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ABSTRACT
Feature flags are commonly used in mobile app development and
can introduce technical debt related to deleting their usage from
the codebase. This can adversely affect the overall reliability of
the apps and increase their maintenance complexity. Reducing this
debt without imposing additional overheads on the developers
necessitates the design of novel tools and automated workflows.

In this paper, we describe the design and implementation of
Piranha, an automated code refactoring tool which is used to
automatically generate differential revisions (a.k.a diffs) to delete
code corresponding to stale feature flags. Piranha takes as input
the name of the flag, expected treatment behavior, and the name of
the flag’s author. It analyzes the ASTs of the program to generate
appropriate refactorings which are packaged into a diff. The diff is
assigned to the author of the flag for further processing, who can
land it after performing any additional refactorings.

We have implemented Piranha to delete code in Objective-C,
Java, and Swift programs, and deployed it to handle stale flags in
multiple Uber apps. We present our experiences with the deploy-
ment of Piranha from Dec 2017 to May 2019, including the follow-
ing highlights: (a) generated code cleanup diffs for 1381 flags (17%
of total flags), (b) 65% of the diffs landed without any changes, (c)
over 85% of the generated diffs compile and pass tests successfully,
(d) around 80% of the diffs affect more than one file, (e) developers
process more than 88% of the generated diffs, (f) 75% of the gener-
ated diffs are processed within a week, and (g) Piranha diffs have
been interacted with by ~200 developers across Uber.

Piranha is available as open source at https://github.com/uber/
piranha.

CCS CONCEPTS
• Software and its engineering → Software maintenance
tools.
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1 INTRODUCTION
In traditional software development workflows [1], shipping new
features involves determining the set of features to be released in a
version, and implementing these features as part of a new branch of
the source code. This can introduce unnecessary complexities [60]
in terms of building and testing different versions of the software
application. Further, dependencies among features across versions
can hamper the agility of the development process [7, 36].

Modern software development practices avoid this complexity
by implementing all features of an application as part of a mono-
lithic source code repository [11, 22, 28, 30, 33, 37, 45, 53], and
subsequently configuring the set of features that are visible to the
user. This configuration is achieved by guarding each new fea-
ture under a feature flag.1 The configuration pertaining to the
flags that are enabled is dynamically supplied to the user as a net-
work payload during application startup. Experiences in the recent
decade [11, 31, 51, 52] have shown that there are many other ad-
vantages of feature flags beyond easing the software development
process. For example, app developers can easily control the con-
figuration of features and deliver a customized user experience to
each individual user or user group. Further, testing new features in
the field before a global roll-out becomes a trivial task [52].

While there are many benefits of employing feature flags, there
are also challenges that need to be addressed. Introduction of flags
increase the number of control paths in the application, affecting
test coverage [15]. Further, unintended flag dependencies due to
the structure of the code can affect the application’s reliability. For
instance, a high frequency trading firm lost 465MUSD in 30minutes
when obsolete code was made live due to flipping the behavior of a
feature flag [41]. Also, flag usage can impose technical debt on the
organization when the flags have served their purpose and need
to be removed [52, 57]. In this paper, we focus on the problem of
managing the technical debt associated with stale flags.

We consider a flag to be stale when the purpose that necessitated
its introduction is resolved. For example, when a flag that is used
to control the geographical locations where it is rolled out is rolled
out globally, the flag becomes stale. Therefore, the code in the true
branch of the flag can execute unconditionally, and the code in
the false branch can be eliminated from the source. Further, all
unreachable code artifacts due to this refactoring should also be
removed. Obsolete tests related to the flag should also be deleted.

Surprisingly, refactoring code and eliminating technical debt due
to stale flags can be a non-trivial task. Our experience has shown
that this is due to a confluence of diverse problems:

• sub-optimal flag management that makes information on
staleness of flag to be ambiguous,

• churn in the organization affecting flag ownership, and

1Also, referred to as gatekeepers [32], toggles [31, 52].
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• lack of developer incentives to cleanup source code related
to stale flags.

Consequently, the source code becomes bloated with dead code
paths affecting overall ease of development and software reliability.

In this paper, we share our experiences with overcoming the
challenges related to stale flags and detail the practices that we
have evolved to improve the overall code hygiene. We have also
designed and implemented a code refactoring tool, named Piranha,
to automatically cleanup code related to stale feature flags. Apart
from building processes to enable timely removal of stale code
using Piranha, we have also designed coding guidelines to reduce
additional manual effort on generated diffs.

