
Performance Regression Detection in DevOps

Jinfu Chen

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Software Engineering) at

Concordia University

Montréal, Québec, Canada

November 2020

© Jinfu Chen, 2020

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Jinfu Chen

Entitled: Performance Regression Detection in DevOps

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Youmin Zhang

External Examiner
Dr. Andy Zaidman

Examiner
Dr. Nikolaos Tsantalis

Examiner
Dr. Jinqiu Yang

Examiner
Dr. Yan Liu

Supervisor
Dr. Weiyi Shang

Approved by
Dr. Leila Kosseim, Graduate Program Director

November 9, 2020
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Performance Regression Detection in DevOps

Jinfu Chen, Ph.D.

Concordia University, 2020

Performance is an important aspect of software quality. The goals of performance are typically

defined by setting upper and lower bounds for response time and throughput of a system and

physical level measurements such as CPU, memory, and I/O. To meet such performance goals,

several performance-related activities are needed in development (Dev) and operations (Ops). Large

software system failures are often due to performance issues rather than functional bugs. One of the

most important performance issues is performance regression. Although performance regressions

are not all bugs, they often have a direct impact on users’ experience of the system. The process of

detection of performance regressions in development and operations is faced with challenges. First,

the detection of performance regression is conducted after the fact, i.e., after the system is built and

deployed in the field or dedicated performance testing environments. Large amounts of resources

are required to detect, locate, understand, and fix performance regressions at such a late stage in the

development cycle. Second, even we can detect a performance regression, it is extremely hard to fix

it because other changes are applied to the system after the introduction of the regression.

These challenges call for further in-depth analyses of the performance regression. In this

thesis, to avoid performance regression slipping into operation, we first perform an exploratory

study on the source code changes that introduce performance regressions in order to understand

root-causes of performance regression in the source code level. Second, we propose an approach

that automatically predicts whether a test would manifest performance regressions in a code commit.

Most of the performance issues are related to configurations. Therefore, third, we propose an

iii

approach that predicts whether a configuration option manifests a performance variation issue. To

assist practitioners to analyze system performance with operational data, we propose an approach

to recovering field-representative workload that can be used to detect performance regression.

iv

Related Publications

The following publication is related to the materials presented in this thesis:

• Jinfu Chen and Weiyi Shang. An Exploratory Study of Performance Re-gression Introduc-

ing Code Changes. In2017 IEEE International Conference on Software Maintenance and

Evolution, ICSME 2017, Shanghai, China, September17-22, 2017. 341-352.

• Jinfu Chen, Weiyi Shang, Ahmed E. Hassan, Yong Wang, and Jiangbin Lin. An Experience

Report of Generating Load Tests Using Log-Recovered Workloadsat Varying Granularities of

User Behaviour. In34th IEEE/ACM InternationalConference on Automated Software Engi-

neering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 669-681.

• Jinfu Chen. Performance Regression Detection in DevOps. In the 42nd International Con-

ference on Software Engineering Doctoral Symposium (ICSE DS). 2020.

• Jinfu Chen, Weiyi Shang, and Emad Shihab. PerfJIT: Test-level Just-in-time Prediction for

Performance Regression Introducing Commits. IEEE Transactions on Software Engineering,

2020.

• Jinfu Chen, Mohammed Sayagh, Heng Li, Weiyi Shang, and Bram Adams. An Empirical

Study on the Inconsistent Options Performance Variation. Empirical Software Engineering,

2020. [Under Review]

The following publications are not directly related to the material presented in this thesis but

were conducted as parallel work to the research presented in this thesis.

v

• Yi Zeng, Jinfu Chen, Weiyi Shang, and Tse-Hsun Chen, Studying the characteristics of

logging practices in mobile apps: a case study on F-Droid. Empirical Software Engineering,

pp. 1-41, 2019.

• Zishuo Ding, Jinfu Chen, and Weiyi Shang. Towards the Use of the Readily Available Tests

from the Release Pipeline as Performance Tests. Are We There Yet? In the 42nd International

Conference on Software Engineering (ICSE). 2020. ACM SIGSOFT Distinguished Paper

Award.

• Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Jianmei Guo, Catalin Sporea,

Andrei Toma, and Sarah Sajedi. Using black-box performance models to detect performance

regressions under varying workloads: an empirical study. Empirical Software Engineering,

1-31, 2020

• Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Catalin Sporea, Andrei Toma, Sarah

Sajedi. Locating Performance Regression Root Causes in the Field for Web-based Systems.

IEEE Transactions on Software Engineering, 2020. [Under Review]

vi

Statement of Originality

I, Jinfu Chen, hereby declare that I am the sole author of this thesis. All ideas and inventions

attributed to others have been properly referenced. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners. I understand that my thesis may be made

electronically available to the public.

vii

Dedications

To my family.

viii

Acknowledgments

First, I would like to express my greatest gratitude to my supervisor Dr. Weiyi (Ian) Shang for

all his guidance and unconditional support. This thesis would have been impossible to complete

without your aid and support. Ian, thank you for giving me the opportunity to tackle this challenge,

for believing in me. You were there every time I hesitated to take the next step, and guided me to

success. I have learned a great deal from you beyond as a researcher.

I would also like to show my sincere gratitude to my examination committee members, Dr.

Nikolaos Tsantalis, Dr. Emad Shihab, Dr. Jinqiu Yang, Dr. Yan Liu, and Dr. Andy Zaidman,

for taking their precious time to consider my work and offer insightful comments, support, and

guidance. Many thanks to my examiners for their valuable feedback.

I extend my gratitude to the professors and collaborators with whom I worked the closest for

my degree and research, Dr. Tse-Hsun (Peter) Chen, Dr. Nikolaos Tsantalis, Dr. Emad Shihab, Dr.

Jinqiu Yang, Dr. Heng Li, Dr. Ahmed E. Hassan, Dr. Mohammed Sayagh, Dr. Bram Adams, and

Dr. Jianmei Guo. It was a delight to follow your teachings and guidance.

An immense thank you to all the members of the Software Engineering and System Engineering

(SENSE) lab, Zishuo Ding, Kundi Yao, Guilherme Bicalho de Padua, Maxime Lamothe, Mehran

Hassani, Muhammad Moiz Arif, Armin Najafi, Zhenhao Li, Joy Zeng, Hetong Dai, Sophia Quach,

Lizhi Liao, Haonan Zhang, Roger Xia, Nian Liu. I would also like to thank the members of our

peer labs DAS and SPEAR, Dr. Rabe Abdalkareem, Dr. Diego Elias Costa, Suhaib Mujahid,

Giancarlo Sierra Monge, Sultan Wehaibi, Xiaowei Chen, Ahmad Abdellatif, Olivier Noury and Zi

Peng, Steven Locke, An Ran Chen. I am glad to not only call you my colleagues but my friends.

While pursuing this Ph.D. degree, I received the constant support of my closest friends outside

ix

academy. Thank you for always being there. Last but not least, I would like to thank my family

for their unconditional support. A special thank you to my wife, Yuanhui. Despite the distance that

sets us apart, I never felt alone on this journey with you by my side. You are the light that keeps me

going.

x

Contents

List of Figures xvi

List of Tables xviii

1 Introduction 1

1.1 Introduction . 1

1.2 Research hypothesis . 3

1.3 Thesis Overview . 4

1.3.1 Chapter 2: Background and Literature Review 4

1.3.2 Chapter 3: What are the prevalence and root-causes of performance regres-

sions introducing code changes? . 4

1.3.3 Chapter 4: Can we predict tests that manifest performance regressions at

the commit level? . 5

1.3.4 Chapter 5: Can we predict whether a configuration option manifests perfor-

mance variation? . 5

1.3.5 Chapter 6: Can we generate load tests using log-recovered workloads at

varying granularities of user behavior? . 6

1.4 Thesis Contributions . 6

1.5 Thesis organization . 7

2 Background and Literature Review 8

2.1 Background . 8

xi

2.1.1 DevOps . 8

2.1.2 Software performance . 9

2.1.3 Performance regression . 9

2.1.4 Performance testing . 9

2.2 Literature review . 10

2.2.1 Paper selection . 10

2.2.2 Empirical studies on software performance 11

2.2.3 Performance regression detection . 13

2.2.4 Analyzing performance testing results to detect performance regression . . 15

2.2.5 Performance regression prediction . 16

2.2.6 Performance of configuration . 18

2.2.7 Summary . 20

3 What are the prevalence and root-causes of performance regressions introducing code

changes? 21

3.1 Introduction . 22

3.2 Case Study Setup . 24

3.2.1 Subject systems . 24

3.2.2 Identifying performance regression introducing changes 25

3.3 Case Study Result . 30

3.4 Threats to Validity . 41

3.4.1 External Validity . 41

3.4.2 Internal Validity . 41

3.4.3 Construct Validity . 42

3.5 Related Work . 43

3.5.1 Performance regression detection . 44

3.5.2 Empirical studies on performance . 45

3.6 Conclusion . 47

xii

4 Can we predict tests that manifest performance regressions at the commit level? 49

4.1 Introduction . 50

4.2 Related Work . 53

4.2.1 Software defect prediction . 53

4.2.2 Empirical studies on software performance 55

4.2.3 Test case prioritization . 56

4.3 Approach . 57

4.3.1 Extracting metrics . 57

4.3.2 Data preprocessing . 60

4.3.3 Building classifiers and predicting performance-regression-prone tests . . . 61

4.3.4 Exercising tests and updating classifiers 62

4.4 Evaluation Setup . 62

4.4.1 Subject systems . 62

4.4.2 Extracting performance-regressions-tests in each commit 62

4.4.3 Preliminary study . 66

4.5 Evaluation Results . 68

4.6 Discussion . 81

4.6.1 Traditional metrics are more important than performance-related metrics . 81

4.6.2 Our approach out-performs Perphecy . 82

4.6.3 Limitation of our approach and future work 82

4.6.4 Generalizability of our study . 83

4.7 Threats to Validity . 84

4.8 Conclusion . 85

5 Can we predict whether a configuration option manifests performance variation? 87

5.1 Introduction . 88

5.2 Background . 91

5.3 Data Collection . 92

5.3.1 Subject Systems . 92

xiii

5.3.2 Data Gathering . 93

5.4 Preliminary Study: Quantifying the Prevalence of IoPV and the Challenge of Iden-

tifying IoPV . 98

5.5 Predicting IoPV Problems . 105

5.6 Threats to Validity . 116

5.7 Related Work . 118

5.7.1 Software Configuration . 118

5.7.2 Software Performance . 120

5.8 Conclusion . 122

6 Can we generate load tests using log-recovered workloads at varying granularities of

user behavior? 123

6.1 Introduction . 124

6.2 Background and related work . 127

6.2.1 Recovering workload . 127

6.2.2 Software logs analysis . 128

6.3 Our approaches to recovering a workload for load testing 129

6.3.1 Extracting user actions . 129

6.3.2 Enriching user actions with context . 131

6.3.3 Identifying frequent action sequences . 131

6.3.4 Grouping similar frequent action sequences 134

6.3.5 Grouping users into clusters . 135

6.3.6 Generating load tests . 136

6.4 Case study setup . 137

6.4.1 Subject systems . 138

6.4.2 Data collection . 138

6.4.3 Preliminary analysis: clustering tendency 140

6.5 Case study results . 140

6.6 Discussion . 146

xiv

6.6.1 Detecting unseen workload . 146

6.6.2 Sensitivity analysis . 149

6.7 Challenges and lessons learned from the industrial evaluation of our approaches. . . 150

6.7.1 Domain knowledge is crucial for the successful transfer of research to practice.150

6.7.2 Team support is crucial for the successful transfer of research to practice. . 151

6.7.3 Coping with the large scale industrial data 153

6.8 Threats to validity . 153

6.9 Conclusions . 154

7 Summary, Contributions, and Future Work 156

7.1 Summary . 156

7.2 Thesis contributions . 157

7.3 Future Work . 158

7.3.1 Performance data repository . 158

7.3.2 More empirical studies on the impact of software activities on performance 158

7.3.3 Domain-specific language for performance data analysis 158

7.3.4 Reduce the length of performance testing 159

7.3.5 The usage of unit test to detect performance regression in the load test . . . 159

Bibliography 163

xv

List of Figures

Figure 2.1 An example of performance regression testing 10

Figure 3.1 An overview of our approach that identifies performance regression intro-

ducing changes. 26

Figure 3.2 Performance regression and improvement measured using response time for

each commit from Hadoop and RxJava. The commits are ordered chronologically

from left to right. 33

Figure 3.3 Number of performance regression introducing commits associated with

different issue types. 37

Figure 4.1 An overview of our approach. 63

Figure 4.2 Distribution of the relative difference between performance metrics by run-

ning tests only once in each commit. 67

Figure 4.3 Cumulative distribution function of the optimal model, CAW and NCAW

models in the performance counter of Response time in Hadoop. 73

Figure 5.1 The definition of IoPV and how different is it from the traditional way of

comparing the performance of two values for the same configuration option: (a)

Approaches that do not consider the historical evaluation, (b) An option with an in-

consistent performance variation (a-b), (c) An option with a consistent performance

variation (a-b), and (d) An option with an inconsistent performance variation (a-b).

V1 and V2 are two different values of the same configuration option. C1 and C2

are two revisions. A smaller performance metric value (e.g., CPU usage) indicates

a better performance. 89

xvi

Figure 5.2 An overview of our approach to collect data. 93

Figure 5.3 The automatically obtained threshold for splitting option variation into IoPV

and non-IoPV groups for Hadoop. 97

Figure 5.4 The automatically obtained threshold for splitting option variation into IoPV

and non-IoPV groups for Cassandra. 98

Figure 5.5 Percentage of IoPV for each commit of Hadoop. 99

Figure 5.6 Percentage of IoPV for each commit of Cassandra. 100

Figure 5.7 Pairwise Jaccard distance between the <test, option, IoPV > triplets of the

studied commits of the Hadoop system. The x-axis and y-axis show the studied

commits, ordered chronologically from left to right on the x-axis and bottom to top

on the y-axis. Each cell of the Figure refers to the Jaccard distance of any pair of

commits: the darker the color is, the larger the distance is. 103

Figure 5.8 Pairwise Jaccard distance between the <test, option, IoPV > triplets of the

studied commits of the Cassandra system. The x-axis and y-axis show the studied

commits, ordered chronologically from left to right on the x-axis and bottom to top

on the y-axis. Each cell of the Figure refers to the Jaccard distance of any pair of

commits: the darker the color is, the larger the distance is. 103

Figure 5.9 AUC of RF for Hadoop when only keeping one dimension of metrics. . . . 116

Figure 5.10 AUC of RF for Cassandra when only keeping one dimension of metrics. . . 116

Figure 5.11 AUC of RF for Hadoop when removing one dimension of metrics. 117

Figure 5.12 AUC of RF for Cassandra when removing one dimension of metrics. 117

Figure 6.1 An overview of our workload recovery process. 132

Figure 6.2 Cumulative density plot of the number of user actions from the original

workload and the generated load tests for the Receive action in Apache James. . . . 142

xvii

List of Tables

Table 3.1 Overview of our subject systems. 25

Table 3.2 Results of identifying performance regression introducing changes. 32

Table 3.3 Pearson correlation between effect sizes measured using different perfor-

mance metrics. 34

Table 3.4 Number of tests with different root-causes of performance regressions with

the number of avoidable or reducible ones in brackets. 39

Table 3.5 Comparing this work with the four prior studies (Huang, Ma, Shen, & Zhou,

2014; G. Jin, Song, Shi, Scherpelz, & Lu, 2012; Zaman, Adams, & Hassan, 2012,

2011) . 46

Table 4.1 Summary of extracted metrics. The symbol † indicates metrics that represent

multiple metrics. 59

Table 4.2 Overview of our subject systems. 63

Table 4.3 Average increase of mean values of each performance metric by comparing

commits without and with regressions. 66

Table 4.4 The number and percentage of identified performance-regression-prone tests

w.r.t different performance metrics. 66

Table 4.5 Results of using our approach to predict performance regressions with differ-

ent performance metrics, comparing with Perphecy. Bold values highlight the best

predictors. 70

Table 4.6 Summary of non-cost-aware and cost-aware models. The coverage values are

calculated when spending 5% of the total cost. 72

xviii

Table 4.7 The average needed performance testing time (in minutes) for each commit. . 75

Table 4.8 Results of using our approach and Perphecy to detect the introduction of

real-life performance issues. 78

Table 4.9 Average rank of the top important metrics in our classifiers. The up/down

arrows indicate whether the relationship is positive/negative. 80

Table 5.1 Our definition of configuration, option, and value 91

Table 5.2 Our studied dataset. 93

Table 5.3 Number of CTO with no regression under the default option value but with

regression under other option values. Medium (large) means the effect size Cliff's

delta of performance regression is medium (large). 101

Table 5.4 Number of CTO with improvement under the default option value but with

regression under other option values. 101

Table 5.5 Number of CTO with regression under the default option value and non-regression/improvement

under other values. 102

Table 5.6 Example of Jaccard similarity between each pair of commits. The two com-

mits share two of the five unique <test, option, IoPV > triplets. Thus the Jaccard

similarity is 2/5 = 0.4. 102

Table 5.7 Number of unique commits, tests, options with IoPV problems. 105

Table 5.8 Overview of our selected metrics. 107

Table 5.9 Hadoop’s results of using different models to predict whether configuration

options cause the manifesting of performance regressions. The best results for each

performance metric and each model are highlighted in italic. The best results for

each performance metric across different models are highlighted in bold-italic. . . 111

Table 5.10 Cassandra’s results of using different models to predict whether configuration

options cause the manifesting of performance regression. The best results for each

performance metric and each model are highlighted in italic. The best results for

each performance metric across different models are highlighted in bold-italic. . . 112

Table 5.11 The results (p-values) of using the Mann-Whitney U test to statistically com-

pare the AUC of RF with the complete set of metrics vs. with a subset of metrics. . 115

xix

Table 6.1 Our running example of execution log lines with extracted user actions and

context values. 130

Table 6.2 Frequency of actions for users in our running example for the Action workloads.130

Table 6.3 Frequency of enriched actions (with context) for users in our running example

for the ActionContext workloads. 131

Table 6.4 Frequency of frequent action sequences in our running example for the Ac-

tionSequence workloads. 134

Table 6.5 Result of frequent action sequences after transformation based on distance

matrix for ActionSequence workload. 135

Table 6.6 Overview of our subject systems. 138

Table 6.7 Comparing the throughput between the original workload and the generated

workloads. 143

Table 6.8 Comparing CPU usage between original workload and the load tests gener-

ated by our workload approaches. 144

Table 6.9 Number of user clusters for each of our workload approaches. 146

Table 6.10 Results of precision and recall in detecting injected unseen workloads. 148

Table 6.11 Comparing the results of choosing different threshold values and clustering

algorithm for Apache James. 150

Table .1 Detailed results of predicting performance regression with different perfor-

mance counters. Improvement are calculated by comparing with a random classifier.

Bold values highlight the best predictors. 161

Table .2 Average rank of the important metrics in our classifiers 162

xx

Chapter 1

Introduction

1.1 Introduction

The rise of large-scale software systems (e.g., Amazon.com and Google Gmail) has posed an

impact on people’s daily lives from mobile devices users to space station operators. The increasing

importance and complexity of such systems make their quality a critical, yet extremely difficult

issue to address. Failures in such systems are more often associated with performance issues, rather

than with feature bugs (Dean & Barroso, 2013; Simic & Conklin, 2012; Weyuker & Vokolos, 2000).

Therefore, performance is an important aspect of software quality.

The goals of performance are typically defined by setting upper and lower bounds for response

time and throughput of a system and physical level measurements such as CPU, memory, and I/O.

In order to ensure that the performance of a system meets a requirement, several performance

assurance activities are required during development (Dev) and operations (Ops) in the release

cycle of large software systems. DevOps is a set of software practices to smooth the deploying

release of a software system between development and operations Hüttermann (2012). One of the

goals of performance assurance activities in DevOps is to detect performance regressions, i.e., the

performance of the same feature in the system is worse than before Brunnert et al. (2015). Response

time degradation and increased CPU usage are typical examples of performance regressions. These

performance regressions may directly affect the user experience, increase the resources cost of the

system, and lead to reputational repercussions. Therefore, detecting and resolving performance

1

regressions are important tasks even though the system’s performance may meet the requirement.

For example, Mozilla has a performance regression policy that requires performance regressions to

be reported and resolved as bugs Joel (2017).

Due to the importance of performance regression, extensive prior research has proposed auto-

mated techniques to detect performance regressions (Heger, Happe, & Farahbod, 2013; Luo, Poshy-

vanyk, & Grechanik, 2016; T. H. D. Nguyen, Nagappan, Hassan, Nasser, & Flora, 2014; Shang,

Hassan, Nasser, & Flora, 2015). However, challenges in the practices of DevOps of performance

regression detection still exist.

• No existing performance regression data. There is no existing data of performance regres-

sion introducing code changes.

• Performance regression detection is too late. The existing performance regression detection

is applied after the system is built and deployed in the field. Large amounts of resources

are required to detect, locate, and fix performance regressions at such a late stage in the

development cycle.

• Large volume of operational data. The increasing volume of operational data is beyond the

capacity of traditional human-driven practices. It is very time-consuming and error-prone to

analyze such large-scale operational logs to understand and detect performance regression.

In this thesis, we propose several techniques to detect performance regression in the context of

DevOps J. Chen (2020). To collect performance regression data, we propose a statistically rigorous

approach that identifies performance regression introducing code changes J. Chen and Shang (2017).

In order to detect performance regression as early as possible, we propose an approach to predicting

whether a test would manifest performance regressions in a code commit J. Chen, Shang, and

Shihab (2020). We also propose an approach that predicts whether a configuration option manifests

a performance variation issue. To assist performance regression detection in operations, we first

propose to use a recovery workload to detect performance regression based on field execution

logs J. Chen, Shang, Hassan, Wang, and Lin (2019). The goal of DevOps is to combine software

development and operations to shorten the delivery cycle. Our approaches can be used to detect

2

performance regression in the loop of Devs and Ops. In particular, our performance regression

prediction during development can help software release and deploy early. And the results of

performance regression detection during development can assist operators to monitor the specific

performance metrics. For example, if most of the performance regressions are the performance

metric CPU, then the operators can monitor the system CPU usage. In our approach, we use

the operational data to recover filed-representative workloads. Therefore, during development, the

practitioners can design a better load test based on such recovery workload. This means assisting

performance regression detection using operational data.

1.2 Research hypothesis

The practices of DevOps generate two sources of data about software: development data and

field data. Development data, generated during software development, includes a large amount

of historical information of software development. A typical example of development data is

source code changes. Field data, generated during operations, consists of available and valuable

information about how the system operates. System execution logs and performance metrics are

two kinds of typical field data. In this dissertation, we plan to propose automated approaches to

detecting performance regression by mining a large amount of development and field data. Our

research hypothesis is as follows:

Software development historical repositories and field operation logs, which are

valuable and readily available resources, can be used to detect performance

regression in the context of DevOps.

We will validate our research hypothesis based on two aspects:

• Frequent performance assurances during development: We start off by examining the

prevalence and root-cause of performance regression introducing code changes. We then

propose an approach that automatically predicts whether a test would manifest performance

3

regressions given a code commit. Afterwards, we propose an approach to predicting whether

a configuration option manifests a performance variation issue.

• Assisting performance assurances with operational data: We study the use of recovery

workload to detect performance regression using field execution logs.

Therefore, this thesis intends to 1) detect or predict performance regression introducing source

code changes in the early stage during development and 2) assist operators to analyze a huge of field

execution logs to detect system performance regression during operations.

1.3 Thesis Overview

In particular, we further divide the scope of our main content of this thesis into two parts of

the research questions. One is frequent performance assurances during development, another is

assisting performance assurances with operational data. The first part consists of Chapter 3, Chapter

4, and Chapter 5. The second part consists of Chapter 6.

1.3.1 Chapter 2: Background and Literature Review

This chapter first presents an overview of the relevant background to our research. We then

present the related works of our research, including empirical studies on software performance,

performance regression detection, recovering workload, performance load testing, performance

regression prediction, and performance of configuration. We conclude Chapter 2 by mentioning

the limitations of our literature review and recapping our findings from it.

1.3.2 Chapter 3: What are the prevalence and root-causes of performance regres-

sions introducing code changes?

Software changes during development, i.e. source code changes, may cause a performance

regression. If we can detect performance regression as early as possible, the amount of required

resources would be significantly reduced if developers were notified whether a code change intro-

duces performance regressions during development. Prior research has conducted empirical studies

4

on performance bugs (Huang et al., 2014; G. Jin et al., 2012; Zaman et al., 2012, 2011), using

the reported performance bugs in issue reports (like JIRA issues). However, there may exist many

more performance issues, such as performance regressions, that are not reported as JIRA issues.

Moreover, there is no existing data of performance regression introducing code changes. Therefore,

in this chapter, we start off by examining how prevalent are performance regression introducing

changes and the root-cause of performance regression.

1.3.3 Chapter 4: Can we predict tests that manifest performance regressions at the

commit level?

Although automated techniques are proposed to detect performance regressions (Heger et al.,

2013; Luo et al., 2016; T. H. Nguyen et al., 2012; T. H. D. Nguyen et al., 2014; Shang et al.,

2015), challenges in the practice of performance regression detection still exist. First, performance

regressions detection remains a task that is conducted after the system is developed and built, as

almost the last step in the release cycle. Therefore, fixing performance regressions at such a late

stage in the development cycle is difficult and sometimes impossible. Second, a significant amount

of effort is required to locate the root cause of the performance regression after detection. Therefore,

to overcome these challenges, we propose an approach that automatically predicts whether a test

would manifest performance regressions given a code commit.

1.3.4 Chapter 5: Can we predict whether a configuration option manifests perfor-

mance variation?

Large systems tend to be highly configurable, which allows users to change the behaviour

of these systems by simply altering the values of certain configuration options Sayagh, Kerzazi,

Adams, and Petrillo (2018). However, such flexibility comes with a cost. In fact, such software

systems suffer throughout their evolution from what we refer to as “Inconsistent Options Perfor-

mance Variation” (IoPV). An IoPV indicates, for a given commit, that a performance regression

or improvement is inconsistent when altering the values of the same option. For instance, a new

change might not suffer from any performance regression under the default configuration (i.e., when

all the options are set to their default values), while altering one option’s value manifest a hidden

5

regression. Similarly, when developers improve the performance of their systems, performance

regression might be manifested under a subset of the existing configurations. Unfortunately, such

hidden regressions are harmful as they can go unseen to the production environment. Therefore, in

this chapter, we first quantify how consistent is a performance regression or improvement among

the values of an option. We then build a model to predict whether a configuration option manifests

performance variation.

1.3.5 Chapter 6: Can we generate load tests using log-recovered workloads at vary-

ing granularities of user behavior?

Activities of the operation team generate a large amount of operational data, i.e., thousands of

performance counters and large-scale execution logs. Such operational data can be used to assist

in performance regression detection. If performance regression is hidden during development, such

large valuable operational data can be used to assist in performance assurances. The process of

operations generates huge execution logs. It is time-consuming and error-prone for the performance

analyst to analyze such large-scale logs. One of the goals of analyzing such execution logs is

to recover workload to support load testing a system. Prior research often captures the workload

as the frequency of user actions (Cohen et al., 2005; Shang et al., 2015; Syer, Shang, Jiang, &

Hassan, 2017). However, there exists much valuable information in the context and sequences of

user actions. Such richer information would ensure that the load tests that leverage such workloads

are more field-representative. In this chapter, we study the use of system execution logs when

recovering workloads for use in the load testing of large-scale systems.

1.4 Thesis Contributions

The main contributions of this thesis are the following:

• We propose a statistically rigorous approach to identifying performance regression introduc-

ing code changes. Further research can adopt our methodology in studying performance

regressions (Chapter 3).

6

• We find six root-causes of performance regressions that are introduced by code changes.

12.5% of the manually examined regressions can be avoided or their performance impact

may be reduced (Chapter 3).

• We propose an approach that can predict performance-regression-prone tests at the commit

level. Our approach can provide accurate prediction results, and save testing time, easing the

adoption of the approach in practice (Chapter 4).

• Our findings highlight the importance of considering different configurations when perform-

ing performance regression detection, and that leveraging predictive models can mitigate

the difficulty of exhaustively consider all configurations of a system during such a process

(Chapter 5).

• We introduce an approach for recovering workload using user contextual information and

frequent action sequences from system execution logs. Our approach has been adopted in

practice to assist in the testing and operation of an ultra-large-scale industrial software system

(Chapter 6).

1.5 Thesis organization

This rest of this thesis is organized as follows: Chapter 2 provides the background and related

work of performance regression detection in DevOps. Motivated by the prior research, Chapter

3 studies the prevalence of performance regression and identifies root-causes of performance re-

gressions introducing code changes. Chapter 4 predicts whether a test would manifest performance

regressions given a code commit. Chapter 5 builds a model to predict whether a configuration option

manifests performance variation. Chapter 6 studies the use of system execution logs to recovery

field-representative workloads to detect performance regression. Finally, Chapter 7 concludes this

thesis and presents our future work.

7

Chapter 2

Background and Literature Review

In this chapter, we first present an overview of the relevant background to our research, including

DevOps, software performance, performance regression, and performance testing. We then present

the related works of our thesis, including empirical studies on software performance, performance

regression detection, performance regression prediction, and performance of configuration.

2.1 Background

2.1.1 DevOps

DevOps is a set of software practices to smooth the deploying release of a software system

between development and operations Hüttermann (2012). The integration of Dev and Ops intends

to allow a more flexible reaction to changes, i.e., new features or bug fixes Brunnert et al. (2015).

Such changes involve development and operation teams, which forces Dev and Ops teams to work

closer together. From a technical perspective, the tasks within the process of DevOps include code

development, code review, continuous building, continuous testing, application pre-deployment,

releasing an application, application performance monitoring Wikipedia (2016). To this end, Con-

tinuous Integration (CI), Continuous Delivery (CD), and Continuous Deployment (CDE) Shahin,

Babar, and Zhu (2017) have been introduced.

8

2.1.2 Software performance

Software performance was born at the beginning of the 1990s due to the increasing complex-

ity of software system Cortellessa, Di Marco, and Inverardi (2011). Software performance is an

indicator of how well a software system or component meets its objectives for timelines Smith

and Williams (2002). The timelines include two factors: the processing time spent by software

(e.g. CPU processing time), and the waiting time spent by the software while waiting to access

system resources. Performance is an important aspect of software quality. In fact, large software

system failures are often due to performance issues rather than functional bugs Weyuker and Vokolos

(2000). The goals of performance are typically defined by setting upper and lower bounds for

response time and throughput of a system and physical level measurements such as CPU, memory,

and I/O.

2.1.3 Performance regression

A software performance regression is that the software system performs more slowly or uses

more resources Shang et al. (2015). If the new version has worse performance than the old version,

then there exists performance regression. Performance regression is a typical example of perfor-

mance issues. Such regressions may compromise the user experience, increase the operating cost

of the system, and cause field failures. Such regressions may also have financial impacts. Page load

slowdown is one of the typical examples of performance regression. A report by Amazon shows

that one-second page slowdown may cause a 1.6 billion loss of revenue Kit (2010).

2.1.4 Performance testing

Performance testing is the process of measuring system performance-related metrics Z. M. Jiang

and Hassan (2015). Such performance metrics include response time, throughput, and resource uti-

lization. A typical example of performance testing is shown in Figure 2.1. In practice, developers set

up the testing environment and define the workload. Then the same requests are sent to exercise the

system and the performance metrics are collected. Finally, operators compare the two performance

metrics and identify the performance regression.

9

Version 1

Version 2

requests

requests

requests

Performance
metrics

Performance
metrics

Pre-defined workload

Testing environment

Testing environment

Figure 2.1: An example of performance regression testing

One of the goals of performance assurance activities in DevOps is to detect performance re-

gressions, i.e., the performance of the same feature in the system is worse than before. Response

time degradation and increased CPU usage are typical examples of performance regressions. There

exists rich software quality research that examines the impact of code changes on software quality

during development and operations (Heger et al., 2013; Luo et al., 2016; T. H. Nguyen et al., 2012;

T. H. D. Nguyen et al., 2014; Shang et al., 2015); while a majority of prior findings do not use

performance regression as a sign of software quality degradation.

2.2 Literature review

In this section, we perform a literature review to study state-of-the-art research related to soft-

ware performance.

2.2.1 Paper selection

Software performance regression detection involves many research areas. We divide the related

works into three aspects, including understand software performance bug, understand performance

10

regression detection, and the performance of configuration.

First, we wish to understand the software performance bug. Therefore, we select the papers

that conduct an empirical study on software performance bugs. Second, we wish to study the

techniques used to detect performance regression. On one hand, some researchers trust that the most

reliable approach to detect performance regression is performance testing. And performance testing

consists of three steps, including designing a proper workload, executing performance tests, and

analyzing performance testing results. On the other hand, some researchers consider that statistical

defect prediction techniques can be used to detect performance regression without the need to

execute costly performance testing. Therefore, to understand the performance regression detection

techniques, we categorize the related works into recovering a proper workload, performance load

testing, analyzing performance testing results, and software defect prediction. Finally, all too often

a software system performance regression is caused by configuration options. Therefore, we select

papers that relate to understanding the performance of configuration.

2.2.2 Empirical studies on software performance

Empirical studies are conducted in order to study performance issues (Han, Yu, & Lo, 2018;

Huang et al., 2014; G. Jin et al., 2012; Leitner & Bezemer, 2017; Nistor, Jiang, & Tan, 2013; Zaman

et al., 2012, 2011). To understand the difference between performance and non-performance bugs,

Zaman et al. (2012) conducts a qualitative study on 400 performance and non-performance bugs

reports across four dimensions (Impact on the stakeholder, Context of the bug, Bug fix, and Bug fix

validation) in two open-source web browsers Mozilla Firefox and Google Chrome. The authors find

that performance bugs are more likely due to regression and the performance bugs are more possible

to block release than non-performance bugs. Performance bugs are more difficult to solve and need

more collaboration than fixing non-performance bugs. However, not all regressions are unexpected

since performance regression may not be performance bugs and the performance may still meet the

requirement, even though the performance is worse than the previous version. This paper reveals

that developers may need to spend more time fixing performance bugs than non-performance bugs.

G. Jin et al. (2012) study 109 real-world performance bugs that are from five software projects

(Apache, Chrome, GCC, Mozilla, and MySQL) to provide guidance for software engineer for bug

11

avoidance, performance testing, bug detection, bug fixing. This paper discovers three common

root-cause patterns, uncoordinated functions, skippable function, and synchronization issues. The

authors also find that performance bugs are often introduced by workload mismatch, API misun-

derstanding. Due to the diversity and complexity of software workload, performance bugs are often

introduced when developers misunderstand the workload. The study calls in-depth research on

performance diagnosis, performance testing, performance bug detection.

Nistor et al. (2013) conduct a comprehensive study to compare performance and non-performance

bugs to understand how performance bugs are discovered, reported, and fixed. The authors find that

fixing performance bugs is as likely to introduce new functional bugs as fixing non-performance

bugs. Fixing performance bugs is more difficult than fixing non-performance bugs. Many perfor-

mance bugs are found through code reasoning and profiling. Such results call in-deep need too

support to address performance bugs.

Leitner and Bezemer (2017) conduct a study on 111 open-source Java-based projects from

GitHub and use a combination of quantitative and qualitative research methods to investigate the

performance tests. The authors find that developers have not yet understood how to conduct per-

formance tests and often mix performance tests within the functional test suite. There is a lack of

standard guidelines to conduct performance tests in an easy and powerful way. This paper argues

that future performance testing should implement a more flexible testing framework to support

low-friction testing or can combine functional test and performance testing together.

Han et al. (2018) study 300 bug reports from three large open-source projects. The authors find

that most of the performance bugs occur for specific combinations of data input and configurations.

They also propose a framework named PerfLearning to extract such data input and configurations

from bug reports to generate test frames. Huang et al. (2014) studied real-world performance issues.

They propose an approach to improve the efficiency of performance regression testing by leveraging

a static analysis technique to estimate the risk of a given commit in introducing a performance

regression.

The vast amounts of research on software performance bugs signify its importance and motivate

our work. Prior studies on performance typically are based on either limited performance issue

reports or release of the software. However, the limited amount of issue reports and releases of the

12

software hides the prevalence of performance regressions. In our thesis, we evaluate performance

at the commit level. Therefore, we are able to identify more performance regressions and are able

to observe the prevalence of performance regression introducing changes in DevOps.

2.2.3 Performance regression detection

In order to conduct performance testing, developers first set up the testing environment and

pre-define the workload. Second, the same requests are sent to test the system and the performance

metrics are collected. Finally, operators compare the two performance metrics and identify the

performance regression. Therefore, in this subsection, we categorize the related works into three

aspects, recovering workload, performance load testing, and analyzing performance testing results

to detect performance regression.

Recovering Workload

Workload recovery is an essential part in the performance assurance of large-scale systems.

Prior research proposes approaches for recovering workloads to assist in the design of load tests Vögele,

van Hoorn, Schulz, Hasselbring, and Krcmar (2018), validating whether load tests are field repre-

sentative as production Syer et al. (2017), optimizing system performance (Summers, Brecht, Eager,

& Gutarin, 2016; H. Xi et al., 2011) and detecting system performance issues (Cohen et al., 2005;

Hassan, Martin, Flora, Mansfield, & Dietz, 2008; Shang et al., 2015; Syer et al., 2017). All the

above prior work illustrates the value and importance of recovering representative workloads.

Prior approaches for recovering and replaying workloads can be categorized along the granular-

ity of the captured user actions. One may choose a coarse-granularity by recovering only the type

of workload from a system, or to the other extreme, considering each individual user and replaying

their individual workload one by one. One may anonymize all high-level user behaviors and only

consider the physical metrics such as CPU (Cohen et al., 2005; Shang et al., 2015), I/O (Busch et al.,

2015; Haghdoost, He, Fredin, & Du, 2017; Seo et al., 2014; Yadwadkar, Bhattacharyya, Gopinath,

Niranjan, & Susarla, 2010) and other system resources Cortez et al. (2017). One may choose a

finer granularity by building complex models such as Hidden Markov Models Yadwadkar et al.

(2010) to capture the details for each user. A pilot study by Cohen et al. (2005) demonstrates that

13

grouping workloads into a smaller number of clusters outperforms having one unified workload.

Intuitively, recovering a workload at a too fine or too coarse grained detail is neither desired. A

too coarse-grained approach may miss the important characteristics of user behaviour, leading to

a non-representative workload, while a too fine grained approach may lead to a workload that is

costly to replay and maintain.

To achieve an optimal granularity of user behavior, prior research often chooses event or action-driven

approaches for workload recovery (Hassan et al., 2008; Summers et al., 2016; Syer et al., 2017;

Vögele et al., 2018; H. Xi et al., 2011). However, there exists extensive research on execution log

analysis that demonstrates the value of considering contextual information and sequence of actions

for various software engineering tasks (Barik, DeLine, Drucker, & Fisher, 2016; Beschastnikh,

Brun, Ernst, & Krishnamurthy, 2014; Beschastnikh, Brun, Schneider, Sloan, & Ernst, 2011; Fu et

al., 2012; S. He et al., 2018; Z. M. Jiang, Hassan, Hamann, & Flora, 2008b, 2009; Lin, Zhang, Lou,

Zhang, & Chen, 2016; Oliner, Ganapathi, & Xu, 2012; Shang et al., 2013). Such extensive usage of

contextual information and user action sequences in log analysis motivates our research to leverage

the similar information to recover richer workloads from execution logs for generating load tests.

In this thesis, our focus is primarily on exploring whether research approaches work in prac-

tice. In particular, compared to prior research, our work uses more valuable contextual and action

sequence information from execution logs to recover workloads.

Performance Load Testing

Load testing is a type of performance testing that intends to measuring system’s performance

under a volume of users performing transactions. Due to the importance of load testing, a large

amount of previous research on load testing has been proposed. Z. M. Jiang and Hassan (2015)

survey 196 research papers to understand three aspects in load testing, including load testing de-

signing, executing a load test and load test data analysis. The authors summarize the current

techniques of the three phases and propose open research problems for load testing. T. Chen et

al. (2017) present an industrial experience report on load testing in large-scale systems. This paper

presents the challenges of load testing in practice and proposes a general guideline for improving

the effectiveness of load testing designing, executing and analyzing.

14

There exist a volume of previous researchers studying load testing to help performance analyst

detect and tackle performance-related problems. Jiang et al. (Z. M. Jiang, 2010; Z. M. Jiang et

al., 2008b, 2009) conduct a series of studies on the use of load testing to automatically identify

system’s functional or performance problems. Z. M. Jiang et al. (2008b) propose an approach

to discover normal system behavior and reveal functional anomalies by mining execution logs

generated during load testing. Z. M. Jiang et al. (2009) also propose an approach to automatically

generate a report to detect and rank potential performance problems by using system execution

logs. In their approach, the authors first conduct log abstraction, extracting sequence performance

and performance summarization. Then they identify performance problems using statistical analysis

on the performance summarization data. Gao and Jiang (2017) evaluate the impact of environment

variations on the results of load testing. The authors conduct their case studies in three open-source

systems. They find that environment variation has an impact on the system’s performance. In

addition, the authors propose ensemble performance models to predict system performance in

realistic runs. Trubiani, Bran, van Hoorn, Avritzer, and Knoche (2018) present an approach to

automatically detecting two performance anti-patterns, circuitous treasure hunt (CTH) and extensive

processing (EP), using load testing and profiling data. In addition, the authors apply software

refactoring to solve those two performance anti-patterns.

Performance load testing is too complex and time-consuming, i.e., designing a proper load,

executing or replaying a load test and analyzing the results of a load test. In this thesis, we focus on

generating load tests using log-recovered workloads based on field logs.

2.2.4 Analyzing performance testing results to detect performance regression

Extensive prior research has proposed automated techniques to detect performance regression.

There are two categories of performance regression detection approaches, measurement-based and

model-based.

Measurement-based approach measures performance metrics and compares these performance

metrics between two consecutive versions of a system to detect performance regression. Nguyen

et al. (T. H. Nguyen et al., 2012; T. H. D. Nguyen et al., 2011, 2014) conduct a series of studies

on performance regressions. Nguyen et al. apply control charts to analyze performance counters

15

across test runs to detect performance regression automatically. They construct the control chart

to detect performance regressions by setting upper and lower bounds of performance counters.

Malik, Hemmati, and Hassan (2013) propose four approaches to automatically filter performance

counters subset of load testing to assist to detect performance deviations. The authors conduct their

approaches on both industrial and open-source systems and find that supervised approach named

WRAPPER is more efficient. Foo et al. (2010) propose an approach to comparing the test results

to performance metrics derived from performance regression testing repositories to detect potential

performance regressions.

Model-based approach builds a detected model to detect performance regressions. Cohen et

al. (2005) et al. show an implication that it is ineffective and not enough to index and identify

performance problems with simple records of raw system metrics. Therefore, the authors present

an approach to capture signatures representing system states from a running system and cluster

such signatures to detect recurrent or similar performance problems. Bodı́k, Goldszmidt, and Fox

(2008) employ logistic regression with L1 regularization models to construct signatures to improve

Cohen et al.'s work. Foo et al. (2015) propose an approach to build ensembles of models to

detect performance regressions in heterogeneous environments. The authors find that ensembles

of associated rules can achieve high precision and recall in the detection of performance regression.

Xiong, Pu, Zhu, and Griffith (2013) propose a model-driven framework to diagnose application

performance. Such a framework uses linear regression to build the prediction model to automatically

diagnose the system performance in a cloud environment and lead to the root cause of performance

problems.

Prior research on the detection of performance regressions is all designed to be conducted

after the system is built and deployed. Large amounts of resources are required to detect, locate,

understand and fix performance regressions at such a late stage in the development cycle. In this

thesis, we detect performance regressions at the commit level.

2.2.5 Performance regression prediction

To reduce the resources and time in performance regression testing, statistical just-in-time pre-

diction models can be used to predict performance regression. However, there is a lack of research

16

that studies the performance regression prediction. Typically, prior software defect prediction

research focuses on functional bugs rather than performance bugs. We infer that the general software

defect prediction techniques are useful in the prediction of the performance regression. Therefore,

in this subsection, we select papers that relate to software defect prediction.

Mockus and Weiss (2000) are the first one to use metrics that describes the characteristics of

software changes to build a linear regression model to predict the probability of failure after code

changes. Kamei et al. (Kamei et al., 2016; Kamei & Shihab, 2016; Kamei et al., 2013) conduct a

series of studies on commit-level defect prediction. Kamei et al. (2013) extract 14 change metrics

from six open-source systems and five commercial systems and build a logistic regression model to

predict whether the commit would introduce software defects. The prediction model built is able

to predict defect-inducing changes with an accuracy of 0.68 and a recall of 0.64. Their findings

also show that diffusion and purpose of the code changes play important roles in defect-inducing

changes.

Kamei and Shihab (2016) present an overview in the research field of defect prediction, which

intends to introduce and help researchers and practitioners understand previous studies on defect

prediction, and highlight important challenges for future research. To build the prediction model,

researchers need to extract and select a list of metrics. F. Zhang, Mockus, Keivanloo, and Zou (2014)

use code metrics, process metrics, and context factors to build a universal defect prediction model

for a large set of systems. Zhang et al. find that adding context factors can assist in the prediction

of software defect of the universal models. Shivaji, Whitehead, Akella, and Kim (2013) realize that

the more features prediction model learned, the more the model predicts insufficient performance.

