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ABSTRACT
In the path planning task for autonomous mobile robots, robots

should be able to plan their trajectory to leave the start position and

reach the goal, safely. There are several path planning approaches

for mobile robots in the literature. Ant Colony Optimization algo-

rithms have been investigated for this problem, giving promising

results. In this paper, we propose the Max-Min Ant System for Dy-

namic Path Planning algorithm for the exploratory path planning

task for autonomous mobile robots based on topological maps. A

topological map is an environment representation whose focus is

the main reference points of the environment and their connec-

tions. Based on this representation, the path can be composed by a

sequence of state/actions pairs, which facilitates the navigability of

the path, with no need to have the information of the complete map.

The proposed algorithm was evaluated in static and dynamic envi-

ronments, showing promising results in both of them. Experiments

in dynamic environments show the adaptability of our proposal.
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1 INTRODUCTION
There are two key competences required for mobile robot navi-

gation, according to [18]. The first one is the path planning, that

involves identifying a trajectory that will lead the robot to reach

the goal location. The second competence is the obstacle avoidance,

in which, given real-time sensor readings, the robot will follow

the trajectory in order to avoid collisions. The path planning is

considered exploratory since robots do not have information about

the environment beforehand. They should plan their trajectory to

the goal at the same time as they explore the environment.

The environment where mobile robots are deployed is repre-

sented by maps, which can be either provided or constructed dur-

ing the exploration task. The major types of maps are metric and

topological, which represent the lowest and the highest abstraction

level, respectively [15]. Themain characteristic ofmetricmaps is the

availability of detailed spacial information from the environment,

such as coordinates and angles. In the case of topological maps,

only the representation of the structure of the environment—i.e.,

the relative position among reference points—is available. Hence,

topological maps contain less detailed information, taking into ac-

count regions of interest according to the robot task. A topological

map can be represented by a graph, such that nodes are reference

points of the environment and edges are the navigability among

them. We have adopted this representation since precise informa-

tion from the environment is not required, which is the case in

many real-world scenarios (e.g., deployment of rescue robots). In

this context, the exploratory path problem can be seen as an combi-

natorial optimization problem where the goal is to find an optimal

combination of reference points to visit that lead to the goal.

Ant Colony Optimization (ACO) [4] has been successfully ap-

plied to combinatorial problems, starting with Ant System (AS)

the first ACO algorithm applied to the traveling salesman problem.

Since then, other improvements of the AS have been proposed, such

as the Max-Min Ant System (MMAS) [4, 19]. MMAS provides four

main modifications to AS: (i) it exploits the best tours found, in

which just the ant that found the best global solution or the best

solution of an iteration is allowed to deposit pheromone; (ii) it limits

the possible range of pheromone trail values to an interval; (iii) the

pheromone trails are initialized to the upper pheromone trail limit

for increasing the exploration of tours at the start of the search;
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(iv) pheromone trails are reinitialized once the system approaches

stagnation.

In this paper we investigate the application of MMAS algorithm

to the exploratory path planning task in dynamic environments,

named Max-Min Ant System for Dynamic Path Planning (MMAS-

DPP). The main contribution of this work is that robots do not

have information about the environment beforehand. They collect

information from the environment as they explore it. Furthermore,

we analyze the cost to obtain the solution based on the distance

traveled by ants, which represents the overall cost that ants are

required to travel during the execution of the algorithm—e.g., the

total distance traveled by all ants to explore the environment in

order to find a solution. The current study extends the investiga-

tion made in [16], in which an application of MMAS algorithm

was proposed to the exploratory path planning problem in static

environments by considering a dynamic environment where routes

become blocked or free over time and the goal position changes.

The results show that the proposed MMAS-DPP algorithm is robust

to cope with these dynamic situations.

2 RELATEDWORK
According to Mac et al. [12], the widely known algorithms inspired

by biology behaviors successfully applied in robot path planning

are Genetic Algorithms [1, 9, 14], Particle Swarm Optimization

[3, 22] and Ant Colony Optimization (ACO) [4] algorithms. In this

section we focus on works using ACO since it is the meta-heuristic

used by the proposed algorithm.

