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ABSTRACT
Machine Learning (ML) has now become an important and ubiqui-
tous tool in science and engineering, with successful applications in
many real-world domains. However, there are still areas in need of
improvement, and problems that are still considered difficult with
off-the-shelf methods. One such problem is Multi Target Regression
(MTR), where the target variable is a multidimensional tuple instead
of a scalar value. In this work, we propose a more difficult variant
of this problem which we call Unlabeled MTR (uMTR), where the
structure of the target space is not given as part of the training
data. This version of the problem lies at the intersection of MTR
and clustering, an unexplored problem type. Moreover, this work
proposes a solution method for uMTR, a hybrid algorithm based on
Genetic Programming and RANdom SAmple Consensus (RANSAC).
Using a set of benchmark problems, we are able to show that this
approach can effectively solve the uMTR problem.
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1 INTRODUCTION
Machine Learning (ML) provides a wide variety of techniques for
solving a large range of real world problems, and the field has
grown immensely over recent years. ML techniques are attractive
because of their competitive results, friendliness to layman, and
because they can be tuned to solve different types of tasks, be
it regression, classification, data mining or clustering. However,
as the reach of technology has grown, so has the complexity of
real world problems, that continues to push researchers towards
the development of more specialized ML techniques. For example,
when amodel is required, for making accurate predictions or just for
increasing our understanding of a system based on past historical
data, a common approach is to pose a regression task to find a
function or model that maps inputs to outputs, as shown in Figure
1. While regression is a common ML task, it is by no means trivial,
and can increase in difficulty very suddenly due to several possible
factors, which obscure the relationship between inputs and outputs.
This scenario occurs due, for instance, to the presence of outliers
or gross measurement errors, missing data, or simply due to the
nature of high-dimensional data. In such cases, hybrid techniques
are very useful. In [9], genetic programming (GP) was applied to
solve regression tasks where the datasets were highly contaminated,
by up to 90% of outliers in the target variable, a difficult scenario
where most techniques fail [10, 14]. In [18] the authors present
an analysis of the ten most challenging open problems for the
ML community, which range from Developing a Unifying Theory
of Data Mining to Security, Privacy and Data Integrity. One of
these open problems is Multi-Target Regression (MTR) [1, 2, 15].
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Traditional regression can be complicated enough, but MTR extends
the complexity of developing a predictive model by considering an𝑛
dimensional output space; i.e. by having multiple target variables to
predict concurrently. MTR is also known as multi-variate or multi-
output regression, which in most cases aims to predict multiple
continuous variables using a set of common input variables [1, 15].
MTR falls under the scope of structured output prediction which
concerns predicting values of structured data types. Figure 2 shows
how in MTR an input matrix is mapped to an output matrix, where
each 𝑋𝑖 ∈ R𝑚 describes 𝑦𝑖 ∈ R𝑛 . Notice that the dimension of the
output matrix, number of targets, is known. Examples of MTR can
be found in multiple domains. In [6], the goal is to predict quality
and conditions of vegetation, while in [8] the goal is to predict
the complete audio spectrum of wind noise (vector of six sound
pressure values) for a given vehicle component, stock selection
in [5], and the simultaneous estimation of different biophysical
parameters from remote sensing images in [17], among others.

This paper presents a special case of the MTR task, where the
mapping of inputs to outputs is not possible by current MTR solu-
tion methods, because these methods assume that the dimensions
of the output matrix, number of targets, is given in the problem
formulation. When this information is not provided, we call this
special case Unlabelled Multi-Target Regression (uMTR), which is
presented for the first time in this work. This paper also presents
a first approach to solve this problem, an algorithm we call Multi-
Target Random Sample Consensus (MTRANSAC), which is an ex-
tension of the RANdom SAmple Consensus (RANSAC) algorithm
[4] and RANSAC-GP [9] algorithms, which were originally devel-
oped for modeling under the presence of large numbers of outliers.
The proposal studies problems with targets, each one containing
outliers. Using random samples of training instances, it was pos-
sible to find multiple target functions for the uMTR. Interestingly,
this was possible also in scenarios with large overlap between the
different targets.