We applied Piranha on multiple mobile applications at Uber
that are used by millions of users daily. These applications are built
for Android and iOS platforms, and are implemented using Java,
Swift, or Objective-C. Our investigation of the usage of Piranha
from Dec 2017 to May 2019 shows that it was used by around 200
developers to delete 1381 flags, which corresponds to deletion of
71KLoC spread across the codebases of multiple apps, where 65%
of the generated cleanup diffs are landed to the master branch
without any manual changes. We also observe that developers act
on 88% of the generated diffs either by landing them or purposefully
abandoning the diff, and perform this activity within a week for
75% of the diffs. For 80% of the flags, we observe that more than
one file is affected.

Our experiences with deploying Piranha revealed interesting
challenges ranging from simple behavioral issues corresponding to
handling auto-generated source code refactorings, to deeper tech-
nical challenges associated with constraining the coding patterns
related to feature flags. Based on our findings, we present detailed
recommendations on managing code associated with feature flags.
We believe our experiences can be leveraged by other industry
practitioners to apply similar strategies within their organizations,
and can enable academicians to design novel program analysis
strategies to overcome the problems discussed in this paper.

1.1 Technical contributions
We make the following technical contributions in this paper:

(1) We present the challenges due to stale feature flags and
describe the design and implementation of a source-code
refactoring tool, named Piranha, to reduce the technical
debt efficiently.

(2) We propose workflows surrounding Piranha to minimize
the overhead for cleaning stale code artifacts.

(3) We apply Piranha on mobile applications built for Android
and iOS platforms, using Java, Swift and Objective-C, and
present our findings on the usage of Piranha over 18months
across multiple dimensions.

(4) We provide recommendations for increasing the underlying
automation.

2 BACKGROUND AND MOTIVATION
In this section, we provide the background on feature flags and
motivate the problem due to stale feature flags. Initially, we discuss
the terminology used in the paper.

• diff: Short form of differential revision [26, 43], which contains the
code modifications and metadata pertaining to the modifications
including its author, code reviewer(s), summary of the changes,
test plan, etc. This is similar to a pull request [50].

• landing a diff: The process of merging the code modifications in
the diff into the master branch of the repository.

• task: A work item assigned to a developer that summarizes the
work that needs to be accomplished (e.g., building a new feature,
fixing a bug, etc).

• feature flag: Variable in source code that enables or disables a
specific feature of the application.

• treatment behavior: Defines the functionality corresponding to
the treatment group [21] for a given feature.

• control behavior: Defines the functionality corresponding to the
control group [21] for a given feature.
Feature flags are classified into various categories depending on

their application. The most common flags are:
• optimistic feature flags: provide flexibility in rolling back a
feature in the presence of unforeseen errors,

• gradual roll-out flags: help constrain the features to a limited
audience before general availability,

• A/B testing flags: used for experimenting and obtaining user
feedback, and

• parameterized flags: introduce complex dynamic settings for
customized user experience.

In order to introduce a flag in the codebase, a developer creates
an entry in the flag management system, and inputs attributes re-
lated to the name of the flag, type of the flag, roll-out percentages,
targeted platforms, geographical locations where the flag is oper-
ational, etc. Simultaneously, the flag is defined in the source code
which helps build a connection between the backend system and
the mobile app instance. Subsequently, this flag can be used in the
code as any other variable to manage the app behavior.

public enum RidesExpName implements ExpName {
RIDES_NEW_FEATURE,
...

}

if (cachedExperiments.isTreated(RIDES_NEW_FEATURE)) {
// implementation for treatment behavior

} else {
// implementation for control behavior

}

@Test
@RidesExpTest(treated=RidesExpName.RIDES_NEW_FEATURE)
public void test_new_feature() {

...
}

Listing 1: Illustrative example demonstrating usage of feature flags
in source code

Listing 1 presents a simple example illustrating the usage of
feature flags in the source code.2 Initially, a new flag, named
RIDES_NEW_FEATURE, is defined as part of a list of flags in
2Flag usages are more complex and do not always conform to this style.
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RidesExpName. This flag is also registered in the flag management
system. Subsequently, the flag is used in the code using a feature
flag API, isTreated, and the implementations of treatment/control
behaviors are provided under this conditional guard. Finally, to test
the code with various flag values, for each unit test, an annotation
is added to specify the value of the feature flag. In the example code
shown above, we observe that the test, test_new_feature runs
where the flag under consideration is in a treated state.

Feature flag APIs are used for interacting with flags in the code-
base. There are three kinds of flag APIs:

(1) boolean APIs that return a boolean value and are used to
determine the control path taken by the execution (e.g.,
isTreated shown in Listing 1),

(2) update APIs, which update the feature flag value in the run-
ning system, and

(3) parameter APIs that return a non-boolean primitive value
(integer, double, etc) which corresponds to an experimental
value being controlled from the backend.

