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ABSTRACT
Estimation of distribution algorithms (EDAs) are a successful branch

of evolutionary algorithms (EAs) that evolve a probabilistic model

instead of a population. Analogous to genetic drift in EAs, EDAs

also encounter the phenomenon that the random sampling in the

model update can move the sampling frequencies to boundary

values not justified by the fitness. This can result in a considerable

performance loss.

This work gives the first tight quantification of this effect for

three EDAs and one ant colony optimizer, namely for the univariate

marginal distribution algorithm, the compact genetic algorithm,

population-based incremental learning, and the max-min ant sys-

tem with iteration-best update. Our results allow to choose the

parameters of these algorithms in such a way that within a desired

runtime, no sampling frequency approaches the boundary values

without a clear indication from the objective function.

This paper for the Hot-off-the-Press track at GECCO 2020 sum-
marizes the work “Sharp Bounds for Genetic Drift in Estimation of
Distribution Algorithms” by B. Doerr and W. Zheng, which has been
accepted for publication in the IEEE Transactions on Evolutionary

Computation [5].
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SUMMARY OF OUR RESULTS
Estimation of distribution algorithms (EDAs) are evolutionary al-

gorithms (EAs) that evolve a probabilistic model instead of a pop-

ulation. An iteration of an EDA usually consists of three steps.

(i) Based on the current probabilistic model, a population of indi-

viduals is sampled. (ii) The fitness of this population is determined.

(iii) Update of the probabilistic model: Based on the fitness of this

population and the probabilistic model, a new probabilistic model

is computed.

Since almost all theoretical results for EDAs regard univariate

models [10], this paper deals exclusively with univariate EDAs, that

is, the bit positions of the probabilistic model are mutually inde-

pendent. Univariate EDAs include Population-Based Incremental

Learning (PBIL) with special cases Univariate Marginal Distribution

Algorithm (UMDA) and Max-Min Ant System with iteration-best

update, and the Compact Genetic Algorithm (cGA).

In evolutionary algorithms, it is known that the frequencies of bit

values in the population are not only influenced by the contribution

of the bit to the fitness, but also by random fluctuation stemming

from other bits having a stronger influence on the fitness. These

random fluctuations can even lead to certain bits converging to a

single value different from the one in the optimal solution. This

effect is called genetic drift [1, 14].
Genetic drift also happens in EDAs. González, Lozano, and Lar-

rañaga [8] showed that for the 2-dimensional OneMax function,

the sampling frequency of PBIL can converge to any search point

in the search space with probability near to 1 if the initial sampling

frequency goes to that search point and the learning rate goes to 1.

Droste [6] noticed the possibility of the cGA getting stuck, but he

only analyzed the runtime conditional on it being finite, and no

analysis of genetic drift or stagnation times was given. Costa, Jones,

and Kroese [2] proved that a constant smoothing parameter for the

Cross Entropy (CE) algorithm (which is equivalent to a constant

learning rate ρ for PBIL) results in that the probability mass func-

tion converges to a unit mass at some random candidate, but no

convergence speed analysis was given. In summary, as Krejca and

Witt said in [10], the genetic drift in EDAs is a general problem

of martingales, that is, that a random process with zero expected

change will eventually stop at the absorbing boundaries of the

range. Results of Witt [16] and Lengler, Sudholt, and Witt [13] as

well as the two works by Lehre and Nguyen [12] and by Doerr and
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Krejca [3] showed that genetic drift can result in a considerable

performance loss.

In the work [5], we quantify this effect asymptotically pre-

cisely for several EDAs and this via proven results. The few pre-
vious works in this direction have obtained the following results.