The paper is organized as follows. Section 2 describes MTR.
Section 3 formalizes the definition of uMTR problem and in Section
4 presents the proposed algorithm to solve this task. Section 5
describes the experimental setup and Section 6 presents the results.
Finally, this work concludes in Section 7 with closing remarks and
future work.

2 MULTI-TARGET REGRESSION
MTR is defined by the following elements [2]: (1) An input space
𝑋 , with tuples of dimension 𝑑 , containing primitive data types
i.e., ∀𝑥𝑖 ∈ 𝑋 , 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑑 ). (2) An output (target) space 𝑌
with tuples of dimension n, containing real values, i.e., ∀𝑦𝑖 ∈
𝑌,𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, .., 𝑦𝑖𝑛) where 𝑦𝑖𝑘 ∈ R and 1 ≤ 𝑘 ≤ 𝑛. (3) A set of
training instances T, where each training instance is a pair of tuples
from the input and the output space, i.e., T = {(𝑥𝑖 , 𝑦𝑖 ) |𝑥𝑖 ∈ X, 𝑦𝑖 ∈
𝑌, 1 ≤ 𝑖 ≤ 𝑁 } and 𝑁 is the number of examples in T. (4) A quality
criterion 𝑐 , which rewards models with high predictive accuracy
and low complexity. (5) The goal is to find a function 𝑓 : 𝑋 −→ 𝑌

such that 𝑓 maximizes 𝑐 . The task of solving MTR problems can be
categorized in two general approaches: global methods and local
methods [1, 2, 13].
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Figure 1: Traditional symbolic regression problem, where
the goal is to find a single function that maps the input space
to a single-target.
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Figure 2: The MTR problem, where the goal is to find 𝑛 func-
tions that map the input space to 𝑛 targets.
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Figure 3: The uMTR problem, where the goal is to find 𝑛 func-
tions that map the input space to 𝑛 targets, with 𝑛 unknown.
The labels (colors) in the output array are not provided in
the problem definition, they are shown only for visual refer-
ence to highlight the link with the underlying, but hidden,
structure in the data.

Local methods or problem transformation methods. These meth-
ods decompose the multi-target task into n single-target problems
by creating a model for each target and when the task is over, the
method returns a set of solutions, or models, one for each target.
These methods include single-target methods, multi-target regres-
sor stacking and regressor chains [1].

Global methods or algorithm adaptation methods. These methods
treat the MTR task as a whole, instead of decomposing it. The ratio-
nale beyond global methods is that there may be important loss of
information in the local methods. The global methods try to detect



Unlabeled Multi-Target Regression with Genetic Programming , ,

relationships in the structural components of the data, to predict
all targets at once. They rely on statistical methods (correlation
between target variables), kernel methods or rule methods [1].

While MTR provides the basis for the present work, a wider
survey of this problem domain is beyond the scope of the paper, and
the interested reader is referred to [1, 2, 15]. To summarize, the main
feature of the MTR problem is that it always involves predicting
multiple output targets from a common set of inputs features, which
is illustrated in Figure 2. From this formulation, we now define the
uMTR problem.

3 UNLABELED MULTI-TARGET REGRESSION
Based on the previous definition of MTR, the uMTR problem can
be defined as follows: (1) An input space 𝑋 , with tuples of di-
mension 𝑑 , containing primitive data types i.e., ∀𝑥𝑖 ∈ 𝑋 , 𝑥𝑖 =

(𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑑 ). (2) An output (target) space 𝑌 with an unknown
number of tuples for each target n, containing real values, i.e.,
∀𝑦𝑖 ∈ 𝑌,𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, .., 𝑦𝑖𝑛) where 𝑦𝑖𝑘 ∈ R and 1 ≤ 𝑘 ≤ 𝑛, with
n unknown. (3) A set of training instances T, where each training
instance is a pair of tuples from the input and the output space, i.e.,
T = {(𝑥𝑖 , 𝑦𝑖 ) |𝑥𝑖 ∈ X, 𝑦𝑖 ∈ 𝑌, 1 ≤ 𝑖 ≤ 𝑁 } and 𝑁 is the number of ex-
amples in T. (4) Some of the elements yij may be missing the output
tuples, expressed as yij = ∅. (5) At least one element yij ≠ ∅ in each
i − th training instance, but j is unknown for each training instance.
(6) A quality criterion 𝑐 , which rewards models with high predictive
accuracy. (7) The goal is to find a set of functions 𝑓𝑖 : 𝑋 −→ 𝑌 ,
such that 𝑓 maximizes 𝑐 . The key differences between MTR and
uMTR are highlighted in bold text in the above definitions. Figure 3
illustrates these differences. The first main difference is that in the
uMTR problem the number of targets 𝑛 is not given as part of the
problem definition. This means that the solution method does not
know how many target functions need to be derived from the train-
ing data. Moreover, the color coding scheme in Figure 3 is merely to
illustrate that each value in the output vector is associated to one of
the possible targets, but this information is not part of the problem
definition. In other words, the elements of the output vector are
unlabeled. In this sense, the actual data is presented as in a standard
regression task (Figure 1), with the underlying structure of the MTR
problem not provided (i.e. the number of targets and the target label
for each training instance). Therefore, a solution method for uMTR
has to basically solve a MTR problem without access to important
information regarding the structure of the problem. An example of
a real-world uMTR is the following (a version of which will be stud-
ied in future research). Imagine a mobile system or device with a set
of environmental sensors, for instance temperature or light sensors,
but position information or movement information is not available
or provided (due to security constraints). Now imagine that the
system is free to move around, maybe passing through 𝑛 distinct
environments. For instance, from an office space, to an outdoor
space to a special storage area. Lets also assume that the sensors
on the device are monitoring the variables of interest at a fixed
sampling rate, and that at any given time window it is impossible
to know exactly how many areas the device visits or in what order.
Given only the measurements of the sensors, lets also suppose that
we want to derive a model of, for instance, the temperature varia-
tions captured by the sensor for each of the environments visited

by the device. In this case, it would be an error to attempt to derive
a single model from all the measurements, since in fact there are
𝑛 different environments, but it is impossible to know, given our
assumptions, 𝑛 and the correct label (environment) for each sensor
reading. This scenario poses a uMTR problem formulation for a
learning algorithm.

Another way to look at uMTR is to view it as a clustering problem.
However, while clustering is thought of as a form of classification
with missing labels, in this case uMTR defines a regression task, also
with missing labels. To the authors knowledge, such a regression
task is completely unique in literature, and as such requires new
techniques to solve. In this sense, it is reasonable to state that the
goal of a solution method for a uMTR problem is not necessarily
the models, but the labels assigned to each of the training instances
that allow us to separate them, and possibly pose new standard
regression tasks using the training instances from each detected
target. This is an important aspect to consider, since generalization
is not necessarily an important initial goal when solving uMTR.
Some of the characteristics of uMTR resemble those of the Blind
Source Separation (BSS) problem. BSS consists on retrieving a set of
unobservable signals (sources) from an observed set of mixed ones
[3, 12]. The cocktail party is the best example for explaining BSS. In
this scenario there are 𝑁 sources of audio at the same time: voices,
background music, ambient sound and only one source is of interest.
The BSS problem involves 𝑁 number of sensors (microphones) in
different parts of the room to record all the sources, to afterwards
analyze all of the recordings as a matrix of vectors that contain the
superposition of all sources, and try to recover the source signal of
interest. BSS can be found in biomedical signals, feature extraction,
voice controlled devices and the methods to solved it revolve around
principal component analysis or independent component analysis
[7]. BSS may resemble uMTR, but BSS assumes that the sources
contain at least two sensors [16] while the uMTR problem contains
only one reading of the sources. Moreover, in BSS the sources are
superimposed while in uMTR the data from different outputs is
intact but unlabeled.