A heterogeneous ACO algorithm to solve the robot path planning

problem was proposed in [21]. Two types of ants were defined, one

dedicated to exploration and another dedicated to exploitation,

and the number of each type of ant is managed to control the

convergence rate of the algorithm. The authors do not mention

how a robot will navigate the maps. Zhu et al. [23] presented a robot

navigation algorithm for dynamic unknown environments based

on an ant-based algorithm to find a local optimal static navigation

path within the visual domain of the robot. Although authors state

that the visual domain of robots is based on their sensors, they

have calculated this region based on a grid map, so that no robotic

simulator or realistic sensors were presented.

An approach based onACO to solve the problem of path planning

for mobile robots is presented by Garcia et al. [6]. The proposed

algorithm uses the distance between the source and the target (goal)

node to select the next node to move and a memory to the ants

remember the visited nodes and avoid stagnation. The algorithm

was evaluated in the ACO Test Center simulator, also proposed

by the authors. The environment was represented as a matrix of

interconnected nodes, in which each node can be marked as free or

occupied, that is very similar to the grid representation.

There are works that combine ACO algorithms with other ap-

proaches for the path planning problem. Chaari et al. [2] have

proposed an algorithm that combines ACO and Genetic Algorithms

(GA) for robot path planning. The environment is static and robots

have a prior knowledge about the environment. The environment

map model is based on a Wireless Sensor Network, so that each

sensor node is identified by its coordinate points. The authors state

that their combined algorithm outperforms classical ACO and GA

in this problem.

Ioannidis et al. [8] proposed a combination of ACO and Cellular

Automata (CA) to create collision-free trajectories for every robot

of a team while their formation is kept immutable. The CA is a

grid structure which is updated by ACO to generate collision free

paths. The method can be used in dynamic or unknown environ-

ments, with no prior knowledge of the space. The authors created

a simulation environment to evaluate the algorithm and it was also

implemented in Webots [13], a real world simulation environment.

According to the authors, the proposed algorithm was effective at

creating collision free paths.

Since most of works using ACO to the path planning task adopt

the metric map (e.g., occupation grid) to represent the environment,

they represent the path by a sequence of points that the robots

should follow precisely to reach the goal. Therefore, a robust lo-

calization algorithm is required to execute the path safely in real

environment, although in many cases, authors do not mention how

the robots will execute the navigation of the path. The use of a topo-

logical map only requires an approximated representation of the

environment and provides a simpler way to execute the navigation

of the path.

3 METHODOLOGY
The proposed Max-Min Ant System for Dynamic Path Planning

(MMAS-DPP) algorithm is run in two steps. First, the MMAS pro-

cedure is run to find the best solution in the static environment.

Then, after the environment changes, the smoothing procedure is

applied and the MMAS procedure is recalled to search for the new

solution.

The MMAS-DPP algorithm is presented in Algorithm 1. In the

main procedure, the initialization step is called in line 2, in which

all ants are positioned at the start point. As proposed in the stan-

dard MMAS algorithm, pheromone trails are initialized with a large

amount of pheromone on all edges. After the first iteration, this

amount will be set as the upper pheromone trail limit. The runM-
MAS procedure is called in line 3, which will return the best solution

pathдb . This procedure is the Max-Min Ant System for static envi-

ronments presented in [16].

The runMMAS procedure, lines 13 − 19, shows the construction
step, in which each ant k constructs the path pathk from the start

to the goal position. In each step of the construction phase, an

ant k in the current node i calculates the probability to move to a

neighbor node j , except the predecessor of node i . Figure 1 shows an
ant (robot) in a crossing with all possible directions to move: west,
northwest, north, northeast, east, southeast, south and southwest.

The probability pki j of an ant k to move from node i to node j is

given by [4]:

pki j =
[τi j ]

α [ηi j ]
β∑

l ∈N k
i
[τil ]

α [ηil ]
β
, ifj ∈ N k

i (1)

where τi j is the amount of pheromone in the edge that links nodes

i and j; ηi j is the heuristic value to move from node i to j; α and

β defines the influence of the pheromone trail and the heuristic

information, respectively; N k
i is the set of neighbors of node i .