Friedrich, Kötzing, and Krejca [7] showed that for the cGA with

hypothetical population size K , the frequency of a neutral bit po-

sition is arbitrary close to the borders 0 or 1 after expected ω(K2)

generations. Though not stated in [7], from its Corollary 9, we can

derive an upper bound of O(K2) for the expected time of leaving

the interval [ 1
4
, 3
4
], and O(K2

logK) for expected hitting time of a

boundary value. For the UMDA selecting µ best individuals from

λ offspring, the situation is similar [7]. After ω(µ) iterations, the
frequencies are arbitrary close to the boundaries and the expected

hitting time can be shown to beO(µ log µ) via similar arguments as

above. Sudholt and Witt [15] mentioned that the boundary hitting

time of the cGA is Θ(K2), but without a complete proof (in particu-

lar, because they did not discuss what happens once the frequency

leaves the interval [ 1
6
, 5
6
]). Although Krejca and Witt [11] focused

on the lower bound of the runtime of the UMDA on OneMax, we

can derive from it that the hitting time of the boundary 0 is at least

Ω(µ). This follows from the drift of ϕ in Lemma 9 in [11] together

with the additive drift theorem [9].

Our results: While the results above give some indication on

the degree of stability of PBIL and the cGA, a sharp proven result

is still missing. This paper overcomes this shortage and gives pre-

cise asymptotic hitting times for PBIL (including the UMDA and

the MMASib ) and the cGA. With a simultaneous analysis of the

UMDA and the cGA, we prove that for the UMDA selecting µ best

individuals from λ offspring on some D-dimensional problem, the

expected number of iterations until the frequency of the neutral

bit position is absorbed in 0 or 1 for the UMDA without margins

or when the frequency hits the margins {1/D, 1 − 1/D} for the

UMDA with such margins is Θ(µ), and the corresponding hitting

time isΘ(K2) for the cGA with hypothetical population sizeK . This
paper also gives a precise asymptotic analysis for PBIL selecting

µ best individuals from λ offspring and with a learning rate of ρ:
In expectation in Θ(µ/ρ2) generations the sampling frequency of

a neutral bit position leaves the interval [Θ(ρ/µ), 1 − Θ(ρ/µ)] and
then always the same value is sampled for this position.

For the lower bounds implicit in these estimates we prove an

exponential tail bound.

We also extend the lower bound results to bit positions that

are neutral or have a preference for some bit value. For example,

we prove that for PBIL it takes an expected number of Ω(µ/ρ2)
iterations until the sampling frequency of a position that is neutral

or prefers a one (neutral or prefers a zero) reaches the interval [0, 1
4
]

([ 3
4
, 1]). The corresponding hitting time is Ω(K2) for the cGA.

Impact: These results are useful both to interpret existing perfor-
mance results and to set the parameters right in future applications

of EDAs. As an example, we note that the recent work [12] shows

that the UMDA with c logD ≤ µ = o(D), c a sufficiently large

constant, with λ ≤ 71µ, and with the margins 1/D and 1 − 1/D,
has a weak performance of exp(Ω(µ)) on the D-dimensional De-

ceptiveLeadingBlocks benchmark function. This runtime is at

least some unspecified, but most likely large polynomial in D; it is

super-polynomial as soon as µ is chosen super-logarithmic. From

our work, we know that the expected time for the frequency of a

neutral bit position to reach the boundaries is only O(µ) iterations.
Since the DeceptiveLeadingBlocks function, similar to the classic

LeadingOnes function, has many bit positions that for a long time

behave like neutral, a value of µ = o(D) results in that a constant

fraction of these currently neutral bit positions will have reached

the boundaries at least once within the first D iterations. Hence

also without looking at the proof of the result in [12], which indeed

exploits the fact that frequencies reach the margins to show the

weak performance, our results already indicate that the weak per-

formance might be caused by the use of parameter values leading

to strong genetic drift.

Our result also aides in choosing good parameter values for an

EDA. If we plan to run the EDA for a given time T , then our result

suggests to choose the parameters in such a way that no frequency

reaches a boundary before time T due to genetic drift. This can be

taken as a general rule of thumb, but can also be used to design

automated ways to set the parameters as demonstrated in [4].
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