4 MULTI-TARGET RANSAC
To solve uMTR problems, we propose a computational method
called Multi-Target Random Sample Consensus(MTRANSAC). This
method is based on the RANSAC [4] algorithm and the recently
proposed RANSAC-GP hybrid [9].

RANSAC and RANSAC-GP. RANSAC is a method to perform re-
gression in datasets with a high number of outlier training instances.
When the number of outliers is above 50% then robust regression
methods fail, and a sampling technique such as RANSAC is required.
In an iterative manner, RANSAC randomly samples the training
set T, and uses each sample to build a candidate solution or model.
This sample is called the Minimal Sample Set (𝑀𝑆𝑆𝑖 ⊂ T), and is of
size 𝑠 . RANSAC then builds a model using the training instances in
𝑀𝑆𝑆𝑖 , call this 𝐾𝑖 . Then all of the data in T, including the𝑀𝑆𝑆𝑖 , is
evaluated relative to 𝐾𝑖 . All of the training instances that are consis-
tent with the model, considering the residuals and a threshold 𝑇ℎ,
define what is known as the Consensus Set 𝐶𝑆𝑖 of model 𝐾𝑖 . This
process is repeated until a model is found for which the size of 𝐶𝑆𝑖
is above a certain value 𝑣 , or when a maximum number of iterations
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Algorithm 1:MTRANSAC: Multi-Target RANSAC.
Input: Mixed data set with 𝑁 training instances T = {(𝑥𝑖 , 𝑦𝑖 )} with 𝑖 = 1, ..., 𝑁 .
Input: Size of the Minimal Sample Set𝑀𝑆𝑆 , specified by 𝑠 .
Input: Size of the Consensus Set (𝐶𝑆), specified by 𝑣 .
Input: Threshold 𝑇ℎ used determine if a training instance is part of 𝐶𝑆 .
Input: Maximum number of iteration 𝑗𝑚𝑎𝑥 .
Out: Set of solutions (models)M.

(1) Initiate solution setM = {} and a counter 𝑗 = 1
(2) Generate a copy of the dataset, O = T
(3) Take a random sample𝑀𝑆𝑆 𝑗 , with replacement, of size 𝑠 from O
(4) Generate a model 𝐾𝑗 with the training instances in𝑀𝑆𝑆 𝑗 with GP
(5) Compute the residuals 𝑟𝑖 for all the training instances in O
(6) Construct a consensus set 𝐶𝑆 𝑗 with all the training instances in O where the residual satisfies 𝑟𝑖 ≤ 𝑇ℎ
(7) If |𝐶𝑆 𝑗 | ≥ 𝑣 then setM = M ∪ 𝐾𝑗 , O = O \𝐶𝑆 𝑗 ; OTHERWISE do nothing.
(8) Set 𝑗 = 𝑗 + 1 and repeat steps 2 to 7 UNTIL:
(a) IF size of O = {} or 𝑗 = 𝑗𝑚𝑎𝑥 , THEN returnM.
(b) IF the size of |O| < 𝑠 THEN REBOOT the algorithm by settingM = {}, and go to Step 2.

is reached, and in some cases 𝐶𝑆𝑖 may contain the majority of the
𝑀𝑆𝑆𝑖 . RANSAC-GP is basically a RANSAC algorithm that uses GP
as the modeling process by which the 𝐾𝑖 models are constructed
within RANSAC. Moreover, in RANSAC-GP a robust fitness mea-
sure is used, namely the Least Median Squares (LMS) error measure.
This makes RANSAC-GP robust in the presence of outliers, solv-
ing problems with as much as 90% of outlier contamination in the
training dataset.