Hence, Shivaji et al. perform multiple feature selection algorithms to reduce the metrics that predict

software defects. P. He, Li, Liu, Chen, and Ma (2015) study the feasibility of defect-predictions

built with simplified metrics in different scenarios, and offer suggestions on choosing datasets and

metrics.

There exist various kinds of prediction models to predict software defects. Tourani and Adams

(2016) build logistic regression models to study the impact of human discussion metrics on commit-level

predicting models. The result shows that there exists a strong correlation between human discussion

metrics and defect-prone commits. Tsakiltsidis, Miranskyy, and Mazzawi (2016) use four machine

17

learning algorithms to build classifiers to predict performance bugs. The study finds that the most

satisfying model is based on logistic regression with all attributes added. In order to find whether

or not unsupervised models perform better than the supervised models in effort-aware just-in-time

defect prediction, Yang et al. (2016) use 14 code-change based metrics to build simple unsupervised

and supervised models to predict software defect. The results show that many simple unsupervised

models perform better than the state-of-the-art supervised models in effort-aware commit-level

defect prediction.

Compared to the above papers, we build classifiers to predict tests that manifest performance

regressions at the commit level. Since our study is to predict performance regression, we extract

traditional metrics that are widely used in prior studies (Kamei et al., 2013; Mockus & Weiss, 2000)

and also include performance-related metrics in our classifiers.

2.2.6 Performance of configuration

A large body of research efforts has been conducted on software configuration, which mainly

focuses on understanding configuration problems, preventing configuration errors, and debugging

configuration errors. Few research efforts consider the performance aspect of software configura-

tion.

Understanding configuration

Configuration makes a software system complex Sayagh et al. (2018), which leads to con-

figuration errors that are severe, common, and hard to debug Yin et al. (2011). For instance,

D. Jin, Qu, Cohen, and Robinson (2014) find that configuration options add more complexity to

the development and testing of highly configurable software systems. Han and Yu (2016) find

that configuration options are responsible for 59% of the performance bugs. Gousios, Karakoidas,

and Spinellis (2006) observe that the configuration of the garbage collectors has an impact on the

performance of server applications. Furthermore, Sayagh et al. (Sayagh & Adams, 2015; Sayagh,

Kerzazi, & Adams, 2017) found that the impact of a configuration option can spread to multiple

layers of an architectural stack.

A second line of research proposed and evaluated different approaches to identify misconfigured

18

configuration options. Dong et al.(Dong, Andrzejak, & Shao, 2015; Dong, Ghanavati, & Andrzejak,

2013) leverage the slicing technique to identify the misconfigured option for a given error message

or exception. Rabkin and Katz (2011) leverage a data flow analysis technique to identify for each

option, which source code lines it might impacts. Attariyan and Flinn (2010) combined dynamic

control and data flow analysis to identify misconfigured options. Zhang et al. (S. Zhang, 2013;

S. Zhang & Ernst, 2014) compared the trace of a correct execution against the trace of an incorrect

execution to identify culprit options. Prior systematic literature review Sayagh et al. (2018), the

work of Tianyin and Yuanyuan (2015) and Andrzejak, Friedrich, and Wotawa (2018) further details

about the existing configuration debugging approaches.

The Performance of Configurations

Another line of research considers the identification of the optimal configurations for a software

system and the debugging of performance errors that are caused by configuration options. Attariyan,

Chow, and Flinn (2012) propose an approach based on dynamic taint analysis technique to identify

the option that causes a performance error. Siegmund, Grebhahn, Apel, and Kastner (2015) build

mathematical models that describe the impact of a configuration on software performance based on

each option’s value. Raghavachari, Reimer, and Johnson (2003) proposed an iterative approach to

identify an optimal configuration in terms of performance. Their approach consists of selecting for a

J2EE web application a first configuration, compare its performance to a second configuration until

the optimal configuration is found. Similarly, Diao, Hellerstein, Parekh, and Bigus (2003) proposed

an approach that automatically adjusts the values of existing configuration options at run-time to

optimize the CPU and memory usage objectives.

Li, Chen, Hassan, Nasser, and Flora (2018) leverage performance monitoring data and execution

logs to dynamically optimize the values of performance-related configuration options according

to varying workloads in the field. J. Guo, Czarnecki, Apel, Siegmund, and Wasowski (2013)

leverage non-linear regression to suggest an optimal configuration. However, collecting a large

amount of data for training a model that predicts the performance of a configuration is expen-

sive. Therefore, Sarkar, Guo, Siegmund, Apel, and Czarnecki (2015) evaluate the progressive

and projective sampling to train a model that predicts the performance of configuration. For their

19

initial training sample, they consider data on which each option is enabled at least once. Other

efforts identified the optimal configuration options in terms of performance by leveraging existing

optimization approaches, i.e., iterative search Lengauer and Mössenböck (2014), multi-objective

optimization Singh, Bezemer, Shang, and Hassan (2016), and smart hill climbing B. Xi, Liu,

Raghavachari, Xia, and Zhang (2004).

2.2.7 Summary

In this chapter, we present a literature review on the state-of-the-art performance regression

research. From our literature review, we find that performance is an important aspect of software

quality. However, there is a lack of performance testing and few developers create and maintain

the performance tests in practice. Performance testing is more complicated than functional testing

due to the high number of confounding factors, such as the hardware platform, algorithm design,

data structure, program configuration, database access, the scale of workload. What is more,

performance testing is too time-consuming and causes a high cost. Motivated by the findings of our

literature review, we first study the prevalence and root-cause of performance regressions (Chapter

3). We then propose an approach to predict performance regression at the commit level (Chapter

4). Next, we study how can configuration impacts performance regressions (Chapter 5). Finally, we

propose an approach to recovery workload (Chapter 6).

20

Chapter 3

What are the prevalence and root-causes

of performance regressions introducing

code changes?

Performance is an important aspect of software quality. In fact, large software systems fail-

ures are often due to performance issues rather than functional bugs. One of the most important

performance issues is performance regression. Examples of performance regressions are response

time degradation and increased resource utilization. Although performance regressions are not all

bugs, they often have a direct impact on users’ experience of the system. Due to the possible

large impact of performance regressions, prior research proposes various automated approaches that

detect performance regressions. However, the detection of performance regressions is conducted

after the fact, i.e., after the system is built and deployed in the field or dedicated performance

testing environments. On the other hand, there exists rich software quality research that examines

the impact of code changes on software quality; while a majority of prior findings do not use

performance regression as a sign of software quality degradation. In this study, we perform an

exploratory study on the source code changes that introduce performance regressions. We conduct

a statistically rigorous performance evaluation on 1,126 commits from ten releases of Hadoop and

135 commits from five releases of RxJava. In particular, we repetitively run tests and performance

21

micro-benchmarks for each commit while measuring response time, CPU usage, Memory usage

and I/O traffic. We identify performance regressions in each test or performance micro-benchmark

if there exists statistically significant degradation with medium or large effect sizes, in any perfor-

mance metric. We find that performance regressions widely exist during the development of both

subject systems. By manually examining the issue reports that are associated with the identified

performance regression introducing commits, we find that the majority of the performance regres-

sions are introduced while fixing other bugs. In addition, we identify six root-causes of performance

regressions. 12.5% of the examined performance regressions can be avoided or their impact may be

reduced during development. Our findings highlight the need for performance assurance activities

during development. Developers should address avoidable performance regressions and be aware

of the impact of unavoidable performance regressions.

3.1 Introduction

The rise of large-scale software systems (e.g., Amazon.com and Google Gmail) has posed an

impact on people’s daily lives from mobile devices users to space station operators. The increasing

importance and complexity of such systems make their quality a critical, yet extremely difficult

issue to address. Failures in such systems are more often associated with performance issues, rather

than with feature bugs Weyuker and Vokolos (2000). Therefore, performance assurance activities

are an essential step in the release cycle of large software systems.

Performance assurance activities aim to identify and eliminate performance regressions in each

newly released version. A software system is considered to have performance regressions when

the performance of the system (or a certain feature of the system) is worse than before. Examples

of performance regressions are response time degradation and increased resource utilization. Such

regressions may compromise the user experience, increase the operating cost of the system, and

cause field failures. We note that performance regression may not be performance bugs, since the

performance may still meet the requirement, even though the performance is worse than the previous

version. However, detecting performance regressions is an important task since such regressions

may have a direct impact on the user experience of the software system, leading to significant

22

financial and reputational repercussions. For example, Mozilla has a strict policy on performance

regressions Joel (2017), which clearly states that unnoticed and unresolved performance regressions

are not allowed.

Due to the importance of performance regression, extensive prior research has proposed auto-

mated techniques to detect performance regressions (Heger et al., 2013; Luo et al., 2016; T. H. Nguyen

et al., 2012; T. H. D. Nguyen et al., 2014; Shang et al., 2015). However, detecting performance

regressions remains a task that is conducted after the fact, i.e., after the system is built and deployed

in the field or dedicated performance testing environments. Large amounts of resources are required

to detect, locate, understand and fix performance regressions at such a late stage in the development

cycle; while the amount of required resources would be significantly reduced if developers were

notified whether a code change introduces performance regressions during development.

On the other hand, prior software quality research typically focuses on functional bugs rather

than performance issues. For example, post-release bugs are often used as code quality measurement

and are modeled by statistical modeling techniques in order to understand the relationship between

different software engineering activities and code quality Hassan (2009). In addition, bug prediction

techniques are proposed to prioritize software quality assurance efforts (N. Nagappan & Ball, 2005;

N. Nagappan, Ball, & Zeller, 2006; Zimmermann, Premraj, & Zeller, 2007) and assess the risk of

code changes Kamei et al. (2013). However, performance regressions are rarely targeted in spite of

their importance.

In this work, we perform an exploratory study on the performance regression introducing code

changes. We conduct a statistically rigorous performance evaluation on 1,126 commits from ten

releases of Hadoop and 135 commits from five releases of RxJava. In particular, the performance

evaluation of each code commit with impacted tests or performance micro-benchmarks is repeated

30 times independently. In total, the performance evaluation lasts for over 2,000 hours. With

the performance evaluation results, we identify performance regression introducing changes with

statistical tests. To the best of our knowledge, our work is the first that extensively evaluates and

studies performance at the commit level.

By examining the identified performance regression introducing changes, we find that perfor-

mance regression introducing changes are prevalent during software development. The identified

23

performance regressions are often associated with a complex syndrome, i.e., multiple performance

metrics have performance regression. Interestingly, we find that performance regression introducing

changes also improve performance at the same time. Such results show that developers may not be

aware of the existence of performance regressions, even when they are trying to improve perfor-

mance. By studying the context and root-causes of performance regression introducing changes,

we find that performance regressions are mostly introduced while fixing other functional bugs. Our

manual examination on the performance regression introducing code changes identifies six code

level root-causes of performance regressions, where some root-causes (such as skippable functions)

can be avoided. In particular, we find that 12.5% of the examined performance regressions in the two

subject systems can be avoided or their impact on performance may be reduced during development.

Our study results shed light on the characteristic of performance regression introducing changes

and suggest the lack of awareness and systematic performance regression testing in practice. Based

on our findings, performance-aware change impact analysis and designing inexpensive performance

tests may help practitioners better mitigate the prevalent performance regression that is introduced

during software development.

The rest of this work is organized as follows: Section 3.2 presents our subject systems and

our approach to identifying performance regression introducing code changes. Section 3.3 presents

the results of our case study. Section 3.4 presents threats to the validity of our study. Section 3.5

presents prior research that related to this work. Finally, Section 3.6 concludes this work.

3.2 Case Study Setup

In this section, firstly we discuss our subject systems and our experimental environment. Then

we present our approach to identifying performance regression introducing changes.

3.2.1 Subject systems

We choose two open-source projects, Hadoop and RxJava as the subject systems of our case

study. Hadoop White (2009) is a distributed system infrastructure developed by the Apache Foun-

dation. Hadoop performs data processing in a reliable, efficient, high fault tolerance, low cost, and

24

scalable manner. We choose Hadoop since it is highly concerned with its performance and has been

studied in prior research in mining performance data Syer et al. (2017). RxJava is a library for

composing asynchronous and event-based programs by using observable sequences and it carries

the JMH benchmarks test options. RxJava is a Java VM implementation of reactive extensions.

RxJava provides a slew of performance micro-benchmarks, making it an appropriate subject for our

study. We choose the most recent releases of the two subject systems. The overview of the two

subject systems is shown in Table 3.1.

Table 3.1: Overview of our subject systems.

Subjects Version
Total lines
of code (K)

files # tests

Hadoop

2.6.0 1,496 6,086 1,664
2.6.1 1,504 6,117 1,679
2.6.2 1,505 6,117 1,679
2.6.3 1,506 6,120 1,681
2.6.4 1,508 6,124 1,683
2.6.5 1,510 6,127 1,685
2.7.0 1,552 6,413 1,771
2.7.1 1,556 6,423 1,775
2.7.2 1,562 6,434 1,784
2.7.3 1,568 6,439 1,786

RxJava

2.0.0 164 1,107 76
2.0.1 242 1,513 76
2.0.2 243 1,524 76
2.0.3 244 1,524 76
2.0.4 244 1,526 76

3.2.2 Identifying performance regression introducing changes

In this subsection, we present our approach to identifying performance regression introducing

changes. In general, we extract every commit from the version control repositories (Git) of our

subject systems and identify impacted test cases of each commit. Afterward, we chronologically

evaluate the performance of each commit using either the related test cases (for Hadoop) or perfor-

mance micro-benchmarks (for RxJava). Finally, we perform statistical analysis on the performance

evaluation results to identify performance regression introducing changes. The overview of our

approach is shown in Figure 3.1.

25

Git 1. Filtering
commits

commit
commit

2. Identifying
impacted tests or

performance micro-
benchmarks

3. Evaluating
performance

Performance
evaluation

results

4. Statistical analyses
on performance

evaluation results

NoYes

Performance
regression

For each test or performance micro-benchmark

No identified
performance
regression

Repository

process

data

condition

Code commit
Code commit and
impacted tests or

performance
micro-benchmarks

Identified tests or
performance micro-

bechmarks with
performance
 regression

Metrics that expose
performance

regression

Response time
CPU usage
Memory usage
I/O write
I/O read

The effect sizes in
 the evaluated tests

Medium
Large

Figure 3.1: An overview of our approach that identifies performance regression introducing
changes.

Filtering commits

As the first step of our approach, we start off by filtering commits in order to focus on commits

that are more likely to introduce performance regressions. In particular, we use the git log command

to list all the files that are changed in each commit. We only extract the commits that have source

code changes, i.e., changes to .java files.

When we extract the commits related to a task, we find that there may exist multiple commits

that are made to accomplish one task, making some of the commits temporary. We would like

to avoid considering the performance regressions that are introduced in such temporary commits.

Since Hadoop uses JIRA as their issue tracking system and RxJava uses the internal issue tracking

system in Github, we use the issue id that is mentioned in each commit message to identify the

task of each commit. If multiple commits are associated with the same issue, we only consider the

snapshot of the source code after the last commit.

26

Preparing impacted tests

Identifying impacted tests. In order to evaluate the performance of each code commit, we use the

tests and performance micro-benchmarks that are readily available in the source code of our subject

systems. As mature software projects, each subject system consists of a large amount of test cases.

For example, Hadoop release 2.7.3 contains 1,786 test cases in total. Exercising all test cases may

cause two issues to our performance evaluation: 1) the test cases that are not impacted by the

code change would dilute the performance impact from the code changes and introduce noise in

the performance evaluation and 2) the large amounts of un-impacted test cases would require extra

resources for performance evaluation (e.g., much longer test running time).

Therefore, in this step, we leverage a heuristic to identify impacted tests for each commit. In

particular, we find that Hadoop test cases follow a naming convention that the name of the test

files contains that same name of the source code files being tested. For example, a test file named

TestFSNamesystem.java tests the functionality of FSNamesystem.java. Hence, for each changed

source code file in a commit, we automatically identify the test files. If multiple commits are

associated with one issue, we consider all the tests that are impacted by these commits, but will

later only evaluate performance on the last one of these commits.

Dealing with changed tests. Some commits may change source code and test code at the same

time. Such changed test cases will bias the performance evaluation if ample testing logic is added,

removed, or modified in the test cases. In order to minimize the impact of changed test cases

in performance evaluation, we opt to use the test code before the code change. Since the new

version of the test cases may include new features of the system, which is not the major concern of

performance regression. However, in the cases where old test cases cannot compile or fail, we use

the new test cases, since the failure of the compilation or the tests indicates that the old feature may

be outdated. Finally, if both new and old test cases are failed or un-compilable, we do not include

this test in the performance evaluation. In total, we have 132 tests with 106 commits that use the

new tests to evaluate performance and 21 test with 19 commits not included in our performance

evaluation. There exist only six commits that are not included because all of their tests are either

un-compilable or failed.

27

Leveraging micro-benchmarks for RxJava. Fortunately, RxJava provides a slew of micro-benchmarks

with the goal of easing performance evaluation. Micro-benchmark is used to evaluate different small

units’ performance in RxJava.We opt to run all 76 micro-benchmarks from RxJava. In the rest of this

work, we also refer to these micro-benchmarks as test cases to ease the description of our results.

Evaluating performance

In this step, we exercise the prepared test cases and the performance micro-benchmarks to

evaluate performance of each considered commit. Our performance evaluation environment is based

on Azure node type Standard F8s (8 cores, 16 GB memory). We do not create a cluster of machines

to evaluate the performance for Hadoop since the exercised tests all run on local machines. We

do not opt to build Hadoop, deploy on a cluster and run Hadoop jobs on the cluster to evaluate

performance for the following reasons: 1) not all commits can be built into a deployable version

of Hadoop; 2) running Hadoop jobs to evaluate performance may not cover the changed code in

each commit; 3) it is challenging to locate the cause of performance regressions from deployed

Hadoop on clusters. In addition, prior research Singh et al. (2016) has leveraged repeated local tests

to evaluate performance.

In order to generate statistically rigorous performance results, we adopt the practice of repetitive

measurements T.-H. Chen, Shang, Hassan, Nasser, and Flora (2016) to evaluate performance. In

particular, each test or performance micro-benchmark is executed 30 times independently. We

collect both domain level and physical level performance metrics during the tests. We measure

the response time of each test case as a domain level performance metric. A shorter response

time indicates better performance from the users’ perspective. Sometimes performance regressions

may not cause an impact on response time but rather cause a higher resource utilization. The high

resource utilization, may not directly impact user experience, however, it may cause extra cost

when deploying, operating and maintaining the system, with lower scalability and reliability. For

example, systems that are deployed on cloud providers (like Microsoft Azure) may need to choose

virtual machines with higher specification for higher resource utilization. Moreover, a software

release with higher memory usage is more prone to crashes from memory leaks. Therefore, physical

level performance metrics are also an important measurement for performance regressions. We use

28

a performance monitoring software named psutil (2017) to monitor physical level performance

metrics, i.e., the CPU usage, Memory usage, I/O read, and I/O write of the software, during the test.

Statistical analyses on performance evaluation

Statistical tests have been used in prior research and in practice to detect whether performance

metric values from two tests reveal performance regressions Alghmadi, Syer, Shang, and Hassan

(2016). After having the performance evolution results, we perform statistical analyses to determine

the existence and the magnitude of performance regression in a statistically rigorous manner. We

use Student’s t-test to examine if there exists a statistically significant difference (i.e., p-value <

0.05) between the means of the performance metrics. A p-value < 0.05 means that the difference is

likely not by chance. A t-test assumes that the population distribution is normally distributed. Our

performance measures should be approximately normally distributed given the sample size is large

enough according to the central limit theorem T.-H. Chen et al. (2014).

T-test would only tell us if the differences of the mean between the performance metrics from

two commits are statistically significant. On the other hand, effect sizes quantify such differences.

Researchers have shown that reporting only the statistical significance may lead to erroneous results

(i.e., if the sample size is very large, the p-value can be small even if the difference is trivial). We use

Cohen’ s d to quantify the effects Becker (2000). Cohen’ s d measures the effect size statistically

and has been used in prior engineering studies (Kitchenham et al., 2002). Cohen’ s d is defined as:

Cohen′s d =
mean(x1)−mean(x2)

s

where mean(x1) and mean(x2) are the mean of two populations, and s is the pooled standard

deviation Hartung, Knapp, and Sinha (2011).

effect size =



trivial if Cohen′s d 6 0.2

small if 0.2 < Cohen′s d 6 0.5

medium if 0.5 < Cohen′s d 6 0.8

large if 0.8 < Cohen′s d

29

3.3 Case Study Result

In this section, we perform an exploratory study on the extracted performance regressions from

our subject systems (Hadoop and RxJava). Our study aims to answer two research questions. For

each research question, we present the motivation of the question, the approach that we use to

answer the question, the results of the question and we discuss the results.

RQ1: How prevalent are performance regression introducing changes?

Motivation

Prior research has conducted empirical studies on performance bugs (Huang et al., 2014; G. Jin

et al., 2012; Zaman et al., 2012, 2011), using the reported performance bugs in issue reports (like

JIRA issues). However, there may exist many more performance issues, such as performance

regressions, that are not reported as JIRA issues. On the other hand, we evaluate performance

on each code commit instead of depending on JIRA issues. Intuitively, we may uncover instances

of performance regressions that are not reported, and hence are not be able to be investigated using

the approach of prior studies. Therefore, in this research question, we start off by examining how

prevalent are detected performance regression introducing changes.

Approach

With the approach presented in Section 3.2, we obtain the results of performance evaluation of

the impacted tests in every commit of our subject systems. Since one commit may impact multiple

tests, where there may exist both performance regression and performance improvement. However,

from users’ perspective, having worse performance in one feature may result in bad experiences,

despite the performance improvement in other features. Therefore, we examine the existence of

performance regression by each impacted test separately, instead of considering a commit as a

whole.

We use both domain level performance metrics, i.e., response time, and physical level perfor-

mance metrics, i.e., CPU usage, Memory usage, I/O read and I/O write, as measurements of per-

formance regressions. As explained in Section 3.2, we examine whether a commit would cause any

30

test case to complete with a statistically significantly longer response time, or utilizing statistically

significantly more resources. To ensure the identified performance regressions are not negligible,

we only consider a test having performance regression if the effect size is medium or large.

In order to understand whether each performance metric can provide complementary informa-

tion to others, we also calculate the Pearson correlation between the effect sizes of performance

regressions calculated using different metrics. Therefore, we would understand whether we can use

a smaller set of metrics to identify performance regressions.

Results

Performance regressions are not rare instances and are often with large effects. We find 243

and 91 commits that contain at least one test with performance regression in at least one performance

metric for Hadoop and RxJava, respectively. In particular, we find 93 commits from Hadoop and

91 commits from RxJava that contain at least one test case with performance regression in response

time. In fact, some commits may have multiple test cases that demonstrate statistically significantly

slower response time as performance regression. In a total of 1,270 executed tests from Hadoop and

7,600 executed tests from RxJava, 129 and 1,410 have statistically significantly slower response

time with medium or large effect sizes, respectively. The performance regressions on response time

may have a direct impact on users’ experiences, making these regressions a higher priority to be

examined by developers. When examining the effect sizes of the detected performance regressions,

we find that there exist more performance-regression-prone tests with large effect sizes than medium

(see Table 3.2). Such results imply that developers may not ignore these performance regressions

since they may have a large impact on system performance. In addition, we detect more tests

with performance regressions in CPU and Memory usage, than other performance metrics. Since

CPU and Memory usage both have a large impact on the capacity of the software systems, these

regressions may impact the reliability or financial cost of the software system.

Physical performance metrics are important complementary indicators of performance

regressions. We use the four physical performance metrics, i.e., CPU usage, Memory usage, I/O

read and I/O write to measure performance regression. We find that with the physical performance

metrics, we can identify more commits and tests with performance regressions that are not identified

31

Table 3.2: Results of identifying performance regression introducing changes.

Number of commits that have at least one test with
performance regressions in different metrics.

Any metricResponse timeCPUMemoryI/O readI/O write
Hadoop 243 93 175 138 90 82
RxJava 91 91 91 91 91 90

Total number of tests with performance regressions in different metrics.
Total

executed tests
Any

metric
Response time CPU Memory I/O read I/O write
large
effect

medium
effect

large
effect

medium
effect

large
effect

medium
effect

large
effect

medium
effect

large
effect

medium
effect

Hadoop 1,270 338 87 42 202 97 167 74 75 28 75 17
RxJava 7,600 3,100 745 665 659 487 919 489 657 449 38 0

with response time. In fact, we find the low correlation between the effect sizes calculated with

response time and the physical metrics (see Table 3.3). On the other hand, the effect sizes calculated

with the physical metrics may have medium or large correlations with each other. We believe that

these correlations are often due to the nature of the software itself. For instance, database accessing

software may have its CPU usage highly correlated with I/O. Prior study has also reported that

different performance counters often have a high correlation between each other Shang et al. (2015).

Discussions

Performance regressions are often with complex syndromes. One of the approaches in prac-

tice of resolving performance regression is to examine syndrome of the regression, i.e., which phys-

ical performance metrics contain performance regression, with the consideration of code changes.

However, we find that such an approach can be inefficient due to the complexity of performance

regressions. In our case study results, we find that 154 commits and 203 tests from Hadoop, 91

commits and 777 tests from RxJava, have multiple physical performance metrics associated with

performance regressions. Moreover, there even exist one test in one commits and one test in three

commits of Hadoop and RxJava having all four physical metrics with performance regressions.

Resolving these performance regressions may be challenging and time-consuming.

Performance regression and performance improvement co-exist. We find that although

many commits contain performance regressions, most of these commits also have performance

32

30

25

20

15

10

5

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91

#m
ic
ro
-b
en
ch
m
ar
ks
th
at
ha
ve

#m
ic
ro
-b
en
ch
m
ar
ks
th
at
ha
ve

Pe
rfo
rm
an
ce
im
pr
ov
em
en
t

pe
rfo
rm
an
ce
re
gr
es
si
on

large medium

(a) RxJava.

6

5

4

3

2

1

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

#t
es
tc
as
es
th
at
ha
ve

#t
es
tc
as
es
th
at
ha
ve

pe
rfo
rm
an
ce
im
pr
ov
em
en
t
pe
rfo
rm
an
ce
re
gr
es
si
on

large medium

(b) Hadoop.

Figure 3.2: Performance regression and improvement measured using response time for each
commit from Hadoop and RxJava. The commits are ordered chronologically from left to right.

33

Table 3.3: Pearson correlation between effect sizes measured using different performance metrics.

Hadoop
Response CPU Memory I/O I/O

time read write
Response time 1 -0.02 0.04 0.01 0.06

CPU -0.02 1 0.60 0.32 -0.02
Memory 0.04 0.60 1 0.27 0.04
I/O read 0.01 0.32 0.27 1 0.06
I/O write 0.06 -0.02 0.04 0.06 1

RxJava
Response CPU Memory I/O I/O

time read write
Response time 1 -0.01 0.01 0.01 -0.01

CPU -0.01 1 0.39 0.46 0.06
Memory 0.01 0.39 1 0.57 -0.26
I/O read 0.01 0.46 0.57 1 0.06
I/O write -0.01 0.06 -0.26 0.06 1

improvements at the same time. Figure 3.2 shows the number of tests that have performance regres-

sion and improvement for each commit measured using response time1. In Hadoop, 70 commits

contain both performance improvement and regression in different tests. Among these commits, 82

tests executed with these commits have performance regression while 117 tests have performance

improvement. In RxJava, all 91 performance-regression-prone commits have performance improve-

ment. Among the tests executed for these commits, 1,410 tests have performance regression and

1,545 tests have performance improvement. It may be the case that such performance regressions

are side-effect of performance improvement activities. However, our results suggest the possible

trade-off between improving performance and introducing performance regression at the same time.

Therefore, in-depth analysis on these code changes is needed to further understand the context and

reason for introducing performance regressions (see RQ2). In addition, our results illustrate the need

for performance regression testing in order to increase the awareness of introducing performance

regressions during other development activities.
1Due to limited space, we do not show such results for other metrics. Those results will be shared with our data online.

https://jinfuchen.github.io/icsmeData

34

https://jinfuchen.github.io/icsmeData

Finding: We find that performance regression introducing changes are preva-

lent phenomenon with complex syndromes, yet lacking in-depth understanding

from the current and prior research. Moreover, these code changes mostly

introduce performance regressions while improving performance at the same

time.

Actionable implication: The findings suggest the need for more frequent

performance assurance activities (like performance testing) in practice.

RQ2: What are the root-causes of performance regressions?

Motivation

In RQ1, we find that there exist prevalent performance regressions that are introduced by code

changes. If we can understand what causes the introduction of these performance regressions, we

may provide guidance or automated tooling support for developers to prevent the regressions during

code change.

Approach

We follow two steps in our approach to discover the reasons for introducing performance

regressions. First, we investigate the high-level context when these performance regressions are

introduced. We use the issue id in a commit message to identify the issue report (JIRA issue report

for Hadoop and Github issue report for RxJava) that is associated with a performance regression

introducing code change. We use the type of issues as the context (fixing a bug or developing new

features) that are related to the performance regression introducing changes. Sometimes, in Hadoop,

an issue may be labeled as “subtask”. We manually look for the related issue field in the issue report

for the issue type. However, there still exist ”subtask” issues for which we cannot identify an issue

type.

The information in issue reports is about the entire commit rather than the code change that

impacts the tests with regression. Therefore, in the second step, we would like to know the code

35

level root-causes (e.g., which code change) of the performance regressions in each identified test

from RQ1. As shown in Table 3.2, there exist 338 and 3,100 tests that have at least one metric with

performance regression, in Hadoop and RxJava, respectively. For Hadoop, we manually examine all

the code changes that are associated with the corresponding tests where performance regression are

identified. For RxJava, we take a statistically significant random sample (95% confidence level and

5% confidence interval) from the 3,100 tests from RxJava. Our random sample consists of 342 tests

in total. We follow an iterative approach to identify the root causes that the code change introduces

performance regression, until we could not find any new reasons. Based on our manual study, we

also try to examine whether the introduced performance regression can be avoided or whether the

performance impact from these regressions may be reduced.

Results

A majority of the performance regressions are introduced with bug fixing, rarely with

new features. Figure 3.3 presents the number of performance regression introducing commits that

are associated with different issue types. We find that 176 out of 243 (72%) of the commits from

Hadoop and 48 out of 91 commits (53%) from RxJava are associated with issue type bug. Such

results show that these performance regressions are often introduced during bug fixing tasks. But

manually examining all these issues, we find that all such issues are fixing functional bugs. For

example, issue HADOOP-11252 2 is associated with type bug. The goal of the issue is to control

the timeout of RPC client. While performing functional bug fixing, developers may introduce

performance issues at the same time.

We only observe three commits that are associated with having new features. We think the

reason is that when having new features, developers typically would create a new test, or modify

the existing test to include the new feature. However, in our approach to identifying performance

regressions (see Section 3.2), we ensure to use the exact same test cases with prioritizing on using

the old test to eliminate the chance of detecting new features as performance regression.

Performance regressions may be introduced by tasks with typically low impact. Another

interesting finding is that performance regressions can also be introduced during tasks that are not
2https://issues.apache.org/jira/browse/HADOOP-11252

36

https://issues.apache.org/jira/browse/HADOOP-11252

0 20 40 60 80 100 120 140 160 180 200

bug
improvement

test
sub-task

new feature
bug

cleanup
documentation
enhancement

test

H
ad
oo
p

R
xJ
av
a

Number of issues
Figure 3.3: Number of performance regression introducing commits associated with different issue
types.

generally considered with high impact. For example, 12 commits are associated with issue type

cleanup and 6 commits are associated with issue type documentation. We manually investigate

these commits and find that, all too often developers label the issue as documentation or cleanup

while committing code changes for other small tasks (like bug fixes) on the side. In RxJava, issue

#4987 3 is labeled as documentation but developers fix additional input sources problems on this

issue. Issue #4706 4 is labeled as cleanup but fix minor mistakes for operators. Such small tasks

may introduce unexpected performance regressions. Therefore, developers should not ignore such

commits that are labeled with low-impact task when evaluating performance regressions.

We identify six code level root-causes of introducing performance regressions. Based our

manual analysis on all commits that are identified with performance regressions, we discover six

code level root-causes. The distribution of each root-cause is presented in Table 3.4.

Changing function calls. The regression may be introduced by changed function calls in the

source code. For example, in class Mover.java of commit #c927f938 5 in Hadoop. Developers added
3https://github.com/ReactiveX/RxJava/pull/4987
4https://github.com/ReactiveX/RxJava/pull/4706
5https://github.com/apache/hadoop/commit/c927f938fecf587071d1d07a8077ecf3ab42238a

37

https://github.com/ReactiveX/RxJava/pull/4987
https://github.com/ReactiveX/RxJava/pull/4706
https://github.com/apache/hadoop/commit/c927f938fecf587071d1d07a8077ecf3ab42238a

an API call shuffle of Collections inside a loop, leading to the performance regression. In particular,

we identify four patterns of changing function calls that may introduce performance regression: 1)

new functionality, 2) external impact, 3) changing algorithm and 4) skippable function. In particular,

Skippable function means that a function call with un-used results. The performance regressions

that are introduced by changing algorithm and skippable function should be avoided or resolved

by developers. On the other hand, some code changes that introduce new functionality and depend

on external resources may not be avoidable. In total, among the 334 identified regressions in this

root-cause, we find 36 of them are avoidable. Developers should still be aware of the un-avoidable

regression and consider possible alternatives if they have a large impact on users.

Changing parameters. The regression may be introduced by changing parameters. For example,

in commit #81a445ed6 in Hadoop. The developer added a new parameter conf into the function

doPreUpgrade in file FSImage.java. The parameter conf contains a large number of variables such

that initialization can cause memory overhead when calling function doPreUpgrade. Making it

worse, the function is called inside a loop, leading to a large performance regression. We identify

three patterns of changing parameters that may introduce performance regressions: 1) using more

expensive parameter, 2) changing condition parameter and 3) changing configuration parameter.

In particular, using more expensive parameter is the case when a parameter is more expensive

than before. If all the data in the new parameter is indeed needed, developer may not be able

to resolve this regression, while on the other hand, if developers can identify unneeded data in

the parameter, the performance impact from the identified regression may be reduced. Similarly,

changing condition parameter and changing configuration parameter may both be due to the need

of other code change. Among the 100 identified regression in this root-cause, we find 18 of them

are avoidable or reducible.

Changing conditions. Changing condition can change the code that is executed and may cause

more operation eventually executed by the software, leading to performance regressions. For exam-

ple, in class AccessControlList.java of commit #3c1b25b57 in Hadoop, developers changed the else

condition to else if. So every time the function isEmpty inside the condition has to execute. More
6https://github.com/apache/hadoop/commit/81a445edf81f42c90a05d764dfebfadfafad622b
7https://github.com/apache/hadoop/commit/3c1b25b5fb49b8e9c8c9e1b3367b8bb7e609356d

38

https://github.com/apache/hadoop/commit/81a445edf81f42c90a05d764dfebfadfafad622b
https://github.com/apache/hadoop/commit/3c1b25b5fb49b8e9c8c9e1b3367b8bb7e609356d

operations inside the else if condition will execute and it will cause more operations. We identified

13 avoidable or reducible regression out of 85 regressions this root-cause.

Having extra loops. Changing loops may significantly slow down performance. For example,

in commit #94a9a5d08 in Hadoop, developers added a for loop into the file LeafQueue.java, which

adds an item to a queue repetitively, while such action can be done as a batch process. If the func-

tionality of a loop can be achieved by a batch process, developers may consider implementing batch

to minimize the regression. Such solutions can make this regression avoidable or may reduce the

performance impact from the loop. All the identified regressions in this root-cause are un-avoidable.

Using more expensive variables. Some variables are more expensive to be held in memory and

need more resources to visit or operate. For example, it is recommended to use local variables

and to avoid static variables. If the keyword static is used to declare a variable, the lifetime of the

variable will be longer, costing more memory. Developers should avoid performance regressions

that are introduced by unnecessary expensive variables in the code. We find 9 out of 48 regressions

avoidable or reducible in this root-cause.

Introducing locks and synchronization. Locks are expensive actions for software performance.

Introducing locks and synchronization can suspend threads waiting on a lock until released, causing

performance degradation on response time. For example, in commit #2946621a9 in Hadoop, devel-

opers added synchronized operation to lock the block in class MetricsSourceAdapter.java, in order

to protest the shared resources used by the two functions inside the block. synchronized operation

introduces performance regression to the software. Indeed, it is often necessary to have locks in

the source code to protect shared resources. On the other hand, developers should always only lock

the necessary resource to minimize performance regression. All the identified regressions in this

root-cause are un-avoidable.

Table 3.4: Number of tests with different root-causes of performance regressions with the number
of avoidable or reducible ones in brackets.

Changing function call Changing parameters Using more Having Changing Introducing Others
New External Changing Skippable Expensive Condition Configuration expensive extra condition locks and

functionality impact algorithm function parameter parameter parameter variables loops synchronization
Hadoop 125 (11) 32 (6) 15 (2) 6 (6) 12 (4) 15 (2) 22 (5) 22 (5) 6 (0) 37 (8) 6 (0) 40 (5)
Rxjava 119 (6) 18 (3) 19 (2) 0 22 (3) 21 (3) 8 (1) 26 (4) 8 (0) 48 (5) 0 53 (4)

8https://github.com/apache/hadoop/commit/94a9a5d01464e6004f69054bdc308945d40db8e6
9https://github.com/apache/hadoop/commit/2946621a531bd71e2408951ab72ecaf5f9fea3f0

39

https://github.com/apache/hadoop/commit/94a9a5d01464e6004f69054bdc308945d40db8e6
https://github.com/apache/hadoop/commit/2946621a531bd71e2408951ab72ecaf5f9fea3f0

Discussion

A considerable amount of performance regressions are avoidable. Based on our manual

study on the root-causes of a performance regression, even though only a few regressions are due

to having new features, many regressions cannot be avoided. For example, if new function calls or

more data is needed to fix a bug, such performance regressions may not be avoidable. However,

there also exist performance regressions that should be entirely avoided by developers, such as

having skippable functions. Such performance regressions may eventually become performance

bugs. Nevertheless, developers should still be aware of the impact from un-avoidable performance

regressions, and minimize the impact on users’ experiences by either providing more hardware re-

courses or considering alternative solutions. Among the total 680 manually examined performance

regressions, we find 85 of them are avoidable or their impact may be reduced. With more frequent

and thorough performance assurance activity, the impact from these performance regressions can

be minimized.

Functional bugs and performance regressions. We find that performance regressions are

mostly introduced during fixing functional bugs. Such findings may be due to two reasons. First

of all, performance regression testing is not enforced during development. After developers fix

a functional bug, there is no systematic mechanism to prevent the introduction of performance

regression at the same time. Although thorough performance regression testing can help avoid such

performance regressions, these tests are often resource-intensive. Designing inexpensive perfor-

mance testing can help developers better avoid performance regressions in practice. Second, the

performance regressions can be ignored due to the pressure or trade-off of fixing the functional bug.

Developers may consider the high importance of fixing a functional bug while choose to sacrifice

performance for the ease of bug fixes. It is important to make such choices wisely based on the

impact of functional bugs and performance regressions. In-depth user studies and field data analysis

may help developers minimize the impact from these choices, and avoid performance regression to

some extent.

40

Finding: We find that the majority of performance regressions are introduced

with fixing functional bugs, while surprisingly, tasks that are typically

considered with low impact also may introduce performance regression. In

addition, we identify six root-causes of performance regressions, some of which

are avoidable.

Actionable implication: Developers should always be aware of the possible

performance regression from their code change, in order to address avoidable

regressions or minimize the impact from un-avoidable regressions.

3.4 Threats to Validity

3.4.1 External Validity

Generalizing our results. In our case study, we only focus on fifteen releases from two

open-source systems, i.e., Hadoop and RxJava. Both of the subject systems are mainly written

in Java languages. Some of the findings might not be generalizable to other systems or other

programming languages. Future studies may consider more releases from more systems and even

different programming languages (such as C#, C++).

3.4.2 Internal Validity

Subjective bias of manual analysis. The manual analysis for root-causes of performance re-

gression is subjective by definition, and it is very difficult, if not impossible, to ensure the correctness

of all the inferred root-causes. We classified the root-causes into six categories; however, there may

be different categorizations. Combining our manual analysis with controlled user studies on these

performance regressions can further address this threat.

Causality between code changes and performance regressions. By manually examining the

code changes in each commit, we identify the root-causes of each performance regression. However,

the performance regression may be not caused by the particular code change but due to unknown

41

factors. Furthermore, the performance regression may not be introduced by one change to the

source code but a combination of confounding factors. In order to address this threat, future work

can leverage more sophisticated causality analysis based on code mutation that can be leveraged to

confirm the root cause of the performance regression.

Selection of performance metrics. Our approach requires performance metrics to measuring

performance. In particular, we pick one commonly used domain level and four commonly used

physical level performance metrics based on the nature of the subject systems. There exist a

large number of other performance metrics. However, practitioners may require system-specific

expertise to select an appropriate set of performance metrics that are important to their specific

software. Future work can include more performance metrics based on the characteristic of the

subject systems.

3.4.3 Construct Validity

Monitoring performance of subject systems. Our study is based on the ability to accurately

monitor the performance of our subject systems. This is based on the assumption that the perfor-

mance monitoring library, i.e. psutil can successfully and accurately providing performance metrics.

This tool monitoring library is widely used in performance engineering research (Ahmed, Bezemer,

Chen, Hassan, & Shang, 2016; T.-H. Chen, Shang, Hassan, et al., 2016). To further validate our

findings, other performance monitoring platforms (such as PerfMon Enbody (1999)) can be used.

Noise in performance monitoring results. There always exists noise when monitoring per-

formanceMytkowicz, Diwan, Hauswirth, and Sweeney (2009). For example, the CPU usage of the

same software under the same load can be different in two executions. In order to minimize such

noise, for each test or performance micro-benchmark, we repeat the execution 30 times indepen-

dently. Then we use a statistically rigorous approach to measuring performance regressions. Further

studies may opt to increase the number of repeated executions to further minimize the threat based

on their time and resource budget.

Issue report types. We depend on the types of issues that are associated with each performance

regression introducing commit. The issue report type may not be entirely accurate. For example,

developers include extra code changes in issue reports with type documentation. Firehouse-style

42

user studies Murphy-Hill, Zimmermann, Bird, and Nagappan (2013) can be adopted to better

understand the context of performance regression introducing changes.

The effectiveness of the tests. In our case study, we leverage test cases and performance

micro-benchmarks to evaluate the performance of each commit. In particular, for Hadoop our

heuristic of identifying impacted tests are based on naming conventions between source code files

and test files. In addition, we also rely on the readily available performance micro-benchmarks in

RxJava. Our heuristic and the performance micro-benchmarks both may not cover all the perfor-

mance impacts from code changes. However, the goal of our study is not to detect all performance

regression in the history of our subject systems, but rather collect a sample of performance re-

gression introducing commits for our further investigation. Future work may consider using more

sophisticated analysis to identify the impacted tests Qusef, Bavota, Oliveto, De Lucia, and Binkley

(2014) or manually adapting the tests to address this threat. Moreover, conducting systematic

long-lasting performance tests may minimize this threat, the long-lasting time of these test (often

more than eight hours) make it almost impossible for every commit. It is still an open research

challenge of how to design in-expensive yet representative performance tests, which our case study

signifies the importance of breakthrough in such a research area.

In-house performance evaluation. We evaluate the performance of our subject systems with

our in-house performance evaluation environment. Although we minimize the noise in the en-

vironment to avoid bias, such an environment is not exactly the same as in-field environment of

the users. There is a threat that the performance regressions identified in our case study may not

be noticeable in the field. To minimize the threat, we only consider the performance regressions

that have non-trivial (turn out to be mostly large in our experiment) effect sizes. In addition, with

the advancing of DevOps, more operational data will become available for future mining software

repository research. Research based on field data from the real users can address this threat.

3.5 Related Work

In this section, we present the related work to this work.

43

3.5.1 Performance regression detection

A great amount of research has been proposed to detect performance regression. Ad hoc analysis

selects a limited number of target performance counters (e.g., CPU and memory) and performs

simple analysis to compare the target counters. Heger et al. (2013) present an approach to support

software engineers with root cause analysis of the problems. Their approach combines the concepts

of regression testing, bisection and calls tree analysis to detect performance regression root cause

analysis as early as possible.

Pair-wise analysis compares and analyzes the performance metrics between two consecutive

versions of a system to detect the problem. Nguyen et al. (T. H. Nguyen et al., 2012; T. H. D. Nguyen

et al., 2011, 2014) conduct a series of studies on performance regressions. Nguyen et al. propose

an approach to detect performance regression by using a statistical process control technique called

control charts. They construct the control chart and apply it to detect performance regressions and

examine the violation ratio of the same performance counter. Malik et al. (2013) propose approaches

that combine one supervised and three unsupervised algorithms to help performance regression

detection. They employ feature selection methods named Principal Component Analysis (PCA)

to reduce the dimensionality of the observed performance counter set and validate their approach

through a large case study on a real-world industrial software system Malik et al. (2010).

