies, etc. However, the state-
of-the-art analysis frameworks use fixed traversal strategy. For
example, Soot analysis framework [21] uses topological ordering of
the nodes to perform control flow analysis. Our observation is that
for analyzing millions of programs with different characteristics, no
single strategy performs best for all kinds of analyses and programs.
Both properties of the analysis and the properties of the input
program influence the traversal strategy selection. For example,
for a control flow analysis that is data-flow sensitive, meaning the
output for any node must be computed using the outputs of its
neighbors, a traversal strategy that visits neighbors prior to visiting
the node performs better than other kinds of traversal strategies.
Similarly, if the CFG of the input program is sequential, a simple
strategy that visits nodes in the random order performs better than
a more sophisticated strategy.

We propose bespoke control flow analysis (BCFA), a novel source
code analysis technique for performing large scale source code
analysis over the control flow graphs. Given an analysis and a large
collection of CFGs on which the analysis needs to be performed,
BCFA selects an optimal traversal strategy for each CFG. In order
to achieve that, BCFA deploys a novel decision tree that combines
a set of analysis properties with a set of graph properties of the
CFG. The analysis properties include data-flow sensitivity, loop
sensitivity, and traversal direction, and the graph properties include
cyclicity (whether the CFG contains branches and loops). There
exists no technique that automatically selects a suitable strategy
based on analysis and CFG properties. Sincemanually extracting the
properties can be infeasible when analyzing millions of CFGs, we
provide a technique to extract the analysis properties by analyzing
the source code of the analysis.

ar
X

iv
:2

00
5.

01
00

0v
1

 [
cs

.S
E

]
 3

 M
ay

 2
02

0

ICSE’20, May 23–29, 2020, Seoul, Republic of Korea R. Ramu et al.

We have implemented BCFA in Boa, a source code mining in-
frastructure [10, 11] and evaluated BCFA using a set of 21 source
code analyses that includes mainly control and data-flow analyses.
The evaluation is performed on two datasets: a dataset containing
well-maintained projects from DaCapo benchmark (with a total
of 287K CFGs), and an ultra-large dataset containing more than
380K projects from GitHub (with a total of 162M CFGs). Our results
showed that BCFA can speedup the large scale analyses by 1%-
28% by selecting the most time-efficient traversal strategy. We also
found that, BCFA has low overheads for computing the analysis
and graph properties; less than 0.2%, and low misprediction rate;
less than 0.01%.

In summary, this paper makes the following contributions:
• It proposes a set of analysis properties and a set of graph proper-
ties that influence the selection of traversal strategy for CFGs.
• It describes a novel decision tree for selecting the most suitable
traversal strategy using the analysis and the graph properties.
• It provides a technique to automatically extract the analysis prop-
erties by analyzing the source code of the analysis.
• It provides an implementation of BCFA in Boa [10, 11] and a
detailed evaluation using a wide-variety of source code analyses
and two large datasets containing 287 thousand and 162 million
CFGs.

2 MOTIVATION
Consider a software engineering task that infers the temporal spec-
ifications between pairs of API method calls, i.e., a call to a must
be followed by a call to b [13, 29, 36, 39]. A data-driven approach
for inference is to look for pairs of API calls that frequently go in
pairs in the same order at API call sites in the client code. Such
an approach contains (at least) three source code analyses on the
control flow graph (CFG) of each client method: 1) identifying refer-
ences of the API classes and call sites of the API methods which can
be done using reaching definition analysis [28]; 2) identifying the
pairs of API calls (a, b) where b follows a in the client code using
post-dominator analysis [2]; and 3) collecting pairs of temporal API
calls by traversing all nodes in the CFG—let us call this collector
analysis. These analyses need to be run on a large number of client
methods to produce temporal specifications with high confidence.

Implementing each of these analyses involves traversing the CFG
of each client method. The traversal strategy could be chosen from
a set of standard strategies e.g., depth-first search (DFS), post-order
(PO), reverse post-order (RPO), worklist with post-ordering (WPO),
worklist with reverse post-ordering (WRPO) and any order (ANY).1

Figure 1 shows the performance of these three analyses when
using standard traversal strategies on the CFG, referred to as A, of a
method in the DaCapo benchmark [6]. The CFG has 50 nodes and it
has branches but no loops. Figure 1 shows that, for graph A, WRPO
performs better than other strategies for the reaching definition

1In DFS, successors of a node are visited prior to visiting the node. PO is similar to DFS,
except that there is no order between the multiple successors. In RPO, predecessors of
a node are visited prior to visiting the node. WPO and WRPO are the worklist-based
strategies, in which the worklist is a datastructure used to keep track of the nodes
to be visited, worklist is initialized using either PO or RPO (PO for WPO and RPO
for WRPO), and whenever a node from the worklist is removed and visited, all its
successors (for forward direction analysis) or its predecessors (for backward direction
analysis) are added to the worklist.

Figure 1: Running times (in ms) of the three analyses on
graph A using different traversal strategies (lower better).

analysis, while WPO outperforms the others for the post-dominator
analysis and the ANY traversal works best for the collector analysis.

No Traversal Strategy Fits All and Analysis Properties In-
fluence the Selection. The performance results show that there is
no single traversal strategy that works best for all analyses. Reach-
ing definition analysis is a forward data-flow analysis where the
output at each node in the graph is dependent on the outputs of
their predecessor nodes. So, DFS, RPO and WRPO by nature are the
most suitable. However, worklist is the most efficient strategy here
because it visits only the nodes that are yet to reach fixpoint2 un-
like other strategies that also visit nodes that have already reached
fixpoint. Post-dominator analysis, on the other hand, is a back-
ward analysis meaning that the output at each node in the graph
is dependent on the outputs of their successor nodes. Therefore,
the worklist with post-ordering is the most efficient traversal. For
the collector analysis, any order traversal works better than other
traversal strategies for graph A. This is because for this analysis the
output at each node is not dependent on the output of any other
nodes and hence it is independent of the order of nodes visited.
The any order traversal strategy does not have the overhead of
visiting the nodes in any particular order like DFS, PO, RPO nor
the overhead to maintain the worklist.

Properties of Input Graph Determine Strategy. For the il-
lustrative example discussed above, DFS and RPO were worse than
WRPO for the reaching definition analysis and PO was worse than
WPO for post-dominator because they require one extra iteration of
analysis before realizing that fixpoint has been reached. However,
since graph A does not have any loops, if the graph A’s nodes are
visited in such a way that each node is visited after its predeces-
sors for reaching definition analysis and after its successors for
post-dominator analysis, then the additional iteration is actually
redundant. Given that graph A has no loops, one could optimize
RPO or PO to skip the extra iteration and fixpoint checking. Thus,
the optimized RPO or PO would run the same number of iterations
as the respective worklist-based ones and finish faster than them
because the overhead of maintaining the worklist is eliminated.

The potential gains of selecting a suitable traversal strategy
could be significant. To illustrate, consider Figure 2 that shows the
performance of our entire illustrative example (inferring temporal
specifications) on a large corpus of 287,000 CFGs extracted from
the DaCapo benchmark dataset [6]. The bar chart shows the total
running times of the three analyses. Best is an ideal strategy where
we can always choose the most efficient with all necessary opti-
mizations. The bar chart confirms that Best strategy could reduce

2Fixpoint is a state where the outputs of nodes no longer change.

BCFA: Bespoke Control Flow Analysis for CFA at Scale ICSE’20, May 23–29, 2020, Seoul, Republic of Korea

70

215

577

104 115

397

25

0

100

200

300

400

500

600

DFS PO RPO WPO WRPO ANY Best

R
u

n
n

in
g

ti
m

e
(s

ec
o

n
d

s)

Figure 2: Running times (in s) of three analyses using differ-
ent traversal strategies on a large codebase (lower better).

the running time on a large dataset from 64% (against DFS) to 96%
(against RPO). Three tasks could be completed for the price of one.

On the other hand, the poor selection of the traversal strategy
couldmake an analysis infeasible when performed at scale. Consider
application [19, 27] that uses post-dominator (PDOM) and reaching
definitions (RD) analyses. For PDOM, a poor strategy (e.g., RPO,
WRPO) would make the analysis never finish on our GitHub dataset.
Similarly, for RD, a poor strategy (WPO on GitHub) would be 80%
slower. Figure 6a shows several ‘-‘ for the GitHub column, indicating
that picking a poor strategy makes the analysis infeasible.

