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Abstract

Let [n] = {1, . . . , n} and let Ωn be the set of all mappings from [n]
to itself. Let f be a random uniform element of Ωn and let T(f) and
B(f) denote, respectively, the least common multiple and the product of
the length of the cycles of f . Harris proved in 1973 that logT converges
in distribution to a standard normal distribution and, in 2011, Schmutz
obtained an asymptotic estimate on the logarithm of the expectation of
T and B over all mappings on n nodes. We obtain analogous results for
random uniform mappings on n = kr nodes with preimage sizes restricted
to a set of the form {0, k}, where k = k(r) ≥ 2. This is motivated by the
use of these classes of mappings as heuristic models for the statistics of
polynomials of the form xk + a over the integers modulo p, with p ≡ 1
(mod k). We exhibit and discuss our numerical results on this heuristic.
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1 Introduction

Let f : [n] → [n] be a function of a finite set to itself. The iterations of map-
pings have attracted interest in recent years due to applications in areas such as
physics, biology, coding theory and cryptography. We highlight Pollard’s fac-
torization method for integers, which is based on iterations of quadratic poly-
nomials over finite fields. The adaptation of Pollard’s method to the discrete
logarithm problem also relies on iterations of mappings.

In this work we focus on asymptotic results on the cycle structure of these
dynamical systems. Let f = f (0) be a mapping on n elements and consider
the sequence of functional compositions f (m) = f ◦ f (m−1), m ≥ 1. Since there
are finitely many mappings on n elements, there exists an integer T such that
f (m+T ) = f (m) for all m ≥ n. The least integer T = T(f) satisfying this con-
dition equals the order of the permutation obtained by restricting the mapping
f to its cyclic vertices. Erdös and Turán proved in [11] that the logarithm of
the corresponding random variable defined over the symmetric group Sn con-
verges in distribution to a standard normal distribution, when properly centered
and normalized. By adapting Erdős and Turán’s “statistical group theory ap-
proach” [11], Harris was able to prove that the normalized random variable

(logT − µ∗
n)/σ

∗
n, where µ∗

n = 1
2 log

2 √n and σ∗
n = 1√

3
log3/2

√
n, defined over

the space of mapping with uniform distribution, converges in distribution to a
standard normal distribution [17]. The expected value of T was estimated in
[24]:

logEn(T) = k0 3

√
n

log2 n

(
1 + o(1)

)
, (1)

where k0 is a constant determined explicitly that is approximately 3.36. The
parameter T can be proven to be the least common multiple of the cycle lengths
of the components of the functional graph of f . If B(f) is the product of all
cycle lengths of f including multiplicities, then one might consider B as an
approximation for T. For instance, Proposition 1.2 of [24] implies that, for any
δ > 0, the sequence of random variables defined by

Xn =
logB− logT

log1+δ n
, n ≥ 1,

converges in probability to zero. However, it is proved in [24] that the expecta-
tion of B deviates significantly from the expectation of T:

logEn(B) =
3

2
3
√
n
(
1 + o(1)

)
. (2)

In this paper we derive similar results for the classes of {0, k}-mappings,
k ≥ 2, defined as mappings f : [n] → [n] such that |f−1(y)| ∈ {0, k} for all
y ∈ [n]. We derive our results in the case where k is allowed to approach
infinity together with n. This might be desirable, for example, when modeling
polynomials whose degree depends on the size of the prime p; see [8] for an
example where this occurs. We obtain asymptotic estimates for the logarithm
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of the expected value of T and B over {0, k}-mappings on n nodes. We also
prove an analogue of Harris’ result [17] for {0, k}-mappings, that is, we prove
that logT converges in distribution to a standard normal distribution, when
properly centered and normalized. An analogous result is obtained for the
parameter B.

