
Automated Analysis of Inter-Parameter

 Dependencies in Web APIs
Alberto Martin-Lopez
Universidad de Sevilla

ABSTRACT

Web services often impose constraints that restrict the way in which
two or more input parameters can be combined to form valid calls
to the service, i.e. inter-parameter dependencies. Current web API
specification languages like the OpenAPI Specification (OAS) pro-
vide no support for the formal description of such dependencies,
making it hardly possible to interact with the services without
human intervention. We propose specifying and automatically ana-
lyzing inter-parameter dependencies in web APIs. To this end, we
propose a domain-specific language to describe these dependencies,
a constraint programming-aided tool supporting their automated
analysis, and an OAS extension integrating our approach and eas-
ing its adoption. Together, these contributions open a new range of
possibilities in areas such as source code generation and testing.

KEYWORDS:

Web service,

DSL,

interdependency,

CSP,

automated analysis

1 RESEARCH PROBLEM AND MOTIVATION
Web APIs enable the consumption of services and data over the
network, and they are heavily used nowadays for integrating dis-
tributed and heterogeneous systems. This is reflected in the size
of popular API directories such as ProgrammableWeb [11], which
currently indexes over 22K web APIs. Modern web APIs usually fol-
low the REST architectural style [20], being referred to as RESTful
web APIs. RESTful APIs can be described using languages such as
the OpenAPI Specification (OAS) [9], which has arguably become

∗Work supported by the European Commission (FEDER) and Spanish Government
under projects BELI (TIN2015-70560-R) and HORATIO (RTI2018-101204-B-C21), and
by the Spanish Ministry of Education under FPU scholarship (FPU17/04077).

an industry standard. An OAS document describes a RESTful API

in terms of the elements it consists of, namely paths, operations,

resources, request parameters and API responses. It is both human-

and machine-readable, making it possible to automatically generate,

for instance, documentation, source code or even basic test cases.

Web APIs often present inter-parameter dependencies, i.e. con-

straints that restrict the way in which two or more input parameters

can be combined to form valid calls to the service. For instance, in

the YouTube API [15], when using the parameter videoDefinition

(e.g. to search videos in high definition) the type parameter must

be set to ‘video’, otherwise a HTTP 400 code (bad request) is re-

turned. Current API specification languages such as OAS or RAML

[12] provide no support for the description of these dependencies.

For example, the OAS documentation states [10]: “OpenAPI 3.0

does not support parameter dependencies and mutually exclusive pa-

rameters. (...) What you can do is document the restrictions in the

parameter description and define the logic in the 400 Bad Request

response”. This makes it hardly possible to interact with the services

without human intervention. For example, it would be extremely

difficult, possibly infeasible, to automatically generate test cases

for the YouTube API without an explicit and machine-readable def-

inition of its dependencies. We recently conducted an exhaustive

review of 40 web APIs and more than 2.5K operations [22], and

found that inter-parameter dependencies are extremely common in

practice, being present in 85% of the APIs analyzed. In addition, we

classified all the dependencies into a catalogue of seven different

patterns. Industry has shown great interest in this issue, as reflected

in an open feature request in OAS entitled “Support interdependen-

cies between query parameters”, created in January 2015. To date,

it has received 250 votes and 51 comments from 32 participants [4].

In this paper, we present an approach to automatically analyze

inter-parameter dependencies in web APIs. We propose a set of

tools, including a domain-specific language (DSL) for the specifi-

cation of dependencies, an extension for the OAS language, and

a constraint programming-aided tool supporting the automated

analysis of dependencies. We have a prototype of the tool and have

evaluated its usefulness with a case study on the YouTube web API:

we automatically generated 100 times more valid test cases than a

random approach, thanks to the management of dependencies.

2 BACKGROUND AND RELATEDWORK

Wu et al. [25] presented an approach for the automated inference of

inter-parameter dependencies in web services. Oostvogels et al. [23]

proposed a DSL for the description of inter-parameter dependen-

cies in OAS. Other authors [18, 21, 26] have partially addressed this

issue in other type of web services such as WSDL [2] or OWL-S [1],

technologies in disuse nowadays. In the context of testing, current

approaches [16, 17, 19, 24] do not handle inter-parameter depen-

dencies and therefore show limited applicability in practice. Our

work is the first to attack the root of the problem, with a thorough

study of 40 web APIs, and so the conclusions derived from it differ

from others (e.g. the DSL from [23] does not support all depen-

dency types from our catalogue). More importantly, our solution

is the first to fully address both the specification and automated

analysis of inter-parameter dependencies. It is also technology- and

specification-independent, meaning that it can be integrated into

any web API design framework or specification language.