3 BESPOKE CONTROL FLOW ANALYSIS
Figure 3 provides an overview of BCFA and its key components.
The inputs are a source code analysis that contains one or more
traversals (§3.7), and a graph. The output is an optimal traver-
sal strategy for every traversal in the analysis. For selecting an
optimal strategy for a traversal, BCFA computes a set of static prop-
erties of the analysis (§3.2), such as data-flow and loop sensitivity,
and extracts a runtime property about the cyclicity in the graph
(sequential/branch/loop). Using the computed analysis and graph
properties, BCFA selects a traversal strategy from a set of candidates
(§3.4) for each traversal in the analysis (§3.5) and optimizes it (§3.6).
The analysis properties are computed only once for each analysis,
whereas graph cyclicity is determined for every input graph.

Traversal
of

Analysis

Compute
static

properties

Compute
dynamic

properties

Sensitivity to
- data flow
- loop
Traversal
direction

Graph
- sequential
- branch
- loop

Select and
Optimize
the best
traversal
strategy

Traversal
strategy

Graph

Standard
strategies

Run once for each analysis

Run on every graph

Figure 3: Overview of bespoke control flow analysis.

3.1 The Source Code Analysis Model
A source code analysis can be performed on either the source code
text or the intermediate representations like control flow graph
(CFG), program dependence graph (PDG), and call graph (CG).
An iterative data-flow analysis over a CFG traverses the CFG by
visiting the nodes and computing outputs for nodes (aka analysis
facts) [3]. For computing an output for a node, the analysis may
use the outputs of node’s neighbors (successors or predecessors).
For example, consider the Reaching definitions (RD) analysis [28]

that computes a set of variable definitions that are available at each
node in a CFG. Here, the output or the analysis fact at a node is a
set of variables. The RD analysis performs two traversals of the CFG,
where in the first traversal it visits every node in the CFG starting
from the entry node and collects variables defined at nodes, and
in the second traversal, the variables defined at the predecessors
are propagated to compute the final set of variables at nodes. Note
that, certain nodes may be visited several times (in case of loops
in the CFG) until a fixpoint is reached.2 A complex analysis may
further contain one or more sub-analyses that traverses the CFG to
compute different analysis facts.

3.2 Static Properties of the Input Analysis
These properties are the data-flow sensitivity, loop sensitivity, and
traversal direction. We now describe these properties in detail and
provide a technique to automatically compute them in §3.7.

3.2.1 Data-Flow Sensitivity. The data-flow sensitivity property of a
traversal models the dependence among the traversal outputs of
nodes in the input graph. A traversal is data-flow sensitive if the
output of a node is computed using the outputs of other nodes. For
example, the Reaching definitions (RD) analysis described previously
performs a traversal that aggregates the variable definitions from
the predecessors of a node while computing the output for the node,
hence it is considered data-flow sensitive.

A key observation that can be made from the description of the
data-flow sensitivity property is that, a traversal strategy that visits
the neighbors of a node prior to visiting the node will be more
efficient than other kinds of traversal strategies, because the output
of neighbors will be available prior to computing the output for the
node and hence fixpoint can be reached faster.

3.2.2 Loop Sensitivity. The loop sensitivity property models the
effect of loops in the input graph on the analysis. If an input graph
contains loops and if the analysis traversal is affected by them, the
traversal may require multiple iterations (where certain nodes are
visited multiple times) to compute the final output at nodes. In these
iterations, the traversal outputs at nodes either shrink or expand to
reach a fixpoint.3 Hence, a traversal is loop sensitive if the output
of any node shrinks or expands in the subsequent iterations. As
one could imagine the loop-sensitivity property can be difficult to
compute, hence we have provided a technique in §3.7. The Reaching
definitions (RD) analysis described previously has two traversal, in
which the first traversal that simply extracts the variables defined
at nodes is not loop-sensitive, whereas the second traversal that
propagates the variables from the predecessors is loop-sensitive. If
an analysis traversal is not loop-sensitive, the loops in the input CFG
will not have any influence on the selection of the traversal strategy.

3.2.3 Traversal Direction. A traversal direction is property that
describes the direction of visiting the CFG. A CFG can be visited in
either the FORWARD direction or the BACKWARD direction. In FORWARD,
the entry node of the CFG is visited first, followed by the successors
of the nodes, where in BACKWARD, the exit nodes of the CFG are
3Shrink and expand are defined with repsect to the size of the datastructure used to
store the analysis outputs at nodes. As the size is a dynamic factor, we determine the
shrink or expand property by tracking the operations performed on the datastructure
used to store the output. For example, ADD operation always expands and REMOVE
always shrinks. §3.7 describes this in detail.

ICSE’20, May 23–29, 2020, Seoul, Republic of Korea R. Ramu et al.

visited first, followed by the predecessors of the nodes. The traversal
direction is often specified by the analysis writers.

3.3 Graph Cyclicity of Input CFGs
So far we have described the three static properties of the analysis
that influences the traversal strategy selection. A property, cyclic-
ity, of the input graph also influences the selection. Based on the
cyclicity, we classify graphs into four categories: sequential, branch
only, loop w/o branch and loop w/ branch. In sequential graphs, all
nodes have no more than one successor and predecessor. In graphs
with branches, nodes may have more than one successors and pre-
decessors. In graphs with loops, there exist cycles in the graphs.
The graph cyclicity is determined during graph construction.

Graph cyclicity plays an important role in the selection of the ap-
propriate traversal strategy along with the analysis property for an
(analysis, CFG) pair. For CFGs with branches and loops, the outputs
of all dependent nodes of a node (predecessors or successors) may
not be available at the time of visiting the node, hence a traversal
strategy must be selected that guarantees that the outputs of all de-
pendent nodes of a node are available prior to computing the node’s
output, as it leads to fixpoint convergence in fewer iterations.

3.4 Candidate Traversal Strategies
For every (analysis, CFG) pair, BCFA selects a traversal strategy
from among the candidate traversal strategies listed next. 1) Any or-
der (ANY): nodes can be visited in any order (random). 2) Increasing
order of node ids (INC): nodes are visited in the increasing order of
node ids. Node ids are assigned during the CFG construction based
on the control flow order. 3) Decreasing order of node ids (DEC):
nodes are visited in the decreasing order of node ids. 4) Postorder
(PO): successors of a node is visited before visiting the node. 5)
Reverse postorder (RPO): predecessors of a node is visited before
visiting the node. 6) Worklist with postorder (WPO): nodes are visited
in the order they appear in the worklist. Worklist is a datastructure
used to keep track of the nodes to be visited. Worklist is initialized
with postordering of the nodes. Whenever a node from the worklist
is removed and visited, all its successors (for FORWARD) or prede-
cessors (for BACKWARD) are added to the worklist as described
in [3]. 7) Worklist with reverse postorder (WRPO): similar to WPO,
except that the worklist is initialized with reverse postordering.

The traversal strategies were selected by carefully reviewing
the compiler textbooks, implementations, and source code analysis
frameworks. The selected strategies are generally applicable to any
analyses and graphs.4

3.5 Traversal Strategy Decision Tree
The core of BCFA is a decision tree for selecting an optimal traversal
strategy shown in Figure 4. The leaf nodes of the tree are one of
the seven traversal strategies and non-leaf nodes are the static and
runtime checks. The decision tree has eleven paths marked from
P1 through P11. Given a traversal and an input graph, one of the
eleven paths will be taken to decide the best traversal strategy.
The static checks are marked green and the runtime checks are

4We did not include strategies like chaotic iteration based on weak topological ordering
because they are effective only for computing fixpoint of a continuous function over
lattices of infinite height [7].

marked red. The static properties includes data-flow sensitivity
(PDataF low), loop sensitivity (PLoop), and traversal direction. The
runtime property that is checked is the graph cyclicity: sequential,
branch, loop w/ branch, and loop w/o branch. Next, we describe
the design rationale of the decision tree. To illustrate, we use the
post-dominator analysis described in Listing 1, which has one data-
flow insensitive traversal initT and one data-flow sensitive traversal
domT, on a CFG shown in Figure 5 that has both branches and loops.

Figure 4: BCFA decision tree for selecting an optimal traver-
sal strategy. P0 to P11 are markings for paths.

The first property is the data-flow sensitivity (§3.2.1) which is
computed by Algorithm 1. The rationale for checking this property
first is that, if a traversal is not data-flow sensitive, the traversal can
finish in a single iteration (no fixpoint computation is necessary),
irrespective of the type of the input graph. In such cases, visiting
nodes in any order will be efficient, hence we assign any order
(ANY) traversal strategy (path P11). This is the case for traversal
initT in the post-dominator analysis (Listing 1).
For traversals that are data-flow sensitive, such as domT in the

post-dominator analysis, we further check the cyclicity property of
the input graphs. The loop sensitivity property is only applicable
to graphs with loops, thus, is considered last.