The heuristic function adopted in this study is the inverse of the
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Algorithm 1 The proposed MMAS-DPP algorithm

1: procedure Main

2: initialization();
3: pathдb = runMMAS();
4: while chanдeIsDetected() do
5: applySmoothinд();
6: pathдb = runMMAS();
7: end while
8: end procedure
9: procedure runMMAS

10: pathдb ← ∅;
11: while (stop criteria is not reached) do
12: pathib ← ∅;
13: for k ← 1 to numberOfAnts do
14: pathk ← constructPath();
15: localSearch(pathk );
16: if quality(pathk ) > quality(pathib ) then
17: pathib ← pathk ;
18: end if
19: end for
20: pheromoneEvaporation();
21: pheromoneUpdate();
22: if quality(pathib ) > quality(pathдb ) then
23: pathдb ← pathib ;
24: end if
25: end while
26: return pathдb ;
27: end procedure

Figure 1: A robot in a crossing with all possible directions to
move.

euclidean distance between the current and the goal node (ηi j =
1/di j ). This calculation is based on the approximate coordinates of

the robot and destination goal in the environment.

Since there is no control over nodes previously visited, apart

from the current previous node, this approach can generate loops in

the paths. Therefore, a local search procedure (line 15) is applied to

remove loops after ants reach the goal. When the path is completed,

the ants go back to the start position, so that only the ant that found

the best solution deposits pheromone on the path. The other ants

also follow this path. The best solution found after the construction

phase is kept in pathib variable (lines 16 − 18).

After that, the pheromone evaporation step (line 20) is executed

according to:

τi j = (1 − ρ)τi j (2)

where ρ is the evaporation rate. Evaporation rate plays an important

role in the convergence speed of the algorithm. The higher is this

value, the quicker convergence is reached, but the larger the chance

of the algorithm settling on a sub-optimal solution.

Then, the pheromone update step is applied (line 21). The stan-

dard MMAS algorithm proposes that just the ant that found the best

path during an iteration or during the whole execution deposits

pheromone. In the proposed MMAS-DPP algorithm, we use the

best path during an iteration to explore more the space search. The

pheromone update is defined as:

τi j = τi j + ∆τ
best
i j (3)

where∆τbesti j = 1/Cbest andCbest is the length of the best solution

of an iteration. If the best solution of an iteration is the best solution

found so far, it is kept in the pathдb variable (lines 22 − 24). At the

end, all ants follow the same path in the backward step, whose

distance is summed up to give the total traveled distance. Note

that values of the pheromone on each edge in the trail are limited

by a range to avoid stagnation. The maximum pheromone trail

value is τmax , defined as 1/ρCbs , where Cbs is the length of the

best solution found in the whole execution of the algorithm. The

minimum pheromone trail value is set to τmin = τmax /a, where a
is a user-defined parameter [4, 20].

This process is repeated until the stop criteria are satisfied. We

adopt two stop criteria: (1) the best solution is not improved over

a fixed number of iterations and (2) that a maximum number of

iterations is reached. The runMMASprocedure returns the best

solution pathдb found (line 26) in the static environment.

In order to analyze the adaptability of the algorithm to deal

with dynamic environments, after the best solution is found, we

have applied the algorithm to a changing environment. This is an

extension of the previous investigation presented in [16]. Based

on the literature, we have applied two kinds of changes: removing

an edge (equivalent to adding an obstacle) and moving the goal

position. Before recalling the runMMAS procedure to search for the

new solution, we have called the applySmoothing procedure (line 5).
This is a procedure suggested by the MMAS algorithm to smooth

the pheromone amount when the algorithm has converged [4]. This

mechanism increases the pheromone trails proportionally to their

difference to the maximum pheromone trail limit:

τ ∗i j (t) = τi j (t) + δ (τmax (t) − τi j (t)) (4)

where τ ∗i j (t) and τi j (t) are the pheromone trails before and after

the smoothing. The purpose of the smoothing is to facilitate the

exploration by increasing the probability of selecting solution com-

ponents with low pheromone trail. Furthermore, the information

gathered during the run of the algorithm is not completely lost but

weakened. For δ = 1 this mechanism corresponds to a reinitializa-

tion of the pheromone trails, while for δ = 0 it is disabled.



GECCO ’20, July 8–12, 2020, Cancún, Mexico Valéria de C. Santos et al.

Figure 2: The map used to evaluate the MMAS-DPP per-
formance, extracted from [16]. The highlighted black line
shows the optimal path for this map manually defined and
also discovered using the MMAS-DPP approach.