MTRANSAC. The general outline of MTRANSAC is shown in
Algorithm 1. In synthesis, it assumes that for any given possible tar-
get in the training data, all other training instances from the other
targets are outliers. The process described in Algorithm 1, is similar
to RANSAC, but with some key differences. The training dataset
T, as said before, is assumed to contain training instances (𝑥𝑖 , 𝑦𝑖 )
from possibly several targets, and the target (label) of each training
instance is unknown. The parameters that need to be specified are
the size of the𝑀𝑆𝑆 𝑠 , the size of the 𝐶𝑆 𝑣 , the threshold 𝑇ℎ used to
determine inclusion into the 𝐶𝑆 for each training instance given a
particular model, and the maximum number of iterations 𝑗𝑚𝑎𝑥 . All
of the models produced by MTRANSAC, with a sufficiently large
𝐶𝑆 , are returned in set M. This is the first main difference with
respect to RANSAC, MTRANSAC is meant to return 𝑛 models, one
for each target, and RANSAC is meant to return a single one (since
most of the training instances are considered to be outliers in that
case). Step (1) is an initialization, while steps (2) to (6) are all the
same as in RANSAC-GP. The role of GP in this process is in build-
ing a representative model for the 𝑀𝑆𝑆 in step (4). An important
element is that, as is done in RANSAC-GP, the GP algorithm used
with MTRANSAC uses as a fitness function the LMS error mea-
sure. As stated before, MTRANSAC models the training instances
of a particular target as outliers of the other targets. Therefore,
the LMS measure allows the GP search to focus on the majority of
the training instances in the𝑀𝑆𝑆 , and when it is the case that the
majority comes from a single target, then selection pressure will
allow GP to converge to a representative model for those instances.
In step (7), while RANSAC would stop and return the found model

𝐾𝑗 , MTRANSAC simply stores the model, removes 𝐶𝑆 𝑗 from the
copy of the dataset, and continues on with the random sampling
process, repeating steps (2) to (7) iteratively (step 8) until reaching
one of the following conditions. First, the stop condition is reached
when the copy of the dataset O is empty or a maximum number
of iterations is reached; i.e. when all of the training instances have
been included in the 𝐶𝑆 of one of the found models or the com-
putation budget has run out. The second condition is called the
REBOOT, which means that the process is restarted from step (2).
This condition is reached when |O| < 𝑠 , which indicates that the
number of remaining training instances in O is less than the size of
the𝑀𝑆𝑆 .

The entire algorithm is illustrated in Figure 4, for a cases where
T contains training instances from two sources, shown in Figure
4(a). Then, Figure 4(b) shows the𝑀𝑆𝑆 (red filled circles to represent
the chosen training instances) and the model generated by GP,
respectively steps (3) and (4) in Algorithm 1. Figure 4(c) shows the
𝐶𝑆 , illustrated as yellow circles for each of the training instances in
the set, which were determined based on 𝑇ℎ that is illustrated by
the dotted curves surrounding the model; this corresponds to step
(5) in Algorithm 1. Notice that the training instances in 𝑀𝑆𝑆 are
not necessarily in the 𝐶𝑆 , since the model could fail to represent
any of the targets, as is the case in Figure 4(c). In this case the 𝐶𝑆
does not satisfy the condition in step (7), so the process restarts at
the beginning. Figure 4(d) shows a new 𝑀𝑆𝑆 , which in this case
leads to an accurate model for one of the targets, as can be seen in
the𝐶𝑆 of Figure 4(e). Finally, Figure 4(f) shows the last full iteration
of the algorithm and the second model extracted from this dataset.

It is also imperative to differentiate between solving a traditional
problem with GP and using MTRANSAC to solve the uMTR prob-
lem. We are not making a distinction between training and testing
in the experimental work, the goal is to separate the complete
dataset, making the comparison with a clustering process very use-
ful. Nonetheless, the dataset is partitioned at each iteration, where
each𝑀𝑆𝑆𝑖 is used to train a GP population, and after each evolution-
ary process a form of testing is carried out. Here the MTRANSAC
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Table 1: Benchmark problems used in this work, where
𝑈 [𝑎, 𝑏, 𝑐] denotes c uniform random samples drawn from the
range [𝑎, 𝑏], that specifies how the training instances from
each target are generated.