By now there is a rather large literature on the asymptotic distribution of
random variables defined on mappings with indegree restrictions. One motiva-
tion is methodological. Random mappings are important examples that serve
as benchmarks for both probabilistic and analytic methods. On the analytic
side, combinatorial methods can be used to identify generating functions whose
coefficients are the quantities of interest. In many cases it is possible to estimate
the coefficients asymptotically using complex analysis. A standard reference is
[13], which includes several applications to random mappings; see also [12, 18].
In another direction, random mappings correspond to a large class of random
graphs Gf for which the joint distribution of components sizes can be realized
as independent random variables, conditioned on the number of vertices that
the graph has. Stein’s method and coupling have been used to prove strong
and general results [3, 4]. One application of this theory is a generalization
of the theorem of Harris [17] that was mentioned above. However the proofs
in our paper are elementary, and do not directly use any of these probabilistic
techniques.

The research on random mappings with such restrictions is motivated also
by the Brent-Pollard heuristic, where one uses these objects as a model for the
statistics of polynomials. It was introduced by Pollard in the analysis of his
factorization method: he conjectured that quadratic polynomials modulo large
primes behave like random mappings with respect to their average rho length
[21]. However, the indegree distribution of a class of mappings impacts the
asymptotic distribution of a number of parameters [2]. Since it is known that
the functional graph of a quadratic polynomial over Fp has just one node with
indegree 1 and the remaining nodes are split in half between indegrees 0 or 2,
{0, 2}-mappings could provide a better heuristic model for quadratic polynomi-
als; see [20] for a discussion of alternative models for the Brent-Pollard heuristic.
Furthermore, the class of {0, k}-mappings also provides a good heuristic model
for polynomials of the form xk + a ∈ Fp[x] with p ≡ 1 (mod k). This heuristic
model was used in [7] to predict that Pollard’s method is sped up in some cases if
these polynomials are used, eventually leading to the factorization of the eighth
Fermat number. We exhibit our numerical results on the behavior of T and B

over different classes of polynomials over finite fields and investigate different
classes of mappings as heuristic models for the behavior of T and B over these
classes of polynomials.

This paper is organized as follows. In Section 2 we establish our notation and
present the basic results that are needed for our main theorems; they concern
mostly the distribution of the parameter that corresponds to the number of
cyclic vertices of a mapping. In Section 3 we prove an asymptotic estimate
for the expectation of T over {0, k}-mappings. An analogous result for the
parameter B is presented in Section 4. In Section 5 we prove that the logarithm
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of both parameters T and B, when properly centered and normalized, converge
in distribution to a standard normal distribution; we also prove in this section
that logB− logT, when properly normalized, converges in probability to zero.
In Section 6 we present theoretical and numerical results concerning the use of
classes of {0, k}-mappings as heuristic models for certain classes of polynomials.

2 Preliminary Results

For f a mapping, let Z = Z(f) be the set of cyclic nodes of f and let Z = |Z|.
In the proof of our asymptotic results we make extensive use of the law of total
probability, splitting the space of random uniform {0, k}-mappings according
to the value that the random variable Z assumes. In this section we present
and derive basic results concerning the distribution of this random variable over
{0, k}-mappings. To avoid confusion, we index probabilities and expected values
by the set of allowed indegrees of the class of mappings in question: N in the
unrestricted case [24] or {0, k} in our case. For example, the expected value of T

over all mappings on n nodes is denoted by E
N
n(T), whereas E

{0,k}
n (T) denotes

the expectation of T over {0, k}-mappings on n nodes.
The following theorem gives an exact result on the distribution of Z over

{0, k}-mappings [23]. We note that a {0, k}-mapping f of size n satisfies n = kr,
where r ≥ 1 denotes the cardinality of the range of f . Also, the coalescence of
f , defined as the variance of its distribution of indegrees under uniform distri-
bution, satisfies

λ = λ(f) =
∑

y∈[n]

|f (−1)(y)|2
n

− 1 = r
k2

n
− 1 = k − 1.