4 RESULTS AND DISCUSSION
MMAS-DPP is applied in two steps. Firstly, it finds the solution in

the static environment. Then, the environment changes and the al-

gorithm has to find the new solution. Two types of dynamic change

is evaluated: removing one edge from the previous best solution and

changing the goal point. First, we present the adjustment of MMAS-

DPP parameters in the static environment. Then, we analyze how

the algorithm behaves when the environment changes.

The map adopted in this paper is the same one of [16]. The map

is illustrated in Figure 2, in which the best solution is highlighted.

S1 and G1 are initial and goal points, respectively. The algorithm

was run 100 times in this map. The results are presented in terms

of average and standard deviation.

4.1 Static Environment
Initially, the MMAS algorithm is applied to a static environment.

Here, the analysis of number of ants, evaporation rate andminimum

pheromone trail parameters are considered.

Table 1 presents the results regarding the number of ants. Trav-

eled distance is the distance spent by an ant during the whole

executing of the algorithm. Each time an ant moves from one node

to another, the distance between these nodes is summed up to

the traveled distance of the correspondent ant. Column percentage
refers to how many times the best solution was found among the

100 executions of the algorithm. Column avg best path shows the

average and standard deviation of the best solution found by all

executions. Best travel dist is the average of the traveled distance

spent by the ant that found the best solution in all executions during

the whole running of the ACO; travel dist it refers to the average
of the traveled distance spent by each ant in one iteration.

The other parameters of the algorithm were defined as following.

For stop criteria, fixed number of iterations with no update of the

best solution is 100 and maximum number of iterations is 1000;

α = 1 and β = 0.1 are parameters of Equation 1; ρ = 0.1 is the

evaporation rate from Equation 2; a = 10 is the parameter to define

the minimum pheromone trail. In Table 1, we can observe that best
travel dist decreases using more ants. Number of ants does not

affects the traveled distance per iteration. The algorithm was able

to find always the optimal solution when using 50 ants, therefore,

we have defined this value for the next experiments.

Table 2 shows the analysis of the evaporation rate ρ. Although
the results show that this parameter does not affect much the per-

formance of the algorithm, the convergence is slow when this value

is too low and the algorithm can converge quickly to a local mini-

mum solution when this value is too high. Based on our results, we

have adopted ρ = 0.1 to the next evaluations.

As explained in Section 3, MMAS-DPP defines a range for the

pheromone trail to avoid stagnation, in which the minimum phero-

mone trail is set to τmin = τmax /a. The larger is the pheromone

trail range, the slower the algorithm tends to converge, favoring

exploration of the search space. On the other hand, the smaller is

the pheromone trail range, the bigger is the chance the algorithm

will exploit the best solutions found. The results showed in Table 3

reflect this, in which the first column is the parameter a.
The quality of the paths is better with small values of parameter a.

This is expected because the search space is more restricted and the

algorithm tend to exploit the best solutions. However, in these cases,

the traveled distances are higher and the algorithmwill tend to keep

these solutions even when the environment changes. Therefore,

we chosen the value 50 that is a median value and to make the

algorithm more flexible to cope with dynamic environment.

4.2 D* Lite Algorithm
We have compared the MMAS-DPP results with D* Lite algorithm

[10]. D* Lite is an algorithm used to find the optimal path in un-

known and dynamic environments. It is based on LPA* algorithm

[11], an incremental version of A* algorithm [7]. D* Lite maintains

two estimates of costs to each node s ∈ S , in which S denotes the

finite set of vertices of the graph: д(s) and rhs(s). The д(s) is the
estimate of the start distance of each node s . The rhs-values are
one-step lookahead values that satisfy the following relationship:

rhs(s) =

{
0 if s = sstar t
mins ′∈Pred (s)(д(s

′) + c(s ′, s)) otherwise

(5)

where Pred(s) ⊂ S denotes the set of predecessors of s ∈ S in

the graph; 0 < c(s, s ′) < ∞ denotes the cost of moving from s to
s ′ ∈ Succ(s), Succ(s) ⊂ S denotes the set of successors in the graph.