3 APPROACH

Figure 1 depicts the proposed approach. First, dependencies are de-

scribed using Inter-parameter Dependency Language (IDL), a novel

DSL designed for the specification of inter-parameter dependencies

in web APIs. Then, IDL dependencies are mapped to a constraint

satisfaction problem (CSP), using a constraint modeling language

such as MiniZinc [8]. The CSP must also contain the information

about the parameters and their domains, this is extracted from

the API specification (e.g. an OAS document). Finally, a catalogue

of analysis operations can be run on the resulting CSP, thereby

allowing the automated analysis of dependencies.

Our proposal opens a new range of specification-driven applica-

tions in web APIs. For example, API gateways could automatically

reject requests violating dependencies, without even redirecting the

call to the corresponding service, saving time and user quota. Test

case generators could automatically generate valid test cases (those

satisfying all inter-parameter dependencies) rather than using brute

force or writing specific input grammars for each API under test.

Source code generators could generate web API clients including

built-in assertions to deal with invalid input combinations. The

range of new applications is promising.

4 RESULTS AND CONTRIBUTIONS

Next, we describe the current results and expected contributions.

State of practice. Fully understanding how dependencies arise

in practice is essential for the design of a DSL that can be used to

formally express all types of dependencies. To address this issue, we

performed a survey on 2,557 operations from 40 APIs, constituting

the largest systematic review on the presence of inter-parameter

dependencies in web APIs [22]. As a result, we managed to classify

all dependencies identified (over 600) into seven general patterns.

Domain-specific language. We propose IDL [7], a DSL for the

specification of dependencies among input parameters in web APIs.

IDL has been designed to express the seven types of dependency

patterns found in our review of industrial APIs. It is specification-

independent, meaning that it can be integrated into any existing

API specification language (e.g. OAS, RAML and WSDL). This has

enabled the creation of IDL4OAS, an OAS extension supporting the

description of dependencies in this language. A sample IDL4OAS

document is available on [3]. IDL is implemented with Xtext [14], a

popular framework for the development of programming languages

and DSLs. We have also developed an editor and a parser for IDL,

facilitating its integration in other tools. The IDL grammar is avail-

able on [3]. As an example, Listing 1 depicts the IDL specification

of the dependencies in the Google Maps Places API [5].

Automated analysis. We propose translating IDL specifica-

tions to CSPs. The proposed IDL-to-CSP mapping is available on

Figure 1: Proposed approach.

[3]. Then, the CSP can be leveraged to automatically extract in-

formation from IDL specifications through a catalogue of analysis

operations using state-of-the-art CSP solvers. So far, we have iden-

tified eight operations (see Figure 1), and these are implemented

in IDLReasoner (available on GitHub [6]), a MiniZinc-based Java

library supporting the integration of our approach in any exter-

nal project. Among others, IDLReasoner can automatically check

whether a given API request satisfies all dependencies (operation

isValidRequest), whether a given parameter is dead and therefore

cannot be selected due to inconsistencies in the specification (op-

eration isDeadParameter), or it can even generate random valid

requests satisfying all dependencies (operation randomRequest).

For example, consider the following request to the Search opera-

tion of the Google Maps API (Listing 1, lines 2-4): {location=0,0;

rankby=distance}. IDLReasoner identified the request as invalid

in 71 milliseconds, since it violates dependency in line 3, i.e. if

rankby equals ‘distance’, then keyword, name or type must be

set. An API gateway supporting this operation could reject requests

like this (and much more complex ones) without even calling the ac-

tual service, saving time and user quota, and making service-based

applications more reliable.

1 // Operation 1: Search for places within specified area:
2 ZeroOrOne(radius , rankby =='distance ');
3 IF rankby =='distance ' THEN keyword OR name OR type;
4 maxprice >= minprice;
5 // Operation 2: Query information about places:
6 AllOrNone(location , radius);
7 Or(query , type);
8 maxprice >= minprice;
9 // Operation 3: Get photo of place:
10 OnlyOne(maxheight , maxwidth);
11 // Operation 4: Automcomplete place name:
12 IF strictbounds THEN location AND radius;

Listing 1: IDL dependencies in the Google Maps Places API.

Evaluation. Our current efforts focus on evaluating the devel-

oped tools in terms of correctness, expressiveness and performance.