Theorem 1 (Equation (3.17) of [23]). Let n = kr, λ = k−1 ≥ 1 and 1 ≤ m ≤ r.
A random uniform {0, k}-mapping on n nodes has exactly m cyclic nodes with
probability

P
{0,k}
n (Z = m) = λkm−1

(
r − 1

m− 1

)(
n− 1

m

)−1

.

It is possible to extend the quantity above to real numbers using the Gamma
function Γ(·), since n! = Γ(n+ 1) for any integer n ≥ 1 (see Chapter 6 of [1]):

P
{0,k}
n (Z = m) = λmkm−1 Γ(r)

Γ(r −m+ 1)

Γ(n−m)

Γ(n)
. (3)

In this work we consider {0, k}-mappings on n = kr elements, where r
denotes the size of their range and k = k(r) is a sequence of integers satisfying
k ≥ 2 for all r ≥ 1. Although n(r) and k(r) are functions of r, we omit this
dependence on our notation and write simply n and k. We emphasize that
all asymptotic calculations and results in this work are taken as r approaches
infinity, unless otherwise stated. We assume throughout the paper that, for
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some 0 < α < 1, k = o(n1−α) as r approaches infinity, or equivalently, logn =
O(log(n/λ)) where λ = k − 1.

Lemma 1 below combines well known facts about the Gamma function Γ(z)
and the Digamma function Ψ(z) = d

dz log Γ(z); see Chapter 6 of [1]. Lemma 2
is a simple consequence of Lemma 1 and is used in the calculations of Sections
3 and 4, so we state here for future reference.

Lemma 1. (Chapter 6 of [1]) The Gamma function satisfies

log Γ(y) = y log y − y − 1

2
log y +

1

2
log(2π) + o(1),

as y approaches infinity. Moreover, let Ψ(z) be the derivative of log Γ(z). Then,
as y approaches infinity,

Ψ(y) = log y +O

(
1

y

)
and Ψ′(x) =

∞∑

k=0

1

(x+ k)2
.

Lemma 2. Let Ψ(z) be the derivative of log Γ(z) and let n, k, r be integers such
that n = kr. If x = o(r) then, as r approaches infinity,

(i) Ψ(n− x) = logn− x

n
+O

(
x2

n2

)
+O

(
1

n

)
,

(ii) Ψ(r − x) = log r − x

r
+O

(
x2

r2

)
+O

(
1

r

)
,

(iii) log Γ(n− x)− log Γ(n) = −x logn+
x2

2n
+O

(
x3

n2

)
+ o(1),

(iv) log Γ(r) − log Γ(r − x+ 1) = x log r − log r − x2

2r
+O

(
x3

r2

)
+ o(1).

Proof. It follows directly from Lemma 1 that

Ψ(n− x) = log(n− x) +O

(
1

n− x

)
= logn+ log

(
1− x

n

)
+O

(
1

n

)
.

The estimate for Ψ(n− x) follows from the estimate log(1 − z) = −z + O(z2),
as z approaches zero. The same argument proves the estimate for Ψ(h− x).

We prove now items (iii) and (iv). It follows from Lemma 1 that

log Γ(n−x)−log Γ(n) = (n−x) log(n−x)+x− log(n− x)

2
−n logn+

logn

2
+o(1).

We use the fact that log(n− x) = logn+ log(1− x/n) to obtain

log Γ(n−x)−log Γ(n) = −x logn+(n−x) log
(
1− x

n

)
+x− 1

2
log
(
1− x

n

)
+o(1).
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Since x = o(r) implies x = o(n), we have log(1 − x/n) = o(1). The expansion
of log(1− z) then yields

log Γ(n−x)− log Γ(n) = −x logn+(n−x)

(
−x

n
− x2

2n2
+O

(
x3

n3

))
+x+o(1),

and hence,

log Γ(n− x)− log Γ(n) = −x logn+
x2

2n
+O

(
x3

n2

)
+ o(1).

The estimate for log Γ(r)− log Γ(r−x+1) follows by the same arguments.

In the following lemma we obtain an asymptotic estimate on the distribution
of Z over {0, k}-mappings; see [2] for a similar result in a more general setting.