A node is considered consistent if its д-value is equal to its rhs-
value, otherwise it is inconsistent. The priority queue maintains

the inconsistent vertices, the ones that needs to update to become

consistent. The priority of vertex s in the priority queue is:

k(s) = [k1(s);k2(s)] (6)

k1(s) =min(д(s), rhs(s)) + h(s, sдoal ) (7)

k2(s) =min(д(s), rhs(s)) (8)

Algorithm 2 shows Main() and ComputeShortestPath procedures

of the basic version of D* Lite. At the beginning, the Main() pro-
cedure calls Initialize(), in which the g-values and rhs-values are

initialized to infinity. The rhs-value of goal vertice has been set
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Table 1: Analysis of number of ants.

Number of ants Percentage Avg Best path Best Travel Dist Travel Dist It
10 27% 1168.38 ± 58.52 556975.88 ± 414802.66 8597.80 ± 696.51

20 72% 1119.80 ± 48.28 605291.47 ± 472561.49 8656 ± 453.74

30 95% 1096.78 ± 16.83 495381.75 ± 344283.67 8696.57 ± 340.20

40 99% 1094.02 ± 7.41 401832.06 ± 279262.32 8674.64 ± 235.36

50 100% 1093.27 275602.66 ± 167281.54 8741.87 ± 184.81
100 100% 1093.27 176561.11 ± 83673.91 8676.45 ± 122.92

Table 2: Analysis of the evaporation rate.

Evaporation rate Percentage Avg Best Path Best Travel Dist Travel Dist It
0.01 99% 1094.02 ± 7.41 1354969.20 ± 475963.15 15479.11 ± 937.69

0.05 99% 1093.33 ± 0.60 413470.75 ± 238790.32 9900.13 ± 322.03

0.1 100% 1093.27 275602.66 ± 167281.54 8741.87 ± 184.81
0.3 100% 1093.27 188046.59 ± 116356.69 8023.37 ± 122.41

0.5 100% 1093.27 179750.01 ± 138014.02 7794.65 ± 110.69

0.6 99% 1094.16 ± 8.80 207929.42 ± 182693.14 7750.33 ± 111.34

Table 3: Analysis of the minimum pheromone trail.

Parameter a Avg Best Path Avg Best Travel Dist Travel Dist It
10 1094.15 ± 8.80 288731.99 ± 173807.23 8727.10 ± 201.08

20 1094.75 ± 10.55 216364.05 ± 123843.57 5750.01 ± 168.68

30 1095.92 ± 15.09 235027.81 ± 141441.83 5729.05 ± 186.61

40 1109.64 ± 43.30 202750.63 ± 124771.63 4494.66 ± 166.49

50 1111.47 ± 42.84 194960.87 ± 100896.87 4307.19 ± 174.98
60 1112.00 ± 42.94 195965.80 ± 109504.77 4158.63 ± 185.81

70 1117.88 ± 51.59 166252.38 ± 105274.34 4098.74 ± 161.54

80 1112.15 ± 39.69 183546.99 ± 102434.58 4007.26 ± 186.89

90 1112.54 ± 43.04 183388.60 ± 85755.18 3999.54 ± 153.66

100 1115.38 ± 47.76 169666.89 ± 87023.35 3985.88 ± 174.22

to zero, that makes it inconsistent. Therefore, the goal vertice is

inserted to priority queue.

Then, the algorithm computes the shortest path from the sstar t
node to the goal and the robot navigates following this path. If the

robot has not reached the goal, it moves to the next node of the

shortest path and updates sstar t to the current node of the robot.
If some change occurs in the environment, the algorithm updates

the affected edge costs and calls UpdateVertex() to update the rhs-

values of the vertices affected by the changed edge costs so that they

satisfy again the equivalent of Equation 5. It also updates the priority

queue to contain again the inconsistent vertices with priorities that

satisfy the equivalent of Equation 6. Then, the algorithm updates

the priorities of all vertices in the priority queue, recalculates a

shortest path and iterates.

Table 4 shows the comparison between D* Lite and MMAS-DPP

before the environment changes, in relation to the traveled distance.

The best traveled distance and the average traveled distance by

iteration of the MMAS-DPP is lower than the traveled distance

achieved by the D* Lite algorithm, although the average of the best

traveled distance is greater. Hence, the MMAS-DPP algorithm can

find a suitable path travelling a shorter distance than the D* Lite

algorithm.

Table 4: Results of D* Lite andMMAS-DPP algorithms in the
static environment.