Problem Symbolic Expression Training set
𝑓1 𝑥3 + 𝑥2 + 𝑥 U[-1, 1, 100]
𝑓2 𝑥5 − 2𝑥3 + 𝑥 U[-1, 1, 100]
𝑓3 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 U[-1, 1, 100]

does not check the quality of the 𝐾𝑖 solution, MTRANSAC deter-
mines which training instances are congruent with 𝐾𝑖 and builds
the 𝐶𝑆𝑖 for each model.

5 EXPERIMENTAL SETTINGS
To evaluate if MTRANSAC is capable of solving the uMTR problem,
the design of experiments needs to be different from a usual regres-
sion task. In order to properly evaluate the algorithm, it is important
to select benchmark problems that GP can solve with a high degree
of accuracy under normal conditions. It is important to consider
that the uMTR problem already describes an extremely challenging
task, being defined basically as an MTR problem without some
crucial information provided. The goal is to evaluate MTRANSAC
as a whole, not specifically the ability of GP to solve each of the
individual target tasks. In other words, if benchmarks that are too
“difficult" were chosen, they might obfuscate the performance of
MTRANSAC. Therefore, three benchmarks are used from [11], that
are known to be relatively simple for standard GP to solve in a
normal symbolic regression setting [9]. The problems are used,
shown in Table 1 that specifies the number of training instances
and how they were sampled in the function domain. From each
benchmark problem, 100 training instances were randomly gen-
erated using a uniform distribution. Another important aspect to
consider is the amount of overlap between the two targets, consid-
ering both the domain and the codomain of each target (benchmark
function). First, considering the domain it is obvious that for the
uMTR problem and the MTR problem, an important part of their
complexity derives from the fact that the domains of the targets
overlap, for if they did not overlap it would be possible to solve
the problem using standard regression techniques in a piece-wise
manner. For this reason, for the benchmarks used we use the same
domain in all three cases. Second, in the case of the codomain, one
of the experimental goals will be to evaluate the performance of
MTRANSAC as the amount of overlap between the target increases.
Intuitively, it is reasonable to suggest that if two targets do not
overlap, it should be easier to find each of them, since even a visual
inspection might allow to do this visually. On the other hand, if the
two targets overlap substantially separating the training instances
from each target becomes more difficult. If we think of uMTR as a
clustering problem, as we suggested before, it is easier to visualize
how the amount of overlap increases problem difficulty. Therefore,
in our experimental scenarios we control the amount of overlap
between the functions by adding in some cases a bias term to one
of the functions, and gradually reducing it until the amount of
overlap between the targets is maximized. In total, we define four
test cases; these are: Case 1: the training set is composed by the

training instances from function 𝑓1 and 𝑓2, adding a bias of 1 to 𝑓1.
Case 2: the training set is composed by the training instances from
function 𝑓1 and 𝑓2, adding a bias of 0.5 to 𝑓1. Case 3: the training
set is composed by the training instances from function 𝑓1 and 𝑓2,
without adding a bias to either function. Case 4: the training set
is composed by the training instances from function 𝑓1, 𝑓2 and 𝑓3,
without adding a bias to any of the functions. The parameters used
in our experiments are presented in Table 2 for MTRANSAC, and
in Table 3 for the standard tree-based GP used to find the candidate
models. In the case of the GP parameters, no parameter tuning was
carried out, using an “out of the box" implementation. However,
these parameter values were tested on each benchmark function
individually, as a standard symbolic regression task, and we found
that in all cases training RMSE was always less than 0.01. Training
performance is the most important aspect in this case, since the
goal is to separate the targets, not necessarily to build models that
generalize well. Nonetheless, for these problems the generalization
error of GP is very close to the training error.

