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ABSTRACT
Software repository mining is the foundation for many empirical
software engineering studies. The collection and analysis of detailed
data can be challenging, especially if data shall be shared to enable
replicable research and open science practices. SmartSHARK is an
ecosystem that supports replicable and reproducible research based
on software repository mining.

CCS CONCEPTS
• Software and its engineering;

ACM Reference Format:
Alexander Trautsch, Fabian Trautsch, Steffen Herbold, Benjamin Ledel,
and Jens Grabowski. 2020. The SmartSHARK Ecosystem for Software Repos-
itory Mining. In . ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
Mining software repositories (MSR) has become a standard tech-
nique that is frequently employed for empirical software engineer-
ing. MSR relies on tools that can extract data from repositories such
as version control systems like Git or SVN, issue tracking systems
like Jira or Bugzilla, or question/answer sites like StackOverflow.

With this demonstration, we show the capabilities of Smart-
SHARK, an ecosystem for reproducible mining of software repos-
itories [14]. SmartSHARK is designed with the goal to support
replications in the context of MSR. The concept of SmartSHARK
is to collect data from different sources and store all data in a sin-
gle database with a harmonized schema. Analysis approaches can
then rely on the harmonized data representation, which simplifies
working with different data sources, allows automated re-runs of
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experiments on newly collected data, and facilitates the creation of
benchmarks with a common interface.

The remainder of this paper is structured as follows. We start
with an overview of the SmartSHARK ecosystem in Section 2, de-
scribe the data that can currently be collected with SmartSHARK,
and describe the commonly used database, as well as components
that support data collection, visulization, and validation. Then, we
describe how SmartSHARK can be used for the analysis of the col-
lected data in Section 3. Section 4 discusses related work. Finally,
we conclude in Section 5.

2 THE SMARTSHARK ECOSYSTEM
The SmartSHARK ecosystem is an environment for replicable and
reproducible software mining research. Figure 1 gives an overview
of the four major components within SmartSHARK and how they
interact: 1) a set of command lines tools that can be used for the data
collection and enrichment; 2) a MongoDB instance for the storage
of all collected data; 3) the ServerSHARK web application that can
be used for convenient data collection; and 4) the VisualSHARK
web application that provides an overview of the collected data and
enables manual validations. In the following, we describe each part
of the ecosystem in greater detail. More information, including a
demonstration video can be found online1.

2.1 Command Line Tools
The core of the SmartSHARK ecosystem is a constantly growing
collection of tools that can be executed directly on the command
line. These tools can be divided into tools that scrape data directly
from software repositories and tools that enrich data. All tools work
with a shared database (Section 2.2).

2.1.1 Data Collection. Currently, there are ten tools in the Smart-
SHARK ecosystem that collect data from software repositories.

• vcsSHARK: collects the development history from version
control systems, currently supporting only git.

• issueSHARK: collects issue tracking data, e.g., from Jira,
Bugzilla, and GitHub issues.

1https://smartshark.github.io/
https://youtu.be/69ongpoBtQg
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Figure 1: Overview of the SmartSHARK ecosystem

• mailingSHARK: collects data from mailing list archives.
• travisSHARK: collects logs from the Travis CI continuous
integration system.

• mecoSHARK: collects software metrics with the OpenStatic-
Analyzer2.

• coastSHARK: collects software metrics about node counts in
abstract syntax trees as well as the import statements from
files.

• readabilitySHARK: collects code readability evaluations from
models by Buse et al. [1] and Scalabrino et al. [7].

• refSHARK: determines refactorings using RefDiff by Silva et
al. [8].

• rMineSHARK: determines refactorings using Refactoring-
Minder by Tsantalis et al. [15].

• changeSHARK: determines the type of changes to Java files
with ChangeDistiller by Fluri et al. [2] using the classification
from Zhao et al. [16].

The collection tools automatically map fields that share the same
content to the same fields in the shared database. For example,
SmartSHARK’s data model for issue tracking data is based on the
Jira issue tracker. Fields from other issue trackers are mapped to
this data model as closely as possible. In SmartSHARK, the body
of the first post of a GitHub issue is the same as the description of
the issue in Jira, the subsequent posts on GitHub are the same as
comments in Jira. Thus, the tools of the SmartSHARK ecosystems
harmonize data from different information sources and, thereby,
simplify downstream analysis with heterogeneous data sources.

The tools travisSHARK, mecoSHARK, coastSHARK, refSHARK,
rMineSHARK, and changeSHARK all automatically link the col-
lected data to the respective commits in the version control system.
For example, travisSHARK extends the commit with the travis log,
mecoSHARK with static software metrics for all files in the reposi-
tory at the time of the commit, and rMineSHARK creates a list of
all refactorings that were performed in the commit. Thus, these
tools automatically link their collected information with each other
using the commits, thereby enriching the data collected from the
version control system. To ensure replicability of the execution of
the collection tools as well as to facilitate the further extension of
2https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer

the data, the vcsSHARK stores an archive of the repository as a
tar-ball as part of the shared database3.