Model-based analysis builds a limited number of detected models for a set of target performance

counters (e.g., CPU and memory) and leverages the models to detect performance regressions.

Xiong et al. (2013) propose a model-driven framework to diagnose the application performance in

cloud condition without manual operation. In the framework, it contains three modules consisting of

sensor module, model building module, and model updating module. It can automatically detect the

workload changes in cloud environment and lead to the root cause of performance problem. Cohen,

Chase, Goldszmidt, Kelly, and Symons (2004) propose an approach that builds a promising class

of probabilistic models (Tree-Augmented Bayesian Networks or TANs) to correlate system level

counters and systems average-case response time. Cohen et al. (2005) present that performance

counters can successfully be used to construct statistical models for system faults and compact

signatures of distinct operational problems. Bodı́k et al. (2008) employ logistic regression with L1

44

regularization models to construct signatures to improve Cohen et al.’ s work.

Multi-models based analysis builds multiple models from performance counters and uses the

models to detect performance regressions. Foo et al. (2010) propose an approach to detect potential

performance regression using association rules. They utilize data mining to extract performance

signatures by capturing metrics and employ association rules techniques to collect correlations

that are frequently observed in the historical data. Then use the change to the association rules

to detect performance anomalies. M. Jiang, Munawar, Reidemeister, and Ward (2009) present two

diagnosis algorithms to locate faulty components: RatioScore and SigScore based on component

dependencies. They identify the strength of relationships between metric pairs by utilizing an

information-theoretic measures and track system state based on in-cluster entropy. A significant

change in the in-cluster entropy is considered as a sign of a performance fault. Shang et al. (2015)

propose an approach that first clusters performance metrics based on correlation. Each cluster of

metrics is used to build a statistical model to detect performance regressions.

The vast amounts of research on performance regression detection signify its importance and

motivate our work. Prior research on performance regressions are all designed to be conducted after

the system is built and deployed. In this work, we explore performance regressions at the commit

level, i.e., when they are introduced.

3.5.2 Empirical studies on performance

Empirical studies are conducted in order to study performance issues (Huang et al., 2014; G. Jin

et al., 2012; Zaman et al., 2012, 2011). G. Jin et al. (2012) study 109 real-world performance

issues that are reported from five open-source software. Based on the studied 109 performance

bugs, G. Jin et al. (2012) develop an automated tool to detect performance issues. Zaman et al.

(2012, 2011) conducted both qualitative and quantitative studies on performance issues. They find

that developers and users face problems in reproducing performance bugs. More time is spent

on discussing performance bugs than other kinds of bugs. Huang et al. (2014) studied real-world

performance issues and based on the findings. They propose an approach called performance risk

analysis (PRA), to improve the efficiency of performance regression testing.

Table 3.5 summarizes the comparison between this work and the four prior studies (Huang et

45

Table 3.5: Comparing this work with the four prior studies (Huang et al., 2014; G. Jin et al., 2012;
Zaman et al., 2012, 2011)

G. Jin et al. (2012)Huang et al. (2014)Zaman et al. (2012) This work
Data source Issue reports Issue reports Issue reports Code commits

Granularity Patch performance issue performance issue
Performance

micro-benchmarks
or impacted tests

#instances 109 100 100
3,438

680 for manual study

Main approach
Dynamic rule-
based checker

Static analysis &
risk modeling

N/A Repeated measurement

al., 2014; G. Jin et al., 2012; Zaman et al., 2012, 2011). In particular, prior studies only study a

small amount (around 100) of performance issues often due to the lower number of such issues

reported. On the contrary, since our study does not depend on the existence of performance issue

reports, we observe a much higher prevalence of performance regressions that are introduced during

development. Therefore, our results suggest that maintaining the performance of software may be

more challenging. Without an efficient feedback channel from the end users, the developers may

overlook possible performance regressions. Our findings suggest the importance of the awareness

of possible performance regressions introduced during development.

Luo et al. (2016) propose a recommendation system, called PerfImpact, to automatically iden-

tify code changes that may potentially be responsible for performance regression between two

releases. Their approach searches for input values that expose performance regressions and compare

execution traces between two releases of a software to identify problematic code changes. Hindle

(2015) present a general methodology to measure the impact of different software metrics on power

consumption. They find the effect of software change on power consumption regressions. Hasan et

al. (2016) create energy profiles as a performance measurement for different Java collection classes.

They find that energy consumption can have a large difference depending on the operation. Lim et

al. (2014) use performance metrics as a symptom of performance issues and leverage historical data

to build the Hidden Markov Random Field clustering model. Such a model has been used to detect

both reoccurring and unknown performance issues.

Prior studies on performance typically are based on either limited performance issue reports or

46

release of the software. However, the limited amount of issue reports and releases of the software

hides the prevalence of performance regressions. In our work, we evaluate performance at the

commit level. Therefore, we are able to identify more performance regressions and are able to

observe the prevalence of performance regression introducing changes in development.

3.6 Conclusion

In this work, we conduct an empirical study on performance regression introducing changes

in two open-source software Hadoop and RxJava. We evaluate the performance of every commit

by executing impacted tests or performance micro-benchmarks. By comparing performance met-

rics that are measured during the tests or performance micro-benchmarks, we identify and study

performance regressions introduced by each commit. In particular, this work makes the following

contributions:

• To the best of our knowledge, our work is one of the first to evaluate and to study performance

regressions at the commit level.

• We propose a statistically rigorous approach to identifying performance regression introduc-

ing code changes. Further research can adopt our methodology in studying performance

regressions.

• We find that performance regressions widely exist, and often are introduced after bug fixing.

• We find six root-causes of performance regressions that are introduced by code changes.

12.5% of the manually examined regressions can be avoided or their performance impact

may be reduced.

Our findings call for the need for frequent performance assurance activities (like performance

testing) during software development, especially after fixing bugs. Although such activities are often

conducted before release Z. M. Jiang and Hassan (2015), while developers may find it challenging

since many performance issues may be introduced during the release cycle. In addition, developers

should resolve performance regressions that are avoidable. For the performance regressions that

cannot be avoided, developers should evaluate and be aware of their impact on users. If there exists

47

a large impact on users, strategies, such as allocating more computing resources, may be considered.

Finally, in-depth user studies and automated change impact on performance are future directions of

this work.

48

Chapter 4

Can we predict tests that manifest

performance regressions at the commit

level?

Performance issues may compromise user experiences, increase the cost resources, and cause

field failures. One of the most prevalent performance issues is performance regression. Due to

the importance and challenges in performance regression detection, prior research proposes various

automated approaches that detect performance regressions. However, the performance regression

detection is conducted after the system is built and deployed. Hence, large amounts of resources

are still required to locate and fix performance regressions. In this work, we propose an approach

that automatically predicts whether a test would manifest performance regressions given a code

commit. In particular, we extract both traditional metrics and performance-related metrics from

the code changes that are associated with each test. For each commit, we build random forest

classifiers that are trained from all prior commits to predict in this commit whether each test would

manifest performance regression. We conduct case studies on three open-source systems (Hadoop,

Cassandra, and OpenJPA). Our results show that our approach can predict tests that manifest

performance regressions in a commit with high AUC values (on average 0.86). Our approach can

drastically reduce the testing time needed to detect performance regressions. In addition, we find

49

that our approach could be used to detect the introduction of six out of nine real-life performance

issues from the subject systems during our studied period. Finally, we find that traditional metrics

that are associated with size and code change histories are the most important factors in our models.

Our approach and the study results can be leveraged by practitioners to effectively cope with

performance regressions in a timely and proactive manner.

4.1 Introduction

Performance assurance activities are an essential step in the development cycle of large software

systems Weyuker and Vokolos (2000). One of the goals of performance assurance activities is to

detect performance regressions, i.e., the performance of the same feature in the system is worse than

before. Response time degradation and increased CPU usage are typical examples of performance

regressions. These performance regressions may directly affect the user experience, increase the

resources cost of the system and lead to reputational repercussions. Therefore, detecting and

resolving performance regressions is an important task even though the system’s performance may

meet the requirement. For example, Mozilla has a performance regression policy that requires

performance regressions to be reported and resolved as bugs Joel (2017).

Although automated techniques are proposed to detect performance regressions (Heger et al.,

2013; Luo et al., 2016; T. H. Nguyen et al., 2012; T. H. D. Nguyen et al., 2014; Shang et al., 2015),

challenges in the practice of performance regression detection still exist. First of all, performance

regressions detection remains a task that is conducted after the system is developed and built, as

almost the last step in the release cycle. Therefore, fixing performance regressions at such a late

stage in the development cycle is difficult and sometimes impossible. Second, a significant amount

of effort is required to locate the root cause of the performance regression after detection.

In order to detect performance regressions, we propose an approach to identifying performance

regressions at the code commit level J. Chen and Shang (2017). In particular, various performance

regressions are detected by running all the readily available tests for the software systems. Such

knowledge may assist in addressing the aforementioned challenges. In particular, developers are

notified about the introduction of a performance regression after the code commit, developers

50

may address such regression in a timely manner, avoiding other code changes depending on the

performance-regression-introducing commit. More importantly, such prediction would ease the de-

veloper to locate the root cause of the performance regression, and further address the performance

regression.

Taking a real-life example in Hadoop, issue YARN-48621 is a performance issue with major

priority. The performance regression was introduced in a code commit2 that was performed half

a year before the reporting date of the issue. However, if immediately after the code commit, the

developer was notified that a performance regression might have been introduced into the source

code that is executed by test TestResourceTrackerService, this major issue may not be hidden for

such a long time.

Unfortunately, running all tests to detect performance regressions is an extremely time-consuming

task, especially for every commit. From our study results, on average to detect performance regres-

sion by rigorously running all tests that are impacted by the code changes takes hours per commit

(c.f. Table 4.7). Recent work by de Oliveira, Fischmeister, Diwan, Hauswirth, and Sweeney (2017)

proposed an approach named Perphecy, which aims to select performance benchmark suites that

may manifest performance regressions. While shown to be effective, Perphecy depends on a short

list of boolean indicators whose thresholds are tuned from prior executions. Due to the observation

in the study that only a very small number of performance benchmarks in the commits contains

performance regressions, the paper proposes a conservative approach for the tuning, i.e., detecting

more benchmarks to achieve higher recall de Oliveira et al. (2017). However, our prior study

shows that when examining the performance regressions at the test level, a rather large number

of performance regressions can be detected. Using conservatively tuned thresholds on such a large

number of performance regressions at the test level may lead to a large number of false-positive

results (as also shown in our results in RQ1 and RQ4). A high false-positive rate may lead to a large

number of tests that need to run, making the process still a time-consuming task.

Therefore, in this work, we present an automated approach that builds just-in-time prediction

models to predict the tests that manifest performance regressions with a given code commit. We
1https://issues.apache.org/jira/browse/YARN-4862
2https://github.com/apache/hadoop/commit/528b809d. A test in this commit is successfully predicted by our approach

(cf. Section 4.5-RQ4) to manifest performance regression with slower response time.

51

call such tests performance-regression-prone tests. In other words, our approach predicts whether

there is a regression in a particular test of a particular commit (not any test in a commit). To build

the prediction model, we first identify performance-regression-prone tests by evaluating all the tests

that are impacted by the code changes in prior commits and measuring performance (i.e., response

time, CPU and memory usage, I/O read and I/O write) by running each test repetitively. Afterwards,

we build five classifiers, one for each performance metric, modeling whether a test would manifest a

performance regression. With such prediction models, after developers commit their code changes,

our approach can automatically predict which tests manifest performance regressions for each par-

ticular performance metric. Developers can prioritize their performance assurance activities by only

running the predicted performance-regression-prone tests to address the performance regressions.

For the tests that are executed and shown to have regression, the developers may check the covered

and changed source code of each test to start their investigation. The newly executed performance

evaluation results are then included in the training data to update the classifiers in order to predict

the performance-regression-prone tests in the next new commit.

To evaluate our approach, we conduct case studies on three open-source systems3, namely

Hadoop, Cassandra and OpenJPA. In particular, we aim to answer five research questions:

RQ1 How well can we predict performance-regression-prone tests?

Our random forest classifiers can provide accurate prediction, outperforming logistic regres-

sion, support vector machines and XGBoost, with an average AUC of 0.85, 0.87 and 0.88

for Hadoop, Cassandra and OpenJPA, respectively. Our approach also out-performs the

state-of-the-art approach Perphecy in all the studied subjects.

RQ2 How cost-effective is the prioritization of performance-regression-prone tests?

We consider the time to spent for each test as the cost and build cost-aware models for

performance-regression-prone tests. Our models provide high cost-effectiveness prioritiza-

tion, that is close to the optimal prioritization. By spending only 5% of the cost of executing

all tests, our approach can help detect up to 65% of the performance-regression-prone tests.

RQ3 How much testing time can our approach save?
3https://users.encs.concordia.ca/˜fu chen/data

52

https://users.encs.concordia.ca/~fu_chen/data

Our prediction drastically reduces the testing time needed compared with running only the

tests that are impacted by the code changes in a commit (up to 97%).

RQ4 Can our approach detect the introduction of real-life performance issues?

Our approach can be used to detect six out of nine real-life performance issues that are found

to be introduced during the studied period of our evaluation. The predicted tests by our

approach can cover the changed source code that introduces the performance issues.

RQ5 What are the most important factors in determining performance-regression-prone tests?

We find that performance-related metrics are not important factors of performance-regression-prone

tests, while traditional metrics that are associated with history and size of the code changes

are the most important factors.

Based on our case study results, developers can adopt our approach in practice to provide an

accurate prediction on evaluating the performance impact of their code changes in a timely and

proactive manner.

The rest of this work is organized as follows: Section 4.2 presents prior research related to

this work. Section 4.3 presents our approach to predicting performance-regression-prone tests.

Section 4.4 presents our subject systems and how to extract performance-regression-prone tests

as our ground truth. Section 4.5 presents the results of our case studies. Section 4.6 discusses

our learned lessons. Section 4.7 presents threats to the validity of our study. Finally, Section 4.8

concludes this work.

4.2 Related Work

In this section, we present the related prior research in three aspects: 1) software defect predic-

tion and 2) empirical studies on software performance, and 3) test case prioritization.

4.2.1 Software defect prediction

Mockus and Weiss (Mockus & Weiss, 2000) are the first ones to use metrics that describes the

characteristics of software changes to build a linear regression model to predict the probability of

53

failure after code changes. Kamei et al. (Kamei et al., 2016; Kamei & Shihab, 2016; Kamei et al.,

2013) conduct a series of studies on commit-level defect prediction. Kamei et al. (2013) extract

14 change metrics from six open-source systems and five commercial systems and build a logistic

regression model to predict whether the commit would introduce software defects. The prediction

model built is able to predict defect-inducing changes with an accuracy of 0.68 and a recall of 0.64.

Their findings also show that diffusion and purpose of the code changes play important roles in

defect-inducing changes.

Kamei and Shihab (2016) present an overview of the research field of defect prediction. To build

the prediction model, researchers need to extract and select a list of metrics. F. Zhang et al. (2014)

use code metrics, process metrics, and context factors to build a universal defect prediction model

for a large set of systems. Zhang et al. find that adding context factors can assist in the prediction of

software defect of the universal models. Shivaji et al. (2013) realize that the more features prediction

model learned, the more insufficient performance the model predicts. Hence, Shivaji et al. perform

multiple feature selection algorithms to reduce the metrics that predict software defects. P. He et al.

(2015) study the feasibility of defect-predictions built with simplified metrics in different scenarios

and offer suggestions on choosing datasets and metrics.

There exist various kinds of prediction models to predict software defects. Tourani and Adams

(2016) build logistic regression models to study the impact of human discussion metrics on commit-level

predicting models. The result shows that there exists a strong correlation between human discussion

metrics and defect-prone commits. Tsakiltsidis et al. (2016) use four machine learning algorithms to

build classifiers to predict performance bugs. The study finds that the most satisfying model is based

on logistic regression with all attributes added. Yang et al. (2016) use 14 code based metrics to build

simple unsupervised and supervised models to predict software defect. The results show that many

simple unsupervised models perform better than supervised models in effort-aware commit-level

defect prediction.

Compared to the above papers, we build classifiers to predict tests that manifest performance

regressions. We extract traditional metrics that are widely used in prior studies (Kamei et al., 2013;

Mockus & Weiss, 2000) and also include performance-related metrics in our classifiers.

54

4.2.2 Empirical studies on software performance

Various empirical studies are conducted to study performance issues. G. Jin et al. (2012) study

109 real-world performance bugs that are derived from five software systems to learn guidance

for software practitioners. The study shows that developers need tool support to fix the similar

performance issues automatically. The study calls for in-depth research on performance diagnosis,

performance testing, performance issue detection. Zaman et al. (2012, 2011) conduct both quali-

tative and quantitative studies on 400 performance and non-performance issues. Zaman et al. find

that developers spend more time fixing performance issues than non-performance issues. This study

also advocates the importance of identifying the root cause of performance issues. Han et al. (2018)

study 300 bug reports from three large open-source projects. The authors find that performance

bugs require specific input parameters to expose.

Huang et al. (2014) study real-world performance issues and propose a lightweight approach

named performance risk analysis (PRA) to improve performance regression testing efficiency. The

analysis statically evaluates the risk of introducing performance regression. Pradel, Huggler, and

Gross (2014) present an automatic approach named SpeedGun to detect performance regressions

in the case of concurrent classes. This approach intends to generating multi-threaded performance

tests to test and report the performance differences between two versions of concurrent classes.

Tarvo and Reiss (2012) build models to predict the performance of multi-threaded programs or

individual program using computer simulation. The authors collect program information using

static and dynamic analyses, and simulate each thread using a probabilistic call graph. Luo et al.

(2016) propose an approach to mine performance regressions inducing code changes. The paper

implements a tool named PerfImpact to find the inputs that lead to performance regressions and

rank the code changes that may be closely responsible for performance regressions. de Oliveira et

al. (2017) present a lightweight tool named Perphecy to detect which commit will cause performance

regression on which benchmark. Leitner and Bezemer (2017) aim to understand the current state of

the art of performance testing. They conduct a study on 111 open-source java-based systems from

GitHub to investigate the use of performance tests across five perspectives. Leitner et al. find that

there is a lack of standard guidelines to conduct performance tests in an easy and powerful way.

55

This paper argues that future performance testing should implement a flexible testing framework to

support low-friction testing.

Prior research on performance is typically based on either limited issue reports or releases of

the software. However, performance regressions may not be defects, and our work is the first (to

the best of our knowledge) to predict performance-regression-prone tests at the commit level. In

addition, in this work, our extracted performance-related metrics are built on top of the findings

from the prior studies on performance issues.

4.2.3 Test case prioritization

The goal of Test Case Prioritization (TCP) is to select the most appropriate tests to execute

and enable faster feedback Laali, Liu, Hamilton, Spichkova, and Schmidt (2016). Various prior

research has been proposed to improve TCP (Di Nardo, Alshahwan, Briand, & Labiche, 2015;

Kazmi, Jawawi, Mohamad, & Ghani, 2017; Mostafa, Wang, & Xie, 2017; Saha, Zhang, Khurshid,

& Perry, 2015; Wang, Nam, & Tan, 2017). Wang et al. (2017) present a quality-aware technique

namely QTEP to prioritize tests by giving more weight to fault-prone source code. This paper shows

that QTEP can improve existing coverage-based TCP techniques. Mostafa et al. (2017) was pro-

posed to prioritize performance test cases for collection-intensive software. The approach profiles

software using a dynamic call graph to build a performance model and analyzes performance impact

introduced by code changes. To address the coverage profiling overhead, Saha et al. (2015) present

an information retrieval approach namely REPiR based on program changes, e.g., identifier names

and comments in the code.

Historical information produced by the test can also be used to improve test case prioritiza-

tion (Anderson, Salem, & Do, 2015; Kim & Porter, 2002; Najafi, Shang, & Rigby, 2019; Noor &

Hemmati, 2017; Zhu, Shihab, & Rigby, 2018). Kim and Porter (2002) build models based on the test

execution history to prioritize tests. The prioritization models assign a selection probability to each

test case in test suite. Anderson et al. (2015) investigate the test historical information including

test case pass, fail information, code change information. The authors use such historical metrics to

build a model to predict future test case failures. Noor and Hemmati (2017) use a logistic regression

model to predict the failing test cases for tests prioritization based on a set of test quality metrics,

56

e.g., change-related metrics. Zhu et al. (2018) propose an approach CODYNAQ to use the historical

co-failure distributions among tests to re-prioritize tests after each test run. Najafi et al. (2019)

customize and combine multiple test selection and prioritization techniques in a large industrial

system based on test execution history information. The authors find that simple approaches are

often shown effective in an industrial setting.

Prior research on test case prioritization typically focuses on validating functional bugs rather

than performance issues. Our work aims to prioritize tests for a cost-effective detection of perfor-

mance regressions.

4.3 Approach

In this section, we present our approach to predicting performance-regression-prone tests in

each commit. In other words, when developers commit their code changes, our approach predicts

which tests are likely to manifest performance regressions. Developers can prioritize to execute the

tests that are predicted to have performance regression. The overview of our approach is shown in

Figure 4.1.

4.3.1 Extracting metrics

To build classifiers, we first extract metrics from the Git repositories of our subject systems.

Prior research on commit-level defect prediction extracts metrics that describe characteristics of

the commit. On the other hand, our approach predicts the performance-regression-prone tests in

each commit. Hence, our extracted metrics are at the test-level, i.e., the metrics measure the code

changes from a commit associated with each test. However, not all the code changes in a commit

are associated with all the tests.

For example, there may exist two tests, i.e., Test A and Test B, and a commit has a total code

churn of 100 lines of code. Our code churn metric for Test A and Test B for this commit is not

simply 100. We check the amount of code churn that are covered by executing Test A (e.g., 60 lines

of code) and the amount of code churn that are covered by executing Test B (e.g., 50 lines of code).

We note that these two pieces of code churn can overlap, since some code churn may be covered by

57

both Test A and B. Then for this commit, the code churn metric for Test A is 60 and the code churn

metric for Test B is 50.

Therefore, we first need to identify code changes in each commit that are associated with each

test. We leverage the mapping between code and test that is created in Section 4.4.2 to identify

the code changes in each commit. Due to the resource needed of generating such mapping, we

only generate these mappings once per release. The overview of our extracted metrics is shown in

Table 4.1.

Traditional metrics. Prior studies on commit-level defect prediction leverage various metrics to

predict the risk of a code commit (Kamei et al., 2013; Mockus & Weiss, 2000). Similarly, we extract

16 traditional metrics from six dimensions, i.e., size of the change, complexity of the changed files,

diffusion, development history, developers’ experiences and the purpose of the commit. The details

of the metrics are shown in Table 4.1.

Performance-related metrics. We aim to predict performance-regression-prone tests for each

commit. Hence, based on findings from prior research on performance issues and performance

regressions (Alam et al., 2017; J. Chen & Shang, 2017; Costa et al., 2017; Huang et al., 2014;

G. Jin et al., 2012; L. Song & Lu, 2017), we extract metrics that describe the code changes in a

commit that may relate to performance. For example, adding synchronization into the source code

is one of the root-causes of performance regressions (J. Chen & Shang, 2017; G. Jin et al., 2012).

Considering the findings from prior research, we extract seven groups performance-related metrics.

The rationale of extracting each type of entity is shown in Table 4.1.

All the performance-related metrics are calculated only from the code changes that are associ-

ated with each test in a commit. To automatically analyze the code changes, we use srcML (2017)

to convert the source code to XML files representing their abstract syntax trees. We use lxml (2005)

to compare the two XML trees to extract the added, deleted and changed code entities. In particular,

the metrics are calculated in the following aspects.

Basic code entity change. We count the added and deleted code entities including final, static, try,

catch, throw, throws, finally, break, continue, label. Afterwards, we generate two metrics for each

type of code entity, i.e., one metric for added entity and one metric for deleted entity. If the code

entity can contain expressions, we also generate a metric for the changes to the code entity.

58

Table 4.1: Summary of extracted metrics. The symbol † indicates metrics that represent multiple
metrics.

Dim. Metric Definition Values Rationale
D

iff
us

io
n

NS Number of modified subsystems Numerical
The more subsystems are changed, the higher risk the change
may be.

ND Number of modified directories Numerical
Changing more directories may more likely to introduce
performance regressions Mockus and Weiss (2000).

NF Number of modified files Numerical
Changing many source files are more likely to cause
performance regression N. Nagappan et al. (2006).

NM Number of modified methods Numerical
Changes altering many methods are more likely introduce
performance regression Zimmermann et al. (2007).

Entropy
Distribution of modified code across
files Numerical

Scattered changes are more possible to be
performance-regression-prone Hassan (2009).

Si
ze

LA
Lines of code added in all the tested
methods Numerical

The more lines of code added, the higher risk that the program
will suffer from performance regression N. Nagappan and Ball
(2005).

LD
Lines of code deleted in all the tested
methods Numerical

The more lines of code deleted, the higher risk of performance
regression is introduced N. Nagappan and Ball (2005).

LT
Lines of code before the change in all
the tested methods Numerical

Modifying a large method is more likely to introduce
performance regression due to the large method being more
complex Koru, Zhang, Emam, and Liu (2009); Zimmermann
et al. (2007).

SOL
Lines of code before the change in all
the tested classes Numerical

Large class is more complex than the small class, and may be
more performance-regression-prone Koru et al. (2009).

Pu
rp

os
e

FN
Whether the code commit
fixes a bug Boolean

Bug fixing changes are more likely to introduce performance
regressions J. Chen and Shang (2017); P. J. Guo, Zimmer-
mann, Nagappan, and Murphy (2010).

H
is

to
ry NDEV

Number of developers that changed
the modified files Numerical

Changes involving many developers are more possible to
cause regression due to the differences between different
developers Matsumoto, Kamei, Monden, Matsumoto, and
Nakamura (2010).

AGE
The average time interval between the
last and the current change Numerical

More recent and frequent changes are more likely to introduce
performance regression Graves, Karr, Marron, and Siy (2000).

E
xp

er
ie

-n
ce

EXP Developer experience Numerical
Senior programmers may introduce more stable code change
than a less experienced developer Mockus and Weiss (2000).

REXP Recent developer experience Numerical
Recent developers are more familiar with the program so that it
is less likely to introduce performance regression Mockus and
Weiss (2000).

C
om

pl
e-

xi
ty

MCC McCabe Cyclomatic complexity Numerical
Program with higher complexity is more likely to suffer from
performance regression Hassan (2009).

FanIn Number of calling subprograms Numerical
Large calling subprograms will amplify the regression if there
exists performance regression in the called program N. Nagap-
pan et al. (2006).

Pe
rf

or
m

an
ce

-r
el

at
ed

m
et

ri
cs

†Basic code
changes

Number of added or deleted on the
basic code entity in method level.
(e.g., final add and final del of final
basic code entity)

Numerical
Changes on the basic code entities may directly increase the
complexity of the code and introduce performance regressions.

†Syn
Number of added or deleted
synchronization expressions
in method level

Numerical
Synchronizations are expensive actions for software perfor-
mance Alam, Liu, Zeng, and Muzahid (2017).

†Condition
Number of added or deleted condition
statement in method level Numerical

Changing condition may cause more operation eventually
executed by the software, leading to performance regres-
sion Huang et al. (2014).

†Loop
Number of added, deleted or changed
loop statement in method level Numerical

Changes involving the loop may significantly slow down
performance L. Song and Lu (2017).

†ExpVariable
Number of added or deleted expensive
variable in method level Numerical

Some variables are more expensive to be held in memory
and need more resources to visit or operate Costa, Andrzejak,
Seboek, and Lo (2017); Huang et al. (2014).

†ExpParameter
Number of added or deleted expensive
parameter in method level Numerical

Using more expensive parameter, like reference type other than
primitive type, leading to performance regression J. Chen and
Shang (2017).

†ExternalCall
Number of added or deleted external
function call in method level Numerical

Some code changes that introduce new functionality and
external operations may cause performance regression J. Chen
and Shang (2017); G. Jin et al. (2012).

59

Synchronization. We measure the added and deleted statements that are associated with synchroniza-

tion. In particular, Java has two kinds of expressions related to synchronization, i.e., synchronized

statement and synchronized specifier. We consider both expressions as synchronization and generate

two metrics for added and deleted synchronization expressions, respectively.

Condition. We calculate condition metrics from the following statements in Java: if, elseif, else,

switch, case and assert statements. We generate two metrics for added and deleted condition,

respectively.

Loop. We consider all kinds of loops in Java, such as for, while, foreach and do while. Besides

generating two metrics for added and deleted loops, we also generated a metric for changed loops,

such as changing the expressions in the loop.

Expensive variable change (expVariable). We count the variables that are changed from primitive

data type to reference data type for this metric, as expensive variable change proposed by prior

research Costa et al. (2017).

Expensive parameter change (expParameter). Similar to expensive variable change, we count the

method invocation parameters that are changed from primitive type to reference type for this metric.

External function call (externalCall). Function calls that access external resources may introduce

performance overhead, leading to performance regression. For example, adding logging statements

to print the execution information to a file may introduce performance regressions. In this work,

particularly, we only consider the function calls to the logging library. We generate three metrics

for added, deleted and changed external function calls.

4.3.2 Data preprocessing

Before leveraging the extracted data to build classifiers, we preprocess the data. Prior research

shows that multicollinearity data and redundant metrics may be harmful in interpreting prediction

models. In addition, multicollinearity may introduce bias when using the models to explain a

phenomenon (Jiarpakdee, Tantithamthavorn, & Hassan, 2019; Tantithamthavorn & Hassan, 2018a).

To deal with multicollinearity, we first perform a correlation analysis on the metrics to remove the

most highly correlated metrics. We used Pearson’s correlation Benesty, Chen, Huang, and Cohen

(2009) coefficient among all metrics to find the pair of metrics that have a correlation higher than

60

0.7. From these two metrics, we remove the metric that has a higher average correlation with all

other metrics. We repeat this step until there exists no correlation higher than 0.7 McIntosh, Kamei,

Adams, and Hassan (2016). We then perform a redundancy analysis on the metrics. The redundancy

analysis would consider a metric redundant if it can be predicted from a combination of all other

metrics Harrell (2001). We use each metric as a dependent variable and use the rest of the metrics

as independent variables to build a regression model. We calculate the R2 of each model and if the

R2 is larger than a threshold (0.9) Syer et al. (2017), the current dependent variable is considered

redundant. We then remove the metric with the highest R2 and repeat the process until no metric

can be predicted with R2 higher than the threshold.

4.3.3 Building classifiers and predicting performance-regression-prone tests

In this step, we build classifiers to model whether a test in a commit would manifest performance

regressions. In particular, we build five classifiers, each predictor for one performance metric

(i.e., response time, CPU usage, memory usage, I/O read and I/O write). We use data from

prior commits to train the classifiers. The dependent variable of each classifier is whether the test

manifests a performance regression with that particular performance metric (see Table 4.4). The

independent variables are based on the metrics that are presented in Section 4.3.1. All the metrics

are pre-processed as described in Section 4.3.2.

Projects may not have readily available historical performance evaluation results on prior com-

mits to build classifiers. To “cold start” our approach, we require to exercise performance evaluation

on the prior 50 commits to make the first set of training data Schein, Popescul, Ungar, and Pennock

(2002). The details of the performance evaluation are presented in Section 4.4.2. We choose 50

commits because of the amount of metrics that we have. Fewer commits may result in over-fitting

the classifier, while more commits may waste resources on the performance evaluation.

With a new commit, our approach leverages the five built classifiers (each classifier for one

performance metric) to predict which tests are likely to manifest performance regressions.

61

4.3.4 Exercising tests and updating classifiers

After having the prediction results from our classifiers, developers can choose to only exercise

the tests that are predicted to be performance-regression-prone for performance evaluation (c.f.,

Section 4.4.2). After the performance evaluation of the tests, the training data for the classifiers are

updated by including the results of the newly evaluated tests. Afterwards, the five classifiers are

re-built for the prediction of the next commit. Moreover, the practitioners can use the performance

evaluation results of the tests to assist in locating the root causes of the performance regressions. In

particular, developers may use the changed source code that is also executed by the test to assist in

locating the root causes of the performance regression.

4.4 Evaluation Setup

In this section, we present the setup of our case study. We present the subject systems that are

used and detail on how to extract the tests that manifest performance regressions in each commit as

our ground truth.

4.4.1 Subject systems

We choose three open-source systems, Hadoop, Cassandra and OpenJPA as the subject systems

of our case study. Hadoop White (2009) is a distributed system infrastructure. Hadoop performs

data processing in a reliable, efficient, high fault tolerance, low cost and scalable manner. Cassandra

is an open-source distributed NoSQL database management system. OpenJPA is an open-source

system from the Apache organization that implements the JPA standard. We choose the three subject

systems since they are highly concerned with their performance and have been studied in prior

research in mining performance data (T.-H. Chen et al., 2014; Syer et al., 2017). The overview of

the three subject systems is shown in Table 4.2.

4.4.2 Extracting performance-regressions-tests in each commit

In this subsection, we present how we perform performance evaluation to extract performance

regression tests in each commit. Such extracted data is used as our ground truth in the case

62

Table 4.2: Overview of our subject systems.

Subjects #release #commit
The starting and
ending releases

#Total lines
of code (K)

#files #tests

Hadoop 11 1,403 2.6.0 – 2.7.5 970 6,373 1,853
Cassandra 9 902 3.0.7 – 3.0.15 346 1,867 369
OpenJPA 4 726 2.3.0 – 2.4.2 429 4,579 916

study. The role of this data is similar to the extracted “bug-fixing commits” in a commit-level

bug prediction approach Kamei et al. (2013). In addition, to “cold start” projects that do not have

performance evaluation results on prior commits, this subsection describes how to obtain initial

training data for our approach.

Git

For	each	commit

Code
commits

Identifying
impacted
tests

Dealing	with
changed	tests

Evaluating
performance	

Statistical
analysis	

Performance-
regression-prone?

For	all	tests	in	all	
commits	(training	data)

Building
classifiers

Classifiers

Traditional	and
performance-related

metrics

For	each	test	in	a	commit
Data

preprocessing
Extracting
metrics

For	each	test	in	a	commit

GitNew	commit

Identifying
impacted
tests

Dealing	with
changed	tests

For	each	test	in	a	commit

Data
preprocessing

Extracting
metrics

Traditional	and
performance-
related	metrics

For	each	test	in	the
	new	commit	
(testing	data)

Classifiers	
built	from	prior	

commits

For	each	test
	in	the	new	commit

Prediction Performance-
regression-prone?

repository

process

data

classifiers

Legends

(a)	building	classifiers

(b)	Predicting	performance-regression-prone	tests	in	a	new	commit

Figure 4.1: An overview of our approach.

Filtering commits. We start our approach to filter commits by only keeping the commits that

have source code changes, i.e., changes to .java files. To accomplish one development task, multiple

commits, including temporary commits, may be made. We would like to avoid considering such

temporary commits. Since all our subject systems use JIRA as their issue tracking systems, we use

the issue id mentioned in their commit messages to identify commits that belong to the same issue.

If multiple commits are associated with the same issue, we only consider the last commit.

Identifying impacted tests. Our approach considers using all the functional tests that exist in

the repository. We use these tests since these tests are maintained and typically executed regularly

during every build in the release pipeline of software development Tillmann and Schulte (2006).

63

Not all the tests are impacted by the code changes in a commit and running those un-impacted tests

is not likely to detect performance regressions. To identify all the impacted tests by each commit,

we create mappings between source code and tests. We automatically instrument all the methods in

every version of the source code of our subject systems by adding invocation to logging libraries.

We run all the available tests of each released version of the subject systems. By analyzing the

output of our instrumentation, we obtain a list of methods that are executed during the running

of each test. Then, we can create mappings between each test and the executed methods of the

test. With such a mapping between tests and methods in the source code, for each commit, we can

identify the tests that are likely to be impacted by identifying the methods that are changed in the

commit, i.e., a method-to-test mapping for each commit. Due to the resources needed for creating

such mappings, we only update such mappings for every release of the subject systems.

Dealing with changed tests. Some commits may change both source code and test code. The

changes to the test code may bias the performance evaluation. Therefore, we opt to use the test

code before the code change, since the new version of the test code may execute new features,

which is not the major concern of performance regression. In the cases where old test cases cannot

compile or fail, we use the new test code. Finally, if both new and old test cases are failed or not

compilable, we do not include this test in the performance evaluation. In total, we have 226 tests in

121 commits that are evaluated with the new tests and 48 tests in 35 commits that are not included

in our performance evaluation.

Evaluating performance. Finally, we exercise the selected tests of each pair of current and

parent commits to evaluate their performance. Our performance evaluation environment is based on

Microsoft Azure node type Standard F8s (8 cores, 16 GB memory). In order to generate statistically

rigorous performance results, we adopt the practice of repetitive measurements T.-H. Chen, Shang,

Hassan, et al. (2016) to evaluate performance. Conservatively, we executed each test 30 times

independently, since prior research often only repeat the tests 5 to 20 times (Laaber & Leitner,

2018; Laaber, Scheuner, & Leitner, 2019; Leitner & Cito, 2016). We use a performance monitoring

software named psutil (2017) to collect performance metrics during the execution, i.e., response

time, CPU usage, memory usage, I/O read and I/O write.

Statistical analyses for labeling performance evaluation results. We perform statistical

64

analyses on the performance data from each pair of current and parent commits to determine the

existence and the magnitude of performance regression in a statistically rigorous manner. We

use Mann-Whitney U test Nachar et al. (2008) to examine if there exist statistically significant

differences (i.e., p-value < 0.05). We choose Mann-Whitney U test since it does not have any

assumption on the distribution of the data. Researchers have shown that reporting only the statistical

significance may lead to erroneous results (i.e., if the sample size is very large, the p-value can be

small even if the difference is trivial). We use Cliff's delta to quantify the effect sizes Becker

(2000). Cliff's delta measures the effect size statistically and has been used in prior engineering

studies Kitchenham et al. (2002). We only consider a test manifesting a performance regression if

the effect size is medium (0.33 < Cliff's delta 6 0.474) or large (0.474 <Cliff's delta).

Based on the statistical analysis results, each commit is labeled with five different performance

metrics, i.e., response time, CPU usage, memory usage, I/O read and I/O write, that are collected

during the execution of the test. For example, the CPU label indicates whether the test demonstrates

performance regression in terms of CPU usage. Therefore, with the same set of data, by considering

one label, we can build a classifier that predicts the performance regression only for that metric. For

example, if we only take the CPU label, we build a classifier that predicts whether a test in a commit

would demonstrate performance regression for CPU usage.

In addition, we calculate the average increase of mean values of each performance metric with

and without regression, shown in Table 4.3. We can see that the ones without regressions have a

much smaller increase of values in each performance metric. Such a small increase of values may be

due to the measurement noise, hence not considered as performance regressions in our experiment.

On the other hand, there may exist extreme values as outliers that should not be considered by our

approach. Therefore, we use the median±3×median absolute deviance(MAD) as an indicator

of outliers. We find that only 1.5% of our data are being impacted and we remove such outliers from

our data.

In total, we spend 133 machine days running all the tests. Table 4.4 shows the amount of

identified performance-regression-prone tests in the subject systems. We find that only a small

portion of the tests is performance-regression-prone. Taking Hadoop as an example, out of the

1,349 tests, only 118 tests have performance regression in response time, which only accounts

65

Table 4.3: Average increase of mean values of each performance metric by comparing commits
without and with regressions.

Hadoop Cassandra OpenJPA
With Without With Without With Without

regression regression regression regression regression regression
Res. Time (s) 9.68 0.06 1.18 0.01 0.44 0.01

CPU (s) 1.38 0.29 0.54 0.01 1.55 0.02
Mem (KB) 67.56 8.47 15.5 1.24 119.13 27.34

I/O read (count) 119.19 3.97 273.95 4.28 614.6 26.46
I/O write (count) 392.82 13.33 233.29 1.43 122.26 13.72

for 9% of all tests. Therefore, running all the tests to detect these performance regressions is not

cost-effective.

Table 4.4: The number and percentage of identified performance-regression-prone tests w.r.t
different performance metrics.

Total
Response

time
CPU Memory

I/O
read

I/O
write

Hadoop 1,349 118 (9%) 111 (8%) 92 (7%) 110 (8%) 110 (8%)
Cassandra 985 23 (2%) 44 (4%) 31 (3%) 45 (5%) 28 (3%)
OpenJPA 1,868 154 (8%) 375 (20%) 265 (14%) 385 (21%) 488 (26%)

4.4.3 Preliminary study

One may consider measuring performance only once while executing the tests for every commit,

since running all the tests for each commit is a typical practice in software development. If one can

measure performance while executing the test once and calculate the differences in performance

metrics to detect performance regression, our approach may be less useful. For example, by running

a test once, a developer may find that the test takes 11 minutes compared to 10 minutes with the

last commit. In this case, the developer may conclude that the test has 10% (11−1010) regression in

response time. Hence, a question that lingers is: can performance regression be detected by only

running the tests once?

In order to examine the applicability of such a simple approach, for each test in each commit,

we measure the performance metrics of running each test only once and compare the metrics that

66

−0
.3

−0
.1

0.
1

0.
3

improvement not significant regression

re
la

tiv
e

di
ffe

re
nc

e

Figure 4.2: Distribution of the relative difference between performance metrics by running tests
only once in each commit.

was measured in the last commit. We calculate the relative difference between performance met-

rics. Positive relative differences mean that the tests have performance regressions, while negative

relative differences mean that the tests have performance improvements. We group the tests based

on whether they have performance regressions, improvement or no significant changes based on our

performance evaluation in Section 4.4.2). Finally, we use bean plots to visualize the distribution of

the relative differences of performance metrics in each group.

Figure 4.2 presents the distribution of the relative difference between performance metrics by

running the test only once. We find that, in all three groups, most of the relative differences are close

to zero. None of the groups has the values significantly shift to either the positive or negative side,

implying the inapplicability of using the relatives’ difference to detect performance regressions.

For example, from Figure 4.2, we can see that more than half of the performance-regression-prone

tests have their relative performance differences positive. Relying on this result will falsely lead

to missing the detection of performance regression. We apply Mann-Whitney U test Nachar et

al. (2008) and Cliff’s delta Becker (2000) to compare the relative performance differences between

each pair of the three groups. We find that the difference is either not statistically significant (p-value

> 0.05) or with negligible effect sizes. Such a result shows that one cannot trust the performance

measurement by only running the test once to determine whether there exists performance regres-

sion, confirming the need for our approach that aims to predict tests that are executed rigorously to

detect performance regressions.

67

4.5 Evaluation Results

Our study aims to answer five research questions. For each research question, we present the

motivation for the question, the approach that we use to answer the question and the result for the

question.

RQ1: How well can we predict performance-regression-prone tests?

Motivation. We want to provide developers an accurate prediction on the performance-regression-prone

tests when developers commit code changes. By evaluating the accuracy of the classifier, we can

understand whether developers can depend in practice on our prediction results provided by our

approach.

Approach. To answer RQ1, we first build five types of classifiers or models, including logistic

regression (LR) Harrell (2001), support vector machine (SVM) Hearst, Dumais, Osuna, Platt, and

Scholkopf (1998), XGBoost (XG) T. Chen and Guestrin (2016) with 50 (XG-50), 100 (XG-100) and

500 (XG-500) iterations, random forest classifiers Breiman (2001), to model whether a test would

manifest performance regressions. In addition, we replicate Perphecy by performing the prediction

at the test level by considering the source code and code changes that are impacted by each test. We

compare our approach to Perphecy (baseline) in this research question.

To realistically evaluate our classifiers, we use our approach to predict performance-regression-prone

tests and update the classifiers for each commit as presented in Section 4.3.

We utilize four metrics to evaluate our classifiers’ performance, including precision, recall,

F-measure and AUC. Precision measures the correctness of our classifier. Precision refers to the

number of tests that were correctly labeled as performance-regression-prone divided by the total

number of tests that were labeled as performance-regression-prone by the classifier. Recall measures

the completeness of our classifier. Recall is defined as the number of tests that were correctly labeled

as performance-regression-prone by the classifier divided by the total number of tests with actual

performance regression. F-measure is the harmonic mean of precision and recall, which gives equal

weight to precision and recall. Shown in Table 4.4, our data is highly skewed since the majority

of the tests do not manifest performance regressions. Therefore, we exploit AUC which allows

68

us to measure the overall ability of our model to discriminate tests with performance regression

and without performance regression. The AUC is the area under the ROC curve which indicates

the performance of a binary classifier as its discrimination is varied Lobo, Jiménez-Valverde, and

Real (2008). The value of AUC ranges from 0 to 1, and a larger value for AUC indicates a high

discrimination in the prediction model.

Results. The results of using our classifiers to predict whether a test is performance-regression-prone

are shown in Table 4.5. Due to the limited space, we only present AUC of all classifiers while

presenting random forest and Perphecy with precision, recall and F-measure (F1 in Table 4.5).

The full details can be found in Appendix A. The results show that the best of our classifiers is

random forest, which achieves an average AUC of 0.85, 0.87 and 0.88 in Hadoop, Cassandra and

OpenJPA, respectively. Random forest classifiers achieve an average precision of 0.32, 0.3, 0.59 and

recall of 0.75, 0.75, 0.77 in Hadoop, Cassandra and OpenJPA, respectively. We find that although

Perphecy achieves a higher average recall than other models in Hadoop and Cassandra, Perphecy

only achieves an average precision of 0.08, 0.02, and 0.20 in Hadoop, Cassandra and OpenJPA,

respectively. When considering the F-measures, our approach out-performs Perphecy in predicting

performance regression with all the performance metrics of all subjects.