For MTRANSAC, some of the parameters are left constant in all
our experiments, while others are modified and evaluated based on
the difficulty of each experimental case, which is controlled by the
amount of overlap in the codomain. In particular the size of𝐶𝑆 and
𝑇ℎ are modified based on the performance observed in each case,
while the size of the𝑀𝑆𝑆 and the maximum number of iterations
𝑗𝑚𝑎𝑥 were left constant. The size of the 𝑀𝑆𝑆 was based on the
parametrization used by RANSAC-GP [9]. In all experiments, a
total of 30 runs were executed for each reported configuration, each
time using a different sampling of the target functions. A given
parameter configuration is said to have failed when at least one of
the runs did not correctly differentiate between the target outputs,
while the opposite is considered to be a successful configuration.
The maximum number of iterations is set to 𝑗𝑚𝑎𝑥 = 50. In the most
difficult Case 4, with three targets that overlap substantially, the
maximum number of iterations in all successful configurations was
44 and the average was 11. The REBOOT condition was relatively
rare, occurring mostly in Case 4 with a total of 15 REBOOTS over all
30 runs. A final experimental aspect to consider before presenting
the main results is the fact that in these experiments the targets are
completely balanced; i.e., the number of training instances from
each target is the same. Future work will consider the effect of
target imbalance, but once again we must emphasize the overall
difficulty of the uMTR problem, even if the training data is balanced.
For instance, it is worth noting that most work on MTR considers
balanced problems [1, 2, 15].

6 EXPERIMENTAL RESULTS
The results are organized and presented based on each of the ex-
perimental cases defined in the previous section.

Results for Case 1. The training instances are shown in Figure
5(a) and a successful configuration with results are shown in Figure
5(b). Figure 5(a) uses two different symbols, one for each target,
to illustrate the correct label of each training instance, but this
information is not provided to MTRANSAC. Figure 5(b) shows the
parameter values used and the final models found in the successful
configuration. All subsequent experimental cases show similar plots.
This version of the problem was the simplest to solve, since the
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(c) The𝐶𝑆 of the model.

-1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

(d) The𝑀𝑆𝑆 and model generated by GP.
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(e) The𝐶𝑆 and first model detected by MTRANSAC.
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(f) Final iteration and final model detected by MTRANSAC.

Figure 4: Illustrative example of MTRANSAC. Training instances are represented as hollow circles, training instances in a𝑀𝑆𝑆
are shown as red circles, and training instances in a 𝐶𝑆 are shown as yellow circles. The models found in each iteration are
shown as red curves, and the threshold parameter 𝑇ℎ is shown as dashed lines on either side of the model curves. This example
presents a case where two targets are included in the training set, and the algorithm performs three full iterations without
reaching the REBOOT condition

Table 2: Parameters for the MTRANSAC algorithm .

Parameter Description Value

𝑣 Size of the Consensus Set 𝐶𝑆 100 or 75 training instances
Depending on the overlap between targets

𝑇ℎ Threshold to consider an 𝑟𝑖 a part of 𝐶𝑆 𝑇ℎ = 1.0, 0.5, 0.01, 0.05
Depending on the overlap between targets

𝑠 Size of the Minimal Sample Set 𝑠 = 20 training instances
𝑗𝑚𝑎𝑥 Maximum number of iterations 𝑗𝑚𝑎𝑥 = 50 training instances

targets do not overlap. In these experiments,𝑇ℎ is set to 0.1 and the size of𝐶𝑆 is 𝑣 = 100. For the latter, this was set with the knowledge
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(b) Successful configuration with𝑇ℎ = 0.1, 𝑣 = 100.

Figure 5: Training instances (a) and successful configuration (b) for Case 1. In (a) two different symbols are used, one for each
target. In both plots the horizontal axis represents the input variable and the vertical axis is the output.
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(b) Successful configuration with𝑇ℎ = 0.05, 𝑣 = 100.

Figure 6: Training instances (a) and successful configuration (b) for Case 2. In (a) two different symbols are used, one for each
target. In both plots the horizontal axis represents the input variable and the vertical axis is the output.
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(b) Successful configuration with𝑇ℎ = 0.05, 𝑣 = 75.

Figure 7: Training instances (a) and successful configuration (b) for Case 3. In (a) two different symbols are used, one for each
target. In both plots the horizontal axis represents the input variable and the vertical axis is the output.

that the dataset is balanced. However, slight modifications of this
value (as shown in the following experiments) did not degrade
performance.