2.1.2 Data Enrichment. Moreover, there are tools in the SmartSHARK
ecosystem that heuristically enrich the collected data.

• linkSHARK: establishes links from commits to issues, e.g.,
using the SZZ algorithm [9] or based on matching Jira issue
ids.

• labelSHARK: determines labels for commits, e.g., whether
a commit is bugfixing based on linked issues, whether any
refactoring was performed in the commit, if code documenta-
tion was modified, or whether the authors added or removed
self admitted technical debt.

• inducingSHARK: determines bug inducing changes, e.g., us-
ing the SZZ algorithm.

• identitySHARK: identifies different identities of the same
developer, e.g., due to the use of different email addresses or
different spellings of their name.

The main purpose of these tools is to establish connections be-
tween data that was collected previously and, thereby, enable a
deeper analysis of the collected data.

2.2 MongoDB
All command line tools use a single MongoDB database for the
storage of the collected data. MongoDB4 is a NoSQL database for
document storage that scales well with large amounts of data and
can be used both on a single machine as well as in a distributed clus-
ter. Thus, MongoDB is suitable to store large amounts of collected
data. Moreover, MongoDB uses a document-based and schema-free
approach that uses JSON-like representations of the data. This en-
ables flexible changes to the schema of the collected data, without
overhead, e.g., due to database migrations to modify the schema.
The use of a single database enables synergy effects between the
different command line tools. For example, changes in the values of
static software metrics can easily be correlated with refactorings,
because both are available in the same database and linked to the
commits. A documentation of the current database schema can be
found online5.

There are drivers for MongoDB for many technologies that en-
able access to the database. Additionally, we developed the libraries
pycoSHARK for Python and jSHARK for Java that provide Object-
Relational Mappings (ORM) for convenient access to the data. These
libraries are available on PyPi and Maven Central, respectively.

2.3 ServerSHARK
ServerSHARK is a Web application that simplifies the data collec-
tion with SmartSHARK. Data collection tools can be installed in
ServerSHARK directly from GitHub. ServerSHARK can then trigger
the collection of data with these tools. The command line tools are
either executed locally with a redis queue6 or remotely in a batch
processing system. ServerSHARK currently supports SLURM7, but

3Only possible with Git as version control system
4https://www.mongodb.com/
5https://smartshark2.informatik.uni-goettingen.de/documentation/
6https://redis.io/
7https://slurm.schedmd.com/
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we have also used LSF8 in the past. This batch execution is not only
a convenience feature, but a key requirement for the scalable collec-
tion of static software metrics for complete software repositories.
For example, the Apache Jena project has over 20.000 commits and
the execution of the mecoSHARK for the collection of static metrics
requires about 30 minutes of time per commit. Thus, roughly 416
days of computational time are required for the collection of this
data. In a batch system with hundreds of compute nodes, this task
can be solved in a matter of hours.

The drawback of the distributed execution of data collection in
batch processing systems is that these systems tend to be unreli-
able, i.e., it is quite likely that single jobs fail in case thousands of
jobs are executed. The reason for this is that issues like hardware
failures or network problems are much more likely to happen if
hundreds of nodes are involved in comparison to a single machine.
To account for this, ServerSHARK can check the execution logs of
the batch system to detect failures. Since some failures are silent
(sometimes jobs just vanish), ServerSHARK can also actively check
the consistency between the clone of a repository and the collected
data, e.g., if metric data is available for each file that exists in a
revision of the source code.

2.4 VisualSHARK
VisualSHARK is a Web application that provides a dashboard that
gives insights into aspects of the collected data. VisualSHARK pro-
vides basic statistics about the collected data, e.g., the number of
issues or files per project. For each project, it is possible to browse
the commit history and the issues and to inspect the links that were
established. Moreover, VisualSHARK can display a commit graph
that can, e.g., show all commits, only bug fixing commits, or all
commits where the messages matches a certain query. This enables
the manual inspection of the collection data.

Moreover, VisualSHARK also supports the manual validation
of data and the storage of the validation results in the MongoDB.
Currently, VisualSHARK allows two manual validations: each link
that is established from a commit to an issue can be manually
determined as correct or incorrect (Figure 2). Similarly, we allow
the validation of the types of issues similar to the work by Herzig et
al. [6]. For this, the researchers get the developer classification of
the issue, the title and the description of the issue, a link to the actual
issue in the projects issue tracker, as well as links to all commits that
were linked to an issue (Figure 3). A manual validation of which
lines in a change actually contributed to bug fixes based on Visual
Studio Code’s editor9 is currently being added to VisualSHARK
(Figure 4).