Lemma 3. Let λ = k − 1. If m = m(r) is a sequence of positive integers
such that m = o(r), then the distribution of the number of cyclic nodes on a
{0, k}-mapping on n = kr nodes satisfies

P
{0,k}
n (Z = m) =

λm

n
exp

(
−λm2

2n
+O

(
m3

r2

)
+ o(1)

)
,

as r approaches infinity. Moreover, if m = m(r) is a sequence of real numbers

such that m → ∞ and m = o(r) as r → ∞, then P
{0,k}
n (Z = ⌊m⌋), r ≥ 1, is

asymptotically equivalent to the quantity above as r approaches infinity.

Proof. Let S1 = log Γ(r) − log Γ(r −m+ 1) and S2 = log Γ(n−m) − log Γ(n).
It follows from Equation (3) that

logP{0,k}
n (Z = m) = log

(
λm

k

)
+m log k + S1 + S2.

Since m log k +m log r −m logn = 0, Lemma 2 implies

logP{0,k}
n (Z = m) = log

(
λm

k

)
− log r − m2

2r
+

m2

2n
+O

(
m3

r2

)
+ o(1).

The first result follows from n = kr and λ = k − 1.
Let m = m(r) be a sequence of real numbers such that m → ∞ and m = o(r)

as r → ∞. We note that ⌊m⌋ = m + O(1) = m(1 + O(m−1)) = m(1 + o(1)).
Since (1+O(m−1))2 = 1+O(m−1), using the first part of the lemma we obtain

P
{0,k}
n (Z = ⌊m⌋)

=
λm

n
(1 + o(1)) exp

(
−λm2

2n
(1 +O(m−1)) +O

(
m3

r2

)
+ o(1)

)

=
λm

n
exp

(
−λm2

2n
+O

(
λm

n

)
+O

(
m3

r2

)
+ o(1)

)
.

The second result follows from the fact that λm/n = O(m/r) = o(1).
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Lemma 4. Let n, k ≥ 2 be fixed integers such that n = kr for some r ≥ 1. Then
there exists a positive real number m# such that the sequence (zm)m defined by

zm = P
{0,k}
n (Z = m), m ≥ 1,

is increasing for m < m# and decreasing for m > m#. Furthermore, m# verifies

λm#(m# + 1) = n and m# =
√
n/λ+O(1).

Proof. First we note that zm = 0 for m > r. Let Rm = zm+1/zm, 1 ≤ m ≤ r,
be the ratio of consecutive probabilities. It suffices to find a number m# that
Rm ≥ 1 for 1 ≤ m < m# and that Rm ≤ 1 for m# ≤ m ≤ r. Using Theorem 1
we obtain

Rm =
n− km

n−m− 1

m+ 1

m
.

We note that Rm < 1 is equivalent to (n− km)(m+ 1) < m(n−m− 1). Since
n = kr and λ = k − 1, this is equivalent to

n

λ
< m(m+ 1). (4)

The function m 7→ m(m + 1) assumes the value 0 if m = 0 and it approaches
infinity when so does m. This function is monotone increasing, hence there
exists a positive real number m# such that Rm ≥ 1 for m < m# and Rm < 1
for m > m#. Since r(r + 1) ≥ n/λ, then m# ≤ r. This proves the first part
of the lemma. We can explicitly calculate m# by solving Equation (4) as a
quadratic equation for m:

m# = −1

2
+

1

2

(
1 + 4 · n

λ

)1/2
=

√
n

λ

(
1 +O

(√
λ

n

))
. (5)

In Section 5 we split the range [1, n] of possible values for Z in three intervals
using sequences ξ1 = ξ1(n) and ξ2 = ξ2(n), where [ξ1, ξ2] defines a sequence of
intervals that becomes increasingly narrow around the mode m# (see Lemma
4). We prove in Lemma 5 below that Z is concentrated in the interval [ξ1, ξ2].