Sequential Graphs (paths P1 and P2). In case of sequential
graphs, each node has at most one predecessor or one successor,
and the data flows to any node are from either its predecessor or
its successor, not both. Thus, the most efficient strategy should
traverse the graph in the direction of the data flow, so that the
traversal can finish with only one iteration, and no fixpoint nor
worklist is needed. We use traversal strategy INC (leaf node P1) for
FORWARD analysis and DEC (leaf node P2) for BACKWARD analysis.

Graphs with branches (paths P3 and P4). These graphs con-
tain branches but no loops, hence a node may have more than one
successor or predecessor. If the traversal under consideration is
data-flow sensitive, depending on the traversal direction, it requires
the output of either the successors or predecessors to compute the
output for any node. For FORWARD traversal direction, we need
to visit all predecessors of any node prior to visiting the node and
this traversal order is given by the post-order (RPO) and hence we
select RPO. For BACKWARD traversal direction, we need to visit all
successors of any node prior to visiting the node and this traversal
order is given by the reverse post-order (PO), hence we select PO.

BCFA: Bespoke Control Flow Analysis for CFA at Scale ICSE’20, May 23–29, 2020, Seoul, Republic of Korea

Graphs with loops (paths P5 to P10). These graphs contain
both branches and loops, hence we need to check if the traversal is
sensitive to the loop (the loop sensitive property). The decision for
domT falls into these paths because it has loops.

Loop sensitive (paths P9 and P10). When the traversal is loop
sensitive, for correctly propagating the output, the traversal visits
nodes multiple times until a fix point condition is satisfied (user may
provide a fix point function). We adopt a worklist-based traversal
strategy because it visits only required nodes by maintaining a list
of nodes left to be processed. For picking the best order of traversing
nodes in a graph to initialize the worklist, we further investigate
the traversal direction. We know that, for FORWARD traversals, RPO
strategy gives the best order of nodes and for BACKWARD traversals,
PO strategy gives the best order of nodes, we pick worklist strategy
with reverse post-order WRPO for FORWARD and worklist strategy
with post-orderWPO for BACKWARD traversal directions.

Loop insensitive (paths P5 to P8). When the traversal is loop
insensitive, the selection problem reduces to the sequential and
branch case that is discussed previously, because for loop insensitive
traversal, the loops in the input graph are irrelevant and what
remains relevant is the existence of the branches. For example,
domT is loop insensitive, thus, is a case. As the graph contains
branches, the next property to be checked is the traversal direction.
Since the traversal direction for domT is BACKWARD, we pick PO
traversal strategy for domT, as shown by the path P6 in Figure 4.

3.6 Optimizing the Selected Traversal Strategy
The properties of the analysis and the input graph not only help
us select the best traversal strategy but also help perform several
optimizations to the selected traversal strategies.

Running an analysis on a cyclic graph may require multiple iter-
ations to compute the fixpoint solution. At least one last traversal
is required to check that the results of the last two traversals have
not changed. This additional traversal and the fixpoint checks at
nodes can be eliminated based on the selected traversal strategy.

For data-flow insensitive traversals, the traversal outputs of
nodes do not depend on the outputs of other nodes, hence both
the additional traversal and the fixpoint checks can be eliminated
irrespective of the graph cyclicity (decision path P11 in Figure 4).

In case of data-flow sensitive traversals, the traversal output
of a node is computed using the traversal outputs of other nodes
(predecessors or successors). For data-flow sensitive analysis on
an acyclic graph, the additional traversal and fixpoint checks are
not needed if selected traversal strategy guarantees that the nodes
whose outputs are required to compute the output of a node are
visited prior to visiting the node (paths P1–P4). In case of data-flow,
loop sensitive traversals on graphs with loops, the optimization
does not apply as no traversal strategy can guarantee that the nodes
whose outputs are required to compute the output of a node are
visited prior to visiting the node. Due to the presence of loops,
BCFA selects the worklist-based traversal strategy (paths P9 and
P10). However, in case of data-flow and loop in-sensitive traversals
on graphs with loops, the loops can be ignored since the traversal
is insensitive to it and the additional traversal and fixpoint checks
can be eliminated if the selected traversal strategy guarantees that

the nodes, whose outputs are required to compute the output of a
node, are visited prior to visiting the node (paths P5–P8).

3.7 Extracting Analysis Properties
In §3.2 we described a set of static properties of the analysis that in-
fluence the traversal strategy selection, we now provide a technique
to automatically extract them by analyzing the analysis source code.
Before that, we first describe the DSL that we chose (Boa) and the
extensions that we added to support effective extraction of the static
properties of the analysis programs written in this DSL.5

The Boa DSL provides features to access source code files, re-
visions, classes, methods, statements, expressions, etc [12]. It also
provides CFGs of methods over which the analysis can be per-
formed. We extend Boa DSL to support writing iterative data-flow
analysis.6 A typical iterative data-flow analysis is described using:
i) a traversal function (containing instructions to compute the anal-
ysis output for any CFG node), ii) a fixpoint function (that defines
how to merge the outputs of predecessors or successors, if the anal-
ysis requires), and iii) the traversal direction.7 We now describe our
extension using a sample analysis shown in Listing 1.

Listing 1: Post-dominator analysis: an example source code
analysis expressed using our DSL extension.
1 allNodes: Set <int >;

2 initT := traversal(n: Node) {

3 add(allNodes , n.id);

4 }

5 domT := traversal(n: Node): Set <int > {

6 Set <int > dom;

7 if (output(n, domT) != null) dom = output(n, domT);

8 else if (node.id == exitNodeId) dom = {};

9 else dom = allNodes;

10 foreach (s : n.succs)

11 dom = intersection(dom , output(s, domT))

12 add(dom , n.id);

13 return dom;

14 }

15 fp := fixp(Set <int > curr , Set <int > prev): bool {

16 if (equals(curr , prev)) return true;

17 return false;

18 }

19 traverse(g, initT , ITERATIVE);

20 traverse(g, domT , BACKWARD , fp);

Post-dominator analysis. The post-dominator analysis is a
backward control flow analysis that collects node ids of all nodes
that post-dominates every node in the CFG [2]. This analysis can
be expressed using our DSL extension as shown in Listing 1 that
defines two traversals initT (lines 2-4) and domT (lines 5-14). A
traversal is defined using a special traversal block:
t : = t r a v e r s a l (n : Node) : T { tbody }

In this traversal block definition, t is the name of the traversal
that takes a single parameter n representing the graph node that is
being visited. A traversal may define a return type T representing
5Our reason for selecting the Boa DSL is that it already provides an infrastructure to
facilitate ultra-large scale analysis (several hundred millions of methods).
6The DSL extensions that we added are nothing specific to Boa, instead are common
constructs that can be found in any framework that implements iterative data-flow
style analysis, for example, Soot analysis framework.
7The common data structures to store the analysis outputs at CFG nodes is already
available in Boa. The Boa DSL and our extension was sufficient to express all the
analyses in our evaluation dataset.

ICSE’20, May 23–29, 2020, Seoul, Republic of Korea R. Ramu et al.

the output type. The output type can be a primitive or a collection
data type. In our example, the traversal initT does not define any
output for CFG nodes, whereas, the traversal domT defines an output
of type Set<int> for every node in the CFG. A block of code that
generates the traversal output at a graph node is given by tbody.
The tbody may contain common statements and expressions, such
as variable declarations, assignments, conditional statements, loop
statements, and method calls, along with some special expressions
discussed in this section. These traversals are invoked by using a
special traverse expression (lines 19 and 20).
t r a v e r s e (g , t , d , fp)

A traverse expression takes four parameters: g is the graph to be
traversed, t is the traversal to be invoked, d is the traversal direction
and fp is an optional variable name of the user-defined fixpoint
function. A traversal direction is a value from the set {FORWARD,
BACKWARD, ITERATIVE}. ITERATIVE represents a sequential analysis
that visits nodes as they appear in the nodes collection.

Lines 15-18 defines a fixpoint function using fixp block, used in
the traverse expression in line 20. fixp is a keyword for defining a
fixpoint function. A fixpoint function can take 0 or more parame-
ters, and must always return a boolean. A fixpoint function can be
assigned a name, which can be passed in the traverse expression.