Our classifiers can accurately predict performance-regression-prone tests despite the fact

that they are rare. Table 4.4 shows low percentages of tests that actually have performance

regressions. For example, only 9% of the tests in Hadoop, 2% of the tests in Cassandra and 8%

of the tests in OpenJPA have performance regressions in response time. However, the precision in

predicting performance-regression-prone tests in response time is 0.3, 0.5 and 0.29, for Hadoop,

Cassandra and OpenJPA, respectively. With such a large improvement over the random classifier

in precision, our classifiers still provide a high recall (an average recall of 0.76).

Our classifiers have a similar AUC for all performance metrics. By examining the prediction

results with different performance metrics, we find that all the performance metrics have a similar

AUC. The majority of the AUC of our classifiers are over 0.8 only two classifiers have an AUC lower

than 0.8 (i.e., 0.79 in I/O write for OpenJPA). In general, response time and CPU usage always have

a high AUC value. Since response time and CPU usage are widely used performance metrics in

practice, such results advocate the usefulness of our approach.

69

Table 4.5: Results of using our approach to predict performance regressions with different
performance metrics, comparing with Perphecy. Bold values highlight the best predictors.

Hadoop
Random Forest Perphecy LR SVM XG-50 XG-100 XG-500

Pre. Recall F1 AUC Pre. Recall F1 AUC AUC AUC AUC AUC AUC
Res. time 0.30 0.78 0.43 0.87 0.08 0.94 0.14 0.51 0.69 0.84 0.83 0.83 0.83
Cpu 0.43 0.77 0.55 0.87 0.09 0.90 0.16 0.55 0.63 0.72 0.80 0.80 0.79
Memory 0.20 0.84 0.32 0.89 0.06 0.88 0.11 0.53 0.58 0.82 0.83 0.82 0.80
I/O Read 0.43 0.67 0.52 0.82 0.07 0.86 0.13 0.52 0.62 0.81 0.74 0.75 0.76
I/O Write 0.25 0.71 0.36 0.81 0.08 0.95 0.14 0.53 0.60 0.61 0.69 0.68 0.68

Average 0.32 0.75 0.44 0.85 0.08 0.91 0.14 0.53 0.62 0.76 0.78 0.78 0.77
Cassandra

Random Forest Perphecy LR SVM XG-50 XG-100 XG-500
Pre. Recall F1 AUC Pre. Recall F1 AUC AUC AUC AUC AUC AUC

Res. time 0.50 0.63 0.56 0.78 0.03 0.79 0.05 0.54 0.66 0.65 0.78 0.79 0.78
Cpu 0.27 0.86 0.41 0.90 0.03 0.63 0.07 0.60 0.60 0.72 0.80 0.81 0.82
Memory 0.27 0.84 0.40 0.95 0.02 0.56 0.04 0.62 0.70 0.68 0.91 0.90 0.90
I/O Read 0.31 0.68 0.42 0.86 0.02 0.38 0.04 0.73 0.62 0.64 0.82 0.81 0.79
I/O Write 0.15 0.76 0.25 0.87 0.02 0.65 0.03 0.59 0.60 0.70 0.83 0.83 0.79

Average 0.30 0.75 0.41 0.87 0.02 0.60 0.05 0.62 0.64 0.68 0.83 0.83 0.82
Openjpa

Random Forest Perphecy LR SVM XG-50 XG-100 XG-500
Pre. Recall F1 AUC Pre. Recall F1 AUC AUC AUC AUC AUC AUC

Res. time 0.29 0.85 0.43 0.92 0.09 0.80 0.16 0.60 0.67 0.60 0.90 0.90 0.89
Cpu 0.73 0.85 0.78 0.91 0.23 0.70 0.35 0.56 0.81 0.63 0.93 0.93 0.93
Memory 0.48 0.72 0.57 0.88 0.10 0.81 0.18 0.51 0.75 0.69 0.84 0.84 0.84
I/O Read 0.72 0.81 0.76 0.92 0.23 0.68 0.34 0.54 0.79 0.62 0.89 0.89 0.88
I/O Write 0.71 0.60 0.65 0.79 0.34 0.70 0.45 0.57 0.72 0.57 0.77 0.77 0.77
Average 0.59 0.77 0.64 0.88 0.20 0.74 0.30 0.56 0.75 0.62 0.87 0.87 0.86

Our random forest classifier can achieve high AUC values when predicting

performance-regression-prone tests. The precision and recall of the classifiers also

drastically outperform baseline classifiers.

RQ2: How cost-effective is the prioritization of performance-regression-prone tests?

Motivation. In RQ1, our results show that we can accurately predict the performance-regression-prone

tests. After the developers are notified by the prediction results, one still needs to actually exe-

cute the tests in order to review and address the performance regressions. However, performance

70

evaluation is a time and resource-consuming task T.-H. Chen, Shang, Hassan, et al. (2016). A

desired prediction result would predict performance-regression-prone tests while minimizing the

needed time to execute them. Therefore, in this research question, we want to factor in the cost

(performance testing time) that is associated with our prediction results.

Approach. First, we measure the actual performance testing time as a cost factor for every test in

every commit of our subject systems. By knowing the actual testing time and whether each test

actually manifests performance regression, we create an optimal model. In the optimal model, we

sort all the actual performance-regression-prone tests by increasing the cost, i.e., the shortest test

that manifests performance regression runs first. The optimal model is used as a baseline since it

represents the optimal scenario of executing the tests in real-life.

Afterwards, we examine the results of our classifiers from RQ1. We call this model Non-Cost-AWare

random forest model (NCAW). We sort all the tests ordered by decreasing the predicted probability

of being performance-regression-prone tests, without considering the cost of the tests.

Finally, we build a cost-aware prediction model by also considering the cost of the tests. Instead

of modelling a binary outcome of whether the test is performance-regression-prone, we use the cost

of the test to normalize the output. In particular, similar to Mende and Koschke (2010) and Kamei

et al. (2013), we also calculate Rd as

Rd(x) =
Y (x)

Cost(x)
(1)

where Y (x) is 1 if the test is performance-regression-prone and 0 otherwise. Cost(x) is the running

time of the test. We build random forest regression model to predict the cost-aware output Rd. We

call this model Cost-AWare random forest model (CAW). We then sort all the tests by decreasing the

predicted cost-aware output Rd.

To evaluate the cost-effectiveness of the cost-aware models, we first evaluate the successfully

predicted performance regression given a threshold of the cost. Prior research on bug predic-

tion finds that approximately 20% of the files with the highest faults contain at least 83% of

the faults Ostrand, Weyuker, and Bell (2005). Since the percentage of tests with performance

regression range from 2% to 26% (see Table 4.4), if we simply aim to examine 20% of the files,

71

Table 4.6: Summary of non-cost-aware and cost-aware models. The coverage values are calculated
when spending 5% of the total cost.

Hadoop Cassandra OpenJPA
NCAW CAW NCAW CAW NCAW CAW

Cov. Popt Cov. Popt Cov. Popt Cov. Popt Cov. Popt Cov. Popt
Res. time 0.44 0.87 0.53 0.87 0.63 0.75 0.63 0.79 0.31 0.90 0.45 0.93
CPU 0.45 0.83 0.43 0.86 0.54 0.89 0.54 0.90 0.21 0.93 0.24 0.95
Memory 0.48 0.86 0.53 0.89 0.44 0.94 0.42 0.94 0.26 0.85 0.32 0.88
I/O read 0.52 0.88 0.52 0.82 0.46 0.75 0.62 0.86 0.21 0.91 0.23 0.92
I/O write 0.31 0.81 0.41 0.81 0.59 0.83 0.65 0.88 0.12 0.80 0.17 0.84
Average 0.44 0.85 0.48 0.85 0.53 0.83 0.57 0.87 0.22 0.88 0.28 0.90

our approach would detect all the performance regressions. Therefore, to further demonstrate the

strength of our approach, we set the threshold at 5% by further limiting the amount of resources

that are available to execute the tests. We calculate the coverage as the percentage of predicted

performance-regression-prone tests to all performance-regression-prone tests when we just spend

5% of the total running time. Moreover, since setting different threshold values lead to different re-

sults, to find the best threshold value, we use the number of detected performance-regression-prone

test divided by the effort as a measure. We compute the measure by changing the effort from 5% to

90% in the steps of 5%. The result shows that 5% effort is the most cost-effective in Cassandra and

Hadoop, and 10% of the effort is the most cost-effective in OpenJPA.

Finally, we use cumulative lift charts Mende and Koschke (2009) to evaluate the prediction per-

formance of the model. An example of the cumulative lift chat is shown in Figure 4.3. We generate

a cumulative lift chart from the optimal model, the non-cost-aware model and the cost-aware model

(see Figure 4.3). The lines in the chart illustrate that by spending more time to execute tests, how

much more performance-regression-prone tests can be evaluated. The Popt is calculated by the size

of the area under each line (from cost-aware and non-cost-aware models), divided by the area under

the optimal line. Therefore, Popt has a range from 0 to 1. The closer the Popt to 1, the better our

model is, i.e., closer to the optimal execution prioritization of the tests.

Results. Our cost-aware models have high cost-effectiveness, out-perform Perphecy and are

close to the optimal model. Table 4.6 presents the cost-effectiveness of our prediction models. In

particular, by spending only 5% of cost executing all tests, our approach can help detect 12% to 65%

72

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
% of required cost

%
 o

f p
er

fo
rm

an
ce

−r
eg

re
ss

io
n−

pr
on

e
te

st
s

cost−aware model
optimal model
non−cost−aware model

Figure 4.3: Cumulative distribution function of the optimal model, CAW and NCAW models in the
performance counter of Response time in Hadoop.

73

of the performance-regression-prone tests. In addition, we observe that all our models have a high

Popt value. The average Popt values are always higher than 0.8, indicating a high cost-effectiveness

of our models. On the other hand, we find that our cost-aware models out-perform Perphecy. In

particular, Perphecy only has an average Popt value of 0.51 and by spending only 5% of cost,

Perphecy on average can only detect 15% of the performance-regression-prone tests.

When comparing the non-cost-aware and cost-aware models, we find that our cost-aware mod-

els can still provide improvements to the non-cost-aware model, even though it already is very

close to the optimal model. Popt values from the cost-aware models are always higher than the

non-cost-aware models in all the performance counters for all subject systems, only except one

case, i.e., I/O read in Hadoop. Similarly, when having a threshold of spending only 5% of cost for

executing all tests, the cost-aware models can detect on average more performance-regression-prone

tests than the non-cost-aware models. The non-cost-aware models have better results only in the

CPU usage for Hadoop and in the memory usage for Cassandra, when there is only small (2% and

2%) difference between the results of the two models. On the other hand, in all other cases, the

cost-aware models typically have an improvement over the non-cost-aware models.

Our classifiers are highly cost-effective. By building a cost-aware model, we can

further improve the cost-effectiveness of our classifiers.

RQ3: How much testing time can our approach save?

Motivation. The goal of our approach is to save developer’s time from running all the tests to

detect performance regressions. Therefore, in this research question we would like to answer to

what extend can developers benefit from our approach regarding to time-saving.

Approach. To measure the time saving from our approach, we start by calculating the time needed

without our approach. Since not all the tests are impacted by the code changes in each commit, one

may opt to only run the tests that are impacted by each commit (c.f., identifying impacted tests in

Section 4.4.2). Therefore, we measure the average time needed to run the tests impacted per commit

as a baseline.

74

Afterwards, we measure the average time needed per commit for only running the tests that are

predicted by our models in RQ1 to be performance-regression-prone. In particular, we calculate

the time needed for each model related to each performance metric (e.g., CPU usage). In prac-

tice, developers may decide to run the test if any of the performance metrics are predicted to be

performance-regression prone. Therefore, we also calculate the needed time to run the tests if at

least one performance metric is predicted to be performance-regression-prone.

Results. Our classifiers can considerably save time of performance tests. We find that even only

executing the impacted tests takes hours. Table 4.7 shows that, running all the impacted tests per

commit for Hadoop takes on average 324 minutes (5.4 hours). The long execution time of rigorous

performance evaluation makes it difficult to be carefully carried out in practice and hence confirms

the motivation of our work.

On the other hand, with our approach, the needed time can be reduced from hours down to a

matter of minutes. For example, the needed time to run predicted tests per commit in Cassandra is

as low as 2 to 3 minutes, which makes 97% to 95% time reduction comparing with running only the

impacted tests. Even if developers choose to run the test if any performance metric is predicted to

have regression, the needed test is 8 minutes, i.e., 87% time reduction.

Table 4.7: The average needed performance testing time (in minutes) for each commit.

Impacted
tests

Tests predicted by one model Tests predicted
by any modelRes. Time CPU Memory I/O read I/O write

Hadoop 324 26 35 18 23 30 91
Cassandra 61 2 3 3 3 2 8
OpenJPA 313 22 71 35 71 99 114

Our prediction drastically reduces the needed testing time comparing with running

only the tests that are impacted by the code changes in a commit.

RQ4: Can our approach detect the introduction of real-life performance issues?

Motivation. In order to demonstrate the practical impact of our approach, we would like to examine

whether the prediction results of our approach (cf. RQ1) can be used to assist in detecting the

75

introduction of performance issues.

Approach. The goal of this RQ is to study whether any test in the performance-issue introducing

commits are predicted by our approach and whether the predicted tests cover the code changes that

introduce the performance issue.

We first collect all the performance issues whose introduction is possible to be during our studied

period. In particular, we collect all performance issues that are reported after the first commit of

our study period from our subject systems. To collect the performance issues, we search a list

of keywords, such as performance and slow, on the content (like title, description and discussion)

of each issue. To avoid missing related keywords for performance issues, we identify all similar

keywords using Word2vec that is trained from Stack Overflow4. We manually examine every issue

that contains the keywords to ensure the issue is indeed a performance issue and we label each issue

with performance metrics (like CPU or memory) to indicate which performance metric can be used

to illustrate the performance issue.

However, not all of the performance issues are introduced during our studied period. Therefore,

we leverage an SZZ algorithm Śliwerski, Zimmermann, and Zeller (2005) to detect the inducing

commit of the performance issue. Study shows there may exist false positives results from SZZ

algorithms, i.e., the commit identified by SZZ is not a true issue inducing commit Williams and

Spacco (2008). Therefore, we manually check the results from SZZ algorithm to collect the list of

issue inducing commits and intersect the results with the commits in our studied period to obtain the

commits that indeed introduce a fixed performance issue in the future of the studied period. Finally,

for each of the performance issue introducing commits, examine our prediction results from RQ1

to know if our approach successfully identifies any test in the commit. In addition, we examine the

covered source code of the predicted tests to know if the covered source code is the location where

the performance issue was introduced.

Results. Our approach can be used to detect the introduction of real-life performance issues.

In total, we identify nine performance issues that are introduced during our studied period. Table 4.8

presents the fixing commit each performance issue, the inducing commits for each issue and their

corresponding performance metrics. Table 4.8 shows that six out of nine issues have at least one
4The complete list of the keywords are listed in our replication package

76

true positive prediction, which shows that our approach could be used to detect the introduction of

real-life performance issues. More importantly, we find that the code changes that introduce the

performance issues are covered by the predicted tests.

Similar to the findings from RQ1, we find that Perphecy although can detect two more real-life

bugs, it produces a large number of false-positive detection results. Shown in Table 4.8, 348

tests are false-positively detected as manifesting performance regressions. Such a large number

of false positive results may introduce much overhead in executing the tests and extra effort for the

practitioners to manually examine the results.

We manually examine the three issues that are not successfully predicted by our approach, and

we find that for YARN-4307, one of the predicted probability of having a run-time performance

regression is 0.49, which is almost at the threshold (0.5) of being considered as a positive prediction.

The other two issues (YARN-7102 and HDFS-12754) are rather complicated performance issues

(like deadlock), which are expected to be difficult to capture using our metrics. For the same bugs,

because of the tendency of having false-positive results, Perphecy predicts the test with almost

all metrics as positive as performance regressions. We also observe a high false positive rate for

OPENJPA-2665. We find that almost all the false positives are related to physical performance

metrics, such as CPU and Memory, while the description of the issue is only associated with its

impact on response time.

Our approach can be used to detect commits that introduce performance issues.

In addition, the predicted tests cover the code changes that introduce the issue.

Developers in practice cloud use our approach to prevent the introduction of

performance issues.

RQ5: What are the most important factors in determining performance-regression-prone

tests?

Motivation. The results in RQ1 show that our approach can successfully predict performance-regression-prone

tests at a given commit. By understanding the influential factors of such tests, we may further

77

Table 4.8: Results of using our approach and Perphecy to detect the introduction of real-life
performance issues.

Issue ID
Issue fixing

commit
Issue inducing

commit
Performance

metric
Predicted?

PerfJIT
#FP

PerfJIT
Predicted?
Perpechy

#FP Perpechy

Hadoop

YARN-4307 308d63f
e914220 Resp. time NO

0
NO

20
7af5d6b Resp. time NO NO

YARN-5889 5fb723b d9281fb
Resp. time YES

1
YES

7CPU NO YES
I/O Write YES YES

YARN-3388 444b2ea d9281fb
Resp. time YES

2
YES

13
I/O Write NO YES

YARN-7102 ff8378e 528b809 Resp. time NO 0 YES 3

YARN-4862 352cbaa 528b809
Resp. time NO

0
YES

2CPU YES YES
Memory NO YES

HDFS-12754 738d1a2 decf8a6
Resp. time NO

0
YES

3
CPU NO YES

Cassandra
CASSANDRA-12763 d73f45b b32a9e6 Resp. time YES 0 YES 2

CASSANDRA-13794 f93e6e3
1b36740 Resp. time YES

0
YES

116a7cb009 Resp. time YES YES
88d2ac4 Resp. time NO YES

OpenJPA
OPENJPA-2665 f0286a2 9fa9ef4 Resp. time YES 46 YES 182

understand the characteristics of performance-regression-prone tests. Such characteristics can be

leveraged by practitioners to proactively avoid introducing performance regressions. In particu-

lar, developers in practice often conduct code reviews to improve the quality of software, where

due to the complexity of performance regressions, it may be challenging to identify the perfor-

mance regressions based on reviewing source code. With the knowledge of the characteristics of

performance-regression-prone tests, one can use such information to prioritize effort during their

code review process to identify the potential performance regressions. For example, we may learn

that changes to loops provide an important influence on the introduction of performance regressions.

When doing code reviews, or even during the writing of source code, developers should be aware

that changes to loops may consider spending more effort on reviewing such code changes.

Approach. To address this RQ, we use the variable importance value that is calculated with the

random forest classifiers. The variable importance value is calculated by permuting the values of

the corresponding metric while keeping the values of the other metrics unchanged. The classifier

measures the impact of such a permutation-based on the classification error rate Li, Shang, Zou, and

78

E. Hassan (2017). We use the function importance of the randomForest R package to compute the

variable importance values.

To avoid bias caused by analyzing just one classifier and ensure a robust conclusion, for each

classifier that is built for each commit, we use bootstrap to resample the training data and build

random forest predictors with the bootstrap sample data. We repeat the above process 100 times

and collect 100 variable importance values for each change metric in each commit. In detail, we use

the function boot of the boot R package to perform bootstrap resampling.

Afterwards, each metric will have 100 variable importance values in each commit. However, the

difference of variable importance values between two metrics may not be statistically significant.

To find statistically distinct ranks of metrics, we perform Scott-Knott Effect Size Difference (ESD)

test Tantithamthavorn, McIntosh, Hassan, and Matsumoto (2017) to cluster the metrics based on

both their statistical significance and effect sizes. The Scott-Knott ESD test uses hierarchical cluster

analysis to partition different metrics into distinct groups. With this analysis, each metric has a rank

in the classifier for each commit. Since we build a classifier for every commit, we calculate the

average rank of a metric based on its ranks in all the classifiers.

Finally, to understand whether the value of the metric has a positive or negative relationship with

the existence of performance regressions, we compare the average metric values in the tests that are

with and without performance regression by performing a t-test. We consider that the metric has a

positive relationship with the existence of performance regressions if the average metric values in

the tests with the performance regression is higher than that without performance regression. We

only consider the positive or negative relationship if the p-value of the Student T-test von Storch

(1999) is smaller than 0.05.

Results. The result of the average rank of important metrics is shown in Table 4.9. Due to limited

space, we only show the top important metrics for the classifiers and models for each performance

metric. Each row in the table presents the average rank of the importance of a metric among the

three subject systems. The arrows in the table indicate whether each metric has a positive (up arrow)

or negative (down arrow) to the probability of having performance regressions.

Traditional metrics are more important than performance-related metrics in the predic-

tion of performance-regression-prone tests. Surprisingly, despite that our performance-related

79

Table 4.9: Average rank of the top important metrics in our classifiers. The up/down arrows indicate
whether the relationship is positive/negative.

Metric Response time CPU Memory I/O read I/O write
AGE 2.2 1.3 1.5 1.4 1.6
SOL 2.6 2.9 2.8 2.3 2.7
LT 3.6 3.3 2.9 2.9 3.1

REXP 4.0 2.5 2.4 3.0 3.7
NDEV 3.1 4.0 4.5 3.7 4.4
Entropy 2.9 4.0 3.3 3.8 3.7

Complexity 5.2 4.4 4.2 4.3 4.6
LA 4.6 4.0 4.4 4.7 4.4
LD 4.7 5.9 5.5 5.4 5.2

for chg 6.4 9.3 8.4 5.6 6.9

metrics are derived based on prior research (Alam et al., 2017; J. Chen & Shang, 2017; Costa et

al., 2017; Huang et al., 2014; L. Song & Lu, 2017) on software performance, we find that most of

the top important metrics are traditional metrics. In fact, there exists only one performance-related

metrics, i.e., for chg (changes to for loops) in the top metrics. Therefore, we try our approach based

with random forest classifiers based on only with transitional metrics and evaluate as RQ1. We find

that on average the AUC values of each classifier only decrease 0.01, 0.06 and 0.05 for Hadoop,

Cassandra and OpenJPA, respectively.

The history and size dimensions are more important than other dimensions in the tradi-

tional metrics. Metrics SOL and AGE are the two most important factors in the prediction model.

AGE has a negative relationship with performance regression, which implies that more recent and

frequent changes are more likely to introduce performance regression. Besides AGE, we also find

that metrics in the size (e.g., SOL) has a positive relationship with performance regressions, which

is also similar to prior research on commit-level defect predictions Kamei et al. (2013).

Changes to loops (for chg) is the most important factors in the performance-related metrics.

This indicates that there is a relationship between changing the operation of loop and the perfor-

mance regressions. For example, in commit #94a9a5d05 of Hadoop, developers added a for loop

into the method getUsers in the source files LeafQueue.java. The for loops adds an item to a queue

repetitively, leading to performance regressions in I/O read.
5https://github.com/apache/hadoop/commit/94a9a5d01464e6004f69054bdc308945d40db8e6

80

https://github.com/apache/hadoop/commit/94a9a5d01464e6004f69054bdc308945d40db8e6

We find that the traditional software metrics dominate the important factors in the

prediction of performance-regression-prone tests. On the other hand, changes to

loops are the only top important factors in the performance-related metrics.

4.6 Discussion

In this section, we discuss the learned lessons during the implementation of our approaches, the

limitation and future work of our approach and the generalizability of our study.

4.6.1 Traditional metrics are more important than performance-related metrics

In RQ5, we find that traditional metrics are more important than performance-related metrics,

when predicting performance-regression-prone tests. Such a result is unexpected since all our

performance-related metrics are derived by prior empirical study findings on performance bugs (Alam

et al., 2017; J. Chen & Shang, 2017; G. Jin et al., 2012). In order to understand why such metrics

do not have high importance when predicting performance-regression-prone tests, we manually

examine the tests that are not performance-regression-prone, while having a high value in any

performance-related metrics. We find the importance of the performance-related metrics often

depend on a specific workload, while such a workload may not exist in the tests.

For example, in commit #94a9a5d0 in Hadoop project, developers added a for loop into the

class LeafQueue.java, which produces a performance-related metric loop change. In our prediction

model, the two corresponding tests, TestCapacityScheduler.java and TestRMWebServicesCapaci-

tySched.java are predicted as performance-regression-prone tests. However, the actual tests are not

performance-regression-prone because the two tests do not execute the loop with a large number of

times, to demonstrate the regression.

81

4.6.2 Our approach out-performs Perphecy

In our evaluation, we compare our approach with Perphecy since it is the closest research

approach to ours. However, we find that Perphecy does not provide an accurate prediction in

our evaluation setting. In particular, we find that, Perphecy suffers badly from a low precision,

e.g., the precision of Perphecy in Hadoop and Cassandra is only 0.06 and 0.02. Although Per-

phecy has a relatively high recall, it may mean that Perphecy always tends to predict a test as

performance-regression-prone. In fact, we find that, for all the tests in our dataset, 61% to 92% of

them are predicted as performance-regression-prone by Perphecy. We consider the reason may be

that Perphecy only treats its metrics as boolean values based on a threshold. In addition, the tuning

strategy and the use of disjunctions to combine all metrics may cause more tests being predicted as

performance-regression-prone. On the other hand, our approach uses a much larger set of metrics

while depending on machine learning classifiers instead of simplifying metric values into a boolean

value to make predictions. In addition, our results in RQ5 show that most of the top influential

factors are rather traditional product and process software metrics. The information in these top

metrics is not captured in the indicators by Perphecy. The lack of such information may also cause

Perphecy’s lower precision in our study.

4.6.3 Limitation of our approach and future work

The main limitation of our approach is that our extracted metrics are all based on static code

analysis. When applying our approach to detect the introduction of real-file performance issues

in RQ4, we find that our approach fails to detect a few performance bugs with the complex root

causes such as deadlocks. By examining our extracted metrics and manually studying the details

of the performance bugs, we understand that our extracted metrics that are based on static code

analysis may not be able to capture the characteristics of these performance bugs. On the other hand,

performance bugs like deadlocks often occur with specific execution conditions, where dynamic

data that captures the interactions between procedures in executing the source code is crucial to the

detection and prediction of these bugs. Therefore, in order to improve our approach to detect such

complex performance bugs, we plan our future study by extracting dynamic information from the

82

test execution and extract more metrics to capture the interactions between procedures in tests.

4.6.4 Generalizability of our study

Although our approach is not designed for any programming language or any type of project,

there still exist some aspects that may influence the generalizability of our study.

Test coverage. Our approach depends on executing small-scale tests that are readily available in

the software system to detect performance regressions. If the source code or the code changes are

not covered by the tests, our approach cannot help in detecting the associated regressions. We find

that by measuring the method coverage by tests, our studied projects may not have high method

coverage. In particular, the method coverage of Hadoop, Cassandra and OpenJPA is only 13.64%,

24.82%, and 11.09%, respectively. However, since our approach works for each code commit, only

the changed methods need to be covered by the test. We find that for all the changed methods

in all commits, 67.97%, 53.3%, and 64.62% are covered by the tests in Hadoop, Cassandra and

OpenJPA, respectively. Such high coverage ensures the success of our approach. This also implies

that, in order to adopt our approach, practitioners may first evaluate whether the source code that

are likely to be changed is covered by tests.

The granularity of commits. Different projects and developers may follow different granularities

of making code commits. Some practitioners may stack a large amount of code changes in one

commit. In such a scenario, it is easier for our approach to do the prediction while on the other

hand, the prediction results may not be as beneficial to developers since they may still end up

with many code changes to investigate. On the other hand, one developer may commit very often,

leading to commits with very few changes in it. Since performance regression is often a result of

a combination of contributions from multiple sources, such small commits may isolate the impact,

making our approach not able to see the performance influence in each individual commit. In

our three studied projects, the average code churn per commit is 155, 170 and 182, for Hadoop,

Cassandra and OpenJPA, respectively. The granularities of the commits among the three projects

are rather similar, so as the accuracy of our approach on the three projects. However, future research

may perform in-depth investigation on the granularity of commits and the accuracy of our approach.

The quality of the test itself (e.g., test being flaky). Our approach depends on the tests to

83

evaluate the performance of the associated source code. However, if the test itself is written

with a sub-optimal quality, the results may be biased. For example, the test failures in the flaky

test may introduce noise and require extra running time to achieve the needed repetition. Recent

research Ding, Chen, and Shang (2020) discusses the reasons for tests not suitable for performance

evaluation, which can be leveraged to know how well another project can adopt our approach.

4.7 Threats to Validity

External validity. Due to the huge computing resources (133 machine days spent in our case

studies) needed for identifying performance regressions, we carry out our study on three subject

systems. All our three subject systems are implemented in Java. Hence, our findings might not be

suitable for other systems. Future studies may especially focus on commercial close source systems

with other languages (such as C++).

Internal validity. We use traditional metrics and performance-related metrics based on the findings

from prior research. We choose our classifiers, based on their wide usage in prior software engi-

neering research (Kabinna, Bezemer, Shang, Syer, & Hassan, 2018; Tantithamthavorn, McIntosh,

Hassan, Ihara, & Matsumoto, 2015), and typically provide a high accuracy in the modeling. There

may exist other metrics that we do not include in our study and other machine learning classifiers

may also achieve an accurate classification. Although our results have shown high (0.86 on average)

AUC values of our prediction models, adding more metrics or employing other classifiers by future

research may further improve the models.

We were only able to collect nine real-life performance issues in our RQ4. However, there can

be other performance issues that are introduced during our studied period while not yet being fixed

or reported. We could not evaluate our approach on the un-reported or un-fixed performance issues.

A long-term study by applying our approach in practice may address this threat.

Construct validity. When extracting performance-regression-prone tests, we execute each test 30

times repetitively to address the flakiness and unstableness of the test results. The more repetition,

the less that the testing results is biased. Future work may vary the number of repetitions to

complement our results. Due to the high cost of tests, we use the release to estimate the mapping

84

between code and test rather than creating such mapping for every commit. Such mapping might

not be perfect since code changes during the release may alter such mapping. Future research

can evaluate such an approach or investigate the use of other techniques to generate the mapping

between code and test.

The results of our approach are achieved without re-balancing the training data. To know

the impact of data re-balancing, we leveraged two re-balancing techniques, i.e., up-sampling and

SMOTE Chawla, Bowyer, Hall, and Kegelmeyer (2002). However, neither of the two techniques

can improve our prediction results. Similar findings have been reported in software defect predic-

tion (Tantithamthavorn, Hassan, & Matsumoto, 2018). In addition, we did not fine-tune the param-

eters of classifiers, while only running XGBoost with a different number of iterations. Although

practitioners find mainly the importance of iterations in XGBoost JAIN (2016), future work can

investigate the optimization of other parameters of the classifiers. When measuring the time-saving

in RQ3, we did not include the time needed to set up the performance measurement environment

and rebuilding models for each commit. By providing automated scripts, the environment set up

only takes seconds and only needs to be set up once. In addition, extracting metrics for the newly

detected tests and rebuilding models only negligible time (take less than one minute) in all the cases

in our study. We also examine the testing time needed for the initial 50 commits for each subject

system when cold start our approach without any historical data. The testing time for the initial 50

commits is 2,425 minutes, 2,257 minutes, and 13,099 minutes, respectively. However, such time is

only needed once to cold start our approach.

4.8 Conclusion

In this work, we propose an approach that automatically predicts whether a test would manifest

a performance regression given a code commit. The case study results show that our approach can

provide accurate prediction results, drastically outperforming a random classifier and being able to

detect the introduction of real-life performance issues. In particular, this study makes the following

contributions:

• To the best of our knowledge, our work is the first to predict performance-regression-prone

85

tests at the commit level.

• Our approach can provide accurate prediction results, and save testing time, easing the adop-

tion of the approach in practice.

• The important factors identified in our case study can be leveraged by developers to proac-

tively avoid introducing performance regressions.

86

Chapter 5

Can we predict whether a configuration

option manifests performance variation?

Maintaining a good performance of a software system is a primordial task when evolving a

software system. The performance regression issues are among the dominant problems that large

software systems face. In addition, these large systems tend to be highly configurable, which allows

users to change the behaviour of these systems by simply altering the values of certain configuration

options. However, such flexibility comes with a cost. Such software systems suffer throughout their

evolution from what we refer to as “Inconsistent Option Performance Variation” (IoPV). An IoPV

indicates, for a given commit, that the performance regression or improvement of different values

of the same configuration option is inconsistent compared to the prior commit. For instance, a

new change might not suffer from any performance regression under the default configuration (i.e.,

when all the options are set to their default values), while altering one option’s value manifests

a regression, which we refer to as a hidden regression as it is not manifested under the default

configuration. Similarly, when developers improve the performance of their systems, performance

regression might be manifested under a subset of the existing configurations. Unfortunately, such

hidden regressions are harmful as they can go unseen to the production environment. In this study,

we first quantify how prevalent (in)consistent performance regression or improvement is among

the values of an option. In particular, we study over 803 Hadoop and 502 Cassandra commits,

87

for which we execute a total of 4,902 and 4,197 tests, respectively, amounting to 12,536 machine

hours of testing. We observe that IoPV is a common problem that is difficult to manually predict.

69% and 93% of the Hadoop and Cassandra commits have at least one configuration that hides

a performance regression. Worse, most of the commits have different options or tests leading to

IoPV and hiding performance regressions. Therefore, we propose a prediction model that identifies

whether a given combination of commit, test, and option (CTO) manifests an IoPV. Our evaluation

for different models show that random forest is the best performing classifier, with a median AUC

of 0.91 and 0.82 for Hadoop and Cassandra, respectively. Our work defines and provides scientific

evidence about the IoPV problem and its prevalence, which can be explored by future work. In

addition, we provide an initial machine learning model for predicting IoPV.

5.1 Introduction

Software systems are increasingly evolving in their size and complexity. Large scale software

systems, such as Amazon, Google, and Facebook tend to deal with a high operation workload (e.g.,

millions of active users), which is complicated the complexity and the continuous evolution of such

systems. Such systems usually report more performance bugs than feature-related ones Weyuker

and Vokolos (2000). Performance assurance activities are an essential part of the release cycle of

such large-scale software systems.

On the other hand, modern large-scale software systems tend to have a large number of con-

figuration options, which can hide performance issues. These options are used to customize the

behaviour of a software system without changing its source code. Although these options add

flexibility to a software system, they make testing a software performance a challenging task. For

example, in theory, one has to run 210 tests for a software system with just 10 boolean configuration

options, while a highly configurable software system such as Hadoop can have as many as 365

available options Sayagh et al. (2018). While there are constraints between configuration options,

bringing down the total number of configurations in practice, this still amounts to a too large set of

configurations to test exhaustively, especially for (long-running) performance tests.

A large body of research proposed and evaluated approaches that detect performance issues (Foo

88

Performance metric

C1 C2

V1

V2

(a)

Performance metric

C1 C2

V1

V2
𝑎

𝑏 V1

V2

(b)

Performance metric

C1 C2

V1

V2𝑎
𝑏

V1

V2

(c)

Performance metric

C1 C2

V1

V2𝑎

𝑏
V1

V2

(d)

Figure 5.1: The definition of IoPV and how different is it from the traditional way of comparing
the performance of two values for the same configuration option: (a) Approaches that do not
consider the historical evaluation, (b) An option with an inconsistent performance variation (a-b),
(c) An option with a consistent performance variation (a-b), and (d) An option with an inconsistent
performance variation (a-b). V1 and V2 are two different values of the same configuration option.
C1 and C2 are two revisions. A smaller performance metric value (e.g., CPU usage) indicates a
better performance.

et al., 2010, 2015; T. H. Nguyen et al., 2012; T. H. D. Nguyen et al., 2011, 2014). Prior studies also

proposed approaches to test the performance of highly configurable software systems (Halin et al.,

2019; Saxena et al., 2000; Wu & Wang, 2010). However, existing approaches aimed at a late stage

of the software release cycle, i.e., after the build and deployment of new releases. Nevertheless,

identifying performance issues at earlier stages, especially at the development stage, can minimize

the amount of resources required for identifying and fixing a performance regression. In fact, going

through the whole build, testing, and packaging process to find the root cause of a performance

regression is time-consuming.

Traditionally, prior work studied the difference in system performance caused by different

values of the same option, without considering how the performance impact of an option evolve due

to code changes Sayagh et al. (2018). For instance, traditional approaches compare different values

of a configuration option based on their raw performances values (Diao et al., 2003; Raghavachari

et al., 2003; Siegmund et al., 2015), as illustrated in Figure 5.1a. However, such a comparison is

subjective as the option’s value V2 with a worse performance might not necessarily be problematic;

it might, as an example, just enables the execution of some extra features. Instead, even if an

option’s value has a good performance compared to other values, it might be significantly different

when compared to the performance of the same option value in the prior commit, as shown in the

example in Figure 5.1b. Although the V2 value has a worse performance, it is much better than

the prior commit. Figure 5.1c shows that both values do not have a large inconsistent performance

89

variation. On the opposite side, an option’s value that has a better performance compared to another

value of the same option might be facing a large performance regression compared to the prior

commit, as shown in the example of Figure 5.1d. V1 has a better performance compared to V2, but

V1 faces a severe performance regression.

Therefore, different values of an option can have an inconsistent variation in terms of perfor-

mance compared to the prior commit. This happens when one or more values of an option exhibit

a significant difference compared to the prior release. We refer to such an issue as Inconsistent

Options Performance Variation (a.k.a, IoPV). The IoPV might be problematic as it can hide a

performance regression that is manifested under one configuration option. Similarly, when a default

configuration shows an improvement, altering one option’s value may indicate no performance

improvement or even a performance regression. Such regressions can unfortunately go as unseen to

the production environment.

In this work, we perform a case study on two large-scale open-source software systems: Hadoop

and Cassandra. We first conduct a preliminary study to quantify the prevalence of the IoPV problem.

We observe that 81% of the commits have at least one option manifesting an IoPV issue. We also

observe that manually identifying such issues is challenging, as commits do not share the same

options that manifest an IoPV. That motivates us to propose an automated model that predicts if

the combination of a Commit, a Test, and an Option (CTO) would exhibit an IoPV problem. We

evaluate our prediction model using the following two research questions:

• RQ1. How accurately can we predict IoPV problems?

Our prediction model reaches an AUC up to 0.93 and 0.90 for predicting IoPV for Hadoop

and Cassandra, respectively. Besides, we observe that random forest is the most performing

model for four and three out of five performance measures (i.e., response time, CPU, memory,

I/O Read, and I/O write) for Cassandra and Hadoop, respectively.

• RQ2. What are the most important metrics for predicting IoPV problems?

We observe that all four dimensions of metrics considered in our study, namely the code

structure, code change, code token, and configuration options metrics, have a statistically

significant impact in predicting IoPV. The dimensions that are related to the configuration

90

Table 5.1: Our definition of configuration, option, and value

Term Definition Example
Option A typed, configurable item that allows

users to set different values.
A

Value A specific assignment of a value for an
option.

A = 1

Configuration An assignment of values to all options by a
user.

A = 1;B = 2

options and the tokens of the changed code are the most important dimensions for both case

studies.

Organization. The rest of this work is organized as follows: Section 5.2 provides the background

information and defines IoPV. Section 5.7 provides prior work related to our work. Section 5.3

discusses our approach to conducting experiments and collecting data. Sections 5.4 and 5.5 present

our results. Section 5.6 discusses the threats to the validity o four findings. Finally, Section 5.8

concludes the work.

5.2 Background

Software configuration is a mechanism used to customize the behaviour of a software system

without changing the source code. The configuration options are often stored in configuration files

as a set of key - value pairs, where the key represents an option’s name and the value represents a

default or user-chosen value for that option. We define a configuration as one particular assignment

of a value to all existing options. Table 5.1 lists the definition of these terms. For example, A=1

and B=2 is one possible configuration for a software system with the two integer options A and

B. Configuration options enable users to adapt the execution of their software systems by simply

modifying the values of certain configuration options, without re-compilation. For example, a user

can change the directory that stores the cache for Cassandra by changing the value of the saved -

caches directory configuration option.

Although configuration introduces large flexibility for users, considering all the possible con-

figurations during testing is impossible. A software system with only three boolean configuration

91

options requires testing 23 configurations. In fact, configuration problems are among the dominant

problems in software engineering (D. Jin et al., 2014; Sayagh et al., 2018).

In particular, a software system can suffer from what we refer to as Inconsistent Options

Performance Variation (a.k.a, IoPV). This occurs when, for a given commit C, the performance

of a subset of an option’s values evolved differently relative to their performance in the commit

prior to C. Considering the example in Figure 5.1, when comparing the raw performance of the two

option values V1 and V2 (Figure 5.1a), we observe that V1 shows a better performance than V2.

However, that might not be problematic as V2 might just enable an extra feature, such as logging a

transaction. In fact, in Figure 5.1b the performance of V2 is improved compared to the prior commit,

while that improvement does not manifest under option value V1. Similarly, Figure 5.1d shows that

even if V2 does not show any significant performance variation from the prior commit, V1 suffers

from a performance regression. A performance variation is calculated as the difference between the

performance variation of each option’s value after and before each commit, which is illustrated in

Figure 5.1 by “a− b”.

5.3 Data Collection

In this section, we present our subject systems and our approach to collect performance regres-

sions and configuration data.

5.3.1 Subject Systems

In this work, we consider Hadoop and Cassandra as two subject systems. Hadoop White

(2009) is a distributed system infrastructure, whereas Cassandra is a distributed NoSQL database

management system. We choose these two subject systems since their performance is critical for

the users and they have been studied in prior research on mining performance data (T.-H. Chen et

al., 2014; Syer et al., 2017). In addition, they have a large number of configuration options. The

overview of our subject systems is shown in Table 5.2.

92

Table 5.2: Our studied dataset.

Subjects
Studied
Releases

Last release # Commits
Configuration

Options
Tests

Hadoop 7 2.7.3 803 365 1,853
Cassandra 5 3.0.15 502 162 369

5.3.2 Data Gathering

To answer our research questions, we followed the approach that is summarized in Figure 5.2

and discussed below.

Git 1. Filtering
commits

Code
commit

3. Identifying
impacted tests

5. Evaluating
performance

Performance
evaluation

results

6. Statistical
analyses on
performance

evaluation results

For each test and each option

Identified tests
with performance

regression
regarding options

Repository process data

Code commit
and options

with impacted
tests

2. Extracting
Options

Option
Documentation Options

with values

4. Identifying
impacted
options

7. Discretizing
CTO into IoPV
and non IoPV

IoPV data

Figure 5.2: An overview of our approach to collect data.

Filtering Commits

Since we study performance variation across different versions of a software system, we only

consider source code related changes. In particular, we filter out commits without any java source

code changes. Furthermore, developers can commit multiple changes toward fixing the same issue,

which is defined in the issue tracking system. As Hadoop and Cassandra use JIRA as a tracking

system and have an explicit mapping between commits and issues, we use the issue id mentioned in

the commit messages to identify the commits that belong to the same issue. If multiple commits are

associated with the same issue, we only consider the last commit. This is important as developers

can initially introduce a regression but then fix it before releasing the code changes related to the

issue.

93

Extracting Options

In the second step, we extract configuration options and their corresponding values for each

subject system (i.e., 355 and 162 configuration options in the last studied releases of Hadoop and

Cassandra, respectively). We obtain option names and default values by crawling the documen-

tation of Hadoop1 and Cassandra2 and extracting the configuration file that is shipped with the

project’s releases. Finally, we manually classified the extracted options based on their expected data

types (e.g., Boolean when the default value is TRUE or FALSE).

Identifying Impacted Tests

We automatically create a mapping between the changed source code in each commit and the

existing unit tests. We derive such commit-test mapping based on the automatically generated

method-level code coverage results, similarly to our prior study J. Chen et al. (2020). For each com-

mit, we automatically add logging instrumentation to each method, which will print log messages

that indicate the execution of the method at runtime3. We then run each test for the commit. A

test is considered impacted by the commit if any instrumented logging is outputted. Afterwards, we

only run the tests that execute the changed source code for a given commit since executing all the

existing tests of a software system for each commit and each possible configuration is practically

infeasible. In addition, running those tests that are not impacted by the code change of a commit is

not likely to detect performance variations (regressions or improvements under some values of an

option).

Identifying Impacted Options

Similarly to identifying which tests to run for a given commit, we also select which configuration

options to change when running each of these last tests. To do so, we first identify how Hadoop and

Cassandra access the value of a configuration option by searching for option names in the source
1https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/

core-default.xml
2https://cassandra.apache.org/doc/latest/configuration
3Note that the instrumented versions are only used to identify impacted tests and options, and they are not used in our

actual performance valuation.

94

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml
https://cassandra.apache.org/doc/latest/configuration

code files. We found that all the options are accessible via getters that are defined in one class

provider (e.g., DatabaseDescriptor.java4 to access Cassandra’s options). Second, we identify the

methods that invoke these configuration options’ getters. Finally, we dynamically identify which of

these methods are executed when running a test similar to the approach discussed in Section 5.3.2. If

any method that can access an option is executed, the option is considered impacted by the commit.

Evaluating Performance

After obtaining which tests and which options are impacted by each commit, we exercise the

test on each commit and its parent commit (i.e., the previous commit) to evaluate their respective

performances. We first execute each test with all the configuration options set at their default values.