3 ANALYZING DATAWITH SMARTSHARK
We already used data collected with SmartSHARK for multiple pub-
lications, e.g., on differences between unit and integration tests [13],
the impact on static analysis [11, 12], the mining of project activity
patterns [5], or the detailed analysis of issues with defect predic-
tion data [4]. As part of the latter, we developed the Python script
Mynbou10, that can collect release level data for defect prediction.

8https://www.ibm.com/marketplace/hpc-workload-management
9https://code.visualstudio.com/
10https://github.com/smartshark/mynbou

Figure 2: Validation of links between commits and issues
with the VisualSHARK. The VisualSHARK suggests the
links that heuristics like SZZ detect and researchers can re-
move invalid links, i.e., DERBY-2 and DERBY-9 in the exam-
ple.

Figure 3: Validation of the developer assigned issue types.
Researchers can select the actual type of the issue hand have
to check that they have validated the type. They can easily
access further information by clicking the title of the issue
to access the original issue in the issue tracker or linked com-
mits by clicking on the revision hash.

Figure 4: Validation of the lines that actually contributed to
the logical change required to fix a defect. The markers at
the beginning of the lines are added by the validator. Red
indicates part of the bugfix, yellow refactoring.

We use Mynbou as a showcase for the capabilities of SmartSHARK,
because it uses large parts of the SmartSHARK database, including
the links that the different tools establish between the data. Mynbou
uses inducing changes determined by inducingSHARK for bug fix
labels based on manually validated data with the VisualSHARK.
Mynbou computes features from the source code history made
available by vcsSHARK and metrics computed by coastSHARK and
mecoSHARK. These are fairly standard for defect prediction data,
albeit not in the scale and diversity provided by Mynbou. Mynbou
can also easily enhance the defect prediction data with features
that were not considered in the state of the art before, e.g., data
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about the number of refactorings, because such data is also readily
available in the SmartSHARK database.

4 RELATEDWORK
There are too many tools that consider mining of software reposi-
tories to conduct a full review here. Instead, we focus on two very
popular and powerful tools that are currently often used for similar
purposes as SmartSHARK: GrimoireLab11 and PyDriller [10]. In
comparison to other popular tools like GHTorrent [3], these tools
also process data and do not only scrape them from repositories.

The SmartSHARK ecosystem shares many properties with
GrimoireLab. GrimoireLab also provides command line tools for
data collection, a server that can trigger the execution of the com-
mand line tools, a single backend for storing data, and a front-end
that can, e.g., provide a dashboard for analysis. However, there are
several notable and important differences between GrimoireLab
and SmartSHARK. In general, GrimoireLab is more powerful with
respect to the number of different data sources that are supported.
However, the command line tools from GrimoireLab do not enforce
a common schema for different data sources of the same type. In-
stead, all data stays in the schema it was retrieved, i.e., Jira issues
have a different schema than GitHub issues. While the command
line tools can also write into a shared database, this database also
does not enforce a common schema. Instead, GrimoireLab uses
an ElasticSearch database for the storage of all data and requires
users of this database to cope with the diversity of the data. In com-
parison, all tools in the SmartSHARK ecosystem share the same
underlying data representation and, thereby, provide compatible
representations for downstream analysis.

The second difference is the depth of the analysis. While the
number of data sources and the ability to visualize the collected
data in dashboards is the strength of GrimoireLab, the data that
GrimoireLab gathers from each data source is limited. Moreover,
there is only little linking between data from different sources,
except via the authors. For example, while GrimoireLab collects the
commit messages, these messages are not used to establish links
to the collected issue tracking data. Moreover, GrimoireLab does
not analyze source code directly, e.g., to collect software metrics.
While the tools in the SmartSHARK ecosystem support fewer data
sources, they implement detailed data collection and enrichment
methods for the available data.

A second notable tool that has similarities to parts of the Smart-
SHARK ecosystem is PyDriller [10]. PyDriller is a very fast and
powerful tool to scrape the development history of Git projects.
PyDriller even allows the collection of a small set of software met-
rics for each revision, as well as the identification of bug fixing and
bug inducing commits. Moreover, PyDriller is very lightweight and
can easily be used. The main drawback of PyDriller in compari-
son to SmartSHARK is the limitation on Git repositories as data
sources. This limits, to some degree, the capabilities of PyDriller,
because, e.g., the identification of bug fixing commits cannot utilize
data from an issue tracker. Moreover, the amount of data for each
commit that SmartSHARK can collect for each release is larger than
for PyDriller. However, data collection with SmartSHARK is more
complex and requires more computational resources.

11https://chaoss.github.io/grimoirelab/

5 CONCLUSION
SmartSHARK is a versatile and still growing ecosystem for software
repository mining that facilitates both the replication and compari-
son of existing work, as well as the development of new analysis
approaches on software repository data.
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