Line 1 defines a variable allNodes of type Set<int> which defines
a collection type Set with elements of type int . The Boa DSL pro-
vides primitive and collection data types. Collection types include:
Set and Seq, where Set is a collection with unique and unordered
elements, whereas, Seq is a collection with non unique but ordered
elements. Important set of operations that can be performed on
collection types are add(C1, e) that adds an element e to collec-
tion C1, addAll(C1, C2) that adds all elements from collection
C2 to collection C1, remove(C1, e) that removes an element e
from Collection C1, removeAll(C1, C2) that removes all elements
present in collection C2 from collection C1, union(C1, C2) that
returns union of the elements in C1 and C2 and intersection(C1,
C2) that returns intersection of the elements in C1 and C2. Line 3
in our example uses an operation add on collection allNodes.

A usage of special expression output(n, domT) can be seen in line
7. This is used for querying the traversal output associated with a
graph node n, in the traversal domT. The traversal domT defines an
output of type Set<int> for every node in the CFG. For managing the
analysis output of nodes, domT traversal maintains an internal map
that contains analysis output for every node, which can be queried
using output(n, domT). A pre-defined variable g that represents the
CFG is used in the traverse expressions in lines 19–20.

Figure 5 takes an example graph, and shows the results of initT
and domT traversals. Our example graph is a CFG containing seven
nodes with a branch and a loop. The initT traversal visits nodes
sequentially and adds node id to the collection allNodes. The domT
traversal visits nodes in the post-order8 and computes a set of nodes
that post-dominate every visited node (as indicated by the set of
node ids). For instance, node 7 is post-dominated by itself, hence
the output at node 7 is {7}. In Figure 5, under domT traversal, for
each node visited, we show the key intermediate steps indicated by
@ line number. These line numbers correspond to the line numbers
shown in Listing 1. We will explain the intermediate results while
8The traversal strategies chosen for initT and domT traversals are explained in §3.5.

Figure 5: Running example of applying the post-dominator
analysis on an input graph containing branch and loop.

visiting node 2. In the domT traversal, at line 9, the output set
dom is initialized using allNodes, hence dom = {0, 1, 2, 3, 4, 5, 6, 7}.
At line 10, node 2 has two successors: {3, 4}. At line 11, dom is
updated by performing an intersection operation using the outputs
of successors 3 and 4. Since the outputs of 3 and 4 are {1, 3, 5, 6, 7}
and {1, 4, 5, 6, 7}, respectively, dom set becomes {1, 5, 6, 7}. At line
12, the id of the visited node is added to the dom set and it becomes
{1, 2, 5, 6, 7}. Hence, the post-dominator set for node 2 is {1, 2, 5, 6,
7}. The post-dominator sets for other nodes are calculated similarly.

In the next two subsections, we describe how data-flow and loop
sensitivity properties can be extracted from the analysis expressed
using our extension. The traversal direction property need not be
extracted as it is directly provided by the analysis writer.

3.7.1 Computing Data-Flow Sensitivity. To determine the data-flow
sensitivity property of a traversal, the operations performed in the
traversal needs to be analyzed to check if the output of a node is
computed using the outputs of other nodes. In our DSL extension,
the only way to access the output of a node in a traversal is via
output () expression, hence given a traversal t := traversal (n : Node
) : T { tbody } as input, Algorithm 1 parses the statements in the
traversal body tbody to identify method calls of the form output(n ',
t ') that fetches the output of a node n ' in the traversal t ' . If such
method calls exist, they are further investigated to determine if n '
does not point to n and t ' points to t. If this also holds, it means
that the traversal output for the current node n is computed using
the traversal outputs of other nodes (n ') and hence the traversal
is data-flow sensitive. For performing the points-to check, Algo-
rithm 1 assumes that an alias environment is computed by using
must alias analysis [18] which computes all names in the tbody
that must alias each other at any program point. The must alias
information ensures that Algorithm 1 never classifies a data-flow
sensitive traversal as data-flow insensitive. The control and loop
statements in the tbody do not have any impact on Algorithm 1 for
computing the data-flow sensitivity property.

BCFA: Bespoke Control Flow Analysis for CFA at Scale ICSE’20, May 23–29, 2020, Seoul, Republic of Korea

Algorithm 1: Algorithm to detect data-flow sensitivity
Input: t := traversal (n : Node) : T { tbody }
Output: true/false

1 A← getAliases(tbody, n);
2 foreach stmt ∈ tbody do
3 if stmt = output (n ', t ') then
4 if t ' == t and n ' < A then
5 return true;

6 return false;

3.7.2 Computing Loop Sensitivity. In general, computing the loop
sensitivity property statically is challenging in the absence of an
input graph. However, the constructs and operations provided in
our DSL extension enable the static inference of this property.

A traversal is loop sensitive if the output of a node in any two
successive iterations either shrinks or expands. We analyze the
operations performed in the traversal to determine if the traversal
output expands or shrinks in the subsequent iterations. The opera-
tions add, addAll, and union always expand the output while remove,
removeAll, and intersection always shrink the output.

Algorithm 2: Algorithm to detect loop sensitivity

Input: t := traversal (n: Node)
: T { tbody }

Output: true/false
1 V ← {} // a set of output variables

related to n;
2 V ′← {} // a set of output

variables not related to n;
3 expand← false;
4 shrink← false;
5 gen← false;
6 kill ← false;
7 A← getAliases(n);
8 foreach s ∈ tbody do
9 if s is v = output(n′, t ′)

then
10 if t ′ == t then
11 if n′ ∈ A then
12 V ← V ∪ v;
13 else
14 V ′← V ′ ∪ v;

15 foreach s ∈ tbody do
16 if s = union(c1, c2) then
17 if (c1 ∈ V and c2 ∈ V ′)

| | (c1 ∈ V ′ and c2 ∈ V)
then expand← true ;

18 if s = intersection (c1, c2)
then

19 if (c1 ∈ V and c2 ∈ V ′)
| | (c1 ∈ V ′ and c2 ∈ V)
then shrink← true ;

20 if s = add(c1, e) | | s =
addAll(c1, c2) then

21 if c1 ∈ V then
22 gen← true;

23 if s = remove(c1, e) | | s =
removeAll(c1, c2) then

24 if c1 ∈ V then
25 kill ← true;

26 if (expand and gen) | | (shrink
and kill) then return true;

27 else return false ;

Given a traversal t := traversal (n : Node) : T { tbody }, Algorithm 2
determines the loop sensitivity of t. Algorithm 2 investigates the
statements in the tbody to determine if the traversal outputs of
nodes in multiple iterations either expand or shrink. For doing that,
first it parses the statements to collect all output variables related
and not related to input node n using the must alias information as
in Algorithm 1. This is determined in lines 8-14, where all output

variables are collected (output variables are variables that gets as-
signed by the output operation) and added to two sets V (a set of
output variables related to n) andV ′ (a set of output variables not re-
lated to n). Upon collecting all output variables, Algorithm 2 makes
another pass over all statements in the tbody to identify six kinds
of operations: union, intersection , add, addAll, remove, and removeAll.
In lines 16–17, the algorithm looks for union operation, where one
of the variables involved is an output variables related to n and the
other variable involved is not related to n. These conditions are
simply the true conditions for the data-flow sensitivity, where the
output of the current node is computed using the outputs of other
nodes (neighbors). Similarly, in lines 18–19, the algorithm looks
for intersection operation. Lines 20–25 identifies add and remove
operations that add or remove elements from the output related to
node n. Finally, if there exist union and add operations, the output
of a node always expands, and if there exist intersection and remove
operations, the output of a node always shrinks. For a data-flow tra-
versal to be loop sensitive, the output of nodes must either expand
or shrink, not both (lines 26–27).

4 EMPIRICAL EVALUATION
We conducted an empirical evaluation on a set of 21 basic source
code analyses on two public massive code datasets to evaluate
several factors of BCFA. First, we show the benefit of using BCFA
over standard strategies by evaluating the reduction in running
times of BCFA over the standards ones (§4.2). Then, we evaluate
the correctness of the analysis results using BCFA to show that
the decision analyses and optimizations in BCFA do not affect the
correctness of the source code analyses (§4.3). We also evaluate the
precision of our selection algorithm by measuring how often BCFA
selects the most time-efficient traversal (§4.4). We evaluate how
the different components of BCFA and different kinds of static and
runtime properties impact the overall performance in §4.5. Finally,
we show practical uses of BCFA in three applications in §4.6.