D* Lite MMAS

Travel Dist Best Travel Dist Avg Best Travel Dist Avg Travel Dist It
36135.20 6935.26 194960.87 ± 100896.87 4307.19 ± 174.98

4.3 Dynamic Environment
After of defining the parameters in the static environment, we have

analyzed how the algorithm copes with dynamic environments. The

MMAS-DPP finds the best solution in the static environment. The

environment changes and the MMAS-DPP finds the best solution

for the new environment configuration. We compare our results

with the ones obtained by D* Lite algorithm [10] in relation to the

traveled distance spent during the search.

Firstly, we have adjusted the delta parameter for the smoothing

procedure presented in Equation 4. Table 5 shows the results, in
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Algorithm 2 D* Lite Algorithm

procedure ComputeShortestPath()
while (U .TopKey() < CalculateKey(sstar t ) OR

rhs(sstar t ) , д(sstar t )) do
u = U .Pop();
if (д(u) > rhs(u)) then

д(u) = rhs(u));
for alls ∈ Pred(u) do

UpdateVertex(s);
end for

else
д(u) = ∞;
for alls ∈ Pred(u)Uu do

UpdateVertex(s);
end for

end if
end while

end procedure
procedure Main

Initialize();
ComputeShortestPath();
while (sstar t , sдoal ) do

/*i f (д(sstar t ) = ∞) then there is no known path*/

sstar t = arдmins ′∈Succ(ss tar t )(c(sstar t , s
′) + д(s ′));

Move to sstar t ;
Scan graph for changed edge costs;

if (any edge costs changed) then
for (all directed edges (u,v) with changed costs) do

Updatetheedдecostc(u,v);
UpdateVertex(u);

end for
for alls ∈ U do

U .Update(s,CalculateKey(s));
end for
ComputeShortestPath();

end if
end while

end procedure

which the first line of the table presents the results obtained be-

fore the environment modification. The following lines show the

results after the environment modification, varying the delta value.

Column Avg Best Path is the average of the best solutions found by

the algorithm; Avg Best Travel Dist is the average of the traveled
distance spent by the ant that found the best solution from all exe-

cutions during the whole running of the ACO; Iteration Best is the
iteration in which the best solution was reached; Total Iterations is
the total number of iterations spent by the algorithm; Avg Travel
Dist It refers to the average of the traveled distance spent by each

ant in one iteration.

Table 5 shows the results analysis of changing the delta value

in the algorithm to evaluate the adaptability to environment mod-

ifications. In this experiment, the dynamic modification consists

of removing an edge from the middle of best solution found in the

static environment. As the smoothing procedure is applied after

Figure 3: Edge removed from the middle of best solution are
highlighted red line in this map. The blue line shows the
new edges of the solution.

the algorithm finishes its execution in the static environment, the

delta value has no influence in these results. The next best solution

obtained by different delta values is approximately the same. How-

ever, we can observe that the lower the delta value, the lower the

traveled distance and the iteration to find the best solution. The

traveled distance per iteration is lower for delta = 0.1, as well. This

suggests that keeping a little pheromone trail from the previous so-

lution is useful, however, this small value allowed the algorithm to

explore other possibilities and to escape from the previous solution.

Therefore, 0.1 is fixed for delta value in the next evaluations.

Table 6 shows the results for a dynamic environment when

the edges are removed from the beginning, middle and end of the

previous best solution. When the edge of the beginning is removed,

we can see from Table 6 that the MMAS-DPP algorithm could find

the new solution quickly, as showed in Column Iteration Best, and
the best solution was reached in all executions.

The algorithm spent more distance to find the new solution when

the edge is removed from the middle, as we can see in the second

line from Table 6. Nevertheless, the algorithm could find new good

solutions in the first iterations, based on columns Iteration Best and
Total Iterations. This result shows the adaptability of MMAS-DPP

to cope with dynamic environment, due to its capability of explore

the search space. Figure 3 shows the removed edge and the new

optimal solution. For the edge removed from the end of the path,

the algorithm could find new good solutions in few iterations.

Table 7 shows the comparison between D* Lite and the MMAS-

DPP algorithm, in relation to the traveled distance spent to find the

best solution. The first line shows the results before the modifica-

tion in the environment. Column Traveled Distance is the traveled
distance spent by D* Lite algorithm to find the optimal solution.