We observe that, for k ≥ 2 fixed, it is proved in [2] that E
{0,k}
n (Z) ∼

√
πn/2λ,

hence the mode m# has the same order of growth than the expectation of Z.

Lemma 5. Let εn = log−3/4(
√
n/λ), ξ1 = m1−εn

# , and ξ2 = m1+εn
# . If c is any

positive constant less than 23/4, then for all sufficiently large n,

(i) P
{0,k}
n (Z < ξ1)) ≤ exp

(
−c log1/4

(
n
λ

))
,

(ii) P
{0,k}
n (Z > ξ2) ≤ exp

(
−c log1/4

(
n
λ

))
, and

(iii) P
{0,k}
n (ξ1 ≤ Z ≤ ξ2) ≥ 1− 2 exp

(
−c log1/4

(
n
λ

))
.

7



Proof. Since ξ1 < m#, Lemma 4 implies that the probabilities are increasing on
the first interval:

P
{0,k}
n (Z < ξ1) =

∑

m<ξ1

P
{0,k}
n (Z = m) ≤

∑

m≤ξ1

P
{0,k}
n (Z = ⌊ξ1⌋),

and hence P
{0,k}
n (Z < ξ1) ≤ ξ1P

{0,k}
n (Z = ⌊ξ1⌋). Therefore, by Lemma 3,

P
{0,k}
n (Z < ξ1) ≤

λξ21
n

exp

(
−λ⌊ξ1⌋2

2n
+O

(
ξ31
r2

)
+ o(1)

)
. (6)

To estimate the right hand side of (6), first observe that, from the definition of
m#, we have n

λ = m#(m# + 1) ≥ m2
#. Therefore m# ≤

√
n
λ for all n, and

λξ21
n

≤ λ

n

(√
n

λ

)2(1−εn)

=
(n
λ

)−εn
= exp

(
−23/4 log1/4

(n
λ

))
. (7)

In the exponent on the right hand side of (6), we have that −λ⌊ξ1⌋2
2n ≤ 0. Since

r−1 = O(λ/n), it is also straightforward to check that
ξ3
1

r2 → 0. Thus

P
{0,k}
n (Z < ξ1) ≤ exp

(
−23/4 log1/4

(n
λ

))
exp(o(1)).

It follows that if c is any positive constant less than 23/4, then for all sufficiently
large n, we have the inequality in part (i) of the lemma:

P
{0,k}
n (Z < ξ1) ≤ exp

(
−c log1/4

(n
λ

))
. (8)

In order to estimate the upper tail, we again use monotonicity. Because of
the restriction on in-degrees, we know that the number of cyclic vertices is at

most n
k . Using this and Lemma 4 we get P

{0,k}
n (Z > ξ2) ≤ n

kP
{0,k}
n (Z = ⌊ξ2⌋).

Therefore, using Lemma 3 and applying logarithm on both sides we obtain

logP{0,k}
n (Z > ξ2) ≤ log

(
λξ2
k

)
− λ⌊ξ2⌋2

2n
+O

(
ξ32
r2

)
+ o(1). (9)

Using the formula m# =
√

n
λ

(
1 +O

(√
λ
n

))
from (5), together with the

definition ξ2 := m1+εn
# , we get

− λ⌊ξ2⌋2
n

∼ − exp
(
23/4 log1/4

(n
λ

))
. (10)

This large negative term accounts for the fact that the upper tail bound (9) is
small. In (9), the first term is negligible since

log

(
λξ2
k

)
≤ log ξ2 = O

(
log

n

λ

)
.
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In (9), the term O
(

ξ3
2

r2

)
is also negligible. To see this, recall that m# ≤ √

n
λ .

Since r = n
λ+1 ≥ n

2λ , it follows from the definition of ξ2 that

ξ32
r2

<
(nλ )

3

2
(1+εn)

1
4 (

n
λ )

2
=
(n
λ

)− 1

2
+o(1)

= o(1).

