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ABSTRACT
Selecting the relevant algorithm for a given problem is a crucial
first step for achieving good optimization algorithm performance.
Exploratory Landscape Analysis can help with this problem by
calculating landscape features that numerically describe individual
problems.

To understand the problem space in single-objective numerical
optimization, we recently presented a preliminary study of how
Exploratory Landscape Analysis can be used to visualize different
optimization benchmark problems, with the ultimate goal of vi-
sualizing problems that are similar to one another close together.
In this paper, we examine how the selection of landscape features
affects such a visualization, and show that proper preprocessing
of landscape features is crucial for producing a good visualization.
In particular, we show that only a subset of landscape features
is invariant to simple transforms such as translation and scaling.
Further, we examine how such an approach can be used to visually
compare problems from different optimization benchmark sets.
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centered computing→ Empirical studies in visualization; • Com-
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1 INTRODUCTION
In the field of optimization algorithms it is well known that the per-
formance of any given optimization algorithm is highly dependent
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on the problem this algorithm is solving. Because of this, determin-
ing methodologies to select the appropriate algorithm for a given
task represents a critical focus of research in this field.

In order to determine which algorithm performs best at which
problem, it is important to first understand the problems them-
selves.

Exploratory Landscape Analysis [6] is a method that allows us to
describe an optimization problem using numeric descriptors called
landscape features, with the idea that problems that are similar to
each other will also have similar landscape features.

In our recently proposed study [8], we present a methodology
that uses landscape features to visualize problems from two dif-
ferent single-objective optimization benchmarks, with the goal of
visualizing similar problems close together. A particular focus is
given to examining how specific landscape features are affected by
common transformations that are applied to benchmark functions,
such as translation and scaling.

Since different benchmarks apply different transformations, it
is important that the visualization process is not affected by these
transformations, as long as they do not have an effect on algorithm
performance.

2 METHODOLOGY
To visualize the benchmark problems, we first collect samples from
each function in a benchmark problem set using latin hypercube
sampling with a sample size of 200 multiplied by the dimensionality
of the problem. These samples are then used to calculate a set of
landscape features for each of the problems using the open source li-
brary flacco [3]. To test our visualization, we use the problems from
two single-objective numerical optimization benchmarks: the CEC
Special Sessions and Competitions on Real-Parameter Single Objec-
tive optimization [4, 5], and the GECCO Black-Box Optimization
Benchmark workshops [1].

Several preprocessing steps are then taken to improve the quality
of the visualization. First, landscape features that are not invari-
ant to transformations of scaling and shifting are removed. These
two transformations are simple enough that they do not affect
most state-of-the-art optimization algorithms (for example PSO
and CMA) [2]), so any landscape features that are affected by them
are not useful to us. This is done by taking a set of optimization
problem samples, and then creating a shifted and scaled version of
these samples for each problem in the benchmark set. Then, land-
scape features calculated on the original set are compared to the
landscape features calculated on the transformed set using a paired
Wilcoxon signed-rank test. The features that show a statistically
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significant difference between the original and the transformed
function are removed from the set of landscape features and are not
used for the visualization. After this step, all strongly correlated
landscape features are also removed, and principal component anal-
ysis is used to reduce the dimensionality of the dataset in order to
increase the quality of the visualization.

The t-Distributed Stochastic Neighbor Embedding [7] visualiza-
tion method is then used to visualize the benchmark problems in
two-dimensional space.

3 RESULTS
During the visualization process, we discovered that the transfor-
mations of scaling and translation have a large effect on some
landscape features, which resulted in poor visualization. Removing
the landscape features that were affected by these transformations
greatly increased the quality of the visualization. The landscape
feature groups that we found to be most useful for the visualiza-
tion were ela_distr, ela_meta, disp.ratio, pca.expl_var, cm_angle, and
nbc.nb_fitness.

The second experiment involved visualizing benchmark func-
tions from two different years of the CEC benchmark competitions.
These two sets contained several identical base functions that dif-
fered only in the transformations applied to them. In this exper-
iment, we were able to visualize most of the identical functions
close together.

The final experiment involved visualizing functions from two
completely different benchmark sets: the BBOB workshops and
CEC competitions. As in the previous experiment, these two bench-
marks also shared some functions. Our method was able to visualize
some of them close together, but failed in some cases. In order to ex-
amine why this happened, we directly plotted the samples of these
functions and determined that there are significant differences in
some shared functions between the two different benchmarks that
could have been introduced because of different transformations.
As a result some of the shared functions could not be visualized
close together.

4 DISCUSSION
Our paper raises several points that we believe are of interest to
the wider GECCO community. The most important is the fact that
some landscape features are not invariant to simple transforma-
tions such as scaling and translation. Since most state-of-the-art
optimization algorithms are invariant to such simple transforma-
tions, these non-invariant features should not be used if we want
to compare optimization problems with the goal of determining
which algorithms work best on which problems. Some optimization
algorithms are also invariant to additional transformations such
as rotation, so further work would be needed to analyze which
landscape features are invariant to these transformations.

We also show that visualizing similar functions close together
is much simpler when using problems from only a single bench-
mark set as opposed to two different benchmark sets. This indicates
that there are either additional transformations that need to be
taken into account (and landscape features that are not invariant
to these transformations removed), or that there are other fun-
damental differences in the way different benchmarks use their

benchmark problems, for example the domain of the problem that
they are sampling from, or different problem parameters. However,
if these changes have no effect on actual algorithm performance,
they should also not have an influence on landscape features used
for visualization.

We believe our research shows that Exploratory Landscape Anal-
ysis can be used to visually compare different benchmark problems.
However, proper care must be taken to remove the influence of dif-
ferent benchmarkmethodologies (such as function transformations)
on landscape features.

5 CONCLUSION
In the paper, we presented how Exploratory Landscape Analysis can
be used for visualization of benchmark problems across different
benchmark sets.

We have shown that only a subset of all landscape features of-
fered by the popular library flacco can be used for this, as some
features are not invariant to transformations that are commonly
applied by benchmarks on their benchmark problems. However,
further work is needed to determine which features are invariant to
additional transformations, such as rotation, as well any other differ-
ences in benchmark design between different benchmark problem
sets. Further work is also needed to determine how these trans-
formations and other differences affect algorithm performance in
practice.
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