Column Best Traveled Distance is the best traveled distance spent

by MMAS-DPP to find the best solution. Column Avg Best Travel
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Table 5: Analysis of the delta parameter of the smoothing procedure.

Avg Best Path Avg Best Travel Dist Iteration Best Total Iterations Avg Travel Dist It
Static 1111.47 ± 42.84 194960.87 ± 100896.87 22.22 ± 25.57 123.22 ± 25.57 4307.19 ± 174.98

Delta

0.1 1151.36 ± 15.68 94998.22 ± 60163.73 12.11 ± 13.32 113.11 ± 13.22 3931.63 ± 153.77
0.3 1151.71 ± 12.33 183621.44 ± 86213.99 15.35 ± 14.74 116.35 ± 14.74 4777.99 ± 222.09

0.5 1151.24 ± 11.98 281552.84 ± 105949.99 21.12 ± 16.46 122.21 ± 16.45 5439.03 ± 287.03

1.0 1161.05 ± 24.12 475914.37 ± 133456.30 29.03 ± 13.40 130.03 ± 13.40 6625.58 ± 324.98

Table 6: Analysis of the dynamic environment when edges are removed.

Avg Best Path Best Travel Dist Iteration Best Total Iterations Avg Travel Dist It
Static 1111.47 ± 42.84 194960.87 ± 100896.87 22.22 ± 25.57 123.22 ± 25.57 4307.19 ± 174.98

Edge

Start 1208.93 12960.33 ± 21449.54 0.66 ± 3.31 101.66 ± 3.31 3843.20 ± 82.85

Middle 1151.36 ± 15.68 94998.22 ± 60163.73 12.11 ± 13.32 113.11 ± 13.22 3931.63 ± 153.77

End 1217.37 ± 17.41 44368.81 ± 30722.85 3.18 ± 3.35 104.18 ± 3.35 4033.26 ± 113.25

Distance is the average of the best traveled distance from all execu-

tions of MMAS-DPP and Column Avg Travel Dist It is the average
of the traveled distance spent by each ant in one iteration.

The best traveled distance spent by MMAS-DPP is much better

than the one spent byD* Lite, although in comparison to the average

of this value, the result from D* Lite is lower. The average traveled

distance per iteration means that each ant traveled less than the D*

Lite to leave the start position and reach the goal. It shows that the

collaborative work generates better results by comparison with to

an individual working alone.

In the dynamic environment experiments, we have removed

edges from the start, middle and end of the previous best solution.

Table 7 shows the results of these cases considering D* Lite and

MMAS-DPP algorithm. The best traveled distance by MMAS-DPP

is much lower than the one spent by D* Lite to find the next best

solution. In the three cases, the values obtained by MMAS-DPP are

very similar.

In relation to average of the best traveled distance, results when

edges from start and end are removed are similar. In these cases,

the average of the best traveled distance is close to the distance

obtained by D* Lite. In situation two, which is the most complex

case, the average of the best traveled distance obtained by MMAS-

DPP is worse than the one obtained by D* Lite. The average traveled

distance per iteration is quite similar in the three cases, so that the

results obtained by MMAS-DPP are the lowest.

We also have evaluated the MMAS-DPP algorithm in the dy-

namic environment, considering that the goal point has changed.

Results of the environment before and after the change are pre-

sented in Table 8. Figure 4 shows the goal points, where G1 is the

initial goal, G2,G3,G4,G5 and G6 are the new goal positions. We

can observe in Column Avg best path that the new best solution

is found in all executions from MMAS-DPP algorithm every time

the goal changes. The best traveled distance is lower to find the

new solutions. Column iteration best shows that the new solution

is found in the first iterations of the algorithm. Including, when the

goal changes toG3 andG4, it is found in the very first iteration. The

traveled distance per iteration is very close to the value obtained

in the static environment, so that for G3 and G4 it is lower. The

Figure 4: The map with the new goal points highlighted.

authors of D* Lite algorithm [10] do not mention the application of

their algorithm for this type of dynamic environment.

Although the D* Lite algorithm finds the optimal solution when

the environment changes, it spends more traveled distance to reach

the goal point.

The MMAS-DPP do not always find the optimal solution, but

it can find a near optimal suitable solution (see Column Avg Best
Path from Table 6) and can reach the goal quickly, considering

the traveled distance. This characteristic can be very useful in an

application in which the goal needs to be reached quickly, such as

search and rescue tasks.