Then we alter the value of one configuration option at a time. For the configuration options with

boolean values, we alter the configuration option to the value that is not the default. For example, if

the default value is TRUE, we would alter the value to be FALSE. For the numeric type option, we

alter the configuration option to the value of the double of the default value and half of the default

value. For example, if a configuration option has a default value of 100, we would run the test with

altering the value to 200 and then run the same test with altering the value to 50. We alter each of

the possible values for the enumerate type options.

Our performance evaluation environment is based on Google Compute Engine 5 with 8GB

memory and 16 cores CPU. In order to generate statistically rigorous performance results, we

adopt the practice of repetitive measurements T.-H. Chen, Shang, Hassan, et al. (2016) to evaluate

performance. Conservatively, we executed each test 30 times independently, which is larger than

prior work that repeats a test only 5 to 20 times (Laaber & Leitner, 2018; Laaber et al., 2019; Leitner

& Cito, 2016).

To measure the performance that is associated with each test, we use a performance monitoring

tool named psutil 6 (Python system and process utilities). Psutil can capture detailed performance

metrics and has been widely used in prior research (J. Chen & Shang, 2017; Yao et al., 2018). We
4https://github.com/apache/cassandra/blob/trunk/src/java/org/apache/cassandra/

config/DatabaseDescriptor.java
5https://cloud.google.com/compute
6https://github.com/giampaolo/psutil

95

https://github.com/apache/cassandra/blob/trunk/src/java/org/apache/cassandra/config/DatabaseDescriptor.java
https://github.com/apache/cassandra/blob/trunk/src/java/org/apache/cassandra/config/DatabaseDescriptor.java
https://cloud.google.com/compute
https://github.com/giampaolo/psutil

collect both domain level and physical level performance metrics. In our execution, we collect five

performance metrics during the execution, including response time, CPU usage, memory usage, I/O

read and I/O write. The entire data collection process took around 12,536 machine-hours.

Statistical Analyses on Performance Evaluation Results

To identify the IoPV, we statistically compare the performance of a given test and a configuration

option value before and after each commit using the Mann-Whitney U test Nachar et al. (2008) (i.e.,

α = 0.05) and Cliff's delta Becker (2000) that measures the magnitude of performance regressions.

We choose Mann-Whitney U test since it does not have any assumption on the distribution of the

data. Researchers have shown that reporting only the statistical significance may lead to erroneous

results (i.e., if the sample size is very large, p-value can indicate statistical significance even if the

difference is trivial). Thus, we also use Cliff's delta to quantify the magnitude of the differences

(a.k.a., effect sizes). Cliff's delta measures the effect size statistically and has been used in prior

engineering studies (Kitchenham et al., 2002; Li, Chen, Shang, & Hassan, 2018; Liao et al., 2020).

Cliff's delta ranges from -1 to +1, where a value of 0 indicates two identical distributions. Therefore,

each commit, test, and option’s value has a Cliff's delta value. We then calculate the differences

between the maximum and minimum Cliff's delta for an option’s different values, which we used

later on to discretize a commit, test, and option as an IoPV or a non-IoPV, as discussed in the

following paragraph.

We also measure whether a test manifesting a performance regression when the value of the

effect size is positive and indicates medium (0.33 < Cliff's delta 6 0.474) or large (0.474 <Cliff's

delta) magnitude. On the other hand, we consider a test manifesting a performance improvement if

the value of the effect size is negative and indicates medium (−0.33 < Cliff's delta 6 −0.474) or

large (−0.474 >Cliff's delta) magnitude.

Note that we consider this statistical analysis for each performance metric (i.e., response time,

CPU usage, memory usage, I/O read and I/O write) separately. For example, a commit may show a

CPU regression or improvement, but does not show any differences for the response time.

96

0

5

10

15

20

25

0.0 0.5 1.0 1.5 2.0

(a) Res. time

0

1

2

3

0.0 0.5 1.0 1.5 2.0

(b) CPU

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

(c) Memory

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

(d) I/O read

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0

(e) I/O write

Figure 5.3: The automatically obtained threshold for splitting option variation into IoPV and
non-IoPV groups for Hadoop.

Discretizing CTO into IoPV and non IoPV

In the final step, we categorize each commit, test, and option (CTO) into a IoPV or a non IoPV

based on an automatically determined threshold. Our intuition is that the maximum difference

values would be concentrated in either small values (i.e., when adjusting an option does not make

a difference) or large values (i.e., when adjusting an option does make a difference), which is

demonstrated in Figure 5.1. Specifically, we use Ckmeans.1d.dp J. Song (2016), a one-dimensional

clustering method, to find a threshold that separates the maximum difference values into two groups,

i.e., IoPV and a non-IoPV (see Figure 5.3 and 5.4). Note that the option variation range between 0

when there is no variation and 2 when the effect size (c.f. Section 5.3.2) is 1 for one option value

and -1 for another value of the same option. Most of the automatically obtained thresholds are close

to 1. That indicates, as an example, that one option value might show a large performance effect size

compared to the prior commit, while another value for the same option does not show any difference

from the prior commit (effect size equals to 0). A second example is when one option’s value shows

a large performance improvement over the prior commit (effect size equals to -1), when another

value of the same option does not show any statistically significant difference (effect size equals to

0).

97

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0

(a) Res. time

0.0

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0

(b) CPU

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

(c) Memory

0.0

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0

(d) I/O read

0.0

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0

(e) I/O write

Figure 5.4: The automatically obtained threshold for splitting option variation into IoPV and
non-IoPV groups for Cassandra.

5.4 Preliminary Study: Quantifying the Prevalence of IoPV and the

Challenge of Identifying IoPV

This preliminary study will shed light on the problem of IoPV, which can be further explored

by future work. We quantify, through this preliminary study, the existence of the IoPV problem in

large and highly configurable software systems, as well as how difficult is it to identify the IoPV.

This preliminary analysis will also motivate the need for an approach that automatically identifies

the IoPV. In particular, we address the following preliminary research questions:

PQ1: How common are IoPV issues?

PQ2: How difficult is it to manually identify IoPV issues?

PQ1. How common are IoPV issues?

Motivation

The goal of this preliminary research question is to quantify and provide scientific evidence

on how often a configuration option can suffer from the IoPV problem. While a new code change

might not show any performance regression under the default configuration, another configuration

can hide a performance regression that can go as unseen to the production environment. This is

an important problem as performance issues often lead to serious monetary losses7. similarly, a

configuration improvement might not be manifested under all the configurations.
7https://www.eweek.com/networking/it-outages-cause-businesses-26.5-billion-in

-lost-revenue-each-year-survey

98

https://www.eweek.com/networking/it-outages-cause-businesses-26.5-billion-in-lost-revenue-each-year-survey
https://www.eweek.com/networking/it-outages-cause-businesses-26.5-billion-in-lost-revenue-each-year-survey

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

I o P V n o n −I o P V0.
0

0.
4

0.
8

(a) R es. ti m e

I o P V n o n −I o P V0.
0

0.
4

0.
8

(b) C P U

I o P V n o n −I o P V0.
0

0.
4

0.
8

(c) M e m or y

●●

●●

●

●●

●

●

●

I o P V n o n −I o P V0.
0

0.
4

0.
8

(d) I/ O r e a d

I o P V n o n −I o P V0.
0

0.
4

0.
8

(e) I/ O writ e

Fi g ur e 5. 5: P er c e nt a g e of I o P V f or e a c h c o m mit of H a d o o p .

A p p r o a c h

T o q u a ntif y t h e pr e v al e n c e of I o P V, w e f oll o w e d t h e a p pr o a c h dis c uss e d i n S e cti o n 5. 3 t o

c oll e ct t h e p erf or m a n c e d at a. I n p arti c ul ar, w e first c oll e ct p erf or m a n c e m e as ur e m e nts f or e a c h

c o m mit, t est, a n d o pti o n (w hi c h w e r ef er t o as C T O) a n d l a b el e a c h C T O as I o P V or a n o n I o P V.

T h e n, w e i d e ntif y f or e a c h c o m mit a n d u nit t est t h e n u m b er of c o n fi g ur ati o ns u n d er w hi c h t h e

p erf or m a n c e is st atisti c all y si g ni fi c a ntl y w ors e (a k a, p erf or m a n c e r e gr essi o n) or b ett er (a k a, p erf or-

m a n c e i m pr o v e m e nt) t h a n t h e p erf or m a n c e of t h e s a m e t est a n d c o n fi g ur ati o n i n t h e pri or c o m mit.

Fi n all y, w e q u a ntif y f or e a c h c o m mit t h e n u m b er of t ests t h at s h o w a p erf or m a n c e r e gr essi o n or a

p erf or m a n c e i m pr o v e m e nt u n d er j ust a s u bs et of t h e e xisti n g c o n fi g ur ati o ns. I n t h e st u di e d H a d o o p

a n d C ass a n dr a r el e as es, t h er e ar e 4, 9 0 2 a n d 4, 1 9 7 C T O , r es p e cti v el y.

R es ult

T h e I o P V is a c o m m o n p r o bl e m, as 6 1 % a n d 9 1 % of o u r st u di e d C T O i n H a d o o p a n d C as-

s a n dr a s uff e r f r o m t h e I o P V p r o bl e m. I n a d diti o n, e a c h H a d o o p a n d C ass a n dr a c o m mit h as a

m e di a n p er c e nt a g e of 4 3 % a n d 9 6 % of t h e t ests a n d o pti o ns t h at m a nif est at l e ast o n e I o P V, as

f urt h er d et ail e d i n Fi g ur es 5. 5 a n d 5. 6 . Alt h o u g h o nl y a s m all p er c e nt a g e of H a d o o p t ests a n d

o pti o ns s uff er fr o m a n I o P V i n t er ms of r es p o ns e ti m e, t h e ot h er p erf or m a n c e m etri cs s h o w a l ar g e

p er c e nt a g e of t ests a n d o pti o ns t h at s uff er fr o m I o P V, as s h o w n i n Fi g ur e 5. 5 . O n t h e ot h er h a n d,

t h e p er c e nt a g e of t ests a n d o pti o ns t h at s uff er fr o m a n I o P V is l ar g er t h a n t h e t ests a n d o pti o ns t h at

d o n ot f a c e a n I o P V f or C ass a n dr a a cr oss all t h e p erf or m a n c e m etri cs, as s h o w n i n Fi g ur e 5. 6 .

2 4 % a n d 5 4 % of t h e C T O i n H a d o o p a n d C ass a n dr a , r es p e cti v el y, s h o w a p erf or m a n c e r e-

gr essi o n o n at l e ast o n e p erf or m a n c e m e as ur e w h e n t h e d ef a ult c o n fi g ur ati o n d o es n ot s h o w a n y

9 9

I o P V n o n −I o P V0.
0

0.
4

0.
8

(a) R es. ti m e

I o P V n o n −I o P V0.
0

0.
4

0.
8

(b) C P U

I o P V n o n −I o P V0.
0

0.
4

0.
8

(c) M e m or y

●

●

I o P V n o n −I o P V0.
0

0.
4

0.
8

(d) I/ O r e a d

I o P V n o n −I o P V0.
0

0.
4

0.
8

(e) I/ O writ e

Fi g ur e 5. 6: P er c e nt a g e of I o P V f or e a c h c o m mit of C ass a n dr a .

p erf or m a n c e r e gr essi o n. 6 8 % a n d 8 9 % of o ur st u di e d c o m mits i n H a d o o p a n d C ass a n dr a h a v e

at l e ast o n e C T O t h at s h o ws a p erf or m a n c e r e gr essi o n u n d er o n e n o n- d ef a ult c o n fi g ur ati o n w hil e

s h o wi n g n o r e gr essi o n u n d er t h e d ef a ult c o n fi g ur ati o n, w hi c h i n di c at es t h at h a vi n g a hi d d e n p er-

f or m a n c e r e gr essi o n is c o m m o n. F or i nst a n c e, w e o bs er v e a p erf or m a n c e r e gr essi o n i n t er ms of

r es p o ns e ti m e o n 4 2 a n d 1, 0 2 3 o ut of 4, 9 0 2 a n d 4, 1 9 7 H a d o o p a n d C ass a n dr a C T O , r es p e cti v el y,

w h e n t h e d ef a ult c o n fi g ur ati o n d o es n ot s h o w a n y r e gr essi o n, as s h o w n i n Ta bl e 5. 3 . As s h o w n i n

t h e s a m e Ta bl e, t h e p erf or m a n c e m e as ur e t h at s uff ers t h e m ost fr o m t h e I o P V pr o bl e m ar e t h e I/ O

writ e a n d C P U m e as ur es. I n a d diti o n, t h es e ar e n ot mi n or r e gr essi o n diff er e n c es, as 7 8 % of t h e

r e gr essi o ns ar e l ar g e b as e d o n o ur eff e ct si z e a n al ysis.

1 4 % a n d 2 0 % of t h e C T O i n H a d o o p a n d C ass a n dr a s h o w a p erf or m a n c e r e gr essi o n w h e n t h e

d ef a ult c o n fi g ur ati o n s h o ws a p erf or m a n c e i m pr o v e m e nt. T h er ef or e, i m pr o vi n g t h e p erf or m a n c e

of a s yst e m s h o ul d c o nsi d er diff er e nt c o n fi g ur ati o ns. F or e x a m pl e, 4 3 9 a n d 5 9 4 H a d o o p a n d

C ass a n dr a C T O s h o w a C P U p erf or m a n c e r e gr essi o n w h e n t h e d ef a ult c o n fi g ur ati o n s h o ws a n

i m pr o v e m e nt, as s h o w n i n Ta bl e 5. 4 . T his pr o bl e m o c c urs f or all of t h e st u di e d p erf or m a n c e

m e as ur es. Si mil arl y t o o ur l ast fi n di n g, 5 8 % a n d 6 5 % of t h e c o m mits i n H a d o o p a n d C ass a n dr a ,

a n d a m e di a n of 1 0 % a n d 1 4 % of C T O p er c o m mit i n H a d o o p a n d C ass a n dr a ar e i m p a ct e d b y s u c h

a pr o bl e m.

N ot e t h at w e als o o bs er v e c as es f or w hi c h a n o pti o n m a nif ests a r e gr essi o n u n d er t h e d ef a ult

v al u e, b ut a n o n-r e gr essi o n or e v e n a n i m pr o v e m e nt u n d er ot h er v al u es of t h e s a m e o pti o n, as s h o w n

i n Ta bl e 5. 5 . 2 5 % a n d 3 4 % of t h e C T O i n H a d o o p a n d C ass a n dr a h a v e p erf or m a n c e r e gr essi o n

u n d er d ef a ult v al u e b ut n o n-r e gr essi o n u n d er ot h er v al u es.

1 0 0

Table 5.3: Number of CTO with no regression under the default option value but with regression
under other option values. Medium (large) means the effect size Cliff's delta of performance
regression is medium (large).

subject #CTO
Response time CPU Memory I/O read I/O write
large medium large medium large medium large medium large medium

Hadoop 4,902 24 18 517 84 208 214 208 214 528 98
Cassandra 4,197 600 423 1,094 352 788 404 1,033 363 921 326

Table 5.4: Number of CTO with improvement under the default option value but with regression
under other option values.

subject #CTO
Response time CPU Memory I/O read I/O write
large medium large medium large medium large medium large medium

Hadoop 4,902 4 3 425 14 102 36 170 30 426 46
Cassandra 4,197 122 53 450 95 220 52 412 93 327 74

PQ2. How difficult is it to manually identify IoPV issues?

Motivation

The goal of this preliminary question is to understand how difficult the manual identification of

IoPV (i.e., identification of IoPV without running the tests) is. For instance, the higher the number

of options that manifest an IoPV in a large number of commits and tests, the more difficult the

identification of IoPV is, as it indicates that an IoPV can occur in an unexpected way and any option

can be responsible for such a problem. On the other hand, the lower the number of options that

suffer from an IoPV, the easiest it is to test all of these IoPV responsible options.

Approach

To investigate the difficulty of identifying an IoPV, we calculate the intersection of the <test,

option, IoPV> triplets between each pair of commits using the Jaccard similarity defined as follows:

J(C1, C2) =
|CTOC1 ∩ CTOC2|
|CTOC1 ∪ CTOC2|

(2)

where C1 and C2 refer to every pair of commits (both consecutive and non-consecutive commits).

|CTOC1 ∩ CTOC2| is the number of CTO that share the same <test, option, IoPV > (i.e., the

intersection). |CTOC1 ∪ CTOC2| is the total number of unique <test, option, IoPV > in commits

101

Table 5.5: Number of CTO with regression under the default option value and
non-regression/improvement under other values.

subject #CTO
Response time CPU Memory I/O read I/O write
large medium large medium large medium large medium large medium

Hadoop 4,902 17 9 431 60 128 200 228 64 441 86
Cassandra 4,197 236 222 592 298 314 229 553 264 439 229

Table 5.6: Example of Jaccard similarity between each pair of commits. The two commits share
two of the five unique <test, option, IoPV > triplets. Thus the Jaccard similarity is 2/5 = 0.4.

Commit Test Configuration Option IoPV

commit1
test 1 option a 1
test 2 option a 0
test 2 option b 0

commit2

test 1 option a 1
test 2 option a 0
test 2 option b 1
test 3 option a 0

C1 and C2 (i.e., the union). The Jaccard distance ranges between 0 and 1, where a value of 1 means

that the pair of commits share the same <test, option, IoPV >, while 0 indicates that the pair of

commits does not share any <test, option, IoPV > triplet. For example, in Table 5.6, there are three

CTO in Commit1 and four CTO in Commit2. The number of the intersection of |CTOC1∩CTOC2|

is 2, and the union of |CTOC1 ∪ CTOC2| is 5. Therefore, the J(C1, C2) is 0.4 (2/5) between

Commit1 and Commit2.

Results

IoPV problems are hard to manually predict. In particular, 81% and 100% of the Hadoop and

Cassandra commits show at least one CTO with an IoPV. Similarly, all the options of Hadoop and

Cassandra suffer at least once from a IoPV through the studied commits. Table 5.7 shows more

details about how common are IoPV for the studied commits, tests, and options. In summary, our

results indicate that the IoPV problem is not limited to a small set of commits, tests, or options,

which makes it a challenge to predict which CTO would have an IoPV.

Even if most of the commits show at least one IoPV, it is not easy to predict which test and option

may suffer from the IoPV. Figure 5.7 and Figure 5.8 show the pairwise Jaccard distance between

102

(a) Res. time (b) CPU (c) Memory (d) I/O read (e) I/O write

Figure 5.7: Pairwise Jaccard distance between the <test, option, IoPV > triplets of the studied
commits of the Hadoop system. The x-axis and y-axis show the studied commits, ordered
chronologically from left to right on the x-axis and bottom to top on the y-axis. Each cell of the
Figure refers to the Jaccard distance of any pair of commits: the darker the color is, the larger the
distance is.

(a) Res. time (b) CPU (c) Memory (d) I/O read (e) I/O write

Figure 5.8: Pairwise Jaccard distance between the <test, option, IoPV > triplets of the studied
commits of the Cassandra system. The x-axis and y-axis show the studied commits, ordered
chronologically from left to right on the x-axis and bottom to top on the y-axis. Each cell of the
Figure refers to the Jaccard distance of any pair of commits: the darker the color is, the larger the
distance is.

the <test, option, IoPV > triplets of the studied commits in the Hadoop and Cassandra systems,

respectively. The figures indicate that most of the commits do not share any <test, option, IoPV >

(i.e., with dark cells), especially for the Cassandra system (i.e., more dark cells). In other words,

different commits are unlikely to have the same tests and options that can lead to IoPV problems.

Therefore, it is difficult for developers to manually identify which tests and options that they need

to run and configure to verify the existence of IoPV.

In order to understand why different commits show inconsistent <test, option, IoPV > triplets,

we manually analyze some commits that show the largest Jaccard distance from other commits

(i.e., with dark horizontal/vertical lines in Figure 5.7 and Figure 5.8). We consider the response

time measure as an example in our manual analysis. In particular, there are two and six commits

with large Jaccard distance (> 0.8) to all other commits in Hadoop and Cassandra, respectively.

103

For Hadoop, we find that most of the options cause IoPV in the test named TestKMS.java in the

Hadoop-common sub-project. Then, we pick up one8 out of the two commits of Hadoop to manually

examine the configuration option and the commit changes. We find that the options that cause IoPV

are usually related to connection time, such as the options dfs.ha.fencing.ssh.connect-timeout and

fs.s3a.connection.timeout. By examining the code in the test TestKMS.java, we find that TestKMS.java

loads the connection timeout configuration options. Thus, the commits that impact such connection

time related options and the test may lead to IoPV problems while other commits may not lead

to the same IoPV. For Cassandra, we select one commit 9 with the largest Jaccard distance to

other commits. Our results show that two tests named EmbeddedCassandraServiceTest and De-

buggableScheduledThreadPoolExecutorTest manifest the largest performance regression regarding

options max hints file size in mb and memtable heap space in mb, respectively. By manually ex-

amining the commit changes covered by the tests, we find that there exist code changes in the

method start within the Java file EmbeddedCassandraService.java10. In particular, 69% of commits

in Hadoop and 96% of commits in Cassandra have a Jaccard distance more than 0.5. Such a change

adds function calls to initialize the options and leads to performance regressions. In summary,

different commits may lead to different options and tests that exhibit IoPV problems.

IoPV is a common problem and it is difficult to manually identify IoPV without

exhaustively running the tests. Our results suggest the need for an approach that

automatically identifies which CTO manifests an IoPV.

8https://github.com/apache/hadoop/commit/b17d365f
9https://github.com/apache/cassandra/commit/0fe82be8

10https://github.com/apache/cassandra/blob/0fe82be83cceceb12172d63913388678253413bc/
src/java/org/apache/cassandra/service/EmbeddedCassandraService.java

104

https://github.com/apache/hadoop/commit/b17d365f
https://github.com/apache/cassandra/commit/0fe82be8
https://github.com/apache/cassandra/blob/0fe82be83cceceb12172d63913388678253413bc/src/java/org/apache/cassandra/service/EmbeddedCassandraService.java
https://github.com/apache/cassandra/blob/0fe82be83cceceb12172d63913388678253413bc/src/java/org/apache/cassandra/service/EmbeddedCassandraService.java

Table 5.7: Number of unique commits, tests, options with IoPV problems.

Commit Test Option
Total IoPV Total IoPV Total IoPV

Hadoop

Res. time 74 27 74 13 122 74
CPU 74 47 74 62 122 113

Memory 74 38 74 59 122 113
I/O read 74 45 74 53 122 108
I/O write 74 47 74 57 122 117

Any metric 74 60 74 67 122 117

Cassandra

Res. time 57 55 216 189 54 43
CPU 57 55 216 204 54 49

Memory 57 53 216 202 54 43
I/O read 57 56 216 202 54 44
I/O write 57 53 216 192 54 39

Any metric 57 56 216 208 54 50

5.5 Predicting IoPV Problems

RQ1. How accurately can we predict IoPV problems?

Motivation

The goal of this research question is to evaluate different classification approaches on predicting

for which CTO one has to check multiple option’s values. In our preliminary study, we observe that

the IoPV is common and hard to manually predict, which indicates that developers need to test

different values for each option. However, as there are typically a large number of configuration

options (e.g., Hadoop version 2.7.3 has 365 configuration options) with different possible values,

exhaustively experimenting with all different options for each test in performance testing is time

and resource-consuming. In this RQ, we aim to reduce the effort of conducting configuration-aware

performance testing by predicting the need for adjusting a configuration option for a test when a

code change is made (i.e., for a CTO). Specifically, our approach predicts whether a CTO manifests

an IoPV, such that developers can make an informed decision on whether they should consider

different values for that option in their performance testing.

105

Approach

In this RQ, we build ML models to predict whether a CTO manifests an IoPV. Below, we

describe the detailed steps involved in our modeling process.

Step 1. Data preparation.

Step 1.1. Defining the target variable. Our target variable is a binary variable that indicates

whether a CTO manifests an IoPV, which we obtained following the approach discussed in Sec-

tion 5.3. In particular, after collecting performance measurements, we calculated the performance

variation for each option, and discretize each CTO into an IoPV or a non IoPV following the

discretization approach of Section 5.3.2.

Step 1.2. Selecting the features. We consider four dimensions of software metrics that are

related to the likelihood of a configuration option impacting the performance testing of a code

commit for each test (i.e., of a CTO). Table 5.8 lists the detailed metrics used in our models.

We already found in our prior work J. Chen et al. (2020) that code structure, and code change

dimensions are important for predicting performance regressions, but we did not consider the impact

of different configurations on the manifestation of performance regressions. Therefore, we use the

prior dimensions as well as an additional dimension about the configuration options.

Code change metrics. This dimension contains metrics that capture the code changes in a

commit (e.g., the number of changed lines of code). Some code changes (e.g., big code changes)

might be more likely to impact how different values of a configuration option make difference in

performance testing.

Code structure metrics. This dimension contains metrics that describe the static structure of

the source code files (e.g., Cyclomatic complexity). Our intuition is that changing certain code (e.g.,

complex code) is more likely to alter the performance impact of a configuration option.

Code token metrics. This dimension considers the code tokens of the methods that are changed

in the commit and the test file. Some code tokens (e.g., “speed”) may be more related to the

performance than other tokens. We use the lscp11 tool to extract the code tokens from the source

code.
11Lscp is a lightweight source code preprocessor that can be used to isolate and manipulate the linguistic data (i.e.,

identifier names, comments, and string literals) from the source code: https://github.com/doofuslarge/
lscp

106

https://github.com/doofuslarge/lscp
https://github.com/doofuslarge/lscp

Table 5.8: Overview of our selected metrics.

Dimension Metric Rationale

Code
change

Number of modified
subsystems

The more subsystems are changed, the higher risk
the change may be Mockus and Weiss (2000).

Number of modified
directories

Changing more directories may more likely introduce
performance regressions Mockus and Weiss (2000).

Number of modified
files

Changing many source files are more likely to cause
performance regressions N. Nagappan et al. (2006).

Distribution of modified
code across files

Scattered changes are more possible to introduce
performance regressions Hassan (2009).

Number of modified
methods

Changes altering many methods are more likely
introduce performance regressions Zimmermann et al. (2007).

Number of lines SOC
in tests

Program with more lines is more likely to
suffer from performance regressions Koru et al. (2009).

Lines of code added
The more lines of code added, the higher risk that the
program will suffer from performance regressions.

Lines of code deleted
The more lines of code deleted, the higher risk of
performance regression is introduced
N. Nagappan and Ball (2005).

Code
structure

Number of methods in
impacted test

Program with large number of methods is more
likely to suffer from performance regressions.

McCabe Cyclomatic
complexity

Program with higher complexity is more likely to suffer
from performance regressions Hassan (2009).

Number of called
subprograms

Large called subprograms will amplify the regression if
there exist performance regressions in the called program
N. Nagappan et al. (2006).

Number of calling
subprograms

Large calling subprograms will amplify the regressions if
there exist performance regressions in the called program
N. Nagappan et al. (2006).

Code token
Code tokens of the
changed source code

Some code tokens may be more related to performance
than other tokens.

Configuration
option

Splited configuration
option names

The name of configuration option may be related to a
specific performance metric.

107

Configuration option metrics. This dimension considers the characteristics of the configura-

tion option (e.g., the tokens in the configuration option). We assume that some options (e.g., system

resource-related options) are more likely to impact the performance regressions detection results of

a commit.

Step 1.3. Pre-processing the features. The code token metrics include thousands of unique code

tokens. Thus, we need to pre-process such metrics into a numeric representation. We consider three

approaches to pre-process the code token metrics.

• Term frequency-inverse document frequency (tf-idf). Tf-idf Ramos et al. (2003) generates

a feature for each unique token. The value of a feature for a commit is the term frequency

of the corresponding token (i.e., tf(t, c) = ft,c, where ft,c is the number of times a token

t appears in commit c) times the inverse frequency of the commits that contain the token

(idf(t) = log (N/Nt), where N is the total number of commits while Nt is the number of

commits containing the token t.)

• Principal component analysis (PCA). Using tf-idf generates a larger number of features that

may lead to very complex models. Therefore, we apply PCA Wold, Esbensen, and Geladi

(1987) on the features resulted from tf-idf to reduce the number of features. Specifically,

we only consider the top principal components that contribute to 95% of the variance in the

features together.

• Word embeddings. We use word2vec (Mikolov, Chen, Corrado, & Dean, 2013; Mikolov,

Sutskever, Chen, Corrado, & Dean, 2013) to code each token into a vector of 128 numerical

values. Specifically, we pre-train the embeddings from a large code base12 then applying the

pre-trained embeddings on the tokens in our data. Then we use a mean aggregation of the

vectors representing the tokens in a commit.

Step 2. Model construction. We build machine learning models to predict whether a config-

uration option suffers from an IoPV on a given CTO. For the generalization of our results, we

consider five different types of models, including random forest (RF), logistic regression (LR),

XGBoost (XG), neural network (NN), and convolutional neural network (CNN). A random forest
12https://doi.org/10.5281/zenodo.3801975

108

https://doi.org/10.5281/zenodo.3801975

is a classifier consisting of a collection of decision tree classifiers and each tree casts a vote for

the most popular class for a given input Breiman (2001). Logistic regression is a statistical model

that uses a logit function to model a binary variable (the target variable) as a linear combination

of the independent variables Hosmer Jr, Lemeshow, and Sturdivant (2013), which is widely used

in software analytics (Shang et al., 2015; Tantithamthavorn et al., 2018). XGBoost is an efficient

and accurate implementation of the gradient boosting algorithm, which is reported to perform better

than other machine learning models in software engineering applications Liao et al. (2020). The

neural network model Glorot, Bordes, and Bengio (2011) used in our study consists of four layers

and are trained with 100 batch size, and 10 epochs. The CNN model Lawrence, Giles, Tsoi, and

Back (1997) in our study consists of five layers, and are trained with 100 batch size, and 10 epochs.

Prior to constructing our models, we check the pairwise correlation between our features using

the Pearson correlation test (ρ) Benesty et al. (2009). We choose the Pearson correlation method

because it is robust to non-normally distributed data. In this work, we choose the correlation value

0.7 as the threshold to remove collinearity. In other words, if the correlation between a pair of

features is greater than 0.7 (|ρ| > 0.7), we keep one of the two features in the model. We then

perform a redundancy analysis on the features. In particular, we use each feature as a dependent

variable and use the remaining features as independent variables to build a regression model and

calculate the R2 of each model. If the R2 is more than 0.9 Syer et al. (2017), the current dependent

variable is considered redundant.

Step 3. Model evaluation. We use 10-fold cross-validation to evaluate the performance of our

models. In each repetition of the 10-fold cross-validation, the whole data set is randomly partitioned

into 10 sets of roughly equal size. One subset is used as the testing set (i.e., the held-out set) and

the other nine subsets are used as the training set. We train our models using the training set and

evaluate the performance of our models on the held-out set. The process repeats 10 times until all

subsets are used as a testing set once.

In each fold of the cross-validation, we use precision, recall, and AUC to measure the per-

formance of our models. Precision measures the ratio of cases when a configuration option ac-

tually impacts the performance regressions detection among all the cases that our models predict

to adjust a configuration option (i.e., true positives
true positives+false positives). Recall measures the ratio of cases

109

when our models predict to adjust a configuration option among all the cases when a configura-

tion option actually impacts the performance regressions detection (i.e., true positives
true positives+false negatives).

AUC measures our models’ ability to discriminate the CTO cases into IoPV and non IoPV cases.

Specifically, AUC is the area under the ROC curve which plots the true positive rate against the

false positive rate under different classification thresholds. Prior work recommends the use of

AUC over threshold-dependent measures (e.g., precision and recall) when measuring the model

performance Tantithamthavorn and Hassan (2018b).

Results

Our models can effectively predict when a CTO is manifesting an IoPV for all of our five

studied performance measures, as shown in Table 5.9 and Table 5.10. Our best models (i.e., as

indicated by the bold-italic values) achieve an AUC of 0.85 to 0.94 on the Hadoop project and 0.79

to 0.90 on the Cassandra project, for different performance metrics. For the Hadoop project, RF

is the best model for four out of the five performance metrics, which achieves an AUC of 0.85 to

0.93. Even if XG shows the best AUC performance for the fifth performance metric (i.e., Response

time), the difference between RF and XG is only 0.01. For the Cassandra project, RF shows the

best performance on three out of five performance metrics. NN shows the best performance on also

three performance metrics (Memory and I/O read are the same to RF model). The average AUC of

the best NN model is 0.83 while the average AUC of the best RF model is 0.82. Note that NN, on the

other side, requires a large amount of resources to train and test a model, while the improvements

it shows over RF is trivial. CNN shows the best performance on only one performance metric (i.e.,

with an AUC of 0.79 for the Response time). However, the average AUC of the best CNN model

is 0.09 lower than that of RF. In summary, we suggest that developers consider the RF model for

predicting when a CTO has an IoPV problem.

Our best models achieve a better performance for the Hadoop system than for the Cassandra

system. As discussed in RQ1, the different commits show more inconsistent <test, option, IoPV

> triplets (i.e., more dark cells in Figure 5.8) in the Cassandra system than in the Hadoop system,

thus it is more difficult to predict IoPV for the Cassandra system, which could explain the reason

that our models perform better for the Hadoop project.

110

Table 5.9: Hadoop’s results of using different models to predict whether configuration options cause
the manifesting of performance regressions. The best results for each performance metric and each
model are highlighted in italic. The best results for each performance metric across different models
are highlighted in bold-italic.

Hadoop
RF with tf-idf RF with PCA RF with code embedding

Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC
Res. time 0.68 0.39 0.93 0.68 0.39 0.66 0.73 0.33 0.93

Cpu 0.70 0.51 0.90 0.55 0.02 0.71 0.77 0.60 0.92
Memory 0.64 0.36 0.87 0.48 0.04 0.69 0.75 0.41 0.91
I/O Read 0.68 0.54 0.91 0.58 0.02 0.76 0.79 0.56 0.93
I/O Write 0.63 0.44 0.82 0.44 0.02 0.59 0.72 0.49 0.85
Average 0.67 0.45 0.89 0.55 0.10 0.68 0.75 0.48 0.91

LR with tf-idf LR with PCA LR with code embedding
Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC

Res. time 0.38 0.03 0.67 0.12 0.46 0.54 0.53 0.09 0.77
Cpu 0.66 0.06 0.73 0.27 0.29 0.61 0.48 0.14 0.76

Memory 0.49 0.04 0.71 0.16 0.40 0.55 0.48 0.10 0.73
I/O Read 0.70 0.05 0.71 0.22 0.33 0.57 0.46 0.18 0.80
I/O Write 0.50 0.06 0.64 0.33 0.22 0.57 0.50 0.14 0.66
Average 0.55 0.05 0.69 0.22 0.34 0.57 0.49 0.13 0.74

XG with tf-idf XG with PCA XG with code embedding
Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC

Res. time 0.65 0.42 0.94 1.00 0.05 0.60 0.71 0.31 0.93
Cpu 0.66 0.48 0.88 0.32 0.06 0.62 0.67 0.50 0.88

Memory 0.66 0.32 0.87 0.41 0.04 0.68 0.72 0.32 0.87
I/O Read 0.66 0.49 0.91 0.49 0.08 0.73 0.73 0.50 0.91
I/O Write 0.66 0.38 0.82 0.41 0.16 0.58 0.67 0.40 0.80
Average 0.66 0.42 0.88 0.52 0.08 0.64 0.70 0.41 0.88

NN with tf-idf NN with PCA NN with code embedding
Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC

Res. time 0.34 0.54 0.79 0.27 0.83 0.80 0.27 0.64 0.75
Cpu 0.53 0.30 0.72 0.63 0.41 0.73 0.39 0.33 0.65

Memory 0.43 0.27 0.67 0.52 0.34 0.67 0.31 0.42 0.66
I/O Read 0.53 0.44 0.73 0.60 0.46 0.76 0.48 0.33 0.72
I/O Write 0.50 0.38 0.68 0.53 0.32 0.65 0.39 0.41 0.68
Average 0.47 0.39 0.72 0.51 0.47 0.72 0.37 0.43 0.69

CNN with tf-idf CNN with PCA CNN with code embedding
Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC

Res. time 0.29 0.48 0.75 0.06 0.90 0.73 0.23 0.51 0.79
Cpu 0.22 0.68 0.78 0.18 0.78 0.76 0.63 0.25 0.81

Memory 0.47 0.25 0.69 0.13 0.87 0.74 0.20 0.57 0.76
I/O Read 0.32 0.41 0.68 0.27 0.25 0.68 0.20 0.38 0.66
I/O Write 0.27 0.31 0.64 0.14 0.64 0.65 0.19 0.60 0.67
Average 0.31 0.43 0.71 0.16 0.69 0.71 0.29 0.46 0.74

111

Table 5.10: Cassandra’s results of using different models to predict whether configuration options
cause the manifesting of performance regression. The best results for each performance metric and
each model are highlighted in italic. The best results for each performance metric across different
models are highlighted in bold-italic.

Cassandra
RF with tf-idf RF with PCA RF with code embedding

Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC
Res. time 0.74 0.37 0.74 0.45 0.13 0.62 0.67 0.46 0.75

Cpu 0.68 0.39 0.76 0.46 0.15 0.61 0.73 0.59 0.82
Memory 0.71 0.37 0.78 0.35 0.04 0.61 0.71 0.58 0.84
I/O Read 0.74 0.48 0.79 0.54 0.32 0.67 0.74 0.63 0.83
I/O Write 0.76 0.50 0.82 0.58 0.32 0.68 0.77 0.65 0.86
Average 0.73 0.42 0.78 0.47 0.19 0.64 0.72 0.58 0.82

LR with tf-idf LR with PCA LR with code embedding
Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC

Res. time 0.38 0.38 0.59 0.28 0.54 0.54 0.38 0.51 0.63
Cpu 0.49 0.42 0.64 0.33 0.41 0.53 0.46 0.58 0.65

Memory 0.44 0.26 0.62 0.29 0.28 0.55 0.43 0.47 0.66
I/O Read 0.50 0.50 0.63 0.35 0.44 0.55 0.49 0.61 0.67
I/O Write 0.53 0.51 0.69 0.36 0.37 0.54 0.47 0.63 0.68
Average 0.47 0.41 0.64 0.32 0.41 0.54 0.44 0.56 0.66

XG with tf-idf XG with PCA XG with code embedding
Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC

Res. time 0.66 0.38 0.75 0.37 0.20 0.60 0.63 0.44 0.74
Cpu 0.65 0.49 0.77 0.49 0.32 0.63 0.70 0.60 0.82

Memory 0.65 0.49 0.80 0.45 0.13 0.60 0.70 0.56 0.83
I/O Read 0.69 0.55 0.79 0.46 0.35 0.61 0.72 0.62 0.81
I/O Write 0.74 0.59 0.84 0.48 0.33 0.65 0.74 0.64 0.85
Average 0.68 0.50 0.79 0.45 0.27 0.62 0.70 0.57 0.81

NN with tf-idf NN with PCA NN with code embedding
Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC

Res. time 0.55 0.36 0.71 0.53 0.40 0.73 0.47 0.41 0.67
Cpu 0.27 0.94 0.88 0.31 0.96 0.90 0.26 0.88 0.84

Memory 0.56 0.51 0.76 0.64 0.57 0.84 0.61 0.49 0.76
I/O Read 0.66 0.46 0.75 0.67 0.57 0.83 0.60 0.54 0.74
I/O Write 0.67 0.39 0.77 0.70 0.57 0.84 0.63 0.55 0.77
Average 0.54 0.53 0.77 0.57 0.62 0.83 0.51 0.57 0.76

CNN with tf-idf CNN with PCA CNN with code embedding
Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC

Res. time 0.30 0.28 0.75 0.37 0.35 0.79 0.33 0.34 0.75
Cpu 0.29 0.37 0.76 0.25 0.67 0.75 0.11 0.96 0.76

Memory 0.37 0.21 0.77 0.37 0.21 0.77 0.33 0.30 0.74
I/O Read 0.19 0.53 0.69 0.30 0.37 0.68 0.24 0.47 0.69
I/O Write 0.23 0.40 0.70 0.19 0.38 0.67 0.23 0.33 0.69
Average 0.28 0.36 0.73 0.30 0.40 0.73 0.25 0.48 0.73

112

Using different representations of the code tokens significantly impact the performance of

our models. As shown in Table 5.9 and Table 5.10, for the traditional models (RF, LR, and XG),

using code embeddings to represent the code tokens often achieves the best performance, while

using PCA usually results in the worst performance. For example, for the Hadoop project, the RF

model achieves an AUC of 0.85 to 0.93 using code embeddings, 0.82 to 0.93 using tf-idf, and only

0.59 to 0.76 using PCA. The reason for the poor performance of the models using PCA might be

that PCA significantly reduced the information in the tokens through dimension reduction, even

though we considered the principal components that account for 95% of the variance in the original

variables. In contrast, for the deep neural network models (NN and CNN), using PCA to represent

the code tokens may achieve better results than the other two representations. For example, for the

Cassandra project, the CNN model combined with PCA achieves the best AUC for two out of the

five performance metrics, across all different models. The reason might be that there are much more

options in the deep neural network models, while using PCA could significantly reduce the number

of options to be trained.

Our models can effectively predict whether a CTO manifests an IoPV problem.

Random forest based on code embedding shows the best performance on predicting

IoPV for most of the performance measures.

RQ2. What are the most important metrics for predicting IoPV problems?

Motivation

The goal of this research question is to analyze the models (of RQ1) that predict the IoPV to un-

derstand the factors that play important roles in determining the impact of adjusting a configuration

parameter. In particular, we focus on the random forest model with code embeddings, as it shows

the best performance in predicting IoPV. Our results can help practitioners understand the scenarios

where they need to adjusting their configuration parameters in their performance tests.

113

Approach

To analyze the most important metrics for predicting IoPV, we consider the following experi-

ments:

Measuring the importance of each dimension of metrics by removing the dimension from the

model. In order to study the importance of each dimension of metrics, we build a model with all

the dimensions and compare it to a model with one dropped dimension at a time. That comparison

consists of statistically comparing both models’ AUC values. The larger the difference is for a

dimension, the more important that dimension is. Then, we compare the differences between the

model with all dimensions and each of the other models that drop one dimension at a time.

Measuring the importance of each dimension of metrics by only keeping the dimension in the

model. Since metrics from different dimensions can be correlated, we also consider comparing

models that are built using one dimension at a time. For example, some tokens from the code token

dimension can be correlated with tokens from the configuration dimension. Therefore, we build a

model using one dimension at a time, which results in four models. We compare these models based

on their respective AUC values.

Results

Every dimension of metrics plays a statistically significant role in predicting IoPV cases.

Table 5.11 shows the results of using the Mann-Whitney U test to compare the complete RF model

with the RF model that uses only one dimension of metrics or that excludes one dimension of

metrics. A p-value that is smaller than 0.05 indicates a statistically significant difference. Ta-

ble 5.11 shows that, when only keeping one dimension of metrics, all the resulting models show a

statistically different (worse) performance. When excluding each dimension of metrics, the resulting

models show a statistically different (worse) performance in most of the cases (in 16 out of the 20

combinations of the four metric dimensions and the five performance measures for Hadoop, and in

14 out of the 20 combinations for Cassandra). Our results highlight that one should consider all

the four dimensions of metrics together when building a model to predict which CTO manifests an

IoPV.

114

Table 5.11: The results (p-values) of using the Mann-Whitney U test to statistically compare the
AUC of RF with the complete set of metrics vs. with a subset of metrics.

Hadoop
Without CC Without CS Without CT Without CON Only CC Only CS Only CT Only CON

Res. time <<0.0001 0.001 0.001 <<0.0001 <<0.0001 <<0.0001 <<0.0001 <<0.0001
Cpu 0.002 0.052 <<0.0001 <<0.0001 <<0.0001 <<0.0001 <<0.0001 <<0.0001

Memory 0.016 0.396 0.019 <<0.0001 <<0.0001 <<0.0001 <<0.0001 0.001
I/O Read 0.052 0.154 0.027 0.002 <<0.0001 <<0.0001 <<0.0001 0.005
I/O Write <<0.0001 0.001 0.005 <<0.0001 <<0.0001 <<0.0001 <<0.0001 <<0.0001

Cassandra
Without CC Without CS Without CT Without CON Only CC Only CS Only CT Only CON

Res. time 0.093 0.061 0.052 0.038 <<0.0001 <<0.0001 0.019 <<0.0001
Cpu <<0.0001 0.001 <<0.0001 <<0.0001 <<0.0001 <<0.0001 0.011 <<0.0001

Memory <<0.0001 0.009 0.093 0.013 <<0.0001 <<0.0001 0.002 0.011
I/O Read 0.001 0.016 <<0.0001 0.006 <<0.0001 <<0.0001 <<0.0001 0.005
I/O Write 0.001 0.312 <<0.0001 0.192 <<0.0001 <<0.0001 <<0.0001 <<0.0001

CC is Code Change, CS is Code Structure, CT is Code Token, CON is Configuration.