Thus
log P{0,k}

n (Z > ξ2) ≤ − exp
(
23/4 log1/4

(n
λ

))
· (1 + o(1)). (11)

Part (ii) of the lemma is a weak consequence of (11) that is convenient for future
reference: if c is any positive constant, then for all sufficiently large n,

P
{0,k}
n (Z > ξ2) ≤ exp

(
−c log1/4

(n
λ

))
. (12)

Part (iii) of the lemma follows immediately from (8), (12), and the fact that the
sum of the three probabilities is 1.

It is a well known fact that the restriction of a random unrestricted mapping
f to its set Z of cyclic nodes is a uniform random permutation of Z, but this
also holds for {0, k}-mappings; see Lemma 1 of [2]. We state this result below
for future reference. We denote the symmetric group on n elements by Sn and
remark that if f : [n] → [n] is a mapping such that Z(f) = m, then there exists
a unique permutation σf ∈ Sm and an increasing function ϕf : Z(f) → [m]
such that ϕf ◦ f ◦ ϕ−1

f = σf . We write f
∣∣
Z ≡ σ in this case.

Lemma 6. Let n = kr, n, k ≥ 2. Let A be a subset of [n] with m elements and
let σ ∈ Sm. If m ≤ n/k, then

P
{0,k}
n

(
f
∣∣
A ≡ σ

∣∣Z = A
)
=

1

m!
.

The following lemma is used in Sections 3 and 4 in our asymptotic estimates:
we obtain upper and lower bounds for the expectation of T and B in the form
of item (ii) of the lemma below.

Lemma 7. Let 〈Lr〉∞r=1 and 〈Ar〉∞r=1 be sequences of positive real numbers.
Then the following are equivalent:

(i) Lr = Ar(1 + o(1)) as r → ∞;

(ii) for any ε > 0, there exists R = R(ε) such that the inequalities (1−ε)Ar <
Lr < (1 + ε)Ar hold for all r > R.

Proof. First we note that Lr = Ar(1+o(1)) if and only if Lr

Ar
−1 = o(1), that is,

if and only if lim
r→∞

(Lr

Ar
− 1) = 0. By definition of a limit, this holds if and only if

for any ε > 0 there exists R = R(ε) such that |Lr

Ar
−1| < ε for all r > R. It can be

easily checked that this condition is equivalent to (1−ε1)Ar < Lr < (1+ε1)Ar.
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3 Expected Value of T

In this section we obtain asymptotic estimates for E
{0,k}
n (T) following the same

strategy as in [24], that we describe next. We can write the expected value of
T over all {0, k}-mappings as

E
{0,k}
n (T) =

n∑

m=1

P
{0,k}
n (Z = m)E{0,k}

n (T|Z = m). (13)

If we let Mm be the expected order of a uniform random permutation of Sm,
then Equation (13) and Lemma 6 imply

E
{0,k}
n (T) =

n∑

m=1

P
{0,k}
n (Z = m)Mm. (14)

The author in [24] combines an exact result for P
N
n(Z = m) with the follow-

ing lemma to estimate the expected value of T asymptotically in the case of
unrestricted mappings. We use Theorem 1 for the distribution of Z over {0, k}-
mappings.

Lemma 8. ([25]) Let Mm be the expected order of a random permutation of
Sm. Let β0 =

√
8I, where

I =

∫ ∞

0

log log

(
e

1− e−t

)
dt. (15)

Then, as m approaches infinity,

logMm = β0

√
m

logm
+O

(√
m log logm

logm

)
.

In particular, if ε1 ∈ (−1, 0), ε2 ∈ (0, 1) and βε = β0 + ε, there exists Nε such
that, for all m > Nε,

βε1

√
m

logm
< logMm < βε2

√
m

logm
.

It is clear from Equation (14) that, if m∗ is the integer that maximizes

P
{0,k}
n (Z = m)Mm for 1 ≤ m ≤ n and m0 is an integer in (1, n), then

P
{0,k}
n (Z = m0)Mm0

≤ E
{0,k}
n (T) ≤ nP{0,k}

n (Z = m∗)Mm∗
.