Moreover, the MMAS-DPP works in an approximated represen-

tation of the environment, considering roughly defined maps and

imprecise robot and goal localization, which is enough to find a

navigable path. Although we have applied the D* Lite in the same

environment representation, it completely depends of this map

to find the path. During the navigation, the robot has to follow
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Table 7: Comparison between D* Lite and MMAS-DPP results.

D* Lite MMAS-DPP
Traveled Distance Best Travel Dist Avg Best Travel Dist Avg Travel Dist It

Static 36135.20 7702.31 163580.26 ± 79431.09 4322.43 ± 159.77

Dynamic

Start 34217.4 1317.85 12960.33 ± 21449.54 3843.20 ± 82.85

Middle 28519.2 1181.29 94998.22 ± 60163.73 3931.63 ± 153.77

End 70289.8 1210.67 44368.81 ± 30722.85 4033.26 ± 113.25

Table 8: Analysis of the dynamic environment – change goal.

Goal Avg Best Path Best Travel Dist Iteration Best Total Iterations Travel Dist It
G1 1111.47 ± 42.84 194960.87 ± 100896.87 22.22 ± 25.57 123.22 ± 25.57 4307.19 ± 174.98

G2 1108.36 71768.60 ± 69149.38 2.03 ± 4.29 103.03 ± 4.29 4500.83 ± 119.80

G3 686.30 26483.03 ± 27585.10 0 101 2862.75 ± 78.99

G4 434.20 32515.89 ± 30792.79 0 101 2183.90 ± 82.31

G5 1099.68 74883.89 ± 64981.25 2.49 ± 5.64 103.49 ± 5.64 4249.93 ± 109.85

G6 1067.91 75089.63 ± 57757.71 2.12 ± 3.74 103.12 ± 3.74 4332.75 ± 111.82

precisely a set of points and if something is different in the map

representation, the algorithm can fail.

The navigation of the best path between points S1 and G1 ob-

tained in the map illustrated in Figure 2 was executed in the robot

simulator V-REP, a realistic robotic simulator [5], using a Pioneer

P3DX robot with a 2D Laser Scanner sensor.
1
The path provided by

our approach can be represented by a sequence of actions, therefore

the robot does not have any prior information about the environ-

ment, it just knows the sequence of actions it should execute. In

the navigation of this path, the robot starts walking in a corridor.

When it detects a change of state, the next action is activated. The

state recognizer proposed in [17] was applied to identify when the

robot state changes based on the sensors of the robot.

5 CONCLUSION
In this paper, we have presented the MMAS-DPP algorithm applied

to the exploratory path planning problem for autonomous mobile

robots in dynamic environments. This problem considers that the

robots do not know the environment previously. They just know

their approximate start and goal positions.

We have analyzed the MMAS-DPP in static and dynamic envi-

ronments, considering the quality of the obtained solutions and the

traveled distance spent by the ants to find the solution. If we con-

sider the total distance traveled by each ant individually, it spends

a very high traveled distance. However, when the overall algorithm

is observed, the result of all ants working in a collaborative way

contributes to obtain good quality solutions, spending lower trav-

eled distance. The dynamic change is evaluated after the algorithm

finishes its execution in the static environment. According to the

results, the algorithm can find the next solution quickly, showing

that it is flexible to cope with dynamic environments.

The MMAS-DPP algorithm was compared to the D* Lite algo-

rithm, an extension of A* algorithm to dynamic environments. D*

Lite works with one agent to find the optimal solution that spends

a very high traveled distance to reach the goal. The advantage

1
Available online at: https://youtu.be/RHDTbjUdGow

of the MMAS-DPP is that using several agents exploring the en-

vironment, the goal can be reached quicker and the information

about good paths is gathered through the pheromone deposit in

the environment.

We also have analyzed the MMAS-DPP for dynamic environ-

ments in which the goal point changes. The new solution is found

in the first iterations of the algorithm, showing the influence of the

heuristic function and that the amount of pheromone deposited

in the static environment was suitable to the algorithm to explore

new paths when some modification occurs in the environment.

As future research directions, we will investigate an way to the

MMAS-DPP to improve the quality of the solutions with no need of

spending higher traveled distance. Also, we are studying methods

to implement robots that reproduce the pheromone deposition in

real environments.
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