Results for Case 2. The results for this experiment are summarized
in Figure 6. In this case, given that the two target functions are closer
together, the parameters from the previous case did not prove to
be successful. The issue is parameter 𝑇ℎ, the value of 0.1 produced

several false positive in the 𝐶𝑆 of the first model found, which did
not allow MTRANSAC to reach the stopping condition. In other
words, the 𝐶𝑆 of the first model detected by MTRANSAC was not
composed of training instances from a single target, and was most
times larger than 𝑣 , never allowing the second model to meet the
required 𝐶𝑆 size (𝑣 = 100). The false positives usually appeared
near −0.5 in the horizontal axis, where both targets almost overlap.
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(b) Successful configuration with𝑇ℎ = 0.01, 𝑣 = 75.

Figure 8: Training instances (a) and successful configuration (b) for Case 4. In (a) two different symbols are used, one for each
target. In both plots the horizontal axis represents the input variable and the vertical axis is the output.

Table 3: GP parameters used in MTRANSAC.

Parameter Description
Population size 100 Individuals
Generations 300 Generations

Initialization Ramped Half-and-Half,
with maximum depth level 6

Operator probabilities Crossover 𝑝𝑐 = 0.9, Mutation 𝑝𝜇 = 0.1
Function set ( + , − , × , ÷)
Terminal set 𝑥, 𝑟𝑎𝑛𝑑 (−1, 1)
Maximum tree depth 17 levels
Selection Tournament size 3
Elitism Best individual always survives

Therefore, the threshold value was reduced to𝑇ℎ = 0.05, producing
a successful configuration for Case 2 with this modification.

Results for Case 3. The results for this experiment are summa-
rized in Figure 7. This scenario removes the bias, leading to a clear
overlap in the codomain of both targets. Once again, the previous
configuration was not successful in this case. The issue was not
𝑇ℎ, since it is almost impossible in this case to avoid false positives
in the 𝐶𝑆 , since the targets overlap in several regions of the do-
main. Even a perfect model will include training instances from
the other target, at least from the overlap regions. The overlap is
not an issue for the modeling process because GP is using a robust
fitness function, LMS, so it can derive good models even when
the 𝑀𝑆𝑆 is not exclusively composed of training instances from
a single target. Therefore, the problem lies with the 𝑣 parameter,
it should allow for an imperfect compositions of the 𝐶𝑆 and not
eliminate the possibility of finding the second model when the first
model found contains many instances from the second target in
it’s corresponding 𝐶𝑆 . The solution is to lower the value of 𝑣 , one
successful configuration was to set 𝑣 = 75.

Results for Case 4. The final experimental case involves adding
the third target function, 𝑓3, without a bias to any of the functions,
producing a notable overlap between all three targets. The results
for this experiment are summarized in Figure 8. Figure 8(a) shows
that even human visual inspection is very difficult in this case,
without the help of the different markers used for each target, it
would be very difficult to separate the training instances appro-
priately. The configuration from Case 3 performed well, but was

not successful. Further tuning was required, lowering 𝑇ℎ to 0.01
produced a successful configuration. This case illustrates the ability
of uMTR to solve a very difficult multi target problem, producing a
very effective and efficient detection of the three targets.

7 CONCLUSIONS
The contribution of this work to the fields of symbolic regression
and machine learning is twofold: first, it presents a new problem
formulation, a new and more difficult version of the relatively re-
cent MTR problem. The uMTR problem increases the complexity of
the MTR by removing useful information for the solution method,
namely the number of targets and the labels of each training in-
stance. One promising perspective of this problem is to visualize
it as a clustering task for regression data. Second, it proposes a
solution method for uMTR, which is based on the RANSAC algo-
rithm and the hybrid RANSAC-GP. MTRANSAC is shown to be able
to solve four experimental cases of increasing complexity. Given
that this work represented a first study of uMTR problems, and
given that the uMTR formulation poses challenges that might not
be solvable with standard techniques, we decide to limit our study
to relatively simple benchmark functions. Future work will extend
the experimental evaluation of the proposal, using datasets with
more target functions and using real-world multivariate data.
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