In our experience, boolean APIs are the most popular, while update
APIs are typically used for testing. Parameter APIs are infrequent
and correspond to a very small set of flags.

When the goal of a feature flag is accomplished (e.g., the ex-
periment related to A/B testing flag is finished), the flag needs to
be disabled in the feature flag management system and all code
artifacts related to the flag need to be removed from the source
code. This ensures improved code hygiene and avoids technical
debt [52, 57]. In practice, this simple post cleanup process is not
always performed. Oftentimes, developers do not cleanup code
related to obsolete flags, causing accumulation of technical debt.

Based on our experience, the flags that introduce technical debt
for the development teams can be classified as follows.

• Stale flags: Flags which are no longer used to test multiple be-
haviors. In other words, the execution path corresponding to the
flag is the same across all app instances.

• Orphaned flags: Flags whose owners have left the organization
and the final status of the flag roll out is unclear.

• Forgotten flags: Flags for which the associated code execution
exhibits different behaviors across app instances, even though
developers are no longer interested in the differing behaviors.

The presence of code related to these unnecessary flags can
affect software development across multiple dimensions. First, the
overall reliability of the application can be adversely affected in
the presence of unnecessary control flow paths. For example, a
simple bit corruption of the payload from the backend system to the
application can alter the overall behavior of the application. Second,
effort must be spent to maintain test coverage of these unnecessary
paths. Third, the presence of dead code and tests impacts the overall
build and testing time, affecting developer productivity. Finally,
coding complexity can become quite high as the programmer has
to reason about the control paths related to these obsolete flags.

We motivate this further by explaining a major outage due to
this technical debt. A financial market maker experienced a major
outage and significant financial loss due to the poor use of feature
flags and not cleaning up the related dead code [41, 49]. The system
mistakenly routed thousands of orders per second into the NYSE

market. Within 45 minutes, more than 4M unwanted trades corre-
sponding to 397M shares were executed and the firm lost more than
460M USD. This happened due to a confluence of multiple events –
the presence of dead code in critical code regions, re-purposing a
feature flag previously used for testing (confusing the DevOps), and
significant code refactorings without effective regression testing.
The ability to delete dead code due to flags could have potentially
reduced the magnitude of the outage.

In this paper, we present the strategies employed to reduce tech-
nical debt from stale flags and discuss our experiences implementing
and deploying an automated code cleanup tool, named Piranha.

3 CHALLENGES
We discuss the challenges with respect to designing an automated
approach for cleaning up stale flags.
• Staleness of flag: Determining whether a flag is stale or not is
surprisingly non-trivial. Firstly, the flag should have been rolled
out 100% either as treatment or as control. Even when it is rolled
out, the developer may still not be ready to eliminate the flag.
For example, certain flags are used as kill switches whose values
can be modified for emergency purposes, flags that are used for
monitoring debug information, etc. Therefore, even when flags
are completely rolled out, they may not necessarily be stale.

• Flag ownership: Since flags were not cleaned up for a long
period of time, determining ownership information for stale flags
became problematic. A few engineers who worked on the flags
either had moved to other teams or had left the organization.

• Developer inertia: Even when the flag is definitively stale, the
flag ownermay not necessarily cleanup the code because building
newer features is usually better recognized and rewarded [5] than
reducing technical debt.

• Coding style: The lack of any restrictions pertaining to code
related to feature flags increases the complexity underlying the
design of an automated tool. For example, helper functions for
flag related code cannot be easily differentiated from any other
function in the code. Also, the complexities introduced by tests
where developers introduce manual state changes to the flag
can restrict the tool in performing a comprehensive cleanup of
tests. For instance, when flag related code is being unit tested,
sometimes it is unclear whether the test can be discarded in its
entirety because the functionality is removed, or specific state
changes within the body of the test needs to be removed so that
the remaining functionality can continue to be tested.

4 DESIGN
4.1 Functionality
Piranha takes as input: the stale flag under consideration, the
treatment behavior [52], and the owner of the flag. It analyzes
the code for uses of this flag in pre-defined feature flag APIs and
refactors it to delete code paths based on the treatment behavior.

The obtained patch is packaged into a diff (see Section 2), con-
taining the modified code, author of the modification, reviewer for
the code, etc, all packaged to facilitate code reviewing and landing
the modifications to the source master. In this case, the diff gener-
ated by Piranha has the owner of the flag as the reviewer, who
can review the diff and land the changes if there are no further
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modifications. Otherwise, as the owner of the flag, they can perform
further manual modifications and update the diff accordingly.

To simplify project management related to processing Piranha
generated diffs, Piranha creates a task [47] to cleanup each stale
flag. The task is assigned to the owner of the flag and the generated
diff is linked to the task. In this manner, the stale flag cleanup is
seamlessly embedded into the developer’s workflow as this task is
handled similar to any other new feature or bug fixing task.