The code token and configuration dimensions show the best performance among the four

dimensions of metrics. Figures 5.9 and 5.10 show the results of keeping only one dimension

of metrics. For both Hadoop and Cassandra, for all the performance measures, using only the

code token metrics or the configuration metrics in the model achieves a better AUC than using

other single dimension of metrics, except that the configuration dimension leads to a relatively

worse performance for the I/O write measure of Cassandra. The results indicate that the context

of the change as well as the goal of configuration options expressed through their tokens are the

most important predictors for IoPV. However, when excluding each dimension of metrics from the

model (Figures 5.11 and 5.12), the differences resulting from excluding each dimension are less

significant, and removing the code tokens and the configuration dimensions may not lead to the

worst performance. For example, removing the code change dimension from the model for the

response time measure of Hadoop actually lead to a worse performance than removing the code

tokens dimension. This is because the different dimensions of metrics are highly correlated, thus

the impact of removing one dimension of metrics may be partially mitigated by other dimensions

of metrics.

115

All CC CS CT CON

0.
80

0.
85

0.
90

0.
95

(a) Res. time

All CC CS CT CON

0.
75

0.
80

0.
85

0.
90

(b) CPU

All CC CS CT CON

0.
80

0.
85

0.
90

(c) Memory

All CC CS CT CON0.
75

0.
80

0.
85

0.
90

0.
95

(d) I/O read

All CC CS CT CON0.
65

0.
70

0.
75

0.
80

(e) I/O write

Figure 5.9: AUC of RF for Hadoop when only keeping one dimension of metrics.

All CC CS CT CON

0.
70

0.
75

0.
80

(a) Res. time

All CC CS CT CON0.
70

0.
74

0.
78

0.
82

(b) CPU

All CC CS CT CON
0.

70
0.

75
0.

80
0.

85

(c) Memory

All CC CS CT CON

0.
72

0.
76

0.
80

0.
84

(d) I/O read

All CC CS CT CON

0.
70

0.
75

0.
80

0.
85

(e) I/O write

Figure 5.10: AUC of RF for Cassandra when only keeping one dimension of metrics.

Every dimension of metrics plays a statistically significant role in predicting

whether a CTO manifests an IoPV problem. The most important dimensions are

related to code tokens and configurations.

5.6 Threats to Validity

In this section, we discuss the threats to the validity of our study.

External validity. The first external threat to validity concerns the generalizability of our results to

other software systems. Due to the expensive computing resources needed (we spent around 12,536

machine hours collecting performance data), we conducted our evaluation on two open-source

software systems, i.e., Hadoop and Cassandra. Our findings may not generalize for other software

systems. However, we found motivating results on the prevalence of IoPV and the performance of

our prediction model, which can be replicated by future studies on other software systems.

Internal validity. An internal threat to validity concerns the performance metrics that we consider.

In our approach, we collect five popular performance metrics, i.e., Response time, CPU, Memory,

116

All CC CS CT CON

0.
86

0.
90

0.
94

(a) Res. time

All CC CS CT CON

0.
80

0.
85

0.
90

(b) CPU

All CC CS CT CON

0.
82

0.
86

0.
90

0.
94

(c) Memory

All CC CS CT CON0.
80

0.
84

0.
88

0.
92

(d) I/O read

All CC CS CT CON0.
70

0.
74

0.
78

0.
82

(e) I/O write

Figure 5.11: AUC of RF for Hadoop when removing one dimension of metrics.

All CC CS CT CON

0.
70

0.
74

0.
78

0.
82

(a) Res. time

All CC CS CT CON0.
72

0.
76

0.
80

0.
84

(b) CPU

All CC CS CT CON
0.

70
0.

75
0.

80
0.

85

(c) Memory

All CC CS CT CON

0.
74

0.
78

0.
82

0.
86

(d) I/O read

All CC CS CT CON0.
76

0.
80

0.
84

0.
88

(e) I/O write

Figure 5.12: AUC of RF for Cassandra when removing one dimension of metrics.

I/O read and write, while other performance metrics such as throughput can still be explored by

future research.

Similarly, our prediction model does not cover all the possible dimensions of metrics. For

example, we do not consider the developers’ dimension. However, our model shows a good AUC

performance to predict whether a CTO manifests an IoPV. Future studies can explore more dimen-

sions of metrics to improve the performance of our models.

Finally, our evaluation considers just the traditional models (i.e., logistic regression, random

forest, and XGBoost) and neural network models (i.e., general neural network and convolutional

neural network). Although we do not cover all the existing models, our study covers the most

popular ones that are used in software engineering. Future works are encouraged to explore more

models.

Construct validity. There might exist environmental performance noise when we use psutil to

capture the performance data. To minimize the noise, we capture the performance of the corre-

sponding Linux process of the running tests. Furthermore, for each test, we repeat the execution

30 times independently. Finally, we run all of our experiments in environments with the same

configurations.

117

5.7 Related Work

In this section, we discuss prior work along two dimensions: software configuration and soft-

ware performance.

5.7.1 Software Configuration

A large body of research efforts has been conducted on software configuration, which mainly

focuses on understanding configuration problems, preventing configuration errors, and debugging

configuration errors. Few research efforts consider the performance aspect of software configura-

tion.

Understanding Configuration Problems

Configuration makes a software system complex Sayagh et al. (2018), which leads to config-

uration errors that are severe, common, and hard to debug Yin et al. (2011). For instance, D. Jin

et al. (2014) found that configuration options add more complexity to the development and test

of highly configurable software systems. Han and Yu (2016) found that configuration options are

responsible for 59% of the performance bugs. Gousios et al. (2006) observed that the configuration

of the garbage collectors have an impact on the performance of server applications. Furthermore,

Sayagh et al. (Sayagh & Adams, 2015; Sayagh et al., 2017) found that the impact of a configuration

option can spread to multiple layers of the LAMP stack.

A second line of research proposed and evaluated different approaches to identify misconfigured

configuration options. Dong et al. (2015, 2013) leverage the slicing technique to identify the

misconfigured option for a given error message or exception. Rabkin and Katz (2011) leverage

a data flow analysis technique to identify for each option, which source code lines it might im-

pacts. Attariyan and Flinn (2010) combined dynamic control and data flow analysis to identify

misconfigured options. Zhang et al. (S. Zhang, 2013; S. Zhang & Ernst, 2014) compared the trace

of a correct execution against the trace of an incorrect execution to identify culprit options. Prior

systematic literature review Sayagh et al. (2018), and the work of Tianyin and Yuanyuan (2015)

and Andrzejak et al. (2018) further details about the existing configuration debugging approaches.

118

Our work is different from this line of research since we do not consider debugging configuration

errors, but understanding and identifying performance regressions that are caused under certain

configurations.

The Performance of Configuration

Another line of research considers the identification of the optimal configurations for a software

system and the debugging of performance errors that are caused by configuration options. Attariyan

et al. (2012) proposed an approach based on dynamic taint analysis technique to identify the option

that causes a performance error. Siegmund et al. (2015) build mathematical models that describe the

impact of a configuration on software performance based on each option’s value. Raghavachari et al.

(2003) proposed an iterative approach to identify an optimal configuration in terms of performance.

Their approach consists of selecting for a J2EE web application a first configuration, compare

its performance to a second configuration until the optimal configuration. Similarly, Diao et al.

(2003) proposed an approach that automatically adjusts the values of existing configuration options

at run-time to optimize the CPU and memory usage objectives. Li, Chen, Hassan, et al. (2018)

leveraged performance monitoring data and execution logs to dynamically optimize the values of

performance-related configuration options according to varying workloads in the field. J. Guo et

al. (2013) leverage non-linear regression to suggest an optimal configuration. However, collecting

a large amount of data for training a model that predicts the performance of a configuration is

expensive. Therefore, Sarkar et al. (2015) evaluated the progressive and projective sampling to

train a model that predicts the performance of configuration. For their initial training sample, they

consider data on which each option is enabled at least once. Other efforts identified the optimal

configuration options in terms of performance by leveraging existing optimization approaches, i.e.,

iterative search Lengauer and Mössenböck (2014), multi-objective optimization Singh et al. (2016),

and smart hill climbing B. Xi et al. (2004).

The goal of our work is not to identify optimal configuration options or debug an existing

performance-related configuration error, but we focus on studying the inconsistent options perfor-

mance through different commits. In particular, we focus on understanding whether a performance

improvement or regression is consistent through all the values of an option. That is important, as

119

one can improve the performance of his software system or release new changes that do not impact

the performance under one configuration when other configurations hide a performance regression.

Furthermore, prior work on this line of research compares the absolute performance between

two values for the same option, while this can be subjective as discussed earlier. One option’s value

can naturally consume performance as it enables the execution of some extra features. However,

the execution of the software system under the same option’s value can be improved compared to

the same option and value prior to that commit. In addition, a better performing option’s value can

show a regression compared to the prior commit as well.

5.7.2 Software Performance

Performance is an important aspect of software quality. Extensive prior research has been

conducted to study software performance. In this subsection, we summarize the empirical studies

on understanding software performance and the studies on performance regression detection.

Empirical Studies on Software Performance

Several empirical studies have been conducted on the performance of software systems (Han

et al., 2018; Huang et al., 2014; G. Jin et al., 2012; Leitner & Bezemer, 2017; Zaman et al., 2012,

2011). For instance, G. Jin et al. (2012) studied 109 real-world performance issues that are reported

from five open-source software systems and proposed an approach to detect performance issues.

Zaman et al. (2012, 2011) conducted qualitative and quantitative studies on performance issues.

They found that developers and users face problems in reproducing performance bugs as they spend

a lot of time on discussing performance bugs compared to other kinds of bugs (e.g., functional

bug). Huang et al. (2014) proposed an approach to improve the efficiency of performance regression

testing by leveraging a static analysis technique to estimate the risk of a given commit in introducing

a performance regression. Han et al. (2018) studied 300 bug reports from three large open-source

projects. The authors found that most of the performance bugs occur for a specific combinations of

data input and configurations. They also proposed a framework named PerfLearning to extract such

data input and configurations from bug reports to generate test frames. Leitner and Bezemer (2017)

investigated the state-of-the-practices that are related to performance tests. The authors found that

120

performance tests form only a small portion of the test suite.

The vast amount of research on software performance signifies its importance and motivate our

work. Different from prior research, we evaluate software performance at the commit level and

study performance regressions that are manifested under a subset of the possible configurations. In

addition, our work is different from this line of research as we consider how to avoid performance

regressions that are related to some configurations while being hidden by other configurations,

instead of understanding the existing performance-related issues.

Performance regression detection

Extensive prior research has proposed automated techniques to detect performance regressions.

Such detection techniques can be divided into two categories: measurement-based and model-based

detection.

Measurement-based approaches compare performance metrics (e.g., CPU usage) between two

consecutive versions to detect performance regressions. For example, Nguyen et al. (T. H. Nguyen

et al., 2012; T. H. D. Nguyen et al., 2011, 2014) leveraged control charts to identify performance

regressions. A control chart has an upper control limit and a lower control limit. A performance

regression is detected when a performance metric is above the upper limit or below the lower limit.

Foo et al. (2010) proposed an approach that compares a test’s performance metrics to historical

performance metrics.

Model-based approach builds a machine learning model with a set of performance metrics to

detect performance regressions. Cohen et al. (2005) showed an implication that it is ineffective

and not enough to index and identify performance problems with simple records of raw system

metrics. Cohen et al. used TAN (Tree-Augmented Bayesian Network) models to model the system

performance states based on a small subset of metrics. Bodı́k et al. (2008) leveraged logistic

regression model to model system users’ behavior to improve Cohen et al.'s model. Foo et al.

(2015) proposed an approach that uses ensembles of models to detect performance regressions in

heterogeneous environments (e.g., different hardware and software configurations). Xiong et al.

(2013) proposed a model-driven framework to diagnose application performance and identify the

root cause of performance issues.

121

Our work complements this line of research in the sense that we consider the configuration

aspect of highly configurable software systems. For instance, a code change might not show a

performance regression on the default configuration, while leading to regressions on other configu-

rations. This work sheds light on the IoPV problem by first quantifying the existence of inconsistent

performance variations, then proposing a prediction model that identifies the commits, tests, and

options that exhibit the IoPV problem.

5.8 Conclusion

Highly configurable software systems tend to have a large amount of existing options, which

makes testing all the possible configurations infeasible. That can, unfortunately, hide performance

regression issues, which can go to the production as unseen. Furthermore, a developer might

improve the performance of a software system, while the improvement might not be manifested

when altering certain options’ values. In fact, the performance improvement or regression of a

software change might not be equally manifested through all the possible configuration options’

values, which we refer to as the Inconsistent Options Performance Variation (IoPV). In this work,

we observe that IoPV is a common problem, which is difficult to manually identify without running

exhaustive tests, because most of the commits do not share similar options or tests that may lead

to IoPV and hide performance regressions. We also observed that predictive models (e.g., RF) can

effectively predict the IoPV problems using four dimensions of metrics that are related to code

changes, code structures, code tokens, and configurations. Our findings highlight the importance

of considering different configurations when performing performance regression detection, and that

leveraging predictive models can mitigate the difficulty of exhaustively consider all configurations

of a system during such a process. We expect that our study inspires a wide spectrum of future

studies on configuration-aware performance regression detection.

122

Chapter 6

Can we generate load tests using

log-recovered workloads at varying

granularities of user behavior?

Designing field-representative load tests is an essential step for the quality assurance of large-scale

systems. Practitioners may capture user behaviour at different levels of granularity. A coarse-grained

load test may miss detailed user behaviour, leading to a non-representative load test; while an

extremely fine-grained load test would simply replay user actions step by step, leading to load tests

that are costly to develop, execute and maintain. Workload recovery is at core of these load tests.

Prior research often captures the workload as the frequency of user actions. However, there exists

much valuable information in the context and sequences of user actions. Such richer information

would ensure that the load tests that leverage such workloads are more field-representative. In this

study, we study the use of different granularities of user behaviour, i.e., basic user actions, basic

user actions with contextual information and user action sequences with contextual information,

when recovering workloads for use in the load testing of large-scale systems. We propose three

approaches that are based on the three granularities of user behaviour and evaluate our approaches

on four subject systems, namely Apache James, OpenMRS, Google Borg, and an ultra-large-scale

industrial system (SA) from Alibaba. Our results show that our approach that is based on user action

123

sequences with contextual information outperforms the other two approaches and can generate more

representative load tests with similar throughput and CPU usage to the original field workload (i.e.,

mostly statistically insignificant or with small/trivial effect sizes). Such representative load tests are

generated only based on a small number of clusters of users, leading to a low cost of conducting/-

maintaining such tests. Finally, we demonstrate that our approaches can detect injected users in the

original field workloads with high precision and recall. Our study demonstrates the importance of

user action sequences with contextual information in the workload recovery of large-scale systems.

6.1 Introduction

Large-scale software systems (e.g., Amazon AWS and Googles Gmail) have brought a signifi-

cant influence on the daily lives of billions of users worldwide. For example, Netflix services 150

million subscribers across the globe Fiegerman (2019). As a result, the quality of such systems is

extremely important. Failures of such planet-scale systems can result in negative reputational and

monetary consequences (Kit, 2010; LINDEN, 2006). Quite often failures in such systems are load

and performance-related rather than due to functional bugs Weyuker and Vokolos (2000).

Hence, load tests are widely used in practice to ensure the quality of such systems under load.

The goal of a load test is to ensure that a system performs well in production under a realistic field

workload. Therefore, one must first recover a workload (Calzarossa, Massari, & Tessera, 2016;

Elnaffar & Martin, 2002) then design a load test based on the recovered workload (Andreolini,

Colajanni, & Valente, 2005; Krishnamurthy, Rolia, & Majumdar, 2006; Meira, de Almeida, Sunyé,

Traon, & Valduriez, 2013; Snellman, Ashraf, & Porres, 2011; Syer et al., 2017).

The recovery of a field-representative workload is a challenging task. In particular, one must

achieve a balance between the level of granularity of the workload and the cost to conduct a load

test with such a workload. All too often, in practice, the recovered workloads are too coarse, i.e.,

over simplified workloads. For example, the SPECweb96 Benchmark defines a workload that

only specifies the probability of accessing files such as “files less than 1KB account for 35% of

all requests” SPEC (2003). Such coarse-grained workloads fail to capture the variance of user

behaviour, leading to non-representative load tests.

124

On the other extreme, a workload can simply replay the exact field workload step by step.

Although, such a workload replicates the exact user behaviour, conducting a load test using such

a workload and maintaining such a workload are extremely costly. First of all, due to the large

amount of users of these systems, replaying the exact workload requires the load tests to simulate

every user with a great amount of contextual information and complexity. One would also need

to develop simulation code for each specific sequence of events. In addition, since it is almost

impossible to observe the exact same workload twice, one would constantly need to update such a

detailed workload.

To reach a desirable level of granularity for a workload, prior work often clusters user bahaviour

based on important aspects in the workload (Cohen et al., 2005; Shang et al., 2015; Syer et al., 2017).

With the clusters of users, instead of maintaining millions or billions of user profiles, a workload is

designed based on representative user behaviours from a considerably smaller number of clusters.

For example, a recent workload clustering approach clusters users by the frequency of different

user actions Syer et al. (2017). However, due to the high variability of users in ultra-large-scale

software systems, we argue that solely considering the frequency of actions is too coarse; instead

the sequence and the context of user actions can make workloads much more representative to

the actual field. Consider the following example: one user repetitively reads small pieces of data

from a file then writes each of the small pieces back to the file; while another user interactively

reads and writes a large number of small pieces of data to a file. A workload should capture both

users differently. However, only considering the frequency of actions (read and write) would not

differentiate the workloads of these two users. Adding more detailed information about these user

actions would lead to a finer granularity of workload which in turn might be too costly to recover,

execute and maintain.

Therefore, in this work, we report on our experience in understanding the impact of adding

different levels of details in the recovered workloads for load tests. We first replicate a prior

approach that captures the frequency of basic actions Syer et al. (2017) (we refer to this approach as

Action). Afterwards, we design an approach that enriches the basic user actions with their context

values (we refer to this approach as ActionContext). Finally, we design an approach that augments

ActionContext with the frequently-appearing sequences of actions (we refer to this approach as

125

ActionSequence). The three approaches use the frequency of actions, the frequency of enriched

actions and the frequency of sequences of enriched actions, respectively, as signatures for each user,

then group the users into clusters. Afterwards, we automatically generate load tests based on the

signature of the representative (center) user in each cluster.

Our study is performed on two open-source systems: Apache James and OpenMRS, and two

commercial systems: Google Borg and an ultra-large-scale software system from Alibaba (we refer

to it as SA in the rest of this work). We compare our three approaches by recovering workloads based

on the execution logs from the subject systems, generating load tests, and running the automatically

generated load tests on the subject systems. In particular, we answer these two research questions:

RQ1: How field-representative are our generated workloads?

ActionSequence generates the most field-representative workloads. When conducting load

tests using ActionSequence, the throughput of 10 out of 14 user actions as well as the CPU

usage are either statistically insignificant to the original workload or differ with a small/trivial

effect size.

RQ2: How many clusters of users are captured by each of our recovery workload approaches?

The number of clusters of users is not overwhelming. The most field-representative workload

ActionSequence is based on eight to 39 clusters of users, which is only three to six clusters

more than a less field-representative workload ActionContext. The least field-representative

workload Action is based on as few as two clusters of users.

The rest of the work is organized as follows: Section 6.2 discusses the background and the

related work to this work. Section 6.3 describes our approaches in detail. Section 6.4 presents our

case study setup. Section 6.5 presents our case study results by answering our two abovementioned

research questions. Section 6.6 discusses other usage scenarios for our approaches. Section 6.8

discusses Section 6.7 discusses the challenges that lessons learned from the industrial evaluation.

Finally, Section 6.9 concludes the work.

126

6.2 Background and related work

Workload recovery is an essential part in the performance assurance of large-scale systems.

Prior research proposes approaches for recovering workloads to assist in the design of load tests Vögele

et al. (2018), validating whether load tests are field-representative as production Syer et al. (2017),

optimizing system performance (Summers et al., 2016; H. Xi et al., 2011) and detecting system

performance issues (T.-H. Chen, Shang, Jiang, et al., 2016; Cohen et al., 2005; Hassan et al., 2008;

Shang et al., 2015; Syer et al., 2017). All the above prior work illustrates the value and importance

of recovering representative workloads.

6.2.1 Recovering workload

Prior approaches for recovering and replaying workloads can be categorized along the granular-

ity of the captured user actions. One may choose a coarse-granularity by recovering only the type

of workload from a system, or to the other extreme, considering each individual user and replaying

their individual workload one by one. One may anonymize all high-level user behaviours and only

consider the physical metrics such as CPU (Cohen et al., 2005; Shang et al., 2015), I/O (Busch

et al., 2015; Haghdoost et al., 2017; Seo et al., 2014; Yadwadkar et al., 2010) and other system

resources Cortez et al. (2017). One may choose a finer granularity by building complex models

such as Hidden Markov ModelsYadwadkar et al. (2010) to capture the details for each user. A

pilot study by Cohen et al. (2005) demonstrates that grouping workloads into a smaller number of

clusters outperforms having one unified workload. Intuitively, recovering a workload at a too fine or

too coarse grained detail is neither desired. A too coarse-grained approach may miss the important

characteristics of user behaviour, leading to a non-representative workload, while a too fine grained

approach may lead to a workload that is costly to replay and maintain.

To achieve an optimal granularity of user behaviour, prior research often chooses event or

action-driven approaches for workload recovery (Hassan et al., 2008; Summers et al., 2016; Syer

et al., 2017; Vögele et al., 2018; H. Xi et al., 2011). However, there exists extensive research

on execution log analysis that demonstrates the value of considering contextual information and

sequence of actions for various software engineering tasks (Barik et al., 2016; Beschastnikh et

127

al., 2014, 2011; Fu et al., 2012; S. He et al., 2018; Z. M. Jiang et al., 2008b, 2009; Lin et al.,

2016; Oliner et al., 2012; Shang et al., 2013). Such extensive usage of contextual information and

user action sequences in log analysis motivates our approach to leverage the similar information

to recover richer workloads from execution logs for generating load tests. Therefore, compared

to prior research, our study uses more valuable contextual and action sequence information from

execution logs to recover workload.

6.2.2 Software logs analysis

Software logs are widely used in software development to track system execution behaviors Barik

et al. (2016). Such logs can be used to analyze system performance (T.-H. Chen, Shang, Hassan,

et al., 2016; Syer et al., 2013; Yao et al., 2018). Various studies are conducted to study the use of

software logs in performance analysis.

There exists a rich body of research using system execution logs to recovery performance

workload. Vögele et al. (2018) propose an approach named WESSBAS to automatically extract

workload specifications for load testing using session-based logs. Summers et al. (2016) charac-

terize workload of a Netflix streaming video web server by analyzing HTTP request log files to

optimize the performance of the servers. H. Xi et al. (2011) analyze real query logs collected from

web search engines to generate a synthetic query and replay such synthetic query onto a search

engine to evaluate performance.

There also exists a fair amount of studies analyzing system logs to identify performance issues.

W. Xu, Huang, Fox, Patterson, and Jordan (2009) present an approach to mine console logs in

order to ease the detection of system runtime problems for operators. Tan, Kavulya, Gandhi, and

Narasimhan (2010) develop a state-machine views from the native logs of Hadoop system to observe

the system behavior and debug performance problems. Syer et al. (2013) propose an automatic ap-

proach that combines execution logs and performance counters to diagnose memory-related issues

in load tests. The authors evaluate the approach of two software systems to diagnose three types of

memory-related issues, memory bloat, memory leak and memory spike. The results show that the

approach can flag the corresponding log lines responsible for memory-related issue to performance

analysts with high accuracy. T.-H. Chen, Shang, Hassan, et al. (2016) propose a lightweight

128

approach named CacheOptimizer to help developers decide cache configuration in web application

by analyzing available web logs. S. He et al. (2018) propose a cluster-based approach to identify

impactful system problems, i.e., request latency and service availability, by analyzing log sequences.

As an experience report, our focus is primarily on exploring whether research approaches work

in practice. Based on our industrial experience, this was not the case. Hence we had to propose

two novel approaches. In particular compared to prior research, our work uses more valuable

contextual and action sequence information from execution logs to recover workloads. The next

section presents our three approaches to cluster user actions, contextual information and user action

sequences from execution logs for recovering a workload for load testing.

6.3 Our approaches to recovering a workload for load testing

In this section, we present our approaches to automatically recover workloads using system

execution logs. An overview of our recovery process is shown in Figure 6.1. In total, our recovery

process consists of six steps: A) extracting user actions, B) enriching user actions with context, C)

identifying frequent action sequences, D) grouping similar frequent action sequences, E) grouping

users into clusters and F) generating load tests. Our Action workloads are generated by steps A, E

and F of our recovering process. Our ActionContext workloads are generated by steps A, B, E and

F. Our ActionSequence workloads are generated by all the steps.

6.3.1 Extracting user actions

User actions are a typical source of information to recover workload Syer et al. (2017). There-

fore, in this step, we extract user actions from execution logs that are generated during the execution

of a software system. Execution logs record system events at runtime to enable monitoring, remote

issue resolution and system understanding Z. M. Jiang, Hassan, Hamann, and Flora (2008a). Each

line of an execution log contains a corresponding action and its contextual information (e.g., user

names and data sizes). In this step, we first parse the execution logs by identifying the actions and

their contextual information. For example, in Table 6.1, we extract four types of actions from the

logs that are generated by OpenMRS. We also extract the Timestamp, the User and the Byte values

129

Table 6.1: Our running example of execution log lines with extracted user actions and context
values.

Timestamp User Log line Action Byte
00:00.00 Alice GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 7204
00:00.92 Dan GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 7216
00:01.52 Bob GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 1249
00:01.54 Alice DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0
00:02.04 Alice GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 7227
00:02.26 Bob DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0
00:02.41 Bob POST //192.168.165.219:8080/openmrs/ws/rest/v1/person/addPerson Add 2008
00:02.58 Dan POST //192.168.165.219:8080/openmrs/ws/rest/v1/person/addPerson Add 8109
00:03.42 Bob GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 1247
00:03.78 Alice DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0
00:04.13 Bob DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0
00:04.38 Bob POST //192.168.165.219:8080/openmrs/ws/rest/v1/person/addPerson Add 2010
00:05.69 Dan GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 7213
00:06.06 Alice GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 7231
00:07.31 Dan DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0
00:07.41 Dan GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 7221
00:07.81 Alice POST //192.168.165.219:8080/openmrs/ws/rest/v1/person/addPerson Add 2006
00:09.08 Dan DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0
00:10.18 Bob GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 1251
00:10.32 Alice POST //192.168.165.219:8080/openmrs/ws/rest/v1/person/addPerson Add 8121
00:10.52 Dan POST //192.168.165.219:8080/openmrs/ws/rest/v1/person/addPerson Add 2012
00:11.02 Bob POST //192.168.165.219:8080/openmrs/ws/rest/v1/person/editPerson Edit 868
00:11.47 Dan POST //192.168.165.219:8080/openmrs/ws/rest/v1/person/editPerson Edit 881
00:12.12 Alice POST //192.168.165.219:8080/openmrs/ws/rest/v1/person/editPerson Edit 877

as the contextual values of each action. After extracting user actions, the workload signature of

each user can be represented by one point in an n-dimensional space (where n is the total number

of extracted actions), i.e., the n-dimension vector for each user records the number of occurrence of

each action with each action type mapped to one dimension. Such vectors are directly fed into step

E to recover our Action workload. Table 6.2 shows the vectors of the frequency of user actions from

our running example.

Table 6.2: Frequency of actions for users in our running example for the Action workloads.

User actions
Search Add Edit Delete

Alice 3 2 1 2
Bob 3 2 1 2
Dan 3 2 1 2

130

Table 6.3: Frequency of enriched actions (with context) for users in our running example for the
ActionContext workloads.

Enriched actions
Search1 Search2 Add1 Add2 Edit1 Delete1

Alice 0 3 1 1 1 2
Bob 3 0 2 0 1 2
Dan 0 3 1 1 1 2

6.3.2 Enriching user actions with context

Each instance of a user action is associated with a context, which may contain useful information

to represent workload. For example, a disk read event is often associated with the size of the read.

However, a disk read event with a large size versus one with a small size of data may correspond

to different user behaviours. A small disk read may correspond to a user reading a data index

while a large disk read may correspond to the actual data reading. Therefore, in this step, we

enrich the recovered user actions by considering their context values. In particular, we split each

action into multiple ones by categorizing the context values. For example, a disk read action may

become two different actions, i.e., a large read disk and a small read disk. In particular, we use

Jenks Natural Breaks Jenks (1967) on the context values of each action. Jenks Natural Breaks is a

one-dimension number clustering algorithm, which minimizes each class’s average deviation from

the class mean, while maximizing each class’s deviation from the means of the other clusters. In our

running example, we consider the Byte value of each action as its context and for the Search action,

we split it into two actions: Search1 (1,247 bytes to 1,251 bytes) and Search2 (7,204 bytes to 7,231

bytes).

After this step, the workload signature of each user becomes a vector where each dimension is

the number of occurrence of each enriched user action. Such vectors are directly fed into step E to

recover our ActionContext workload. Table 6.3 shows the vectors of enriched user actions from our

running example.

6.3.3 Identifying frequent action sequences

Users often perform multiple actions frequently together. In order to capture these actions, we

identify action sequences that frequently appear during system execution.

131

process

data

	Execution
logs

A.	Extracting
user	actions

B.	Enriching	
user	actions
with	context

D.	Grouping	similar	frequent	action	sequences

D.1	Computing
distance	matrix

E.	Grouping	users	into	clusters

E.1	Hierarchical
clustering

F.	Generating	load	tests

F.1	Generating	a
workload	for	load	tests

F.2	Executing
the	load	test

C.	Identifying	frequent	action	sequences
C.1	Splitting
user	action
sequences

C.2	Extracting
frequent	sub-
sequences

Software
system User	actions

Sequence	of
actions	by	each

user

Frequent	action
sequences	

List	of
users

Distance
matrix

D.2	Transforming	vectors	of
frequent	action	sequences
with	the	distance	matrix

Frequent	action
sequences	after
transformation	

E.2	Dendrogram
cutting

Enriched	
user	actions

Group
enriched
actions	by
users

Figure 6.1: An overview of our workload recovery process.

Splitting user action sequences

We first group all user actions by each user and sort the actions by their timestamp, in order

to generate a sequence of actions for each user. Such sequences are often very long, consisting

of thousands of actions; while each user may not perform all the action at once, i.e., a user may

perform two series of actions with a long period of idling time in between. Therefore, we wish to

split the long user action sequences into smaller ones. One naive approach to split long user action

sequences is to consider the time interval between two actions, i.e., if there is a long time interval

between two actions, the sequence is split into two actions. However, some actions may actually

require a long time to finish, leading to the long wait between two actions. In such cases, the naive

approach may incorrectly split the sequences. Therefore, we wish to identify the actions, where

the long running time is due to the idling between two septate actions. We leverage a heuristic that

considers the relationship between context values and the time interval of each user action as an

indicator of the type of wait.

132

For example, a data read action with a large data size may take longer time than a small size.

Based on this intuition, we build a linear regression model using the associated context values

of each action as independent variables and its time interval to the next action as the dependent

variable. With the linear regression model, if an action has a time interval higher than the pre-

dicted value with a residual that is greater than 50%, our process considers that the user has

idled after the action. In our running example, we split user Dan’s events into three sequences:

Search2→Delete1→Search2→Delete1, Search2→Add2 and Add1→Edit1.

Extracting frequent sub-sequences of actions

We aim to mine frequent sub-sequences in order to represent the series of actions that a user

may often perform. An example frequent sub-sequence can be a user first reading small data (to

locate the data using an index) before repetitively reading large data (reading the actual data), i.e.,

Small Read→Large Read→Large Read→Large Read. We apply a suffix array structure and the

Longest Common Prefix (LCP) algorithm to mine frequent sub-sequences for each sequence of

user actions. Such an approach has been used in prior research to uncover usage patterns from

execution logs M. Nagappan, Wu, and Vouk (2009). We re-implemented the same algorithm

as prior research M. Nagappan et al. (2009). Due to the limited space, our detailed implemen-

tation can be found in our replication package.1. In our running example, one of the frequent

sub-sequences that we extract is Search2→Delete1, which is identified originally from the sequence

Search2→Delete1→Search2→Delete1.

Since some sub-sequences may be trivial (too short) or do not frequently appear (too rare), we

rank the extracted sub-sequences based on the frequency of their occurrence and the frequency of

events in the actual sub-sequence, as follows

rank = α×#occurrence+ (1− α)×#events (3)

where #occurrence is the frequency of a sub-sequence’s occurrence and #events is the number

of events in the sub-sequence. α is a weight factor for the number of sub-sequence’s occurrence.
1https://github.com/senseconcordia/ASE2019Data.

133

https://github.com/senseconcordia/ASE2019Data

Table 6.4: Frequency of frequent action sequences in our running example for the ActionSequence
workloads.

Frequent action sequences
Add1→ Add2→ Search1→ Search1→ Search2→ Search2→ Search2→
Edit1 Edit1 Delete1→ Edit1 Add1 Add2 Delete1

Add1
Alice 0 1 0 0 1 0 2
Bob 0 0 2 1 0 0 0
Dan 1 0 0 0 0 1 2

We determine α as 0.5 since we consider the #occurrence and #events to be equally important.

We use the rank value to keep the top sub-sequences such that the kept sub-sequences cover more

than 90% of all actions. We call these kept sub-sequences as frequent action sequences.

After extracting the frequent action sequences, the workload of each user is represented by

one point in an n-dimensional space (where n is the total number of identified frequent action

sequences), i.e., a vector for each user where each dimension is the frequency of each frequent

action sequence. Table 6.4 shows the result of frequent action sequences in our example.

6.3.4 Grouping similar frequent action sequences

The extracted frequent action sequences are not independent from each other. Intuitively, for ex-

ample, two frequent action sequences Read1→Read2→Read2→Read1 and Read1→Read2→Read1

are similar. One user may only have Read1→Read2→Read2→Read1 and another user may only

have Read1→Read2→Read1. The two users may be considered completely different if we do not

consider the similarities between the two frequent action sequences.

Computing distance matrix

For all the frequent action sequences, we calculate the distance between each pair of them using

the normalized Levenshtein distance Mednis and Aurich (2012). For example, the normalized Lev-

enshtein distance between Read1→Read2→Read2→Read1 and Read1→Read2→Read1 is 0.75.

134

Table 6.5: Result of frequent action sequences after transformation based on distance matrix for
ActionSequence workload.

Frequent action sequences
Add1→ Add2→ Search1→ Search1→ Search2→ Search2→ Search2→
Edit1 Edit1 Delete1→ Edit1 Add1 Add2 Delete1

Add1
Alice 0.5 1 1 0.5 2 1.5 2.5
Bob 0.5 0.5 2.33 1.67 0.67 0 0.67
Dan 1 0.5 0.67 0.5 1.5 2.0 2.5

Transforming vectors of frequent action sequences with the distance matrix

In order to address the similarities between frequent action sequences, we apply a vector trans-

formation based on the distance matrix as follows:

vectoru =

〈
su1 , . . . , sun

〉
d11, d21 . . . dn1

d12, d22 . . . dn2
...

d1n, d2n . . . dnn



where vectoru is the final vector for user u, sun is the frequency of frequent action sequence n

for user u and d1n is the normalized Levenshtein distance between frequent action sequence 1 and

frequent action sequence n. We perform a vector transformation in our running example and the

result is shown in Table 6.5.

6.3.5 Grouping users into clusters

In order to reach a desirable level of granularity for a workload, in this step, we apply a clustering

algorithm to group users into clusters.

Hierarchical clustering

We apply a hierarchical clustering to cluster users based on the Pearson distance. We choose

hierarchical clustering since it is suitable for data with arbitrary shape and there is no need to

determine a specific number of clusters beforehand D. Xu and Tian (2015). In addition, hierarchical

clustering performs well in prior research of workload recovery (Shang et al., 2015; Syer et al.,

2017). In our approach, hierarchical clustering first considers each user as an individual cluster.

135

Afterwards, we merge the most neighbouring clusters into a new cluster and recalculate the Pearson

distance matrix between each two clusters based on average linkage.

Dendrogram cutting

Hierarchical clustering can be visualized using a dendrogram. Such a dendrogram must be cut

with a horizontal line at a particular height to create our clusters. In practice, one may choose a

desired level of granularity in a recovered workload by cutting the dendrogram at different heights,

in order to retrieve a different number of clusters. In order to avoid any subjective bias, we use

the Calinski-Harabasz stopping rule Caliński and Harabasz (1974) to perform our dendrogram

cutting. Prior research notes that the Calinski-Harabasz stopping rule outperforms other rules

when clustering workload signatures Syer et al. (2014). The Calinski-Harabasz index measures the

dissimilarity of the intra-cluster variance and the similarity of inter-cluster variance. In our running

example, Alice, Bob and Dan are all grouped into one cluster for the Action workload. Users Alice

and Dan are grouped into one cluster while Bob is in another cluster for the ActionSequence and

ActionContext workloads.

6.3.6 Generating load tests

In the final step of our process, we generate the load tests as the final outcome of our approach.

Generating a workload for load tests

We identify a representative user in each cluster of users to generate a workload for load testing.

We apply the Partitioning Around Medoids Kaufman and Rousseeuw (2009) (PAM) algorithm to

identify the representative point of each cluster. PAM is based on the k representative medoids

among the instances of the clustering data. PAM is an iterative process of replacing representative

instances by other instances until the quality of the resulting clustering cannot be improved. The

quality is measured by the medoids with the smallest average dissimilarity to all other points. In our

case, we set the k as 1 since we only choose one user to represent each cluster. We then iterate each

user inside the cluster to find the best representative user based on PAM.

136

After obtaining a representative user for each cluster, we obtain a vector
〈
su1 , . . . , sun

〉
for

that user where sun is the number of occurrences of frequent action sequences n from user u, for the

ActionSequence workload. We use the frequency of occurrences of each frequent action sequences

from the representative user to calculate a probability of occurrence of that frequent action sequence.

Then, we generate the synthesized workload based on such probability of frequent action sequences.

In our running example, the center of the cluster that consists of users Alice and Dan is user Dan.

Then to generate a workload for user Alice in the load test, we replace the corresponding actions

into Search2→Delete1 with a probability of 50%, Search2→Add1 with a probability of 25% and

Add2→Edit1 with a probability of 25%, because each of them has a frequency of two, one and one,

respectively (see Table 6.4).

For the Action and the ActionContext workload, this step is similar to above but instead a

probability of having an action or enriched action is calculated. For the Action workload, since

all the users are in one cluster, the load test is generated based on the probability of having each

action shown in Table 6.2, i.e., the Search, Add, Edit and Delete actions have a probability of 37.5%,

25%, 12.5% and 25%, respectively. For the ActionContext workload, users Alice and Dan are in

one group with exactly the same distribution frequency of actions with context values. Therefore,

the generated load test where the Search2 action has a probability of 37.5%, the Add1, Add2, and

Edit1 actions each have a probability of 12.5%, and the Delete1 action has a probability of 25%.

Executing load tests

Finally, our approach executes the load tests based on FIO Axboe (2019) and JMeter JMeter

(1998). For software systems that cannot be directly driven by FIO and JMeter, our approach

outputs simulated execution logs. Such systems can generate the load test by directly replaying the

workload based on our simulated execution logs line by line.

6.4 Case study setup

In this section, we present the setup of our case study.

137

Table 6.6: Overview of our subject systems.

Subjects Version SLOC (K) # Users # lines of logs (K)
Apache James 2.3.2.1 37.6 2,000 134

OpenMRS 2.0.5 67.3 655 231
Google Borg May 2011 N/A 4,895 450

SA 2018 N/A �5,000 �1,500

6.4.1 Subject systems

We choose two open-source systems including Apache James and OpenMRS, as well as two

industrial systems including Google Borg, and one large software system (SA) as our subject sys-

tems. Apache James is a Java-based mail server developed by the Apache Foundation. OpenMRS

is an open-source health care system to develop to support customized medical records. OpenMRS

is a web system developed using the Model-View-Controller (MVC) architecture. Google Borg is

a large-scale cluster management system that is used to manage internal workloads and schedule

machines, jobs and tasks. SA is an ultra-large-scale cloud computing service application that is

deployed to support business worldwide and used by a hundred of millions of users. Due to a

Non-Disclosure Agreement (NDA), we cannot reveal additional details about the system. We do

note that the SA system is one of the largest in the world in its domain with a long development

history. All our subject systems cover different domains and are studied in prior research (Ahmed

et al., 2016; T.-H. Chen, Shang, Hassan, et al., 2016; Gao, Jiang, Barna, & Litoiu, 2016; Verma et

al., 2015). The overview of the four subject systems is shown in Table 6.6.

6.4.2 Data collection

In this subsection, we present how we collect execution logs in order to study the use of our

different workload approaches. In particular, for the two open-source systems (Apache James and

OpenMRS), we deployed the systems in our experimental environment and conducted load tests to

exercise the systems. We then collected execution logs that are generated during the load tests. We

also collected the CPU usage of both systems by monitoring the particular process of the system

with a performance monitoring tool named Pidstat Godard (2019) for every five seconds. The data

from the two industrial systems are from real end users. The production deployment of SA provides

138

the CPU usage of the system, while Google Borg does not provide the CPU usage (hence, we do

not evaluate that aspect for this system). We discuss the details of our data collection for each of

our subject systems. The details of our data collection can be found in our replication package.

Apache James We use JMeter to create load tests that exercise Apache James. We replicate a

similar workload to prior research Gao et al. (2016). In particular, we simulated 2,000 email users

who send, receive and read different sizes of emails with and without different sizes of attachment.

Users may only read the email header or load the entire email.

We deploy Apache James on a server machine with an Intel Core i7-8700K CPU (3.70GHz), 16

GB memory on a 3TB SATA hard drive. We run JMeter on a machine with Intel Core i5-2400 CPU

(3.10GHz), 8 GB memory and 320GB SATA hard drive to generate a two-hours workload.

OpenMRS We used the default OpenMRS demo database in our load tests. The demo database

contains data for over 5K patients and 476K observations. OpenMRS contains four typical scenar-

ios: adding, deleting, searching and editing operations. We designed the load tests that are composed

of various searches of patients, concepts, encounters, and observations, and addition, deletion and

editing of patient information. To simulate a more realistic workload, we added random controllers

in JMeter to vary the workload.

We deployed the OpenMRS on two machines, each with Intel Core i5-2400 CPU (3.10GHz), 8

GB memory, 512GB SATA hard drive. One machine is deployed as application server and the other

machine as a MySQL database server. OpenMRS provides a web-based interface and RESTFul

services. We used the RESTFul API from OpenMRS and ran JMeter on another machine with the

same specification to simulate users in the client side with an eight-hour workload.

Google Borg We used a publicly-available open dataset from the Google Borg system Wilkes

(2011). The data is published by Google with a goal of workload related research. Due to the

large size of Google Borg data, we only picked the first part of data to analyze, which consists of

83 minutes of data from the entire Google Borg cluster. Due to the inaccessibility of the Google

Borg system, we could not run load tests directly on the system. In the data from Google Borg,

there exists no information about users. However, the workload is described as jobs. Therefore, we

139

considered each job as a user when applying our approach on the Google Borg data.

SA We retrieved the execution logs and the corresponding CPU usage from SA that is deployed in

production and is used by real users. The SA is deployed on a cluster with more than a thousand ma-

chines. Due to the NDA, we cannot mention the detailed information of the hardware environment

and the usage scenarios of SA.

6.4.3 Preliminary analysis: clustering tendency

Before we answer the research questions for our case study, we first conduct a preliminary

analysis on the clustering tendency of the data from our subject systems. If the users from our

subject systems have random behaviour and do not appear to have inherent groups of similar

behaviours, the data from our subject systems would be unsuitable for our study.

Therefore, we calculated Hopkins Statistic to assess the cluster tendency of our data. Hopkins

Statistic is a statistical hypothesis test that can be used to accept or reject the random position

hypothesis Banerjee and Dave (2004). The value of the Hopkins Statistic ranges from 0 to 1. A

value of 1 means that the data has a high cluster-tendentious, a value of 0 indicates the data is

uniformly distributed (not cluster-tendentious). Similar to previous research Banerjee and Dave

(2004), we used 0.5 as the threshold to reject the alternative hypothesis. If the value of the Hopkins

Statistic is higher than 0.5, we consider that the data has a high cluster-tendentious. We used the

function hopkins of the clustertend package in R to calculate the Hopkins Statistic. We observe

that our data has a high cluster-tendentious with Hopkins Statistic values that range between 0.80

to 0.99 with an average of 0.92 across all of our subject systems. Since the Hopkins Statistic values

are higher than 0.5, we reject the alternative hypothesis and confirm that our data is suitable for our

study.

6.5 Case study results

In this section, we present our case study results by answering two research questions.

140

RQ1: How field-representative are our generated workloads?

Motivation. In order to illustrate a practical impact, we wish to first examine whether the gen-

erated workloads can lead to similar system behaviour and performance as the original system

workload. If the system behaviour and performance that are produced by the generated workloads

are drastically different from the original workload, such automatically generated workloads are not

field-representative and hence would not be useful in practice.

Approach. We use all three workload approaches (Action, ActionContext and ActionSequence) to

generate load tests based on the execution logs of the subject systems. The execution logs from

Google Borg do not contain any context values, hence we only use the Action and ActionSequence

approaches to generate load tests for Google Borg. When running the generated load tests, we

monitor the behaviour and the performance of the systems. For the behaviour of the system, we

measure the throughput of each type of action for every minute during the execution of the load tests.