4.1 Analyses, Datasets and Experiment Setting
4.1.1 Analyses. We collected source code analyses that traverse
CFGs from textbooks and tools. We also ensured that the analyses
list covers all the static properties discussed in §3.2, i.e., data-flow
sensitivity, loop sensitivity and traversal direction (forward, back-
ward and iterative). We ended up with 21 source code analyses as
shown in Table 1. They include 10 basic ones (analyses 1, 2, 8, 9, 10,
11, 12, 14, 15 and 19) from textbooks [2, 28] and 11 others for detect-
ing source code bugs, and code smells from the Soot framework [34]
(analyses 3, 4, 5, 13, 17 and 18), and FindBugs tool [4] (analyses 6,
7, 16, 20 and 21). Table 1 also shows the number of traversals each
analysis contains and their static properties as described in §3.2.
All analyses are intra-procedural. We implemented all twenty one
of these analysis in Boa using the constructs described in §3.7.9

4.1.2 Datasets. We ran the analyses on two datasets: DaCapo
9.12 benchmark [6], and a large-scale dataset containing projects
from GitHub. DaCapo dataset contains the source code of 10 open
source Java projects: Apache Batik, Apache FOP, Apache Aurora,
Apache Tomcat, Jython, Xalan-Java, PMD, H2 database, Sunflow
9Our implementation infrastructure Boa currently supports only method-level analysis,
however our technique should be applicable to inter-procedural CFGs.

ICSE’20, May 23–29, 2020, Seoul, Republic of Korea R. Ramu et al.

Table 1: List of source code analyses and properties of their
involved traversals. Ts: total number of traversals. ti : properties of the
i-th traversal. Flw: data-flow sensitive. Lp: loop sensitive. Dir: traversal direc-
tion where —,→ and← mean iterative, forward and backward, respectively.
✓and ✗ for Flw and Lp indicates whether the property is true or false.

Analysis Ts t1 t2 t3

Flw Lp Dir Flw Lp Dir Flw Lp Dir

1 Copy propagation (CP) 3 ✗ ✗ — ✓ ✓ → ✗ ✗ —
2 Common sub-expression detection (CSD) 3 ✗ ✗ — ✓ ✓ → ✗ ✗ —
3 Dead code (DC) 3 ✗ ✗ — ✓ ✓ ← ✗ ✗ —
4 Loop invariant code (LIC) 3 ✗ ✗ — ✓ ✓ → ✗ ✗ —
5 Upsafety analysis (USA) 3 ✗ ✗ — ✓ ✓ → ✗ ✗ —
6 Valid FileReader (VFR) 3 ✗ ✗ — ✓ ✓ → ✗ ✗ —
7 Mismatched wait/notify (MWN) 3 ✗ ✗ — ✓ ✓ → ✗ ✗ —
8 Available expression (AE) 2 ✗ ✗ — ✓ ✓ →
9 Dominator (DOM) 2 ✗ ✗ — ✓ ✗ →
10 Local may alias (LMA) 2 ✗ ✗ — ✓ ✓ →
11 Local must not alias (LMNA) 2 ✗ ✗ — ✓ ✓ →
12 Live variable (LV) 2 ✗ ✗ — ✓ ✓ ←
13 Nullness analysis (NA) 2 ✗ ✗ — ✓ ✓ →
14 Post-dominator (PDOM) 2 ✗ ✗ — ✓ ✗ ←
15 Reaching definition (RD) 2 ✗ ✗ — ✓ ✓ →
16 Resource status (RS) 2 ✗ ✗ — ✓ ✓ →
17 Very busy expression (VBE) 2 ✗ ✗ — ✓ ✓ ←
18 Safe Synchronization (SS) 2 ✗ ✗ — ✓ ✓ →
19 Used and defined variable (UDV) 1 ✗ ✗ —
20 Useless increment in return (UIR) 1 ✗ ✗ —
21 Wait not in loop (WNIL) 1 ✗ ✗ —

Table 2: Statistics of the generated control flow graphs.

Dataset All graphs Sequential Branches Loops

All graphs Branches No branches

DaCapo 287K 186K (65%) 73K (25%) 28K (10%) 21K (7%) 7K (2%)
GitHub 161,523K 111,583K (69%) 33,324K (21%) 16,617K (10%) 11,674K (7%) 4,943K (3%)

Table 3: Time contribution of each phase (in miliseconds).

Analysis Avg. Time Static Runtime

DaCapo GitHub DaCapo GitHub

Avg. Total Avg. Total

CP 0.21 0.008 53 0.21 62,469 0.008 1359K
CSD 0.19 0.012 60 0.19 56,840 0.012 1991K
DC 0.19 0.010 45 0.19 54,822 0.010 1663K
LIC 0.21 0.006 69 0.20 60,223 0.006 992K
USA 0.19 0.006 90 0.19 54,268 0.009 1444K
VFR 0.18 0.007 42 0.18 52,483 0.007 1142K
MWN 0.18 0.006 36 0.18 52,165 0.006 1109K
AE 0.18 0.007 43 0.18 53,290 0.007 1169K
DOM 0.21 0.008 35 0.21 62,416 0.008 1307K
LMA 0.18 0.008 76 0.18 52,483 0.008 1346K
LMNA 0.18 0.008 80 0.18 53,182 0.008 1407K
LV 0.17 0.007 32 0.17 49,231 0.007 1273K
NA 0.16 0.008 64 0.16 46,589 0.008 1398K
PDOM 0.20 0.012 34 0.20 57,203 0.012 2040K
RD 0.20 0.007 48 0.20 57,359 0.007 1155K
RS 0.16 0.006 28 0.16 46,367 0.006 996K
VBE 0.17 0.006 44 0.17 49,138 0.006 1062K
SS 0.17 0.006 32 0.17 48,990 0.006 1009K
UDV 0.14 0.005 10 0.14 41,617 0.005 928K
UIR 0.14 0.006 14 0.14 41,146 0.006 1020K
WNIL 0.14 0.007 15 0.14 41,808 0.007 1210K

and Daytrader. GitHub dataset contains the source code of more
than 380K Java projects collected from GitHub.com. Each method
in the datasets was used to generate a control flow graph (CFG) on
which the analyses would be run. The statistics of the two datasets

are shown in Table 2. Both have similar distributions of CFGs over
graph cyclicity (i.e., sequential, branch, and loop).

4.1.3 Setting. We compared BCFA against six standard traversal
strategies in §3.4: DFS, PO, RPO, WPO, WRPO and ANY. The run-
ning time for each analysis is measured from the start to the end
of the analysis. The running time for BCFA also includes the time
for computing the static and runtime properties, making the traver-
sal strategy decision, optimizing it and then using the optimized
traversal strategy to traverse the CFG, and run the analysis. The
analyses on DaCapo dataset were run on a single machine with 24
GB of RAM and 24 cores running Linux 3.5.6-1.fc17 kernel. Running
analyses on GitHub dataset on a single machine would take weeks
to finish, so we ran them on a cluster that runs a standard Hadoop
1.2.1 with 1 name and job tracker node, 10 compute nodes with
totally 148 cores, and 1 GB of RAM for each map/reduce task.

4.2 Running Time and Time Reduction
We first report the running times and then study the reductions (or
speedup) against standard traversal strategies.

4.2.1 Running Time. Table 3 shows the running times for 21 anal-
yses on the two datasets. On average (column Avg. Time), each
analysis took 0.14–0.21 ms and 0.005–0.012 ms to analyze a graph
in Dacapo and GitHub datasets, respectively. The variation in the
average analysis time is mainly due to the difference in the ma-
chines used to run the analysis for DaCapo and GitHub datasets.
Also, the graphs in DaCapo are on average much larger compared
to GitHub. Columns Static and Runtime show the time contribu-
tions for different components of BCFA: the time for determining
the static properties of each analysis which is done once for each
analysis, and the time for constructing the CFG of each method
and traversing the CFG which is done once for every constructed
CFG. We can see that the time for collecting static information is
negligible, less than 0.2% for DaCapo dataset and less than 0.01% for
GitHub dataset, when compared to the total runtime information
collection time, as it is performed only once per traversal. When
compared to the average runtime information collection time, the
static time is quite significant. However, the overhead introduced
by static information collection phase diminishes as the number of
CFGs increases and becomes insignificant when running on those
two large datasets. This result shows the benefit of BCFA when
applying on large-scale analysis.

4.2.2 Time Reduction. To evaluate the efficiency in running time
of BCFA over other strategies, we ran 21 analyses on DaCapo and
GitHub datasets using BCFA and other strategies. When comparing
the BCFA to a standard strategy S , we computed the reduction rate
R = (TS − TH)/TS where TS and TH are the running times using
the standard strategy and BCFA, respectively. Some analyses have
worst case traversal strategies which might not be feasible to run
on GitHub dataset with 162 million graphs. For example, using
post-order for forward data-flow analysis will visit the CFGs in the
direction which is opposite to the natural direction of the analysis
and hence takes a long time to complete. For such combinations of
analyses and traversal strategies, the map and the reduce tasks time
out in the cluster setting and, thus, did not have the running times.
The corresponding cells in Figure 6a are denoted with symbol –.