4.2 Design trade-offs
We now discuss the design of the refactoring component of Pi-
ranha. There are three key dimensions for performing the cleanup.

(1) Delete code that immediately surrounds the feature flag APIs
(2) Delete code that becomes unreachable due to performing

the previous step. We refer to this as deep cleaning.
(3) Delete tests related to feature flags.

In order to perform cleanup across all three dimensions, it is
necessary to perform reachability analysis [54] to identify code
regions that become unreachable, implement algorithms to identify
tests related to testing feature flags, etc. While this would ideally
ensure complete automation where a developer simply needs to
review the deletions and land the changes in master, it requires
overcoming two challenges – (a) ensuring that the underlying anal-
ysis to perform cleanup is sound and complete [46], and (b) the
engineering effort required to implement and scale such analysis
to processing millions of lines of code in a useful timeframe.

To the best of our knowledge, we are unaware of any analyses
that can ensure complete automation as determining reachability
in a sound and complete manner is infeasible [42]. This necessi-
tates some form of manual intervention by the developer after the
cleanup is performed by the tool. Therefore, instead of building out
a complex analysis where the amount of developer intervention is
unknown and the return on engineering investment is unclear, we
choose a practical approach of designing the technique iteratively,
based on the coding patterns observed in the codebase.

4.3 Overview of refactoring
In this section, we describe the patterns handled by Piranha and
an overview of the rewrites that are performed. Our refactoring
technique parses the abstract syntax trees (ASTs) [4] of the input
source code to detect and rewrite the expressions and statements.

Boolean feature flag APIs are defined to identify the treatment
or control behavior pertaining to a given flag. For those APIs,
we define rules for rewriting them. For example, given an API
isTreated(Experiment flag), we define the rewriting as follows:

// flag = piranha.flag, piranha.treatment = true
isTreated(flag) → true

// flag = piranha.flag, piranha.control = true
isTreated(flag) → false

// flag , piranha.flag
isTreated(flag) → isTreated(flag)

For update APIs, we simply delete the corresponding statement.
We also discard the use of parameter APIs which can result in
compilation failures with the generated diff.

We then simplify boolean expressions involving the flag API
checks previously rewritten into constants, by performing partial
evaluation [38]. Finally, we rewrite code statements as follows:

// cond = true
if (cond) b1 else b2 → b1

// cond = false
if (cond) b1 else b2 → b2

//flag = piranha.flag
enum Expt {a1, flag, a2} → enum Expt {a1, a2}

// flag = piranha.flag, piranha.control = true
@ExpTest(flag = control) testX(. . . ) { . . . }

→ testX(. . . ) { . . . }
// flag = piranha.flag, piranha.treated = true
@ExpTest(flag = control) testX(. . . ) { . . . } → _

// cond = true | false
x.f = cond → _

// cond = true | false
get(. . . ) { return cond } → _

In general, for any statement that is rewritten due to the presence
of a boolean constant, our analysis expects that the boolean constant
is a result of a simplification due to our analysis.

The if conditions are rewritten based on the evaluation pertain-
ing to the conditional. The enum statements handle the deletion of
flag declarations. The ExpTest annotations handle the experimen-
tal annotations code pertaining to tests. The assignment rewriting
handles the case where the results of flag APIs are stored and used.
The method definition rewriting handles the scenario pertaining to
the wrapper method for the flag API.

The last two rewriting rules implement the first part of our
deep cleaning step (see Section 4.2). They remove assignments and
function definitions when the expression on the right operand (or
the function’s body) evaluates to a boolean constant after stale flag
replacement and simplification. Piranha then performs a follow up
pass to replace references to these fields and calls to these methods
with the derived boolean constant, and apply rewrite rules to the
statements around them, which are analogous to the ones for flag
check APIs. In theory, this process needs to be repeated to a fix
point [44]. We found k = 2 iterations sufficient in practice for our
codebases, and a larger k can be substituted if needed.

4.4 Piranha pipeline
While Piranha as a standalone tool can be used to generate diffs and
tasks, a key problem with flag cleanup is the lack of prioritization
which can result in Piranha not being used effectively. Therefore,
we built a workflow pipeline that periodically (weekly) generates
diffs and tasks to cleanup stale feature flags. The Piranha pipeline
queries the flag management system for a list of stale flags, and
invokes Piranha, providing as input the name of the stale flag, its
owner, and the intended output behavior (treatment or control).
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Figure 1: Architecture of Piranha pipeline

Figure 1 presents the architectural diagram of the pipeline. Gen-
erated tasks and diffs for cleaning up stale feature flags are pushed
to the developer, who can either approve and land the changes,
or abandon the diff when the flag is not yet ready for cleanup.
Since developers may not tend to act on these diffs in a timely
manner, we also introduced a reminder bot, named PiranhaTidy,
to periodically add reminders on open Piranha tasks.