For the system performance, we measure the CPU usage of the particular process of the system. In

the load tests, we use a performance monitoring tool named Pidstat Godard (2019) to collect the

physical performance for every five seconds. For our subjects Apache James, OpenMRS and SA,

we are able to run the generated load tests directly on the system to measure system behaviour and

performance. However, for the subject Google Borg, we cannot directly run the load tests since we

do not have access to the system. Therefore, we cannot measure the system performance. Since we

can generate simulated execution logs for load tests, we use the simulated execution logs to compute

the throughput of each type of user action.

We perform statistical analysis to examine the existence of significant differences between the

generated workloads and the original workload, in terms of the throughput of each action and the

CPU usage. We use the Mann-Whitney U test Nachar et al. (2008) to determine if there exists

a statistically significant difference (i.e., p-value < 0.05). We choose the Mann-Whitney U test

because it does not enforce any assumptions on the distribution of the data. Reporting only the

statistical significance may lead to erroneous results (i.e., if the sample size is very large, p-value

can be small even if the difference is trivial). Hence, we use Cliff's delta to quantify the effect

size Becker (2000). The smaller the effect sizes, the more similar the workload is to the original

141

0

10000

20000

30000

40000

0 30 60 90 120
elapsed time (minute)

cu
m

ul
at

iv
e

#a
ct

io
ns

Original
Action
ActionContext
ActionSequence

Figure 6.2: Cumulative density plot of the number of user actions from the original workload and
the generated load tests for the Receive action in Apache James.

workload. Since statistical tests do not consider the trend of the actions, we visualize the differences

between the number of each type of actions during execution from the load tests and the original

workload using cumulative density graphs.

Results. The load tests from our recovered workloads have similar system behaviour to the

original workload. The results of the throughput of actions between the original workload and the

generated load tests are shown in Table 6.7. In 11 out of 14 user actions in all the subject systems,

at least one workload is field-representative (bold in Table 6.7). Even the most coarse-grained

workload Action has a similar system behaviour in five out of 14 user actions; while the most

fine-grained workload ActionSequence has a similar system behaviour in 10 out of 14 user actions.

142

Table 6.7: Comparing the throughput between the original workload and the generated workloads.

OpenMRS
Action Add Delete

Throughput Comparing with original Throughput Comparing with original
(per minute) p-value effect size (per minute) p-value effect size

Original 143 N/A N/A 91 N/A N/A
Action 173 �0.0001 0.52 (large) 87 �0.0001 0.14 (small)

ActionContext 105 �0.0001 0.96 (large) 69 �0.0001 0.83 (large)
ActionSequence 155 �0.0001 0.23 (small) 83 �0.0001 0.26 (small)

Action Edit Search
Throughput Comparing with original Throughput Comparing with original
(per second) p-value effect size (per second) p-value effect size

Original 92 N/A N/A 131 N/A N/A
Action 88 �0.0001 0.15 (small) 110 �0.0001 0.48 (large)

ActionContext 119 �0.0001 0.87 (large) 165 �0.0001 0.88 (large)
ActionSequence 71 �0.0001 0.45 (medium) 149 �0.0001 0.43 (medium)

Apache James
Action Send Receive

Throughput Comparing with original Throughput Comparing with original
(per minute) p-value effect size (per minute) p-value effect size

Original 339 N/A N/A 127 N/A N/A
Action 253 �0.0001 0.39 (medium) 213 �0.0001 0.68 (large)

ActionContext 318 �0.0001 0.30 (small) 149 �0.0001 0.44 (medium)
ActionSequence 338 0.002 0.18 (small) 129 �0.0001 0.13 (small)

SA
Action Action A Action B

Throughput Comparing with original Throughput Comparing with original
(per minute) p-value effect size (per minute) p-value effect size

Original — N/A N/A — N/A N/A
Action — 0.58 0.89 (large) — �0.0001 0.79(large)

ActionContext — 0.58 0.06 (trivial) — �0.0001 0.99(large)
ActionSequence — 0.89 0.01 (trivial) — 0.49 0.17(small)

Google Borg
Action Submit Schedule

Throughput Comparing with original Throughput Comparing with original
(per minute) p-value effect size (per minute) p-value effect size

Original 4,022 N/A N/A 3,840 N/A N/A
Action 3,985 0.82 0.02 (trivial) 3,971 0.84 0.02 (trivial)

ActionSequence 4,192 0.51 0.06 (trivial) 3,849 0.98 0.003 (trivial)
Action Fail Finish

Throughput Comparing with original Throughput Comparing with original
(per minute) p-value effect size (per minute) p-value effect size

Original 613 N/A N/A 2,236 N/A N/A
Action 647 0.006 0.25 (small) 2,679 0.007 0.42 (medium)

ActionSequence 608 0.68 0.04 (trivial) 1,793 0.007 0.45 (medium)
Action Evict Kill

Throughput Comparing with original Throughput Comparing with original
(per minute) p-value effect size (per minute) p-value effect size

Original 933 N/A N/A 217 N/A N/A
Action 428 0.06 0.44(medium) 151 �0.0001 0.34 (medium)

ActionSequence 1,258 0.05 0.31(medium) 162 0.37 0.08 (trivial)
Note: Bold font indicates that the load tests from the corresponding approaches are representative to the original

workload (p-value <0.05, or effect sizes trivial or small).

143

Table 6.8: Comparing CPU usage between original workload and the load tests generated by our
workload approaches.

Comparing with original
Action ActionContext ActionSequence

Subjects p-value effect size p-value effect size p-value effect size
Apache James �0.0001 0.63 (large) �0.0001 0.98 (large) �0.0001 0.18 (small)

OpenMRS �0.0001 0.78 (large) �0.0001 0.61 (large) �0.0001 0.26 (small)
SA � 0.0001 0.55 (large) �0.0001 0.47 (medium) �0.0001 0.29 (small)

Note: The bold fond indicates the most field-representative workload.

The load tests generated by ActionSequence outperform the ones from Action and Action-

Context. We observe that in 10 out of 14 user actions, ActionSequence outperforms Action and

ActionContext when comparing the throughput of the user actions. For example, for the Send action

in Apache James, the load test from ActionSequence generates 337 actions per minute which is

much closer to the original workload (339 actions per minute) than Action (253 actions per minute)

and ActionContext (318 actions per minute). We also use cumulative density graph to evaluate the

trend of each action between the original and the load tests that are generated from our different

workloads. The x-axis of the graphs is the elapsed time of the load tests and the y-axis of the graph

is the total number of actions. Due to space limitation, we only present the cumulative density graph

for one action of Apache James (see Figure 6.2). The detailed cumulative density graph for each

user action can be found in our replication package. The graphs show that the trend of the Receive

action from the ActionSequence workload is much closer to the original workload than the Action

and ActionContext workloads. In particular, Figure 6.2 shows that the total of the number of user

actions from the Action workload is far from the original.

The ActionSequence workloads produce system performance closer to the original work-

load than the Action and ActionContext workloads. Shown in Table 6.8, the effect sizes are

always trivial or small between the CPU usage during the load tests that are generated from the

ActionSequence workloads and the original workload. On the other hand, the effect sizes of CPU

usage differences are medium to large when comparing the original workload with the Action and

ActionContext workloads.

144

RQ2: How many clusters of users are captured by each of our recovery workload

approaches?

Motivation. Our workloads may contain a large number of clusters of users, leading to a too-fine

of a granularity for load tests. If our workloads consist of an overwhelming amount of clusters, they

would not be useful for practitioners due to the large overhead of developing the infrastructure to

execute such workloads, as well as executing and maintaining them.

Approach. We use all the workloads of each of our approaches to generate load tests for the four

subject systems. We compare the number of clusters of users that are recovered by each workload.

Afterwards, we manually examine each cluster of users to understand the differences between our

different workload recovery approaches.

Results. Our approaches do not generate an overwhelming number of clusters. The numbers

of generated user clusters are shown in Table 6.9. Although including richer user information in

our workloads, we do not generate an overwhelming number of clusters. In particular, Google

Borg and SA are both large-scale systems with a large amount of end users, while our process only

generates a maximum of 25 and 13 clusters for the ActionSequence approach for Google Borg and

SA, respectively. However, the granularity of the Action workloads is very coarse. In particular, for

the three subject systems, i.e., Apache Jame, OpenMRS and SA, the Action workload only consists

of two to three clusters of users. Such a small number of clusters helps explain the results from RQ1

where the Action workload is not able to generate field-representative load tests. On the other hand,

the most field-representative workload from RQ1, i.e., the ActionSequence workloads, consists of

only three to six more clusters than the ActionContext workloads. Such a small number of clusters

of users make it possible to manually examine each cluster to qualitatively understand the field

workload.

We manually examine each cluster of users and aim to understand the difference between the

recovered clusters for the ActionSequence and ActionContext workload recovery approaches. We

identify three typical scenarios that cause the differences. 1) Orders of actions. Some users have

the same distribution of actions but they are ordered differently. Such differences are not captured

by ActionContext workloads. 2) Similar sequences of actions but different distribution. User may

145

Table 6.9: Number of user clusters for each of our workload approaches.

Subjects Action ActionContext ActionSequence
Apache James 2 35 39

OpenMRS 3 2 8
Google Borg 20 20 25

SA 2 10 13

have the same action sequences but the general distribution of each sequence of actions is different.

ActionContext workloads would consider the users into different clusters while ActionSequence

workloads group the users together. 3) Varying frequency of actions. Some users have the same

distribution of action sequences although their frequencies are varying differently. ActionContext

workloads would consider the users in the different clusters while ActionSequence workloads con-

sider them the same. Such scenarios show that the ActionSequence considers a different levels of

granularities of user behaviours which may explain the differences in clusters.

6.6 Discussion

In this section, we discuss the use of our three workload recovery approaches to detect unseen

workloads and sensitivity analysis.

6.6.1 Detecting unseen workload

One of the challenges of designing load tests is keeping the load tests field-representative as the

user workloads evolve (T. Chen et al., 2017; Cunha & e Silva, 2012). When there exist users with

unseen workload, practitioners should be informed in order to act accordingly. For example, if the

unseen workload is due to new user behaviours, one may wish to update the load tests. On one

hand, if the recovered workloads from our approaches are too fine-grained, our approaches would

report false-positively unseen workloads, leading to additional wasted costs to practitioners. On the

other hand, if our recovered workloads are too coarse-grained, we may miss the reporting of unseen

workloads, leading to load tests that are not field-representative. Therefore, we study the use of our

workload recovery process to detect unseen workloads by injecting users with unseen workloads

into our existing data. We injected four types of unseen workloads, that are typically used in prior

146

research (Cherkasova, Ozonat, Mi, Symons, & Smirni, 2008; Cunha & e Silva, 2012).

• Extra actions. We randomly pick one action that is not the most frequent action. Then we

replace all occurrences of the picked action by the most frequent action.

• Removing actions. We randomly pick an action type and remove all occurrences of the action

from a user.

• Double context values. For every action with a context value, we change the context value by

doubling it.

• Reordering actions. For all the actions that are performed by a user, we randomly reorder the

actions.

For every type of unseen workload, we randomly select one user and alter the data from the

user to inject the unseen workload. We apply each of our approaches to recover workloads from

the data with only one user injected with an unseen workload. In particular, if one user is located in

one cluster without any other users, we consider that the user has an unseen workload (the user is

not similar to any other one). If the user is indeed injected with an unseen workload, we consider

it as a true-positive detection. Any normal user located in a one-user cluster will be considered as

a false-positive detection. We repeat this process 10 times, with every time injecting a random user

with an unseen workload, for every type of unseen workload. In total, for our four subject systems,

we have 160 sets of data, each of them having one user injected with an unseen workload. We

generate 160 workloads to detect those users. We define precision as the number of the true-positive

detection divided by the total number of users that are in a one-user cluster; recall as the number of

the true-positive detection divided by the total number of users with injected unseen workloads.

ActionContext and ActionSequence workloads can accurately detect the injected users with

an unseen workload. The results of detecting injected users with an unseen workload is shown in

Table 6.10. The results show that ActionContext workloads have a precision between 0.75 to 1 with

an average of 0.86 and a recall between 0.2 to 0.9 with an average of 0.58. The ActionSequence

workloads achieve a precision between 0.75 to 1 with an average of 0.87 and a recall between 0.3

to 1 with an average of 0.79. However, the Action workloads have both low average precision

(0.47) and recall (0.29). The precision and recall of the ActionSequence workloads are generally

147

Table 6.10: Results of precision and recall in detecting injected unseen workloads.

Apache James

Unseen workload type
Action ActionContext ActionSequence

precision recall precision recall precision recall
Extra actions 1.00 0.30 0.80 0.40 0.80 0.40

Removing actions 1.00 0.40 0.75 0.30 0.75 0.30
Double context values 0 0 0.90 0.90 0.90 0.90

Reordering actions 0 0 0.75 0.30 0.89 0.80
Average 0.50 0.18 0.80 0.48 0.84 0.60

OpenMRS

Unseen workload type
Action ActionContext ActionSequence

precision recall precision recall precision recall
Extra actions 0.86 0.6 0.86 0.60 0.89 0.80

Removing actions 0.88 0.70 0.73 0.80 0.69 0.90
Double context values 0 0 0.75 0.60 0.75 0.60

Reordering actions 0 0 1.00 0.30 0.91 1.00
Average 0.44 0.33 0.84 0.58 0.81 0.83

Google Borg

Unseen workload type
Action ActionSequence

precision recall precision recall
Extra actions 0.90 0.90 0.90 0.90

Removing actions 0.83 0.50 0.89 0.80
Double context values 1.00 0.10 0.90 0.90

Reordering actions 0.91 0.50 0.90 0.87
Average 0.91 0.50 0.90 0.87

SA

Unseen workload type
Action ActionContext ActionSequence

precision recall precision recall precision recall
Extra actions 1.00 0.80 0.89 0.80 0.90 0.90

Removing actions 0.88 0.7 0.89 0.80 0.89 0.80
Double context values 0 0 1.00 0.90 1.00 0.90

Reordering actions 0 0 1.00 0.20 0.90 0.90
Average 0.47 0.38 0.95 0.68 0.92 0.88

Action ActionContext ActionSequence
precision recall precision recall precision recall

All average 0.47 0.29 0.86 0.58 0.87 0.79
Note: Values in bold font indicate the best performing approach for each setting.

148

consistently high across all subject systems for all types of injected unseen workloads. The only

exception is Apache Jame with a lower recall in detecting Extra actions and Removing actions

workloads. We find that the Apache James mail server has a small number of action types (cf.

Section 6.4), while adding extra actions and removing actions may still generate a user with a high

similarity to a previously recovered cluster of users.

ActionSequence workloads have a similar precision but much higher recall than Action-

Context workloads. Table 6.10 shows that on average ActionSequence achieves a similar precision

(0.87) as ActionContext (0.86) while the recall of ActionSequence (0.79) is much higher than that

of ActionContext (0.56). ActionSequence considers finer-grained information than ActionContext,

hence intuitively, providing a higher ability to uncover more unseen workloads. In particular, in all

the cases, ActionSequence has a higher or similar recall as ActionContext. On the other hand, even

though in some cases when ActionContext has a higher precision, the difference is rather small.

6.6.2 Sensitivity analysis

Our workload recovery process leverages several techniques, such as hierarchical clustering,

which may be replaced by other similar techniques. Our process also leverages threshold values.

For example, the residual value for the linear regression prediction that is used to split user action

sequences is set to 0.5 in our process. The α value to rank frequent action sequences is also

set to 0.5. In order to better understand the sensitivity of our workloads to these thresholds, we

individually increased each threshold value to 0.75 and decreased the threshold value to 0.25. We

also change the clustering algorithm to Mean shift Comaniciu and Meer (2002). We choose Mean

shift, since similar to hierarchical clustering, Mean shift does not require us to pre-specify the

number of clusters. We re-generated the ActionSequence workload and calculated the throughput of

each action for each subject system. We used the ActionSequence workload in this analysis because

ActionSequence is the best performing workload shown in our evaluation results (c.f. Section 6.5)

and the ActionSequence covers all the steps of all our three workload recovery approaches.

We compared the throughput of each action with the default threshold and the clustering al-

gorithm using the Mann-Whitney U test and Cliff’s delta. We observed that our approaches are

insensitive to both the residual and α thresholds. In addition, the effect size between the hierarchical

149

Table 6.11: Comparing the results of choosing different threshold values and clustering algorithm
for Apache James.

Send action
Changed residual=0.25 residual=0.75 α=0.25 α=0.75 with Mean shift
Default p-value effect size p-value effect size p-value effect size p-value effect size p-value effect size

residual=0.5, α=0.5, 0.9 0.01 0.91 0.01 0.001 0.19 0.99 0.0001 0.0001 0.22
hierarchical clustering (trivial) (trivial) (small) (trivial) (small)

Receive action
Changed residual=0.25 residual=0.75 α=0.25 α=0.75 with Mean shift
Default p-value effect size p-value effect size p-value effect size p-value effect size p-value effect size

residual=0.5, α=0.5, 0.9 0.01 0.9 0.01 0.005 0.15 0.99 0.0001 0.25 0.07
hierarchical clustering (trivial) (trivial) (small) (trivial) (trivial)

clustering and Mean shift is trivial or small. Table 6.11 only shows the results of such a comparison

for Apache James which is the most peculiar workload in our subject systems. Other comparison

results are in our replication package.

6.7 Challenges and lessons learned from the industrial evaluation of

our approaches.

In this section, we discuss the learned lessons and faced challenges during the implementation

and evaluation of our approaches in industry. In particular, I was embedded on site with the

industrial team for over half a year to enable a faster feedback loop from practitioner – ensure

the smooth adoption of our approaches in a large-scale complex industrial setting. Our documented

challenges and lessons can assist researchers and practitioners who would like to integrate their

research in complex industrial settings.

6.7.1 Domain knowledge is crucial for the successful transfer of research to practice.

Our approaches depend on the availability and quality of the important knowledge that resides

in system execution logs. Due to the large scale and complexity of the logs in System A, we often

faced the challenge that we may not fully understand the information that is communicated in the

logs, making it challenging for us to determine the important contextual information to include and

analyze by our approaches.

How to address: At a first attempt, we naı̈vely included all log information for our analysis. We

ended up observing that such an attempt introduced noise which negatively impacted our results.

150

Hence, the first author flew down to spend six months on site at Alibaba, where he held several

in-person scrum meetings with developers and operators of System A, in order to better understand

the information that is communicated in System As logs. These meetings helped the academic team

and the industrial team get a better understanding of the problem at hand as well as the strengths

and limitations of the research solutions. Being on site helped the academic team create a strong

relation with the industrial team as well. Such a relation enabled a much faster and more open

feedback loop.

Lessons learned: Good domain knowledge is crucial in log analysis and workload recovery. Blindly

applying log analysis techniques on large-scale complex logs may not achieve the expected goal.

One should work closely with practitioners to leverage their valuable knowledge about their logs.

6.7.2 Team support is crucial for the successful transfer of research to practice.

Customization of tooling

We started our research working on open-source systems. Such open-source systems commonly

use standard load driver tools such as JMeter. However, industrial systems are commonly tested

using various in-house custom tools. Such tools hinder us from demonstrating and evaluating our

work. It is often costly, time-consuming and sometimes impossible to design and implement a

specific load replay tool for each system.

How to address: Working closely with the practitioners of Alibaba, we gained a deeper understand-

ing of their in-house load replay tools. We observed that many of them support the direct reading

of logs and the replaying of the exact workload based on such logs. Therefore, we provided an

option in our toolset for the direct driving of a load test using widely used tools (like JMeter), or the

transformation of our generated load test into logs, which can be fed to the customized load replay

tools from Alibaba.

Lessons learned: There exists a strong need for future research in load replay using more flexible

frameworks in order to avoid practitioners having to implement customized toolsets.

151

Addition of needed log lines when not all information is available

Not all the needed information was available in the logs when we started our research on

Alibabas system. In particular, the log data was not perfectly designed for our approach and

important information was missing.

How to address: Working closely with the practitioners, we requested the addition of new logging

probes. In order to demonstrate the values of our requests, we conducted several additional analyses.

Lessons learned: The technical support and quick turn-around from the industrial team were ex-

tremely crucial in addressing this challenge. However, even with all the logging probes in place, we

had to wait till the builds with such probes were deployed long enough in the field for us to have

sufficient data for our approaches.

Setting up a realistic industrial environment

The context of the load testing environment has an important influence on the performed load

tests. For example, there should be a large amount of realistic data in a database before one can

test a database-driven application. Using open source systems, it is relatively easy to create a load

testing environment that is similar to widely adopted benchmarks. However, setting up such an

environment in an ultra-large-scale industrial environment is extremely challenging.

How to address: To make our automatically generated load tests run successfully, we had the luxury

of being strongly supported by the infrastructure team of Alibaba. In particular, we were provided

with a testing environment that is a replica of the field environment from which we collected the

analyzed logs. However, such a solution is not optimal and may not be cost-effective, especially

for practitioners that do not have direct access to infrastructures that are similar to their deployed

systems.

Lessons learned: Preparing the load testing environment is an important, challenging and yet open

problem for load testing practices and research. Technical and infrastructural support is crucial in

overcoming this challenge.

152

6.7.3 Coping with the large scale industrial data

Our experiments on open-source systems are conducted with a limited scale of data. When

adopting our approach using the industry scale data of Alibaba, our approach did not scale well.

The statistical analyses and clustering techniques often suffered from poor scalability.

How to address: In order to ease the adoption of our approach on industry scale data, we optimized

our solution by learning some threshold values by pre-processing the logs and caching the thresholds

across runs. For example, learning the best threshold values to categorize contextual values is time

consuming. We can save the learned thresholds and use them directly to generate the categorized

contextual values in logs since such thresholds rarely change within a specific context.

Lessons learned: One should not assume that a successful research tool can directly scale to

industrial data. Optimization for the particular industrial setting is important.

6.8 Threats to validity

External validity. Our evaluation is conducted on data from two open source and two industrial

systems. Although our subject systems cover different domains and sizes, our evaluation results

may still not generalize to other systems. Given the automated nature of our process, others can

study its effectiveness on their own data sets using our replication script.

Internal validity. Our approaches depend on the availability and quality of system execution logs.

If a system records limited information about user actions in the execution logs, our approaches

may not perform as expected. The evaluation of approaches uses the system CPU usage that is

recorded by Pidstat. The quality and the frequency of recorded CPU usage can impact the internal

validity of our study. Currently, our approach only categorizes numerical contextual values due to

the characteristics of the logs in our subject systems. Future work can complement our approach

by considering categorizing string literals. Our approach depends on various statistical analyses.

Therefore, for small systems with a small amount of data, our approach may not perform well due

to the nature of statistical analyses.

Construct validity. There exists other aspect of system bahaviour and performance. We focus on

the throughput and CPU usage due to special need of SA from our industrial collaborator. Future

153

study may investigate the impact on other system aspects to complement our findings. Due to

inaccessibility of the subject system, the workloads on Google Borg is based on simulated execution

logs, instead of actually running the load tests on Google Borg. Therefore, the evaluation results

may be different if we were able to run the load tests on the actual Google Borg cluster. In the

evaluation of our approaches to detect users with unseen workloads, we only injected four types

of unseen workloads. Similar evaluation approaches based on mutation techniques have been often

used in prior research (Svajlenko & Roy, 2015; Svajlenko, Roy, & Cordy, 2013). However, these

unseen workloads may not be the same as in real life. In addition, there may exist other ways to

inject unseen workload to complement our results.

6.9 Conclusions

Workload recovery from end users is an essential task for the load testing of large-scale systems.

In this work, we conduct a study on recovering workloads at different levels of granularity of user

behaviours to automatically generate load tests. We design three approaches that are based on

user actions, user actions with contextual information and user action sequences with contextual

information, to generate load tests on two open source systems and two industrial systems. We find

that our richest approach which uses user action sequences with contextual information outperforms

the other two approaches. In most cases, the throughput and CPU usage from the load tests that

are generated from the user action sequence based workload outperform the other two, and are

statistically insignificant relative to the original workload or with small or trivial effect sizes. Such

a field-representative workload is generated only using a small number of clusters of users. In

addition, we find that the recovered workloads from our approaches can also be used to detect

injected users with unseen workloads with a high precision and recall.

This work has the following contributions:

• To the best of our knowledge, our approach is the first large-scale study on the use of different

granularity of recovered user details for load testing.

• To the best of our knowledge, our approaches are the first ones in the field to leverage user

contextual information and frequent action sequences in workload recovery.

154

• Our approaches have been adopted in practice to assist in the testing and operation of an

ultra-large-scale industrial software system.

155

Chapter 7

Summary, Contributions, and Future

Work

This chapter summarizes the main ideas presented in this thesis. In addition, we propose future

work related to software performance.

7.1 Summary

This thesis focused on working towards the performance regression detection in DevOps. First,

we focus on frequent performance assurances during development. The performance regression

might slip from software development to operation. Therefore, second, we focus on assisting

performance assurances with operational data. To detect or predict performance regression intro-

ducing source code changes in the early stage during development, we first present an approach to

identity performance regression introducing source code changes during development. Second, we

propose an approach to automatically predict whether a test would manifest performance regressions

in a code commit. Most of the performance regressions are caused by mistaken configuration.

Therefore, we also propose an approach to predict whether a configuration option manifests perfor-

mance regression. Our results and approaches are valuable for software performance engineering

practitioners.

From the perspective of operations, we use operational data to analyze system performance

156

and detect performance regression to assist developers to improve their system performance. In

particular, we propose an approach to recover field-representative workloads to generate load tests

based on execution logs to help operators to perform their load tests.

7.2 Thesis contributions

The main contributions of this thesis are the following:

• We propose a statistically rigorous approach to identifying performance regression introduc-

ing code changes. Further research can adopt our methodology in studying performance

regressions (Chapter 3).

• We find six root-causes of performance regressions that are introduced by code changes.

12.5% of the manually examined regressions can be avoided or their performance impact

may be reduced (Chapter 3).

• We propose an approach that can predict performance-regression-prone tests at the commit

level. Our approach can provide accurate prediction results, and save testing time, easing the

adoption of the approach in practice (Chapter 4).

• Our findings highlight the importance of considering different configurations when perform-

ing performance regression detection, and that leveraging predictive models can mitigate

the difficulty of exhaustively consider all configurations of a system during such a process

(Chapter 5).

• We introduce an approach for recovering workload using user contextual information and

frequent action sequences from system execution logs. Our approach has been adopted in

practice to assist in the testing and operation of an ultra-large-scale industrial software system

(Chapter 6).

157

7.3 Future Work

Software performance involves many research areas like program analysis, software testing,

software log analysis. There are many open challenges and opportunities still in the field of perfor-

mance regression. We highlight some avenues for future work.

7.3.1 Performance data repository

There exist many systematical and mature repositories, such as code repository Git and issue

tracking system JIRA. However, there exists no repository for performance data. And we already

know that performance testing is time-consuming and costly. If we have a systematical repository

for performance data, it would be valuable for both researchers and practitioners. Therefore, de-

signing a repository to collect, store, manage performance data is an open research question. To

do so, we plan to collect the existing performance data as much as possible and try to propose an

efficient data structure to store the performance data. We also plan to investigate the approaches to

systematically store such performance data in a repository.

7.3.2 More empirical studies on the impact of software activities on performance

There is a lack of research on the impact of software activities on the performance of software

system. For instance, architecture reengineering, cloning codes and some types of refactoring

activities might have negative impacts on performance. To fill this gap, future work can conduct

more empirical studies on the impact of software activities on performance.

7.3.3 Domain-specific language for performance data analysis

Performance data are often analyzed using script languages, such as python and shell. However,

such analysis scripts are difficult to scale and maintain. Since performance testing often produces

tons of unstructured data. Reusing performance testing result analysis techniques and scaling such

techniques in large-scale performance data is challenging. Therefore, future research should explore

the design of domain-specific manipulation languages for performance data to ease the reuse and

mitigation of performance data analysis techniques.

158

7.3.4 Reduce the length of performance testing

In practice, performance testing often lasts hours or days, or even weeks. Such length of

executing performance test requires a large of system resources. Prior research has reported that

performance tests often repeats the same workload multiple time and produce repeated performance

data. Such repeated performance data contain invaluable information. Therefore, future work can

explore the techniques to not only reduce the length of performance testing but also keep the same

system behavior.

7.3.5 The usage of unit test to detect performance regression in the load test

Load testing a system is a required testing procedure. However, first, load test is too complex

and time-consuming, i.e., executing a load test and analyzing the results of a load test. Second,

load tests cannot represent the field workload due to the frequent workload fluctuation. Finally,

replaying field workload is difficult due to the need for a dedicated testing environment and tooling

support. Therefore, if we can use the field data generated in operations to predict performance

regression without the need to execute load tests, large amounts of resources can be reduced. We

plan to design an approach to mining the relationship between unit tests’ logs and load tests’ logs,

and study the use of readily available execution logs of unit tests to predict performance regression

in load tests.

159

In this appendix, we present the detailed prediction results from RQ1 of Perf-JIT (Chapter 4) in

Table .1. The detailed results including precision, recall, AUC and their corresponding improvement

over the Perphecy models are shown in Table .1. We also present the detailed results of the average

ranks of the important metrics from RQ5 of Perf-JIT (Chapter 4) in Table .2.

160

Table .1: Detailed results of predicting performance regression with different performance counters. Improvement are calculated by comparing
with a random classifier. Bold values highlight the best predictors.

Hadoop
Random Forest Perphecy LR SVM XG-50 XG-100 XG-500

Pre. Improv. Recall Improv. F-1 Improv. AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC
Res. time 0.30 275% 0.78 -17% 0.43 207% 0.87 0.08 0.94 0.14 0.08 0.23 0.54 0.32 0.69 0.20 0.82 0.32 0.84 0.34 0.64 0.44 0.83 0.35 0.64 0.45 0.83 0.30 0.68 0.41 0.83

Cpu 0.43 378% 0.77 -14% 0.55 244% 0.87 0.09 0.90 0.16 0.09 0.15 0.54 0.23 0.63 0.18 0.51 0.26 0.72 0.46 0.58 0.51 0.80 0.50 0.57 0.53 0.80 0.46 0.57 0.51 0.79
Memory 0.20 233% 0.84 -5% 0.32 191% 0.89 0.06 0.88 0.11 0.06 0.27 0.42 0.33 0.58 0.33 0.73 0.45 0.82 0.32 0.63 0.43 0.83 0.34 0.62 0.43 0.82 0.39 0.60 0.48 0.80
I/O Read 0.43 514% 0.67 -22% 0.52 300% 0.82 0.07 0.86 0.13 0.07 0.29 0.39 0.33 0.62 0.13 0.99 0.23 0.81 0.7 0.49 0.58 0.74 0.70 0.49 0.58 0.75 0.69 0.49 0.57 0.76
I/O Write 0.25 213% 0.71 -25% 0.36 157% 0.81 0.08 0.95 0.14 0.08 0.19 0.30 0.24 0.60 0.10 0.96 0.18 0.61 0.16 0.58 0.25 0.69 0.15 0.57 0.24 0.68 0.15 0.58 0.24 0.68
Average 0.32 324% 0.75 -17% 0.44 221% 0.85 0.08 0.91 0.14 0.08 0.23 0.44 0.29 0.62 0.19 0.80 0.29 0.76 0.40 0.58 0.44 0.78 0.41 0.58 0.45 0.78 0.40 0.58 0.44 0.77

Cassandra
Random Forest Perphecy LR SVM XG-50 XG-100 XG-500

Pre. Improv. Recall Improv. F-1 Improv. AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC
Res. time 0.50 1567% 0.63 -20% 0.56 1020% 0.78 0.03 0.79 0.05 0.54 0.04 0.79 0.08 0.66 0.04 0.84 0.07 0.65 0.28 0.58 0.38 0.78 0.16 0.68 0.25 0.79 0.16 0.68 0.26 0.78

Cpu 0.27 800% 0.86 37% 0.41 486% 0.90 0.03 0.63 0.07 0.60 0.06 0.69 0.12 0.60 0.15 0.46 0.23 0.72 0.12 0.83 0.21 0.80 0.14 0.83 0.24 0.81 0.12 0.83 0.21 0.82
Memory 0.27 1250% 0.84 50% 0.40 900% 0.95 0.02 0.56 0.04 0.62 0.08 0.76 0.14 0.70 0.13 0.56 0.21 0.68 0.19 0.84 0.30 0.91 0.14 0.88 0.25 0.90 0.20 0.72 0.31 0.90
I/O Read 0.31 1450% 0.68 79% 0.42 950% 0.86 0.02 0.38 0.04 0.73 0.11 0.59 0.18 0.62 0.08 0.76 0.13 0.64 0.18 0.70 0.28 0.82 0.17 0.70 0.27 0.81 0.29 0.57 0.39 0.79
I/O Write 0.15 650% 0.76 17% 0.25 733% 0.87 0.02 0.65 0.03 0.59 0.06 0.47 0.10 0.60 0.05 0.65 0.09 0.70 0.16 0.71 0.26 0.83 0.14 0.71 0.23 0.83 0.08 0.71 0.14 0.79
Average 0.30 1150% 0.75 25% 0.41 787% 0.87 0.02 0.60 0.05 0.62 0.07 0.66 0.12 0.64 0.09 0.65 0.15 0.68 0.18 0.73 0.29 0.83 0.15 0.76 0.25 0.83 0.17 0.70 0.26 0.82

Openjpa
Random Forest Perphecy LR SVM XG-50 XG-100 XG-500

Pre. Improv. Recall Improv. F-1 Improv. AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC Pre. Recall F-1 AUC
Res. time 0.29 222% 0.85 6% 0.43 169% 0.92 0.09 0.80 0.16 0.60 0.29 0.59 0.39 0.67 0.10 0.95 0.17 0.60 0.24 0.79 0.36 0.90 0.23 0.79 0.35 0.90 0.19 0.86 0.31 0.89

Cpu 0.73 217% 0.85 21% 0.78 123% 0.91 0.23 0.70 0.35 0.56 0.49 0.75 0.59 0.81 0.34 0.50 0.41 0.63 0.67 0.87 0.75 0.93 0.73 0.81 0.77 0.93 0.61 0.86 0.71 0.93
Memory 0.48 380% 0.72 -11% 0.57 217% 0.88 0.10 0.81 0.18 0.51 0.49 0.60 0.54 0.75 0.23 0.54 0.32 0.69 0.36 0.67 0.47 0.84 0.31 0.70 0.43 0.84 0.37 0.66 0.48 0.84
I/O Read 0.72 213% 0.81 19% 0.76 124% 0.92 0.23 0.68 0.34 0.54 0.66 0.60 0.63 0.79 0.54 0.27 0.36 0.62 0.60 0.79 0.68 0.89 0.58 0.80 0.67 0.89 0.59 0.78 0.67 0.88
I/O Write 0.71 109% 0.60 -14% 0.65 44% 0.79 0.34 0.70 0.45 0.57 0.67 0.51 0.58 0.72 0.40 0.36 0.38 0.57 0.66 0.59 0.63 0.77 0.75 0.55 0.63 0.77 0.70 0.55 0.61 0.77
Average 0.59 195% 0.77 4% 0.64 113% 0.88 0.20 0.74 0.30 0.56 0.52 0.61 0.55 0.75 0.32 0.52 0.33 0.62 0.51 0.74 0.58 0.87 0.52 0.73 0.57 0.87 0.49 0.74 0.56 0.86

161

Table .2: Average rank of the important metrics in our classifiers

Resp. time CPU Memory I/O read I/O write
AGE 2.2 1.3 1.5 1.4 1.6
SOL 2.6 2.9 2.8 2.3 2.7
LT 3.6 3.3 2.9 2.9 3.1

REXP 4.0 2.5 2.4 3.0 3.7
NDEV 3.1 4.0 4.5 3.7 4.4
Entropy 2.9 4.0 3.3 3.8 3.7

Complexity 5.2 4.4 4.2 4.3 4.6
LA 4.6 4.0 4.4 4.7 4.4
LD 4.7 5.9 5.5 5.4 5.2

for chg 6.4 9.3 8.4 5.6 6.9
EXP 7.5 5.0 5.6 6.5 6.1

if chg 7.5 6.9 7.3 6.9 6.3
NTM 6.1 6.7 8.2 7.5 6.6

expVariable add 7.5 7.0 8.7 8.2 7.8
expVariable del 8.2 9.7 8.4 8.6 8.9

if add 8.8 8.1 9.1 8.6 9.1
NF 9.6 9.7 9.7 8.9 8.3

externalCall add 7.7 10.2 9.4 9.6 11.4
FN 10.4 8.8 9.5 9.7 9.9

while chg 9.6 11.0 12.2 9.8 10.2
try chg 9.9 10.7 11.4 9.9 10.7

ND 10.7 11.3 12.3 10.9 9.9
static add 17.8 15.8 10.9 11.2 17.9

for del 14.7 12.0 12.0 11.3 13.0
if del 8.9 11.8 10.0 11.8 10.8
NS 12.2 12.8 10.2 11.9 11.5

assert del 14.4 14.6 12.4 12.4 6.6
switch chg 17.8 15.1 11.8 12.9 18.0

try del 15.8 16.6 13.7 13.9 11.2
synchronized chg 14.8 14.6 14.8 14.0 12.4
externalCall del 14.6 13.5 13.8 14.1 15.3

elseif add 19.3 16.1 14.2 14.3 14.5
try add 11.7 15.7 14.9 14.4 15.6

expParameter add 13.1 14.6 15.2 15.3 14.3
case add 17.4 17.2 14.0 15.3 15.3

synchronized add 16.6 15.6 18.0 15.5 16.5
final add 17.9 16.6 17.4 15.6 15.9
throw del 17.7 19.1 15.2 15.7 18.2
return add 12.6 14.4 15.4 16.1 13.9
return del 13.0 15.3 15.8 16.1 15.7

expParameter del 15.8 16.3 16.6 16.8 16.5
synchronized del 19.0 16.0 18.7 16.9 17.4

else add 15.1 18.0 17.7 17.0 15.2
static del 21.0 19.6 18.7 17.3 20.4

162

References

Ahmed, T. M., Bezemer, C.-P., Chen, T.-H., Hassan, A. E., & Shang, W. (2016). Studying the

effectiveness of application performance management (apm) tools for detecting performance

regressions for web applications: An experience report. In Proceedings of the 13th

international conference on mining software repositories (pp. 1–12). New York, NY, USA:

ACM.

Alam, M. M. u., Liu, T., Zeng, G., & Muzahid, A. (2017). Syncperf: Categorizing, detecting,

and diagnosing synchronization performance bugs. In Proceedings of the twelfth european

conference on computer systems (pp. 298–313). New York, NY, USA: ACM.

Alghmadi, H. M., Syer, M. D., Shang, W., & Hassan, A. E. (2016, Oct). An automated approach

for recommending when to stop performance tests. In 2016 ieee international conference on

software maintenance and evolution (icsme) (p. 279-289). doi: 10.1109/ICSME.2016.46

Anderson, J., Salem, S., & Do, H. (2015). Striving for failure: an industrial case study about

test failure prediction. In 2015 ieee/acm 37th ieee international conference on software

engineering (Vol. 2, pp. 49–58).

Andreolini, M., Colajanni, M., & Valente, P. (2005). Design and testing of scalable web-based

systems with performance constraints. In Firb-perf workshop on techniques, methodologies

and tools for performance evaluation of complex systems (firb-perf 2005), 19 september 2005,

torino, italy (pp. 15–25).

Andrzejak, A., Friedrich, G., & Wotawa, F. (2018). Software configuration diagnosis - A survey of

existing methods and open challenges. In A. Felfernig, J. Tiihonen, L. Hotz, & M. Stettinger

(Eds.), Proceedings of the 20th configuration workshop, graz, austria, september 27-28, 2018

163

(Vol. 2220, pp. 85–92). CEUR-WS.org.

Attariyan, M., Chow, M., & Flinn, J. (2012). X-ray: Automating root-cause diagnosis of

performance anomalies in production software. In Proceedings of the 10th usenix symposium

on operating systems design and implementation (osdi) (pp. 307–320).

Attariyan, M., & Flinn, J. (2010). Automating configuration troubleshooting with dynamic

information flow analysis. In Proceedings of the 9th usenix symposium on operating systems

design and implementation (osdi) (pp. 1–14).

Axboe. (2019, Mar). axboe/fio. Retrieved from https://github.com/axboe/fio

Banerjee, A., & Dave, R. N. (2004). Validating clusters using the hopkins statistic. In 2004 ieee

international conference on fuzzy systems (ieee cat. no. 04ch37542) (Vol. 1, pp. 149–153).

Barik, T., DeLine, R., Drucker, S., & Fisher, D. (2016, May). The bones of the system: A case

study of logging and telemetry at microsoft. In 2016 ieee/acm 38th international conference

on software engineering companion (icse-c) (p. 92-101).

Becker, L. A. (2000). Effect size (es). Accessed on October, 12(2006), 155–159.

Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient. In Noise

reduction in speech processing (pp. 1–4). Springer.

Beschastnikh, I., Brun, Y., Ernst, M. D., & Krishnamurthy, A. (2014). Inferring models of

concurrent systems from logs of their behavior with csight. In Proceedings of the 36th

international conference on software engineering (pp. 468–479). New York, NY, USA:

ACM. Retrieved from http://doi.acm.org/10.1145/2568225.2568246 doi:

10.1145/2568225.2568246

Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., & Ernst, M. D. (2011). Leveraging existing

instrumentation to automatically infer invariant-constrained models. In Proceedings of the

19th acm sigsoft symposium and the 13th european conference on foundations of software

engineering (pp. 267–277). New York, NY, USA: ACM. Retrieved from http://doi

.acm.org/10.1145/2025113.2025151 doi: 10.1145/2025113.2025151

Bodı́k, P., Goldszmidt, M., & Fox, A. (2008). Hilighter: Automatically building robust signatures

of performance behavior for small-and large-scale systems. In Sysml.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

164

https://github.com/axboe/fio
http://doi.acm.org/10.1145/2568225.2568246
http://doi.acm.org/10.1145/2025113.2025151
http://doi.acm.org/10.1145/2025113.2025151

Brunnert, A., van Hoorn, A., Willnecker, F., Danciu, A., Hasselbring, W., Heger, C., . . . Wert, A.

(2015). Performance-oriented devops: A research agenda. CoRR, abs/1508.04752.

Busch, A., Noorshams, Q., Kounev, S., Koziolek, A., Reussner, R. H., & Amrehn, E.

(2015). Automated workload characterization for I/O performance analysis in virtualized

environments. In Proceedings of the 6th ACM/SPEC international conference on performance

engineering, austin, tx, usa, january 31 - february 4, 2015 (pp. 265–276).

Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in

Statistics-theory and Methods, 3(1), 1–27.

Calzarossa, M. C., Massari, L., & Tessera, D. (2016). Workload characterization: A survey

revisited. ACM Comput. Surv., 48(3), 48:1–48:43.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: synthetic minority

over-sampling technique. Journal of artificial intelligence research, 16, 321–357.

Chen, J. (2020). Performance regression detection in devops. In G. Rothermel & D. Bae (Eds.),

ICSE ’20: 42nd international conference on software engineering, companion volume, seoul,

south korea, 27 june - 19 july, 2020 (pp. 206–209). ACM.

Chen, J., & Shang, W. (2017, Sept). An exploratory study of performance regression introducing

code changes. In 2017 ieee international conference on software maintenance and evolution

(icsme) (p. 341-352).

Chen, J., Shang, W., Hassan, A. E., Wang, Y., & Lin, J. (2019). An experience report of generating

load tests using log-recovered workloads at varying granularities of user behaviour. In 34th

IEEE/ACM international conference on automated software engineering, ASE 2019, san

diego, ca, usa, november 11-15, 2019 (pp. 669–681). IEEE.

Chen, J., Shang, W., & Shihab, E. (2020). Perfjit: Test-level just-in-time prediction for performance

regression introducing commits. IEEE Transactions on Software Engineering (TSE), To

Appear.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of

the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp.

785–794). New York, NY, USA: ACM.

Chen, T., Syer, M. D., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M. N., & Flora, P. (2017).

165

Analytics-driven load testing: An industrial experience report on load testing of large-scale

systems. In 39th IEEE/ACM international conference on software engineering: Software

engineering in practice track, ICSE-SEIP 2017, buenos aires, argentina, may 20-28, 2017

(pp. 243–252).

Chen, T.-H., Shang, W., Hassan, A. E., Nasser, M., & Flora, P. (2016). Cacheoptimizer:

Helping developers configure caching frameworks for hibernate-based database-centric web

applications. In Proceedings of the 2016 24th acm sigsoft international symposium on

foundations of software engineering (pp. 666–677). New York, NY, USA: ACM.

Chen, T.-H., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M., & Flora, P. (2014). Detecting

performance anti-patterns for applications developed using object-relational mapping. In

Proceedings of the 36th international conference on software engineering (pp. 1001–1012).

New York, NY, USA: ACM.

Chen, T.-H., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M., & Flora, P. (2016, December).

Finding and evaluating the performance impact of redundant data access for applications that

are developed using object-relational mapping frameworks. IEEE Trans. Softw. Eng., 42(12),

1148–1161.

Cherkasova, L., Ozonat, K., Mi, N., Symons, J., & Smirni, E. (2008). Anomaly? application

change? or workload change? towards automated detection of application performance

anomaly and change. In 2008 ieee international conference on dependable systems and

networks with ftcs and dcc (dsn) (pp. 452–461).