BCFA: Bespoke Control Flow Analysis for CFA at Scale ICSE’20, May 23–29, 2020, Seoul, Republic of Korea

Analysis DaCapo GitHub

DFS PO RPO WPO WRPO ANY DFS PO RPO WPO WRPO ANY

CP 17% 83% 9% 66% 11% 72% 17% 88% 12% 80% 5% 82%
CSD 41% 93% 39% 74% 4% 89% 31% – 24% – 12% –
DC 41% 30% 89% 7% 64% 81% 25% 22% – 7% – –
LIC 17% 84% 8% 67% 7% 73% 19% 89% 15% 81% 19% 88%
USA 36% 92% 34% 72% 9% 87% 22% – 17% – 9% –
VFR 20% 41% 18% 51% 15% 62% 15% 40% 10% 44% 9% 53%
MWN 21% 35% 16% 35% 22% 49% 17% 31% 12% 33% 11% 46%
AE 40% 14% 39% 73% 14% 87% 16% – 16% – 11% –
DOM 54% 97% 48% 70% 6% 95% 27% – 32% – 6% –
LMA 35% 46% 28% 74% 6% 46% 22% – 13% – 6% –
LMNA 29% 39% 22% 68% 9% 41% 21% – 15% – 7% –
LV 38% 30% 84% 11% 56% 75% 25% 21% 68% 11% 69% 80%
NA 26% 88% 30% 50% 10% 80% 13% 87% 12% 71% 10% 85%
PDOM 51% 41% 95% 10% 72% 95% 24% 20% – 24% – –
RD 15% 80% 7% 62% 9% 68% 19% 91% 10% 79% 5% 86%
RS 31% 31% 30% 31% 28% 30% 16% 40% 9% 31% 7% 49%
VBE 40% 36% 88% 13% 76% 81% 28% 24% – 10% – –
SS 26% 39% 22% 37% 25% 57% 20% 35% 13% 34% 10% 50%
UDV 6% 5% 6% 10% 9% 3% 3% 4% 2% 7% 6% 0%
UIR 2% 2% 1% 3% 3% 0% 2% 5% 4% 7% 7% 0%
WNIL 3% 4% 5% 6% 8% 2% 3% 6% 5% 5% 6% 0%

Overall 31% 83% 70% 55% 35% 81% – – – – – –

(a) Time reduction for each analysis.

Property DaCapo

DFS PO RPO WPO WRPO ANY

Data-flow 32% 84% 72% 57% 36% 83%
¬Data-flow 4% 4% 4% 6% 6% 2%

(b) Reduction over analysis properties.

Property DaCapo

DFS PO RPO WPO WRPO ANY

Sequential 20% 74% 63% 55% 28% 72%
Branch 31% 81% 66% 58% 40% 92%
Loop 53% 88% 75% 62% 37% 95%

(c) Reduction over graph properties.

Figure 6: Reduction in running times. Background colors indicate ranges of values: no reduction , (0%, 10%) , [10%, 50%) and [50%, 100%] .

The result in Figure 6a shows that BCFA helps reduce the run-
ning times in almost all cases. The values indicate the reduction
in running time by adopting BCFA compared against the standard
strategies. Most of positive reductions are from 10% or even from
50% . Compared to the most time-efficient strategies for each anal-
ysis, BCFA could speed up from 1% (UIR with RPO) to 28% (RS with
WRPO). More importantly, the most time-efficient and the worst
traversal strategies vary across the analyses which supports the
need of BCFA. Over all analyses, the reduction was highest against
any order and post-order (PO and WPO) strategies. The reduction
was lowest against the strategy using depth-first search (DFS) and
worklist with reverse post-ordering (WRPO). When compared with
the next best performing traversal strategy for each analysis, BCFA
reduces the overall execution time by about 13 minutes to 72 min-
utes on GitHub dataset. We do not report the overall numbers for
GitHub dataset due to the presence of failed runs.

Figure 6b shows time reductions for different types of analyses.
For data-flow sensitive ones, the reduction rates were high ranging
from 32% to 84%. The running time was not improved much for
non data-flow sensitive traversals, which correspond to the last

three rows in Figure 6a with mostly one digit reductions). We
actually perform almost the same as ANY-order traversal strategy
for analyses in this category. This is because any-order traversal
strategy is the best strategy for all the CFGs in these analyses. BCFA
also chooses any-order traversal strategy and, thus, the performance
is the same.

Figure 6c shows time reduction for different cyclicity types of
input graphs. We can see that reductions over graphs with loops is
highest and those over any graphs is lowest.

4.3 Correctness of Analysis Results
To evaluate the correctness of analysis results, we first chose work-
list as standard strategy to run analyses on DaCapo dataset to create
the groundtruth of the results. We then ran analyses using our hy-
brid approach and compared the results with the groundtruth. In all
analyses on all input graphs from the dataset, the results from BCFA
always exactly matched the corresponding ones in the groundtruth.

ICSE’20, May 23–29, 2020, Seoul, Republic of Korea R. Ramu et al.

Table 4: Traversal strategy prediction precision.

Analysis Precision

DOM, PDOM, WNIL, UDV, UIR 100.00%
CP, CSD, DC, LIC, USA, VFR, MWN, AE, LMA, LMNA, LV, NA, RD, RS, VBE, SS 99.99%

0
10
20
30
40
50
60
70
80

R
ed

u
ct

io
n

 (
%

)

Figure 7: Time reduction due to traversal optimization.

4.4 Traversal Strategy Selection Precision
In this experiment, we evaluated how well BCFA picks the most
time-efficient strategy. We ran the 21 analyses on the DaCapo
dataset using all the candidate traversals and the one selected by
BCFA. One selection is counted for each pair of a traversal and an
input graph where the BCFA selects a traversal strategy based on
the properties of the analysis and input graph. A selection is con-
sidered correct if its running time is at least as good as the running
time of the fastest among all candidates. The precision is computed
as the ratio between the number of correct selections over the total
number of all selections. The precision was 100% and 99.9% for loop
insensitive and loop sensitive traversals, respectively.

As shown in Table 4, the selection precision is 100% for all analy-
ses that are not loop sensitive. For analyses that involve loop sensitive
traversals, the prediction precision is 99.99%. Further analysis re-
vealed that the selection precision is 100% for sequential CFGs &
CFGs with branches and no loop—BCFA always picks the most
time-efficient traversal strategy. For CFGs with loops, the selection
precision is 100% for loop insensitive traversals. The mispredictions
occur with loop sensitive traversals on CFGs with loops. This is
because for loop sensitive traversals, BCFA picks worklist as the
best strategy. The worklist approach was picked because it visits
only as many nodes as needed when compared to other traversal
strategies which visit redundant nodes. However using worklist
imposes an overhead of creating and maintaining a worklist con-
taining all nodes in the CFG. This overhead is negligible for small
CFGs. However, when running analyses on large CFGs, this over-
head could become higher than the cost for visiting redundant
nodes. Therefore, selecting worklist for loop sensitive traversals on
large CFGs might not always result in the best running times.

4.5 Analysis on Traversal Optimization
We evaluated the importance of optimizing the chosen traversal
strategy by comparing BCFA with the non-optimized version. Fig-
ure 7 shows the reduction rate on the running times for the 21
analyses. For analyses that involve at least one data-flow sensitive
traversal, the optimization helps to reduce at least 60% of running
time. This is because optimizations in such traversals reduce the
number of iterations of traversals over the graphs by eliminating
the redundant result re-computation traversals and the unnecessary
fixpoint condition checking traversals. For analyses involving only
data-flow insensitive traversal, there is no reduction in execution
time, as BCFA does not attempt to optimize.

4.6 Case Studies
This section presents three applications adopted from prior works
that showed significant benefit from BCFA approach. These applica-
tions includes one or more analyses listed in Table 1. We computed
the reduction in the overall analysis time when compared to WRPO
traversal strategy (the second best performing traversal after BCFA)
and the results are shown in Figure 8.

Case BCFA WRPO Reduce

APM 1527 min. 1702 min. 10%
AUM 883 min. 963 min. 8%
SVT 1417 min. 1501 min. 6%

Figure 8: Running time of the case studies on GitHub data.

API Precondition Mining (APM). This case study mines a
large corpus of API usages to derive potential preconditions for
API methods [27]. The key idea is that API preconditions would be
checked frequently in a corpus with a large number of API usages,
while project-specific conditions would be less frequent. This case
study mined the preconditions for all methods of java . lang . String .