5 FINDINGS
In this section, we address the following key research questions
pertaining to Piranha and flag cleanup:

(1) Do developers process generated diffs?
(2) How quickly does a developer process a generated diff?
(3) How often does a developer need to make manual changes

before landing a diff?
(4) How many lines of code did Piranha automatically remove

from the codebase? How many more lines did Piranha en-
courage the developers to remove manually?

(5) What is the breadth of changes while performing cleanup
due to stale flags?

(6) Is maintaining a Piranha pipeline sustainable?
(7) Do regular reminders to process diffs help with the cleanup?

Tooling details We have implemented Piranha to refactor
Objective-C, Swift, and Java programs.

PiranhaJava is used to refactor stale feature flag related code
in Java applications, specifically those targeting the Android plat-
form. It is implemented in Java on top of Errorprone [3] as an
Errorprone plugin [3, 9]. We handle the basic cleanup, without
deep cleaning of methods and fields. We perform precise cleanup
of test code in the presence of flag related test annotations.

PiranhaSwift is implemented in Swift using SwiftSyn-
tax [56] for refactoring code related to stale feature flags in Swift
programs. Apart from the basic cleanup, we implement deep clean-
ing by using k = 2. Test annotations are not handled since feature
flag related annotations are unused in testing in our Swift apps.

PiranhaObjC is used to cleanup code related to stale feature
flags defined in Objective-C code. It is implemented in C++ as a
Clang Plugin and uses AST matchers and rewriters internally
to parse and rewrite the ASTs. This variant implements the core
cleanup logic, it does not perform deep cleaning or cleanup of
testing code.

Deployment and monitoring A developer can use Piranha in
the following ways – (a) invoke Piranha from command line or
web interface to generate diffs/tasks, or (b) process the diffs/tasks

generated by Piranha pipelines. We report the findings for both
forms of invocation of Piranha.

We discuss our findings based on the usage of Piranha from
Dec 2017 to May 2019 which has helped in the cleanup of 1381
flags across multiple codebases (eats, rider, driver, etc), which
are implemented in Objective-C, Swift and Java.

Approximately 95% of the diffs that formed part of our study are
generated by the Piranha pipelines, which are run automatically
once a week. The owner of the flag is marked as the reviewer for
the generated diff. Since reviewing diffs is part of usual developer
activity, the generated diffs are processed by the developers accord-
ingly. The remaining 5% diffs are generated by manual invocation
of Piranha by a developer. The diffs generated by Piranha are
tagged with a custom project tag to enable us to differentiate them
from other diffs, thereby, enabling us to gather relevant statistics.

Piranha pipelines use a heuristic to consider flags that are
unmodified in the flag management system for more than a specific
period (e.g., 8 weeks) as stale and generate diffs for those flags.
The exact time period for staleness of a flag is configured by the
individual teams that process the diffs generated using Piranha.
We observe that the current time taken to generate a diff using
Piranha is less than 3 minutes.
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Figure 2: Total flags in each status (snapshot)

Activity on generated diffs Figure 2 presents the activity data on
Piranha generated diffs. Out of all the diffs generated, we observe
that there is developer activity on 88% of the diffs. This includes diffs
that are landed by the developers (with any additional changes),
and diffs that are abandoned because the flag is not ready to be
removed from the codebase as it is not yet stale.

Figure 3 classifies the activity data across the three languages.
We observe that diffs generated by PiranhaObjC have significantly
higher land rates, followed by PiranhaSwift. Interestingly, over
a quarter of PiranhaJava generated diffs go unprocessed by
developers. This is due to two reasons – (a) more manual effort
required to process diffs generated by PiranhaJava over the other
two variants, and (b) strict size requirements for over-the-air
updates [10] on iOS apps forcing developers to optimize for size.