Cohen, I., Chase, J. S., Goldszmidt, M., Kelly, T., & Symons, J. (2004). Correlating instrumentation

data to system states: A building block for automated diagnosis and control. In Osdi (Vol. 4,

pp. 16–16).

Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., & Fox, A. (2005). Capturing, indexing,

clustering, and retrieving system history. In Proceedings of the twentieth acm symposium on

operating systems principles (pp. 105–118). New York, NY, USA: ACM.

Comaniciu, D., & Meer, P. (2002, May). Mean shift: A robust approach toward feature space

analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5), 603–619.

Cortellessa, V., Di Marco, A., & Inverardi, P. (2011). Model-based software performance analysis.

166

Springer Science & Business Media.

Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., & Bianchini, R. (2017). Resource

central: Understanding and predicting workloads for improved resource management in large

cloud platforms. In Proceedings of the 26th symposium on operating systems principles,

shanghai, china, october 28-31, 2017 (pp. 153–167).

Costa, D., Andrzejak, A., Seboek, J., & Lo, D. (2017). Empirical study of usage and performance

of java collections. In Proceedings of the 8th acm/spec on international conference on

performance engineering (pp. 389–400). New York, NY, USA: ACM. doi: 10.1145/

3030207.3030221

Cunha, C. A., & e Silva, L. M. (2012). Separating performance anomalies from workload-explained

failures in streaming servers. In 2012 12th ieee/acm international symposium on cluster, cloud

and grid computing (ccgrid 2012) (pp. 292–299).

Dean, J., & Barroso, L. A. (2013). The tail at scale. Communications of the ACM, 56(2), 74–80.

de Oliveira, A. B., Fischmeister, S., Diwan, A., Hauswirth, M., & Sweeney, P. F. (2017). Perphecy:

Performance regression test selection made simple but effective. In 2017 IEEE international

conference on software testing, verification and validation, ICST 2017, tokyo, japan, march

13-17, 2017 (pp. 103–113).

Diao, Y., Hellerstein, J. L., Parekh, S., & Bigus, J. P. (2003). Managing web server performance

with autotune agents. IBM Systems Journal, 42(1), 136–149.

Di Nardo, D., Alshahwan, N., Briand, L., & Labiche, Y. (2015). Coverage-based regression test case

selection, minimization and prioritization: A case study on an industrial system. Software

Testing, Verification and Reliability, 25(4), 371–396.

Ding, Z., Chen, J., & Shang, W. (2020). Towards the use of the readily available tests from the

release pipeline as performance tests: are we there yet? In G. Rothermel & D. Bae (Eds.),

ICSE ’20: 42nd international conference on software engineering, seoul, south korea, 27 june

- 19 july, 2020 (pp. 1435–1446). ACM.

Dong, Z., Andrzejak, A., & Shao, K. (2015). Practical and accurate pinpointing of configuration

errors using static analysis. In Proceedings of the 31st international conference on software

maintenance and evolution (pp. 171–180).

167

Dong, Z., Ghanavati, M., & Andrzejak, A. (2013). Automated diagnosis of software

misconfigurations based on static analysis. In Proceedings of the international symposium

on software reliability engineering workshops (issrew’13) (pp. 162–168).

Elnaffar, S., & Martin, P. (2002). Characterizing computer systems workloads. Submitted to ACM

Computing Surveys Journal.

Enbody, R. (1999). Perfmon: Performance monitoring tool. Michigan State University.

Fiegerman, S. (2019, January). Netflix adds 9 million paying subscribers, but stock

falls. https://www.cnn.com/2019/01/17/media/netflix-earnings-q4/

index.html. ((Accessed on 03/29/2019))

Foo, K. C., Jiang, Z. M., Adams, B., Hassan, A. E., Zou, Y., & Flora, P. (2010). Mining performance

regression testing repositories for automated performance analysis. In Quality software (qsic),

2010 10th international conference on (pp. 32–41).

Foo, K. C., Jiang, Z. M., Adams, B., Hassan, A. E., Zou, Y., & Flora, P. (2015). An industrial case

study on the automated detection of performance regressions in heterogeneous environments.

In 2015 ieee/acm 37th ieee international conference on software engineering (Vol. 2, pp.

159–168).

Fu, X., Ren, R., Zhan, J., Zhou, W., Jia, Z., & Lu, G. (2012). Logmaster: Mining event

correlations in logs of large-scale cluster systems. In Proceedings of the 2012 ieee 31st

symposium on reliable distributed systems (pp. 71–80). Washington, DC, USA: IEEE

Computer Society. Retrieved from http://dx.doi.org/10.1109/SRDS.2012.40

doi: 10.1109/SRDS.2012.40

Gao, R., Jiang, Z. M., Barna, C., & Litoiu, M. (2016). A framework to evaluate the effectiveness

of different load testing analysis techniques. In 2016 IEEE international conference on

software testing, verification and validation, ICST 2016, chicago, il, usa, april 11-15, 2016

(pp. 22–32).

Gao, R., & Jiang, Z. M. J. (2017). An exploratory study on assessing the impact of environment

variations on the results of load tests. In Proceedings of the 14th international conference

on mining software repositories, MSR 2017, buenos aires, argentina, may 20-28, 2017 (pp.

379–390).

168

https://www.cnn.com/2019/01/17/media/netflix-earnings-q4/index.html
https://www.cnn.com/2019/01/17/media/netflix-earnings-q4/index.html
http://dx.doi.org/10.1109/SRDS.2012.40

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In G. J. Gordon,

D. B. Dunson, & M. Dudı́k (Eds.), Proceedings of the fourteenth international conference on

artificial intelligence and statistics, AISTATS 2011, fort lauderdale, usa, april 11-13, 2011

(Vol. 15, pp. 315–323). JMLR.org.

Godard, S. (2019). pidstat(1): Report statistics for tasks - linux man page. https://linux

.die.net/man/1/pidstat. ((Accessed on 04/06/2019))

Gousios, G., Karakoidas, V., & Spinellis, D. (2006). Tuning javas memory manager for high

performance server applications. memory, 11(22), 7–15.

Graves, T. L., Karr, A. F., Marron, J. S., & Siy, H. (2000, Jul). Predicting fault incidence using

software change history. IEEE Transactions on Software Engineering, 26(7), 653-661. doi:

10.1109/32.859533

Guo, J., Czarnecki, K., Apel, S., Siegmund, N., & Wasowski, A. (2013). Variability-aware

performance prediction: A statistical learning approach. In E. Denney, T. Bultan, & A. Zeller

(Eds.), 2013 28th IEEE/ACM international conference on automated software engineering,

ASE 2013, silicon valley, ca, usa, november 11-15, 2013 (pp. 301–311). IEEE.

Guo, P. J., Zimmermann, T., Nagappan, N., & Murphy, B. (2010, May). Characterizing and

predicting which bugs get fixed: an empirical study of microsoft windows. In 2010 acm/ieee

32nd international conference on software engineering (Vol. 1, p. 495-504).

Haghdoost, A., He, W., Fredin, J., & Du, D. H. C. (2017). On the accuracy and scalability of

intensive I/O workload replay. In 15th USENIX conference on file and storage technologies,

FAST 2017, santa clara, ca, usa, february 27 - march 2, 2017 (pp. 315–328).

Halin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G., & Baudry, B. (2019). Test them

all, is it worth it? assessing configuration sampling on the jhipster web development stack.

Empir. Softw. Eng., 24(2), 674–717.

Han, X., & Yu, T. (2016). An empirical study on performance bugs for highly configurable

software systems. In Proceedings of the 10th international symposium on empirical software

engineering and measurement.

Han, X., Yu, T., & Lo, D. (2018). Perflearner: learning from bug reports to understand and generate

performance test frames. In Proceedings of the 33rd ACM/IEEE international conference on

169

https://linux.die.net/man/1/pidstat
https://linux.die.net/man/1/pidstat

automated software engineering, ASE 2018, montpellier, france, september 3-7, 2018 (pp.

17–28).

Harrell, F. E. (2001). Regression modeling strategies: with applications to linear models, logistic

regression, and survival analysis. Springer.

Hartung, J., Knapp, G., & Sinha, B. K. (2011). Statistical meta-analysis with applications

(Vol. 738). John Wiley & Sons.

Hasan, S., King, Z., Hafiz, M., Sayagh, M., Adams, B., & Hindle, A. (2016). Energy profiles

of java collections classes. In Proceedings of the 38th international conference on software

engineering (pp. 225–236). New York, NY, USA: ACM. doi: 10.1145/2884781.2884869

Hassan, A. E. (2009). Predicting faults using the complexity of code changes. In Proceedings of the

31st international conference on software engineering (pp. 78–88). Washington, DC, USA:

IEEE Computer Society.

Hassan, A. E., Martin, D. J., Flora, P., Mansfield, P., & Dietz, D. (2008). An industrial case

study of customizing operational profiles using log compression. In Proceedings of the

30th international conference on software engineering (pp. 713–723). New York, NY, USA:

ACM.

He, P., Li, B., Liu, X., Chen, J., & Ma, Y. (2015). An empirical study on software defect prediction

with a simplified metric set. Information and Software Technology, 59, 170–190.

He, S., Lin, Q., Lou, J., Zhang, H., Lyu, M. R., & Zhang, D. (2018). Identifying impactful service

system problems via log analysis. In Proceedings of the 2018 ACM joint meeting on european

software engineering conference and symposium on the foundations of software engineering,

ESEC/SIGSOFT FSE 2018, lake buena vista, fl, usa, november 04-09, 2018 (pp. 60–70).

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998, July). Support vector

machines. IEEE Intelligent Systems and their Applications, 13(4), 18-28.

Heger, C., Happe, J., & Farahbod, R. (2013). Automated root cause isolation of performance

regressions during software development. In Proceedings of the 4th acm/spec international

conference on performance engineering (pp. 27–38). New York, NY, USA: ACM.

Hindle, A. (2015, Apr 01). Green mining: a methodology of relating software change and

configuration to power consumption. Empirical Software Engineering, 20(2), 374–409.

170

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398).

John Wiley & Sons.

Huang, P., Ma, X., Shen, D., & Zhou, Y. (2014). Performance regression testing target prioritization

via performance risk analysis. In Proceedings of the 36th international conference on

software engineering (pp. 60–71). New York, NY, USA: ACM. doi: 10.1145/2568225

.2568232

Hüttermann, M. (2012). Devops for developers. Apress.

JAIN, A. (2016). Complete guide to parameter tuning in xgboost with codes

in python. https://www.analyticsvidhya.com/blog/2016/03/complete

-guide-parameter-tuning-xgboost-with-codes-python.

Jenks, G. F. (1967). The data model concept in statistical mapping. International yearbook of

cartography, 7, 186–190.

Jiang, M., Munawar, M. A., Reidemeister, T., & Ward, P. A. (2009). Automatic fault detection and

diagnosis in complex software systems by information-theoretic monitoring. In Dependable

systems & networks, 2009. dsn’09. ieee/ifip international conference on (pp. 285–294).

Jiang, Z. M. (2010). Automated analysis of load testing results. In Proceedings of the nineteenth

international symposium on software testing and analysis, ISSTA 2010, trento, italy, july

12-16, 2010 (pp. 143–146).

Jiang, Z. M., & Hassan, A. E. (2015). A survey on load testing of large-scale software systems.

IEEE Trans. Software Eng., 41(11), 1091–1118.

Jiang, Z. M., Hassan, A. E., Hamann, G., & Flora, P. (2008a). An automated approach

for abstracting execution logs to execution events. Journal of Software Maintenance and

Evolution: Research and Practice, 20(4), 249–267.

Jiang, Z. M., Hassan, A. E., Hamann, G., & Flora, P. (2008b). Automatic identification of load

testing problems. In 24th IEEE international conference on software maintenance (ICSM

2008), september 28 - october 4, 2008, beijing, china (pp. 307–316).

Jiang, Z. M., Hassan, A. E., Hamann, G., & Flora, P. (2009). Automated performance analysis

of load tests. In 25th IEEE international conference on software maintenance (ICSM 2009),

september 20-26, 2009, edmonton, alberta, canada (pp. 125–134).

171

https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python

Jiarpakdee, J., Tantithamthavorn, C., & Hassan, A. E. (2019). The impact of correlated metrics on

the interpretation of defect models. IEEE Transactions on Software Engineering.

Jin, D., Qu, X., Cohen, M. B., & Robinson, B. (2014). Configurations everywhere: implications

for testing and debugging in practice. In P. Jalote, L. C. Briand, & A. van der Hoek (Eds.),

36th international conference on software engineering, ICSE ’14, companion proceedings,

hyderabad, india, may 31 - june 07, 2014 (pp. 215–224). ACM.

Jin, G., Song, L., Shi, X., Scherpelz, J., & Lu, S. (2012). Understanding and detecting real-world

performance bugs. In Proceedings of the 33rd acm sigplan conference on programming

language design and implementation (pp. 77–88). New York, NY, USA: ACM. doi:

10.1145/2254064.2254075

JMeter. (1998). Apache jmeter - apache jmete. https://jmeter.apache.org/. ((Accessed

on 03/29/2019))

Joel, M. (2017). Mozilla performance regressions policy. https://www.mozilla.org/en

-US/about/governance/policies/regressions. ((Accessed on 01/12/2019))

Kabinna, S., Bezemer, C.-P., Shang, W., Syer, M. D., & Hassan, A. E. (2018, Feb 01). Examining

the stability of logging statements. Empirical Software Engineering, 23(1), 290–333.

Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., & Hassan, A. E. (2016).

Studying just-in-time defect prediction using cross-project models. Empirical Software

Engineering, 21(5), 2072–2106.

Kamei, Y., & Shihab, E. (2016). Defect prediction: Accomplishments and future challenges.

In Software analysis, evolution, and reengineering (saner), 2016 ieee 23rd international

conference on (Vol. 5, pp. 33–45).

Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A., & Ubayashi, N. (2013,

June). A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on

Software Engineering, 39(6), 757-773.

Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis

(Vol. 344). John Wiley & Sons.

Kazmi, R., Jawawi, D. N., Mohamad, R., & Ghani, I. (2017). Effective regression test case selection:

A systematic literature review. ACM Computing Surveys (CSUR), 50(2), 1–32.

172

https://jmeter.apache.org/
https://www.mozilla.org/en-US/about/governance/policies/regressions
https://www.mozilla.org/en-US/about/governance/policies/regressions

Kim, J.-M., & Porter, A. (2002). A history-based test prioritization technique for regression testing

in resource constrained environments. In Proceedings of the 24th international conference on

software engineering (pp. 119–129).

Kit, E. (2010). How one second could cost amazon $1.6 billion in sales. https://

www.fastcompany.com/1825005/how-one-second-could-cost-amazon

-16-billion-sales. ((Accessed on 09/06/2019))

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El Emam, K., &

Rosenberg, J. (2002). Preliminary guidelines for empirical research in software engineering.

IEEE Transactions on software engineering, 28(8), 721–734.

Koru, A. G., Zhang, D., Emam, K. E., & Liu, H. (2009, March). An investigation into the functional

form of the size-defect relationship for software modules. IEEE Transactions on Software

Engineering, 35(2), 293-304. doi: 10.1109/TSE.2008.90

Krishnamurthy, D., Rolia, J. A., & Majumdar, S. (2006). A synthetic workload generation technique

for stress testing session-based systems. IEEE Trans. Software Eng., 32(11), 868–882.

Laaber, C., & Leitner, P. (2018). An evaluation of open-source software microbenchmark suites

for continuous performance assessment. In Proceedings of the 15th international conference

on mining software repositories (pp. 119–130). New York, NY, USA: ACM. doi: 10.1145/

3196398.3196407

Laaber, C., Scheuner, J., & Leitner, P. (2019). Software microbenchmarking in the cloud. how bad

is it really? Empirical Software Engineering, 24(4), 2469–2508.

Laali, M., Liu, H., Hamilton, M., Spichkova, M., & Schmidt, H. W. (2016). Test case prioritization

using online fault detection information. In Ada-europe international conference on reliable

software technologies (pp. 78–93).

Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: a convolutional

neural-network approach. IEEE Trans. Neural Networks, 8(1), 98–113.

Leitner, P., & Bezemer, C.-P. (2017). An exploratory study of the state of practice of

performance testing in java-based open source projects. In Proceedings of the 8th acm/spec on

international conference on performance engineering (pp. 373–384). New York, NY, USA:

ACM.

173

https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales

Leitner, P., & Cito, J. (2016, April). Patterns in the chaos—a study of performance variation

and predictability in public iaas clouds. ACM Trans. Internet Technol., 16(3), 15:1–15:23.

doi: 10.1145/2885497

Lengauer, P., & Mössenböck, H. (2014). The taming of the shrew: increasing performance by

automatic parameter tuning for java garbage collectors. In K. Lange, J. Murphy, W. Binder,

& J. Merseguer (Eds.), ACM/SPEC international conference on performance engineering,

icpe’14, dublin, ireland, march 22-26, 2014 (pp. 111–122). ACM.

Li, H., Chen, T.-H. P., Hassan, A. E., Nasser, M., & Flora, P. (2018). Adopting autonomic

computing capabilities in existing large-scale systems: An industrial experience report.

In Proceedings of the 40th international conference on software engineering: Software

engineering in practice (p. 110).

Li, H., Chen, T. P., Shang, W., & Hassan, A. E. (2018). Studying software logging using topic

models. Empir. Softw. Eng., 23(5), 2655–2694.

Li, H., Shang, W., Zou, Y., & E. Hassan, A. (2017, Aug 01). Towards just-in-time suggestions for

log changes. Empirical Software Engineering, 22(4), 1831–1865.

Liao, L., Chen, J., Li, H., Zeng, Y., Shang, W., Guo, J., . . . Sajedi, S. (2020). Using black-box

performance models to detect performance regressions under varying workloads: an empirical

study. Empir. Softw. Eng., 25(5), 4130–4160.

Lim, M., Lou, J., Zhang, H., Fu, Q., Teoh, A. B. J., Lin, Q., . . . Zhang, D. (2014). Identifying

recurrent and unknown performance issues. In R. Kumar, H. Toivonen, J. Pei, J. Z. Huang,

& X. Wu (Eds.), 2014 IEEE international conference on data mining, ICDM 2014, shenzhen,

china, december 14-17, 2014 (pp. 320–329). IEEE Computer Society.

Lin, Q., Zhang, H., Lou, J.-G., Zhang, Y., & Chen, X. (2016). Log clustering based problem

identification for online service systems. In Proceedings of the 38th international conference

on software engineering companion (pp. 102–111). New York, NY, USA: ACM.

LINDEN, G. (2006). Geeking with greg: Marissa mayer at web 2.0. http://glinden

.blogspot.com/2006/11/marissa-mayer-at-web-20.html. ((Accessed on

04/01/2019))

Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). Auc: a misleading measure of the

174

http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

performance of predictive distribution models. Global ecology and Biogeography, 17(2),

145–151.

Luo, Q., Poshyvanyk, D., & Grechanik, M. (2016). Mining performance regression inducing

code changes in evolving software. In Proceedings of the 13th international conference on

mining software repositories (pp. 25–36). New York, NY, USA: ACM. doi: 10.1145/2901739

.2901765

lxml. (2005). Parsing xml and html with lxml. https://lxml.de/3.1/parsing.html.

Malik, H., Hemmati, H., & Hassan, A. E. (2013). Automatic detection of performance deviations in

the load testing of large scale systems. In Proceedings of the 2013 international conference

on software engineering (pp. 1012–1021). Piscataway, NJ, USA: IEEE Press.

Malik, H., Jiang, Z. M., Adams, B., Hassan, A. E., Flora, P., & Hamann, G. (2010). Automatic

comparison of load tests to support the performance analysis of large enterprise systems.

In Software maintenance and reengineering (csmr), 2010 14th european conference on (pp.

222–231).

Matsumoto, S., Kamei, Y., Monden, A., Matsumoto, K.-i., & Nakamura, M. (2010). An analysis of

developer metrics for fault prediction. In Proceedings of the 6th international conference on

predictive models in software engineering (p. 18).

McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2016). An Empirical Study of the Impact of

Modern Code Review Practices on Software Quality. Empirical Software Engineering, 21(5),

2146-2189.

Mednis, M., & Aurich, M. (2012, 01). Application of string similarity ratio and edit distance in

automatic metabolite reconciliation comparing reconstructions and models. Biosystems and

Information technology, 1, 14-18.

Meira, J. A., de Almeida, E. C., Sunyé, G., Traon, Y. L., & Valduriez, P. (2013). Stress testing of

transactional database systems. JIDM, 4(3), 279–294.

Mende, T., & Koschke, R. (2009). Revisiting the evaluation of defect prediction models. In

Proceedings of the 5th international conference on predictor models in software engineering

(pp. 7:1–7:10). New York, NY, USA: ACM.

Mende, T., & Koschke, R. (2010, March). Effort-aware defect prediction models. In 2010 14th

175

https://lxml.de/3.1/parsing.html

european conference on software maintenance and reengineering (p. 107-116).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations

in vector space. In Y. Bengio & Y. LeCun (Eds.), 1st international conference on learning

representations, ICLR 2013, scottsdale, arizona, usa, may 2-4, 2013, workshop track

proceedings.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations

of words and phrases and their compositionality. In Proceedings of the 26th international

conference on neural information processing systems - volume 2 (pp. 3111–3119). USA:

Curran Associates Inc.

Mockus, A., & Weiss, D. M. (2000). Predicting risk of software changes. Bell Labs Technical

Journal, 5(2), 169–180.

Mostafa, S., Wang, X., & Xie, T. (2017). Perfranker: Prioritization of performance regression

tests for collection-intensive software. In Proceedings of the 26th acm sigsoft international

symposium on software testing and analysis (pp. 23–34). New York, NY, USA: ACM. doi:

10.1145/3092703.3092725

Murphy-Hill, E., Zimmermann, T., Bird, C., & Nagappan, N. (2013). The design of bug fixes.

In Proceedings of the 2013 international conference on software engineering (pp. 332–341).

Piscataway, NJ, USA: IEEE Press.

Mytkowicz, T., Diwan, A., Hauswirth, M., & Sweeney, P. F. (2009, March). Producing wrong data

without doing anything obviously wrong! SIGPLAN Not., 44(3), 265–276.

Nachar, N., et al. (2008). The mann-whitney u: A test for assessing whether two independent

samples come from the same distribution. Tutorials in Quantitative Methods for Psychology,

4(1), 13–20.

Nagappan, M., Wu, K., & Vouk, M. A. (2009). Efficiently extracting operational profiles from

execution logs using suffix arrays. In ISSRE 2009, 20th international symposium on software

reliability engineering, mysuru, karnataka, india, 16-19 november 2009 (pp. 41–50).

Nagappan, N., & Ball, T. (2005). Use of relative code churn measures to predict system defect

density. In Proceedings of the 27th international conference on software engineering (pp.

284–292). New York, NY, USA: ACM.

176

Nagappan, N., Ball, T., & Zeller, A. (2006). Mining metrics to predict component failures. In

Proceedings of the 28th international conference on software engineering (pp. 452–461).

New York, NY, USA: ACM.

Najafi, A., Shang, W., & Rigby, P. C. (2019). Improving test effectiveness using test executions

history: an industrial experience report. In 2019 ieee/acm 41st international conference on

software engineering: Software engineering in practice (icse-seip) (pp. 213–222).

Nguyen, T. H., Adams, B., Jiang, Z. M., Hassan, A. E., Nasser, M., & Flora, P. (2012).

Automated detection of performance regressions using statistical process control techniques.

In Proceedings of the 3rd acm/spec international conference on performance engineering (pp.

299–310). New York, NY, USA: ACM.

Nguyen, T. H. D., Adams, B., Jiang, Z. M., Hassan, A. E., Nasser, M., & Flora, P. (2011, Dec).

Automated verification of load tests using control charts. In 2011 18th asia-pacific software

engineering conference (p. 282-289). doi: 10.1109/APSEC.2011.59

Nguyen, T. H. D., Nagappan, M., Hassan, A. E., Nasser, M., & Flora, P. (2014). An industrial case

study of automatically identifying performance regression-causes. In Proceedings of the 11th

working conference on mining software repositories (pp. 232–241). New York, NY, USA:

ACM.

Nistor, A., Jiang, T., & Tan, L. (2013). Discovering, reporting, and fixing performance bugs. In

2013 10th working conference on mining software repositories (msr) (pp. 237–246).

Noor, T. B., & Hemmati, H. (2017). Studying test case failure prediction for test case prioritization.

In Proceedings of the 13th international conference on predictive models and data analytics

in software engineering (pp. 2–11).

Oliner, A., Ganapathi, A., & Xu, W. (2012, February). Advances and challenges in log analysis.

Commun. ACM, 55(2), 55–61.

Ostrand, T. J., Weyuker, E. J., & Bell, R. M. (2005, April). Predicting the location and number of

faults in large software systems. IEEE Transactions on Software Engineering, 31(4), 340-355.

doi: 10.1109/TSE.2005.49

Pradel, M., Huggler, M., & Gross, T. R. (2014). Performance regression testing of concurrent

classes. In Proceedings of the 2014 international symposium on software testing and analysis

177

(pp. 13–25). New York, NY, USA: ACM. doi: 10.1145/2610384.2610393

psutil. (2017). Retrieved 2017-2-11, from https://github.com/giampaolo/psutil

Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., & Binkley, D. (2014, February). Recovering

test-to-code traceability using slicing and textual analysis. J. Syst. Softw., 88, 147–168. doi:

10.1016/j.jss.2013.10.019

Rabkin, A., & Katz, R. H. (2011). Precomputing possible configuration error diagnoses. In

P. Alexander, C. S. Pasareanu, & J. G. Hosking (Eds.), 26th IEEE/ACM international

conference on automated software engineering (ASE 2011), lawrence, ks, usa, november

6-10, 2011 (pp. 193–202). IEEE Computer Society.

Raghavachari, M., Reimer, D., & Johnson, R. D. (2003). The deployer’s problem: configuring

application servers for performance and reliability. In Proceedings of the 25th international

conference on software engineering (pp. 484–489).

Ramos, J., et al. (2003). Using tf-idf to determine word relevance in document queries.

In Proceedings of the first instructional conference on machine learning (Vol. 242, pp.

133–142).

Saha, R. K., Zhang, L., Khurshid, S., & Perry, D. E. (2015). An information retrieval approach

for regression test prioritization based on program changes. In 2015 ieee/acm 37th ieee

international conference on software engineering (Vol. 1, pp. 268–279).

Sarkar, A., Guo, J., Siegmund, N., Apel, S., & Czarnecki, K. (2015). Cost-efficient sampling

for performance prediction of configurable systems (T). In M. B. Cohen, L. Grunske,

& M. Whalen (Eds.), 30th IEEE/ACM international conference on automated software

engineering, ASE 2015, lincoln, ne, usa, november 9-13, 2015 (pp. 342–352). IEEE Computer

Society.

Saxena, N. R., Fernández-Gomez, S., Huang, W., Mitra, S., Yu, S., & McCluskey, E. J. (2000).

Dependable computing and online testing in adaptive and configurable systems. IEEE Des.

Test Comput., 17(1), 29–41.

Sayagh, M., & Adams, B. (2015). Multi-layer software configuration: Empirical study on

wordpress. In M. W. Godfrey, D. Lo, & F. Khomh (Eds.), 15th IEEE international working

conference on source code analysis and manipulation, SCAM 2015, bremen, germany,

178

https://github.com/giampaolo/psutil

september 27-28, 2015 (pp. 31–40). IEEE Computer Society.

Sayagh, M., Kerzazi, N., & Adams, B. (2017). On cross-stack configuration errors. In S. Uchitel,

A. Orso, & M. P. Robillard (Eds.), Proceedings of the 39th international conference on

software engineering, ICSE 2017, buenos aires, argentina, may 20-28, 2017 (pp. 255–265).

IEEE / ACM.

Sayagh, M., Kerzazi, N., Adams, B., & Petrillo, F. (2018). Software configuration engineering in

practice: Interviews, survey, and systematic literature review. IEEE Transactions on Software

Engineering.

Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and metrics

for cold-start recommendations. In Proceedings of the 25th annual international acm sigir

conference on research and development in information retrieval (pp. 253–260). New York,

NY, USA: ACM. doi: 10.1145/564376.564421

Seo, B., Kang, S., Choi, J., Cha, J., Won, Y., & Yoon, S. (2014). IO workload characterization

revisited: A data-mining approach. IEEE Trans. Computers, 63(12), 3026–3038.

Shahin, M., Babar, M. A., & Zhu, L. (2017). Continuous integration, delivery and deployment: a

systematic review on approaches, tools, challenges and practices. In (Vol. 5, pp. 3909–3943).

IEEE.

Shang, W., Hassan, A. E., Nasser, M. N., & Flora, P. (2015). Automated detection of performance

regressions using regression models on clustered performance counters. In L. K. John,

C. U. Smith, K. Sachs, & C. M. Lladó (Eds.), Proceedings of the 6th ACM/SPEC international

conference on performance engineering, austin, tx, usa, january 31 - february 4, 2015 (pp.

15–26). ACM.

Shang, W., Jiang, Z. M., Hemmati, H., Adams, B., Hassan, A. E., & Martin, P. (2013).

Assisting developers of big data analytics applications when deploying on hadoop clouds.

In Proceedings of the 2013 international conference on software engineering (pp. 402–411).

Piscataway, NJ, USA: IEEE Press.

Shivaji, S., Whitehead, E. J., Akella, R., & Kim, S. (2013, April). Reducing features to improve code

change-based bug prediction. IEEE Transactions on Software Engineering, 39(4), 552-569.

Siegmund, N., Grebhahn, A., Apel, S., & Kastner, C. (2015). Performance-influence models

179

for highly configurable systems. In Proceedings of the 10th joint meeting of the european

software engineering conference and the acm sigsoft symposium on the foundations of

software engineering (esec/fse’15) (pp. 284–294).

Simic, B., & Conklin, S. (2012). Improving the usability of apm data: Essential capabilities and

benefits. https://assets.extrahop.com/uploads/trac-market-insight

-usability-of-apm-data.pdf. ((Accessed on 09/01/2020))

Singh, R., Bezemer, C.-P., Shang, W., & Hassan, A. E. (2016). Optimizing the performance-related

configurations of object-relational mapping frameworks using a multi-objective genetic

algorithm. In Proceedings of the 7th acm/spec on international conference on performance

engineering (pp. 309–320).

Śliwerski, J., Zimmermann, T., & Zeller, A. (2005). When do changes induce fixes? In Proceedings

of the 2005 international workshop on mining software repositories (pp. 1–5). New York, NY,

USA: ACM. doi: 10.1145/1082983.1083147

Smith, C. U., & Williams, L. G. (2002). Performance solutions: a practical guide to creating

responsive, scalable software (Vol. 23). Addison-Wesley Reading.

Snellman, N., Ashraf, A., & Porres, I. (2011). Towards automatic performance and scalability

testing of rich internet applications in the cloud. In (pp. 161–169).

Song, J. (2016). Ckmeans.1d.dp function — r documentation. https://www

.rdocumentation.org/packages/Ckmeans.1d.dp/versions/3.4.0-1/

topics/Ckmeans.1d.dp. ((Accessed on 01/02/2020))

Song, L., & Lu, S. (2017). Performance diagnosis for inefficient loops. In Proceedings of the 39th

international conference on software engineering (pp. 370–380).

SPEC. (2003). The workload for the specweb96 benchmark.

https://www.spec.org/web96/workload.html.

srcml. (2017). Retrieved from http://www.srcml.org/

Summers, J., Brecht, T., Eager, D., & Gutarin, A. (2016). Characterizing the workload of a netflix

streaming video server. In 2016 ieee international symposium on workload characterization

(iiswc) (pp. 1–12).

Svajlenko, J., & Roy, C. K. (2015). Evaluating clone detection tools with bigclonebench. In 2015

180

https://assets.extrahop.com/uploads/trac-market-insight-usability-of-apm-data.pdf
https://assets.extrahop.com/uploads/trac-market-insight-usability-of-apm-data.pdf
https://www.rdocumentation.org/packages/Ckmeans.1d.dp/versions/3.4.0-1/topics/Ckmeans.1d.dp
https://www.rdocumentation.org/packages/Ckmeans.1d.dp/versions/3.4.0-1/topics/Ckmeans.1d.dp
https://www.rdocumentation.org/packages/Ckmeans.1d.dp/versions/3.4.0-1/topics/Ckmeans.1d.dp
http://www.srcml.org/

ieee international conference on software maintenance and evolution (icsme) (pp. 131–140).

Svajlenko, J., Roy, C. K., & Cordy, J. R. (2013). A mutation analysis based benchmarking

framework for clone detectors. In 2013 7th international workshop on software clones (iwsc)

(pp. 8–9).

Syer, M. D., Jiang, Z. M., Nagappan, M., Hassan, A. E., Nasser, M., & Flora, P. (2014). Continuous

validation of load test suites. In Proceedings of the 5th acm/spec international conference on

performance engineering (pp. 259–270).

Syer, M. D., Jiang, Z. M., Nagappan, M., Hassan, A. E., Nasser, M. N., & Flora, P.

(2013). Leveraging performance counters and execution logs to diagnose memory-related

performance issues. In 2013 IEEE international conference on software maintenance,

eindhoven, the netherlands, september 22-28, 2013 (pp. 110–119).

Syer, M. D., Shang, W., Jiang, Z. M., & Hassan, A. E. (2017). Continuous validation of performance

test workloads. Automated Software Engineering, 24(1), 189–231.

Tan, J., Kavulya, S., Gandhi, R., & Narasimhan, P. (2010). Visual, log-based causal tracing

for performance debugging of mapreduce systems. In 2010 international conference on

distributed computing systems, ICDCS 2010, genova, italy, june 21-25, 2010 (pp. 795–806).

Tantithamthavorn, C., & Hassan, A. E. (2018a). An experience report on defect modelling in

practice: Pitfalls and challenges. In Proceedings of the 40th international conference on

software engineering: Software engineering in practice (pp. 286–295). New York, NY, USA:

ACM.

Tantithamthavorn, C., & Hassan, A. E. (2018b). An experience report on defect modelling in

practice: Pitfalls and challenges. In Proceedings of the 40th international conference on

software engineering: Software engineering in practice (pp. 286–295).

Tantithamthavorn, C., Hassan, A. E., & Matsumoto, K. (2018). The impact of class rebalancing

techniques on the performance and interpretation of defect prediction models. IEEE

Transactions on Software Engineering.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., Ihara, A., & Matsumoto, K. (2015, May).

The impact of mislabelling on the performance and interpretation of defect prediction

models. In 2015 ieee/acm 37th ieee international conference on software engineering (Vol. 1,

181

p. 812-823).

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2017, Jan). An empirical

comparison of model validation techniques for defect prediction models. IEEE Transactions

on Software Engineering, 43(1), 1-18.

Tarvo, A., & Reiss, S. P. (2012). Using computer simulation to predict the performance of

multithreaded programs. In Proceedings of the 3rd acm/spec international conference on

performance engineering (pp. 217–228). New York, NY, USA: ACM.

Tianyin, X., & Yuanyuan, Z. (2015). Systems approaches to tackling configuration errors: a survey.

ACM Computing Surveys, 47(4), 1–41.

Tillmann, N., & Schulte, W. (2006). Unit tests reloaded: Parameterized unit testing with symbolic

execution. IEEE Software, 23(4), 38–47.

Tourani, P., & Adams, B. (2016). The impact of human discussions on just-in-time quality

assurance: An empirical study on openstack and eclipse. In IEEE 23rd international

conference on software analysis, evolution, and reengineering, SANER 2016, suita, osaka,

japan, march 14-18, 2016 - volume 1 (pp. 189–200). IEEE Computer Society.

Trubiani, C., Bran, A., van Hoorn, A., Avritzer, A., & Knoche, H. (2018). Exploiting load testing

and profiling for performance antipattern detection. Information & Software Technology, 95,

329–345.

Tsakiltsidis, S., Miranskyy, A., & Mazzawi, E. (2016). On automatic detection of performance bugs.

In Software reliability engineering workshops (issrew), 2016 ieee international symposium on

(pp. 132–139).

Verma, A., Pedrosa, L., Korupolu, M. R., Oppenheimer, D., Tune, E., & Wilkes, J. (2015).

Large-scale cluster management at Google with Borg. In Proceedings of the european

conference on computer systems (eurosys). Bordeaux, France.

Vögele, C., van Hoorn, A., Schulz, E., Hasselbring, W., & Krcmar, H. (2018). WESSBAS:

extraction of probabilistic workload specifications for load testing and performance prediction

- a model-driven approach for session-based application systems. Software and System

Modeling, 17(2), 443–477.

von Storch, H. (1999). Misuses of statistical analysis in climate research. In Analysis of climate

182

variability (pp. 11–26). Berlin, Heidelberg: Springer Berlin Heidelberg.

Wang, S., Nam, J., & Tan, L. (2017). Qtep: quality-aware test case prioritization. In Proceedings

of the 2017 11th joint meeting on foundations of software engineering (pp. 523–534).

Weyuker, E., & Vokolos, F. (2000, Dec). Experience with performance testing of software

systems: issues, an approach, and case study. Transactions on Software Engineering, 26(12),

1147-1156.

White, T. (2009). Hadoop: The definitive guide (1st ed.). O’Reilly Media, Inc.

Wikipedia. (2016). Devops. https://en.wikipedia.org/wiki/DevOps. ((Accessed on

09/06/2019))

Wilkes, J. (2011). Google ai blog: More google cluster data. https://ai.googleblog

.com/2011/11/more-google-cluster-data.html. ((Accessed on 04/04/2019))

Williams, C., & Spacco, J. (2008). Szz revisited: Verifying when changes induce fixes. In

Proceedings of the 2008 workshop on defects in large software systems (pp. 32–36). New

York, NY, USA: ACM.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and

intelligent laboratory systems, 2(1-3), 37–52.

Wu, Q., & Wang, Y. (2010). Performance testing and optimization of j2ee-based web applications.

In 2010 second international workshop on education technology and computer science

(Vol. 2, pp. 681–683).

Xi, B., Liu, Z., Raghavachari, M., Xia, C. H., & Zhang, L. (2004). A smart hill-climbing algorithm

for application server configuration. In Proceedings of the thirteenth international world wide

web conference (pp. 287–296).

Xi, H., Zhan, J., Jia, Z., Hong, X., Wang, L., Zhang, L., . . . Lu, G. (2011). Characterization of

real workloads of web search engines. In 2011 ieee international symposium on workload

characterization (iiswc) (pp. 15–25).

Xiong, P., Pu, C., Zhu, X., & Griffith, R. (2013). vperfguard: An automated model-driven

framework for application performance diagnosis in consolidated cloud environments. In

Proceedings of the 4th acm/spec international conference on performance engineering (pp.

271–282). New York, NY, USA: ACM.

183

https://en.wikipedia.org/wiki/DevOps
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://ai.googleblog.com/2011/11/more-google-cluster-data.html

Xu, D., & Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of Data

Science, 2(2), 165–193.

Xu, W., Huang, L., Fox, A., Patterson, D. A., & Jordan, M. I. (2009). Detecting large-scale

system problems by mining console logs. In Proceedings of the 22nd ACM symposium on

operating systems principles 2009, SOSP 2009, big sky, montana, usa, october 11-14, 2009

(pp. 117–132).

Yadwadkar, N. J., Bhattacharyya, C., Gopinath, K., Niranjan, T., & Susarla, S. (2010). Discovery of

application workloads from network file traces. In 8th USENIX conference on file and storage

technologies, san jose, ca, usa, february 23-26, 2010 (pp. 183–196).

Yang, Y., Zhou, Y., Liu, J., Zhao, Y., Lu, H., Xu, L., . . . Leung, H. (2016). Effort-aware just-in-time

defect prediction: Simple unsupervised models could be better than supervised models. In

Proceedings of the 2016 24th acm sigsoft international symposium on foundations of software

engineering (pp. 157–168). New York, NY, USA: ACM.

Yao, K., de Pádua, G. B., Shang, W., Sporea, S., Toma, A., & Sajedi, S. (2018). Log4perf:

Suggesting logging locations for web-based systems’ performance monitoring. In K. Wolter,

W. J. Knottenbelt, A. van Hoorn, & M. Nambiar (Eds.), Proceedings of the 2018 ACM/SPEC

international conference on performance engineering, ICPE 2018, berlin, germany, april

09-13, 2018 (pp. 127–138). ACM. doi: 10.1145/3184407.3184416

Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L. N., & Pasupathy, S. (2011). An empirical

study on configuration errors in commercial and open source systems. In T. Wobber &

P. Druschel (Eds.), Proceedings of the 23rd ACM symposium on operating systems principles

2011, SOSP 2011, cascais, portugal, october 23-26, 2011 (pp. 159–172). ACM.

Zaman, S., Adams, B., & Hassan. (2012). A qualitative study on performance bugs. In Proceedings

of the 9th ieee working conference on mining software repositories (pp. 199–208). Piscataway,

NJ, USA: IEEE Press.

Zaman, S., Adams, B., & Hassan, A. E. (2011). Security versus performance bugs: a case study on

firefox. In Proceedings of the 8th working conference on mining software repositories (pp.

93–102).

Zhang, F., Mockus, A., Keivanloo, I., & Zou, Y. (2014). Towards building a universal defect

184

prediction model. In Proceedings of the 11th working conference on mining software

repositories (pp. 182–191). New York, NY, USA: ACM.

Zhang, S. (2013). Confdiagnoser: An automated configuration error diagnosis tool for java

software. In Proceedings of the 35th international conference on software engineering

(icse’13) (pp. 1438–1440).

Zhang, S., & Ernst, M. D. (2014). Which configuration option should i change? In Proceedings of

the 36th international conference on software engineering (icse’14) (pp. 152–163).

Zhu, Y., Shihab, E., & Rigby, P. C. (2018). Test re-prioritization in continuous testing environments.

In 2018 ieee international conference on software maintenance and evolution (icsme) (pp.

69–79).

Zimmermann, T., Premraj, R., & Zeller, A. (2007, May). Predicting defects for eclipse. In Predictor

models in software engineering, 2007. promise’07: Icse workshops 2007. (p. 9-9).

185

	List of Figures
	List of Tables
	Introduction
	Introduction
	Research hypothesis
	Thesis Overview
	Chapter 2: Background and Literature Review
	Chapter 3: What are the prevalence and root-causes of performance regressions introducing code changes?
	Chapter 4: Can we predict tests that manifest performance regressions at the commit level?
	Chapter 5: Can we predict whether a configuration option manifests performance variation?
	Chapter 6: Can we generate load tests using log-recovered workloads at varying granularities of user behavior?

	Thesis Contributions
	Thesis organization

	Background and Literature Review
	Background
	DevOps
	Software performance
	Performance regression
	Performance testing

	Literature review
	Paper selection
	Empirical studies on software performance
	Performance regression detection
	Analyzing performance testing results to detect performance regression
	Performance regression prediction
	Performance of configuration
	Summary

	What are the prevalence and root-causes of performance regressions introducing code changes?
	Introduction
	Case Study Setup
	Subject systems
	Identifying performance regression introducing changes

	Case Study Result
	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Related Work
	Performance regression detection
	Empirical studies on performance

	Conclusion

	 Can we predict tests that manifest performance regressions at the commit level?
	Introduction
	Related Work
	Software defect prediction
	Empirical studies on software performance
	Test case prioritization

	Approach
	Extracting metrics
	Data preprocessing
	Building classifiers and predicting performance-regression-prone tests
	Exercising tests and updating classifiers

	Evaluation Setup
	Subject systems
	Extracting performance-regressions-tests in each commit
	Preliminary study

	Evaluation Results
	Discussion
	Traditional metrics are more important than performance-related metrics
	Our approach out-performs Perphecy
	Limitation of our approach and future work
	Generalizability of our study

	Threats to Validity
	Conclusion

	Can we predict whether a configuration option manifests performance variation?
	Introduction
	Background
	Data Collection
	Subject Systems
	Data Gathering

	Preliminary Study: Quantifying the Prevalence of IoPV and the Challenge of Identifying IoPV
	Predicting IoPV Problems
	Threats to Validity
	Related Work
	Software Configuration
	Software Performance

	Conclusion

	Can we generate load tests using log-recovered workloads at varying granularities of user behavior?
	Introduction
	Background and related work
	Recovering workload
	Software logs analysis

	Our approaches to recovering a workload for load testing
	Extracting user actions
	Enriching user actions with context
	Identifying frequent action sequences
	Grouping similar frequent action sequences
	Grouping users into clusters
	Generating load tests

	Case study setup
	Subject systems
	Data collection
	Preliminary analysis: clustering tendency

	Case study results
	Discussion
	Detecting unseen workload
	Sensitivity analysis

	Challenges and lessons learned from the industrial evaluation of our approaches.
	Domain knowledge is crucial for the successful transfer of research to practice.
	Team support is crucial for the successful transfer of research to practice.
	Coping with the large scale industrial data

	Threats to validity
	Conclusions

	Summary, Contributions, and Future Work
	Summary
	Thesis contributions
	Future Work
	Performance data repository
	More empirical studies on the impact of software activities on performance
	Domain-specific language for performance data analysis
	Reduce the length of performance testing
	The usage of unit test to detect performance regression in the load test

	Bibliography