Let n ≥ 1 and ε ∈ (−1, 1). We extend the factorials in the expression for

P
{0,k}
n (Z = m∗) in Theorem 1 using the Gamma function, as in Equation (3).

Also, we bound the quantity Mm for large m as described in Lemma 8. For
βε = β0 + ε, let

φn,ε(x) = λxkx−1 Γ(r)

Γ(r − x+ 1)

Γ(n− x)

Γ(n)
exp

(
βε

√
x

log x

)
. (16)
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The calculation of the maximum value that the real function φn,ε(x) assumes
for x ∈ (1, n) is a main ingredient in the proof of the asymptotic estimate on

E
{0,k}
n (T). In order to simplify the calculations that follow, we consider the

function Φn,ε(x) = logφn,ε(x) and note that x∗ is a local maximum of φn,ε(x)
if and only if it is a local maximum of Φn,ε(x).

Proposition 1. Let n = kr, λ = k − 1 ≥ 1 and ε ∈ (−1, 1). If, for some
0 < α < 1, k = o(n1−α) as r approaches infinity, then there exists a constant
c > 0 such that, for sufficiently large n, the function x 7−→ φn,ε(x) assumes

a unique maximum x∗ for x ∈ (c, r). Moreover, if kε = 3

√
35β4

ε/8, then, as r
approaches infinity,

logφn,ε(x∗) = kε
(n/λ)1/3

log2/3(n/λ)
(1 + o(1)).

Proof. Let Φn,ε = logφn,ε. We note that

Φ′
n,ε(x) =

1

x
+ log k +

d

dx
log

(
Γ(n− x)

Γ(r − x+ 1)

)
+

βε

2

√
log x

x

log x− 1

log2 x
,

and hence,

Φ′
n,ε(x) = log k+

1

x
+Ψ(r− x+1)−Ψ(n− x) +

βε

2
√
x log x

(
1− 1

log x

)
, (17)

where Ψ(z) denotes the derivative of log Γ(z). In order to prove the uniqueness
of the maximum of Φn,ε, we note that

Φ′′
n,ε(x) = − 1

x2
−Ψ′(r−x+1)+Ψ′(n−x)−βε

4
(x3 log x)−1/2

(
1− 3

log2 x

)
. (18)

It follows from Lemma 1 that Ψ′(y) is monotone decreasing for y a positive real
number, so n ≥ r + 1 implies −Ψ′(r − x + 1) + Ψ′(n − x) ≤ 0. We conclude
using Equation (18) that Φ′′

n,ε(x) < 0 if 1 − 3 log−2 x > 0; this condition holds

if x > c, where c = exp(
√
3).

We note that Equation (17) implies that Φ′
n,ε(x) = 0 if and only if

log k +
1

x
+Ψ(r − x+ 1)−Ψ(n− x) +

βε

2
√
x log x

(
1− 1

log x

)
= 0.

We proceed heuristically in order to obtain an intuition for the asymptotic
behaviour of the point x∗ ∈ (1, n) that maximizes Φn,ε(x). By Lemma 2, for
x = o(r) we have

Ψ(r − x+ 1)−Ψ(n− x) ∼ − log k − (k − 1)x

n
. (19)

Assume that the estimate (19) holds as an equality; since λ = k−1, the equation
Φ′

n,ε(x) = 0 is equivalent to

1

x
− λx

n
+

βε

2
√
x log x

(
1− 1

log x

)
= 0,

11



and multiplying this equation by x we obtain

βε

2

(
x

log x

)1/2
(
1− 1

log x
+

2

βε

(
log x

x

)1/2
)

=
λx2

n
.

This is equivalent to

(x3 log x)1/2 =
βε

2

n

λ

(
1− 1

log x
+

2

βε

(
log x

x

)1/2
)
.