Statistics on code deletion Figure 4 presents the statistics for
various attributes related to flag cleanup – flags cleaned up,
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Objective C Java Swift Total
Flags removed 782 284 315 1381
Remaining Flags 1267 2496 2838 6601
Flags Redux. 38.2% 10.2% 10.0% 17.3%
Auto (Del. lines) 11416 4853 3970 20239
Manual (Del. lines) 1869 30337 18551 50757
Percent Auto 85.93% 13.79% 17.63% 28.51%
Percent Manual 14.07% 86.21% 82.37% 71.49%
Auto (Avg) 14.6 17.1 12.6 14.7
Manual (Avg) 2.4 106.8 58.9 36.8
Auto (Median) 11 9 6 10
Manual (Median) 0 12 5 0
Codebase LoC 713K 4.0M 2.97M 7.7M
Codebase Redux. 1.86% 0.88% 0.76% 0.92%

Figure 4: Lines removed automatically and manually

total/mean/median lines deleted, total lines of code across all the
codebases, etc. We observe a reduction of 17.3% of the flags across
all the codebases. The remaining 6601 flags are not all stale as
many of them are still under active use. Overall, we also observe a
reduction of the codebase size by 1% approximately.

Automation ability To study the manual effort involved after
a diff is created by Piranha, we compute the number of lines
removed by Piranha automatically and the subsequent manual
effort. Figure 4 presents this data. We observe that the additional
manual effort required on PiranhaObjC generated diffs is minimal.
Interestingly, for Java and Swift, Piranha encourages developers
to delete a significant portion (> 80%) of the lines manually. We
discuss strategies to reduce this manual interference in Section 6.

On average, we observe that Piranha deletes approximately 15
lines of code per diff. We also observe that the count of manually
deleted lines per diff is greater than 100 lines for Java. Since these
numbers were due to a few diffs involving large cleanups, we also
compute the median count of deleted lines. We observe that at least
10 lines are removed by Piranha formore than 50% of the generated
diffs. The number of lines that needs to be manually removed is
at least 12 for 50% of PiranhaJava generated diffs, as compared
to 0 and 5 for PiranhaObjC and PiranhaSwift generated diffs

respectively. This additional effort involved on a diff can be a barrier
in the effective usage of PiranhaJava, which also explains the poor
activity data for PiranhaJava in Figure 3.
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Figure 5: Percentage of flags landed w/o user changes

Figure 5 presents the distribution of flags requiring no manual
changes, where 93.73% of the flags cleaned up by PiranhaObjC do
not require any manual changes. Consequently, PiranhaObjC is
used more frequently (e.g., 782 flags are cleaned up) as compared
to the other two variants of Piranha. Not surprisingly, more diffs
generated by PiranhaObjC are processed (see Figure 3) because of
increased developer confidence.

Due to the technical debt accumulated over the years and the
number of stale flags, there is developer overhead in processing
the generated diffs for each flag. We can potentially reduce this
overhead by cleaning up multiple flags per diff. The effectiveness
of PiranhaObjC also lead developers to adopt this process
and to clean up multiple flags in batches. Figure 6 shows the
distribution of number of lines deleted (including any manual
deletions) for 491 flags that are cleaned up in batches. It also
demonstrates the efficacy of PiranhaObjC in creating large diffs
(> 500 lines deleted) that can be landed without any further changes.
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Figure 6: Code deleted in bulk Objective C diffs

Reasons behind different adoption rates PiranhaObjC
performs better than the other two variants of Piranha for the
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following reasons. Firstly, the coding style related to feature flags is
amenable for automated cleanup and follows the coding guidelines
discussed in Section 6. Secondly, the data pertaining to staleness of
a flag is precise resulting in more diffs being landed. Thirdly, the
presence of developers who champion the usage of PiranhaObjC
and help improve the tooling by providing quick feedback on
potential issues ensure generation of comprehensive diffs which
are processed at a higher rate. Finally, the network effects of
adoption results in the provision of better features which benefits
the developers further forming a virtuous cycle.

Objective C Java Swift All
0

20

40

60

80

100

%
 b

ui
ld

s a
nd

 p
as

se
s t

es
ts

99.41%

71.46%
78.50%

86.32%

Figure 7: Percentage of generated diffs that pass CI

Accuracy of refactoringsWe also studied whether the generated
diffs resulted in compilation or test failures, which guarantees the
need for further manual changes. Figure 7 shows the percentage of
generated diffs that successfully compiled and passed tests on our
continuous integration (CI) [61] system. Surprisingly, we observe
that a significant percentage of diffs generated by PiranhaSwift
and PiranhaJava do not have any failures. This is much higher
than the percentage of diffs that are landed without any additional
changes. Based on a manual perusal of these diffs, the additional
changes performed are due to incomplete deletions (e.g., helper
functions, redundant tests, etc). Defining a coding style to be used
with feature flags while simultaneously improving the analysis
underlying Piranha can improve the automated cleanup rates.

Complexity of refactorings Figure 8 shows the distribution of
the count of modified files, including developer edits before landing.
It shows that 80% of the diffs involve a change to five files or fewer,
with 66% involving three or fewer. For such changes where affected
code regions are bounded, a more precise goal-directed reachability
analysis to delete code may be practical, even if an equivalently
precise whole-program analysis would be impractical. For the 4%
diffs requiring changes to ten or more files, a common cause is
an entire UI workflow gated by the flag becoming unreachable,
resulting in the deletion of all supporting classes.