API Usage Mining (AUM). This case study analyzes API usage
code and mines API usage patterns [37]. The mined patterns help
developers understand and write API usages more effectively with
less errors. Our analysis mined usage patterns for java . util APIs.

Finding SecurityVulnerabilitieswithTaintedObject Prop-
agation (SVT). This case study formulated a variety of widespread
SQL injections, as tainted object propagation problems [22]. Our
analysis looked for all SQL injection vulnerabilities matching the
specifications in the statically analyzed code.

Figure 8 shows that BCFA helps reduce running times signifi-
cantly by 80–175 minutes, which is from 6%–10% relatively. For
understanding whether 10% reduction is really significant, consid-
ering the context is important. A save of 3 hours (10%) on a parallel
infrastructure is significant. If the underlying parallel infrastructure
is open/free/shared ([5, 10]), a 3 hour save enables supporting more
concurrent users and analyses. If the infrastructure is a paid cluster
(e.g., AWS), a 3 hour less computing time could translate to save of
substantial dollar amount.

4.7 Threats to Validity
Our datasets do not contain a balanced distribution of different
graph cyclicity.The majority of graphs in both DaCapo and GitHub
datasets are sequential (65% and 69%, respectively) and only 10%
have loops. The impact of this threat is that paths and decisions
along sequential graphs are taken more often. This threat is not
easy to mitigate, as it is not pratical to find a code dataset with
a balanced distribution of graphs of various types. Nonetheless,
our evaluation shows that the selection and optimization of the
best traversal strategy for these 35% of the graphs (graphs with
branches and loops) plays an important role in improving the overall
performance of the analysis over a large dataset of graphs.

5 RELATEDWORKS
Atkinson and Griswold [3] discuss several implementation tech-
niques for improving the efficiency of data-flow analysis, namely:
factoring data-flow sets, visitation order of the statements, selective

BCFA: Bespoke Control Flow Analysis for CFA at Scale ICSE’20, May 23–29, 2020, Seoul, Republic of Korea

reclamation of the data-flow sets. They discuss two commonly used
traversal strategies: iterative search and worklist, and propose a
newworklist algorithm that results in 20% fewer node visits. In their
algorithm, a node is processed only if the data-flow information of
any of its successors (or predecessors) has changed. Tok et al. [30]
proposed a newworklist algorithm for accelerating inter-procedural
flow-sensitive data-flow analysis. They generate inter-procedural
def-use chains on-the-fly to be used in their worklist algorithm to
re-analyze only parts that are affected by the changes in the flow
values. Hind and Pioli [15] proposed an optimized priority-based
worklist algorithm for pointer alias analysis, in which the nodes
awaiting processing are placed on a worklist prioritized by the
topological order of the CFG, such that nodes higher in the CFG
are processed before nodes lower in the CFG. Bourdoncle [7] pro-
posed the notion of weak topological ordering (WTO) of directed
graphs and two iterative strategies based on WTO for computing
the analysis solutions in dataflow and abstraction interpretation
domains. Bourdoncle’ technique is more suitable for cyclic graphs,
however for acyclic graphs Bourdoncle proposes any topological
ordering. Kildall [20] proposes combining several optimizing func-
tions with flow analysis algorithms for solving global code opti-
mization problems. For some classes of data-flow analysis problems,
there exist techniques for efficient analysis. For example, demand
interprocedural data-flow analysis [17] can produce precise results
in polynomial time for inter-procedural, finite, distributive, subset
problems (IFDS), constant propagation [35], etc. These works pro-
pose new traversal strategies for improving the efficiency of certain
class of source code analysis, whereas BCFA is a novel technique
for selecting the best traversal strategy from a list of candidate
traversal strategies, based on the static properties of the analysis
and the runtime characteristics of the input graph.

Upadhyaya and Rajan [32] proposed Collective Program Anal-
ysis (CPA) that leverages similarities between CFGs to speedup
analyzing millions of CFGs by only analyzing unique CFGs. CPA
utilizes pre-defined traversal strategy to traverse CFGs, however
our technique selects optimal traversal strategy and could be uti-
lized in CPA. Upadhyaya and Rajan have also proposed an approach
for accelerating ultra-large scale mining by clustering artifacts that
are being mined [31, 33]. BCFA and this approach have the same
goal of scaling large-scale mining, but complementary strategies.

Cobleigh et al. [8] study the effect of worklist algorithms inmodel
checking. They identified four dimensions along which a worklist
algorithm can be varied. Based on four dimensions, they evaluate
9 variations of worklist algorithm. They do not solve traversal
strategy selection problem. Moreover, they do not take analysis
properties into account. We consider both static properties of the
analysis, such as data-flow sensitivity and loop sensitivity, and
the cyclicity of the graph. Further, we also consider non-worklist
based algorithms, such as post-order, reverse post-order, control
flow order, any order, etc., as candidate strategies.

Several infrastructures exist today for performing ultra-large-
scale analysis [5, 9, 10, 14, 23]. Boa [10] is a language and infrastruc-
ture for analyzing open source projects. Sourcerer [5] is an infras-
tructure for large-scale collection and analysis of open source code.
GHTorrent [14] is a dataset and tool suite for analyzing GitHub
projects. These frameworks currently support structural or abstract
syntax tree (AST) level analysis and a parallel framework such as

map-reduce is used to improve the performance of ultra-large-scale
analysis. By selecting the best traversal strategy, BCFA could help
improve their performance beyond parallelization.

There have been much works that targeted graph traversal op-
timization. Green-Marl [16] is a domain specific language for ex-
pressing graph analysis. It uses the high-level algorithmic descrip-
tion of the graph analysis to exploit the exposed data level paral-
lelism. Green-Marl’s optimization is similar to ours in utilizing the
properties of the analysis description, however BCFA also utilizes
the properties of the graphs. Moreover, Green-Marl’s optimization
is through parallelism while ours is by selecting the suitable tra-
versal strategy. Pregel [25] is a map-reduce like framework that
aims to bring distributed processing to graph algorithms. While
Pregel’s performance gain is through parallelism, BCFA achieves it
by traversing the graph efficiently.

6 CONCLUSION AND FUTUREWORK
Improving the performance of source code analyses that runs on
massive code bases is an ongoing challenge. We proposed bespoke
control flow analysis, a technique for optimizing source code analy-
sis over control flow graphs (CFGs). Given the code of the analysis
and a large set of CFGs, BCFA extracts a set of static properties of
the analysis and combines it with a property of the CFG to auto-
matically select an optimal CFG traversal strategy for every CFG.
BCFA has minimal overhead, less than 0.2%; and leads to speedup
between 1%-28%. BCFA has been integrated into Boa [10, 11] and
has already been utilized in [40].

An immediate avenue for future work lies in extending our
technique to analyses that go beyond method boundaries (program-
level), as our current work only targets method-level source code
analysis. We also plan to extend our technique to other source code
graphs that requires traversing, for instance, program dependence
graphs (PDGs) and call graphs (CGs). Boa has been used for studies
that require analyses [24, 40] and we would like to understand if
those analyses can benefit from this work.

ACKNOWLEDGMENTS
This work was supported in part by US NSF under grants CNS-15-
18897, and CNS-19-34884. All opinions are of the authors and do
not reflect the view of sponsors. We thank ICSE’20 reviewers for
constructive comments that were very helpful.

REFERENCES
[1] Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. 2007. Mining API Patterns As

Partial Orders from Source Code: From Usage Scenarios to Specifications. In
Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC-FSE ’07). ACM, New York, NY, USA, 25–34. https://doi.org/
10.1145/1287624.1287630

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[3] Darren C. Atkinson and William G. Griswold. 2001. Implementation Techniques
for Efficient Data-Flow Analysis of Large Programs. In Proceedings of the IEEE
International Conference on Software Maintenance (ICSM’01) (ICSM ’01). IEEE
Computer Society, Washington, DC, USA, 52–. https://doi.org/10.1109/ICSM.
2001.972711

[4] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian
Zhou. 2007. Evaluating Static Analysis Defect Warnings on Production Software.
In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis

ICSE’20, May 23–29, 2020, Seoul, Republic of Korea R. Ramu et al.

for Software Tools and Engineering (PASTE ’07). ACM, New York, NY, USA, 1–8.
http://doi.acm.org/10.1145/1251535.1251536

[5] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. 2014. Sourcerer: An Infras-
tructure for Large-scale Collection and Analysis of Open-source Code. Sci. Com-
put. Program. 79 (Jan. 2014), 241–259. https://doi.org/10.1016/j.scico.2012.04.008

[6] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In Proceedings of the 21st An-
nual ACM SIGPLAN Conference on Object-oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’06). ACM, New York, NY, USA, 169–190.
https://doi.org/10.1145/1167473.1167488

[7] François Bourdoncle. 1993. Efficient chaotic iteration strategies with widenings.
In Formal Methods in Programming and Their Applications, Dines Bjørner, Manfred
Broy, and Igor V. Pottosin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
128–141.