In order to show the potential of our approach, we assessed the

usefulness of the tool for testing purposes with a case study on the

YouTube web API. Its search operation [13] presents dependencies

in 25 out of 31 parameters. We generated test cases using 26 of them,

discarding others that are still unsupported by our tool (e.g. dates

comparison). Two test suites of 100 test cases each were automati-

cally generated, the first with a random approach and the second

with IDLReasoner. The random approach generated only one valid

request (i.e. a request obtaining a 200 status code in the response),

while with IDLReasoner all requests were valid. Both test suites

and the execution results are available on [3]. Additionally, we suc-

ceeded to find conformance errors in the form of dependencies not

described in the documentation (e.g. if the parameter channelType

is used, the type parameter must be set to ‘channel’).

REFERENCES
[1] 2004. Semantic Markup for Web Services (OWL-S). https://www.w3.org/

Submission/OWL-S/
[2] 2007. Web Services Description Language (WSDL) Version 2.0. https://www.w3.

org/TR/wsdl20/
[3] 2019. Additional material of the paper. https://github.com/isa-group/ICSE-2020-

SRC---Supplementary-material
[4] 2019. GitHub issue in the OpenAPI repository: “Support interdependencies between

query parameters”. https://github.com/OAI/OpenAPI-Specification/issues/256
[5] 2019. Google Maps Places API. https://developers.google.com/places/web-service/

intro
[6] 2019. IDLReasoner. https://github.com/isa-group/IDLReasoner
[7] 2019. Inter-parameter Dependency Language (IDL). https://github.com/isa-

group/IDL
[8] 2019. MiniZinc: Constraint Modeling Language. https://www.minizinc.org/
[9] 2019. OpenAPI Specification. https://www.openapis.org
[10] 2019. Parameter dependencies in OAS. https://swagger.io/docs/specification/

describing-parameters/#dependencies
[11] 2019. ProgrammableWeb. https://www.programmableweb.com
[12] 2019. RESTful API Modeling Language (RAML). https://raml.org
[13] 2019. Search operation of the YouTube API. https://developers.google.com/

youtube/v3/docs/search/list
[14] 2019. Xtext. https://www.eclipse.org/Xtext/
[15] 2019. YouTube API. https://developers.google.com/youtube/v3/docs

[16] A. Arcuri. 2019. RESTful API Automated Test Case Generation with EvoMaster.
ACM Trans. on Software Engineering and Methodology 28, 1 (2019), 3.

[17] V. Atlidakis, P. Godefroid, and M. Polishchuk. 2019. RESTler: Stateful REST API
Fuzzing. In Intern. Conference on Software Engineering. 748–758.

[18] D. Cacciagrano, F. Corradini, R. Culmone, and L. Vito. 2006. Dynamic Constraint-
based Invocation of Web Services. In 3rd Intern. Workshop on Web Services and
Formal Methods. 138–147.

[19] H. Ed-douibi, J.L.C. Izquierdo, and J. Cabot. 2018. Automatic Generation of
Test Cases for REST APIs: A Specification-Based Approach. In IEEE 22nd Intern.
Enterprise Distributed Object Computing Conference. 181–190.

[20] R. T. Fielding. 2000. Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. Dissertation.

[21] C. Gao, J. Wei, H. Zhong, and T. Huang. 2014. Inferring Data Contract for
Web-based API. In IEEE Intern. Conference on Web Services. 65–72.

[22] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés. 2019. A Catalogue of Inter-
Parameter Dependencies in RESTful Web APIs. In Intern. Conference on Service-
Oriented Computing. 399–414.

[23] Oostvogels, N., De Koster, J., De Meuter, W. 2017. Inter-parameter Constraints in
ContemporaryWeb APIs. In 17th Intern. Conference onWeb Engineering. 323–335.

[24] S. Segura, J.A. Parejo, J. Troya, and A. Ruiz-Cortés. 2018. Metamorphic Testing of
RESTful Web APIs. IEEE Trans. on Software Engineering 44, 11 (2018), 1083–1099.

[25] Qian Wu, Ling Wu, Guangtai Liang, Qianxiang Wang, Tao Xie, and Hong Mei.
2013. Inferring Dependency Constraints on Parameters for Web Services. In
Proceedings of the 22nd Intern. Conference on World Wide Web. 1421–1432.

[26] L. Xu, Q. Yuan, J. Wu, and C. Liu. 2009. Ontology-based Web Service Robustness
Test Generation. In IEEE Intern. Symp. on Web Systems Evolution. 59–68.