Processing time Figure 9 presents the histogram of time taken
to land for diffs generated by Piranha. Recall that in order to
land a generated diff, a reviewer needs to review and approve the
changes, aftermaking any additionalmodifications.We observe that
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a significant portion (≥ 66%) of the diffs are processed and landed
within a week of their generation (168 hours). Not surprisingly,
approximately 40% of the diffs are processed within a day or two of
their generation. This is to avoid possible merge conflicts [17] with
other changes to the code with the passage of time. The figure (at
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the bottom) also shows that adding reminders to diffs usually results
in landing 86% of the diffs within five days of the last reminder.
The processing of the generated diffs quickly shows that (a) code
cleanup related to the stale flags is necessary, and (b) the burden
on the developers in terms of the time taken to review and land the
generated diffs is acceptable.

Figure 10 shows that a majority of the diffs required multiple
reminders before they are processed. Given the high processing
rates for diffs, less time taken to land a diff after a reminder, and
the high number of reminders, we conclude the following – (a)
developers did not clean up the flags earlier because the flags were
not stale yet, and (b) reminders enable the developers to process
the diffs in a timely manner when the flag becomes stale.

0

200

Fl
ag

s 0% 0% 0% 39
%

39
%

39
%

42
%

42
%

63
%

69
%

71
%

73
%

78
%

86
%

95
%

10
0%

Objective C

0

50

100

Fl
ag

s 3% 5% 6% 11
%

11
%

11
%

11
%

12
%

17
%

21
%

28
%

32
%

49
%

77
%

86
%

10
0%

Java

20
17

-12

20
18

-02

20
18

-03

20
18

-04

20
18

-06

20
18

-07

20
18

-08

20
18

-09

20
18

-10

20
18

-11

20
18

-12

20
19

-01

20
19

-02

20
19

-03

20
19

-04

20
19

-05

% are cumulative

0

50

100

Fl
ag

s 0% 0% 0% 0% 2% 5% 10
%

10
%

12
%

37
%

57
%

69
%

80
%

91
%

95
%

10
0%

Swift

Figure 11: Histogram of flag diff generation

Chronological perspective Figure 11 presents the number of
diffs generated by each variant of Piranha since Dec 2017. There
are a few interesting takeaways. First, while a large number of flags
are cleaned up in Apr 2018 in Objective-C code, the technical debt
due to flags built up again in a few months necessitating running
PiranhaObjC again in Oct 2018. This also inspired the design
and implementation of Piranha pipelines. Second, we observe
that there are spikes in cleanup of flags for each of the variants.
These correspond to focused efforts (e.g., fixit week [8]) to reduce
technical debt by various teams. This also shows the importance
of program analysis tools for such focused activities. Finally, we
also observe a steady stream of generation of Piranha diffs in the
last few months of the study. This, coupled with the processing
rates of the diffs (Figure 2), shows that Piranha is useful in practice.

Developer interaction We also note that 197 developers inter-
acted with the diffs generated by Piranha. Figure 12 shows the
distribution of developers based on the number of flag processed
by them. It shows that there are four developers (2%) who have
processed more than 30 flag cleanups, with one of them processing
a total of 71 flag diffs. Also, the majority of participating developers
(127, 64%) have processed at least two diffs, and a quarter of de-
velopers interacting with Piranha have landed 5+ diffs. Piranha
pipelines are designed to reach out to such developers. The usage of
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Figure 12: Flag deletion diffs landed per user

Piranha across a wide developer base also demonstrates the ability
of novel developer tools that improve productivity to seamlessly
become part of routine workflows.

In summary, the above data demonstrates the usefulness of Pi-
ranha in reducing feature flag debt at Uber. However, there are
many areas where Piranha can potentially be improved such that
the processing rates of diffs are closer to 100% and manual changes
to diffs are closer to 0%. We discuss the challenges in achieving this
goal and our recommendations in the following sections.