[8] Jamieson M. Cobleigh, Lori A. Clarke, and Leon J. Osterweil. 2001. The Right
Algorithm at the Right Time: Comparing Data Flow Analysis Algorithms for
Finite State Verification. In Proceedings of the 23rd International Conference on
Software Engineering (ICSE ’01). IEEE Computer Society, Washington, DC, USA,
37–46. http://dl.acm.org/citation.cfm?id=381473.381477

[9] Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software Heritage: Why
and How to Preserve Software Source Code. In iPRES 2017: 14th Inter-
national Conference on Digital Preservation (2017-09-25). Kyoto, Japan.
https://www.softwareheritage.org/wp-content/uploads/2020/01/ipres-2017-
swh.pdf,https://hal.archives-ouvertes.fr/hal-01590958

[10] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013.
Boa: A Language and Infrastructure for Analyzing Ultra-large-scale Software
Repositories. In Proceedings of the 2013 International Conference on Software
Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 422–431. http://dl.acm.
org/citation.cfm?id=2486788.2486844

[11] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2015. Boa:
Ultra-Large-Scale Software Repository and Source-Code Mining. ACM Trans.
Softw. Eng. Methodol. 25, 1, Article 7 (Dec. 2015), 34 pages. https://doi.org/10.
1145/2803171

[12] Robert Dyer, Hridesh Rajan, and Tien N. Nguyen. 2013. Declarative Visitors to
Ease Fine-grained Source CodeMiningwith Full History on Billions of ASTNodes.
In Proceedings of the 12th International Conference on Generative Programming:
Concepts & Experiences (GPCE). 23–32.

[13] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs As Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. In Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles (SOSP ’01). ACM, New York, NY, USA, 57–72. https://doi.org/
10.1145/502034.502041

[14] Georgios Gousios. 2013. The GHTorent Dataset and Tool Suite. In Proceedings
of the 10th Working Conference on Mining Software Repositories (MSR ’13). IEEE
Press, Piscataway, NJ, USA, 233–236. http://dl.acm.org/citation.cfm?id=2487085.
2487132

[15] Michael Hind and Anthony Pioli. 1998. Assessing the Effects of Flow-Sensitivity
on Pointer Alias Analyses. In SAS. Springer-Verlag, 57–81.

[16] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. 2012. Green-
Marl: A DSL for Easy and Efficient Graph Analysis. In Proceedings of the Seven-
teenth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XVII). ACM, New York, NY, USA, 349–362.
https://doi.org/10.1145/2150976.2151013

[17] Susan Horwitz, Thomas Reps, and Mooly Sagiv. 1995. Demand Interprocedu-
ral Dataflow Analysis. In Proceedings of the 3rd ACM SIGSOFT Symposium on
Foundations of Software Engineering (SIGSOFT ’95). ACM, New York, NY, USA,
104–115. https://doi.org/10.1145/222124.222146

[18] Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright.
1998. Single and Loving It: Must-alias Analysis for Higher-order Languages.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’98). ACM, New York, NY, USA, 329–341.
https://doi.org/10.1145/268946.268973

[19] Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh
Rajan. 2017. Exploiting Implicit Beliefs to Resolve Sparse Usage Problem in Usage-
based Specification Mining. In OOPSLA’17: The ACM SIGPLAN conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’17).

[20] Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization. In
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL ’73). ACM, New York, NY, USA, 194–206.
https://doi.org/10.1145/512927.512945

[21] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot
framework for Java program analysis: a retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), Vol. 15. 35.

[22] V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities
in Java Applications with Static Analysis. In Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14 (SSYM’05). USENIX Association,
Berkeley, CA, USA, 18–18. http://dl.acm.org/citation.cfm?id=1251398.1251416

[23] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of Code: An Infrastructure for Mining the Universe of Open Source
VCS Data. In Proceedings of the 16th International Conference on Mining Software
Repositories (MSR âĂŹ19). IEEE Press, 143âĂŞ154. https://doi.org/10.1109/MSR.
2019.00031

[24] Jackson Maddox, Yuheng Long, and Hridesh Rajan. 2018. Large-Scale Study of
Substitutability in the Presence of Effects. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2018). Association for Computing
Machinery, New York, NY, USA, 528âĂŞ538. https://doi.org/10.1145/3236024.
3236075

[25] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’10). ACM, New York, NY, USA,
135–146. https://doi.org/10.1145/1807167.1807184

[26] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Chen Fu, and Qing Xie.
2012. Exemplar: A Source Code Search Engine for Finding Highly Relevant
Applications. IEEE Trans. Softw. Eng. 38, 5 (Sept. 2012), 1069–1087. https://doi.
org/10.1109/TSE.2011.84

[27] Hoan Anh Nguyen, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan. 2014.
Mining Preconditions of APIs in Large-scale Code Corpus. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2014). ACM, New York, NY, USA, 166–177. https://doi.org/10.
1145/2635868.2635924

[28] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 2010. Principles of
Program Analysis. Springer Publishing Company, Incorporated.

[29] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007.
Path-Sensitive Inference of Function Precedence Protocols. In Proceedings of the
29th International Conference on Software Engineering (ICSE ’07). IEEE Computer
Society, Washington, DC, USA, 240–250. https://doi.org/10.1109/ICSE.2007.63

[30] Teck Bok Tok, Samuel Z. Guyer, and Calvin Lin. 2006. Efficient Flow-sensitive
Interprocedural Data-flow Analysis in the Presence of Pointers. In Proceedings
of the 15th International Conference on Compiler Construction (CC’06). Springer-
Verlag, Berlin, Heidelberg, 17–31. https://doi.org/10.1007/11688839_3

[31] Ganesha Upadhyaya and Hridesh Rajan. 2017. On Accelerating Ultra-Large-Scale
Mining. In 2017 IEEE/ACM 39th International Conference on Software Engineering:
New Ideas and Emerging Technologies Results Track (ICSE-NIER). 39–42. https:
//doi.org/10.1109/ICSE-NIER.2017.11

[32] Ganesha Upadhyaya and Hridesh Rajan. 2018. Collective Program Analysis. In
Proceedings of the 40th International Conference on Software Engineering (ICSE ’18).
ACM, New York, NY, USA, 620–631. https://doi.org/10.1145/3180155.3180252

[33] Ganesha Upadhyaya and Hridesh Rajan. 2018. On Accelerating Source Code
Analysis at Massive Scale. IEEE Transactions on Software Engineering 44, 7 (July
2018), 669–688. https://doi.org/10.1109/TSE.2018.2828848

[34] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In
Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collabo-
rative Research (CASCON ’99). IBM Press, 13–. http://dl.acm.org/citation.cfm?
id=781995.782008

[35] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant Propagation with
Conditional Branches. ACM Trans. Program. Lang. Syst. 13, 2 (April 1991), 181–
210. https://doi.org/10.1145/103135.103136

[36] Westley Weimer and George C. Necula. 2005. Mining Temporal Specifications for
Error Detection. In Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’05). Springer-
Verlag, Berlin, Heidelberg, 461–476. https://doi.org/10.1007/978-3-540-31980-
1_30

[37] Tao Xie and Jian Pei. 2006. MAPO: Mining API Usages from Open Source
Repositories. In Proceedings of the 2006 International Workshop on Mining Software
Repositories (MSR ’06). ACM, New York, NY, USA, 54–57. https://doi.org/10.1145/
1137983.1137997

[38] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and Discovering Vulnerabilities with Code Property Graphs. In Proceedings of the
2014 IEEE Symposium on Security and Privacy (SP ’14). IEEE Computer Society,
Washington, DC, USA, 590–604. https://doi.org/10.1109/SP.2014.44

[39] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir
Das. 2006. Perracotta: Mining Temporal API Rules from Imperfect Traces. In
Proceedings of the 28th International Conference on Software Engineering (ICSE ’06).
ACM, New York, NY, USA, 282–291. https://doi.org/10.1145/1134285.1134325

[40] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are Code Examples on an Online Q&A Forum Reliable? A
Study of API Misuse on Stack Overflow. In Proceedings of the 40th International

BCFA: Bespoke Control Flow Analysis for CFA at Scale ICSE’20, May 23–29, 2020, Seoul, Republic of Korea

Conference on Software Engineering (ICSE ’18). ACM, New York, NY, USA.