6 RECOMMENDATIONS
In this section, based on our experiences with the use of Piranha,
we present our recommendations pertaining to feature flag man-
agement and the coding guidelines related to use of flags.
Precise maintenance of flag data:When a feature flag is created
initially, the owner of the flag should also define an expiry date
for the flag. This clear intent enables automated cleanup tools to
generate diffs without confusing developers. Further, the owner
for each flag should be tracked precisely. For example, reassigning
flag ownership when a developer exits a team/organization should
become a standard task.
Coding guidelines:We propose the following coding guidelines
to eliminate manual intervention completely in terms of perform-
ing additional cleanup. We classify the guidelines for application
(production) code and testing code separately. For application code,
we recommend the following:

(1) Use feature flag APIs that return boolean values only.
(2) Invoke the APIs from within a conditional expression, which
can be a compound expression that contains multiple operators
(and, or, negation) can ease the cleanup analysis. If that is not
possible, avoid store and re-use across multiple classes.
(3) If flag API invocations are stored in a variable or wrapped in
a function, use these variables or wrapper functions as part of a
conditional expression without performing further re-assignments
or wrapping.
(4) Implement the feature related code immediately as part of the
conditional statement corresponding to the feature flag API within
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the same method. Otherwise, if there are helper method imple-
mentations that are specific to the flag treatment (treated/control),
then use annotations to denote helper method implementations
appropriately. For example, consider the following example:

@helper(f1=treated,f2=control,f3=treated)
helperMethodImpl(...) { ... }

Here, the helperMethodImpl is used when flags f1 and f3 are
treated and f2 is in control. When these flags and the specified
behaviors are eliminated, the entire helperMethodImpl can then
be eliminated.

For test code, we recommend the following:

(1) Use names for tests that do not necessarily tie them to treatment
or control behavior. Instead, the test names should be associated
with the functionality.
(2) Annotate unit tests with flag name and treatment behavior. For
example,

@flagtest(f1=treated)
unitTestForSomeFeature(...) { ... }

@flagtest(f1=control)
unitTestForAnotherFeature(...) { ... }

Here, the two tests are run where the state of feature flag f1 is
treated and control respectively.

Developer workflows: Cleanup of feature flag related code needs
to be performed periodically. In general, the Piranha pipeline dis-
cussed in Section 4 can form the template for workflows involving
code cleanup tools. Further, information pertaining to stale code
and corresponding diffs needs to be part of the developer workflow.
For example, the information on outstanding stale flag diffs can
be included in the IDE [23] to enable developers to process the
corresponding diffs immediately.

7 RELATEDWORK
Feature-driven software development [11, 37] has become the de-
facto standard in large software companies [53] such as Google [22,
33], Facebook [28], Netflix [45], and Flickr [30]. Feature flags enable
timely releases in continuous integration and delivery systems [27].
A comprehensive description of various categories of feature flags
and their integration with different feature-flagged systems is de-
scribed at [31]. Rahman et al [52] report the wide-spread use of
feature flags, and discuss the strengths and drawbacks of feature
flags in continuous integration and delivery systems. They also
highlight the introduction of technical debt and additional mainte-
nance overhead for developers due to feature flags.

Feature flags can also be seen as defining a family of programs
from the same codebase, one for each valid set of flag assignments.
This is the view taken in the Software Product Line (SPL) literature
(see e.g. [16, 24, 48, 58]). Dynamic Software Product Lines (DSPLs),
in particular, are SPLs where the instantiation of the configuration
happens at runtime (see e.g. [14, 19, 34, 35]). Thus, feature flags are
a specific DSPL implementation strategy [39], and removal of stale
configurations has been studied at least in the SPL case. Closest

to Piranha is the work in [12, 13], which removes code guarded
by stale C preprocessor conditionals. Also related are approaches
like [40] and [2], which seek to transform features guarded by
conditionals into some other form of SPL configuration, such as
aspects or extension modules. Apart from proposing techniques
to refactor code related to stale flags, this paper also shows that
stale flag removal can be integrated with developer’s ongoing CI
workflows, and adopted enthusiastically at scale to clean up large
codebases with MLoC and spanning multiple languages.

This automated generation of diffs, and thus code branches, bears
some relation to the extensive literature [15, 18, 20, 55] quantifying,
predicting, and helping manage the pain of merge conflicts. Our
evaluation of Piranha provides insight into both the incidence of
CI issues and the ‘shelf-time’ (before diffs become too old to merge)
for a specific set of automatically generated code changes.

The issue of stale feature flags introducing dead code into a
codebase has been studied before [29, 57]. Since this code is dead
only based on the value returned by API calls (which might be
querying a remote configuration), standard dead-code elimination
used in optimizing compilers [6, 25, 59] cannot remove them. On
the other hand, Piranha assists the developers in removing this
dead code, leveraging information about known stale flags.

8 CONCLUSIONS
In this paper, we take a deep dive into analyzing the prevalence
and impact of stale feature flags in the large scale codebases at
Uber across multiple languages and platforms. We present a tool,
Piranha, to automatically cleanup code related to stale feature
flags for Java, Swift and Objective-C applications. Furthermore,
the observations and insights around stale feature flags have been
distilled into a simple set of guidelines that developers can use to
minimize feature flag maintenance overhead.
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