If the function Φn,ε(x) assumes indeed a unique maximum x∗ in (c, r), c =
exp(

√
3), and x∗ approaches infinity when so does n, we expect to have

(x3
∗ log x∗)

1/2 =
βε

2

n

λ
(1 + o(1)),

that is,

x3
∗ log x∗ =

β2
ε

4

(n
λ

)2
(1 + o(1)). (20)

We use bootstrapping to obtain an approximation for the solution of Equation
(20); see Section 4.1.2 of [15]. If not for the term log x∗ in Equation (20),
the solution would present asymptotic behavior x∗ ∼ c1(n/λ)

2/3 for some real
number c1 > 0, and thus log x∗ ∼ 2

3 log(n/λ) as r approaches infinity. Hence,

x3
∗
2

3
log(n/λ) =

β2
ε

4

(n
λ

)2
(1 + o(1)),

that is,

x3
∗ =

3β2
ε

8

(n/λ)2

log(n/λ)
(1 + o(1)).

Therefore,

x∗ =
3

√
3β2

ε

8

(n/λ)2/3

log1/3(n/λ)
(1 + o(1)). (21)

We prove now what was obtained heuristically in Equation (21). We define

t∗ =
3

√
3β2

ε

8

(n/λ)2/3

log1/3(n/λ)
(22)

and consider, for some δn = o(1) to be determined, the interval [a, b] where
a = a(n, ε), b = b(n, ε) are defined by

a = t∗(1− δn) and b = t∗(1 + δn).

We prove using Equation (17) that

Φ′
n,ε(a) > 0 and Φ′

n,ε(b) < 0. (23)

12



Equation (23) implies x∗ = t∗
(
1 + O(δn)

)
, as desired. We prove Equation (23)

using Equation (17), where the last term in the expression for Φ′
n,ε(b) is given

by

βε

2

(
1

b log b

)1/2

=
βε

2

(
1

t∗(1 + δn)

)1/2(
2

3
log
(n
λ

)
+O

(
log log n

))−1/2

,

that is,

βε

2

(
1

b log b

)1/2

=
βε

2
t
−1/2
∗

(
3/2

(1 + δn) log(n/λ)

)1/2(
1 +O

(
log log n

logn

))
.

Hence, using Equation (22),

βε

2

(
1

b log b

)1/2

= 3

√
3λβ2

ε

8n log(n/λ)
(1 + δn)

−1/2

(
1 +O

(
log logn

logn

))
. (24)

Since b = o(r), it follows from Lemma 2 that

log k +Ψ(r − b+ 1)−Ψ(n− b) = −λt∗
n

(1 + δn) +O

(
t2∗
r2

)
. (25)

Equations (17), (24) and (25) together with 1
b = O

(
log logn
logn

)
imply

Φ′
n,ε(b) =

1

b
+O

(
t2∗
r2

)
− λt∗

n
(1 + δn)

+ 3

√
3λβ2

ε

8n log(n/λ)
(1 + δn)

−1/2

(
1 +O

(
log logn

log n

))
.

Using (1 + δn)
−1/2 = 1− 1

2δn +O(δ2n), we obtain

Φ′
n,ε(b) =

1

b
+O

(
t2∗
r2

)
− λt∗

n
(1 + δn)

+ 3

√
3λβ2

ε

8n log(n/λ)

(
1− δn

2
+O(δ2n) +O

(
log logn

logn

))
.

We note that

1

b
+O

(
t2∗
r2

)
=

1

b
(1 + o(1)) =

1

t∗
(1 + o(1)) =

λt∗
n

· n

λt2∗
(1 + o(1))

=
λt∗
n

· o(n−α/3 log2/3 n).

13



Since λt∗/n = 3

√
3λβ2

ε/8n log(n/λ) we conclude that

Φ′
n,ε(b)

= 3

√
3λβ2

ε

8n log(n/λ)

(
−3

2
δn +O(δ2n) + o(n−α/3 log2/3 n) +O

(
log logn

logn

))

= 3

√
3λβ2

ε

8n log(n/λ)

(
−3

2
δn +O(δ2n) +O

(
log logn

logn

))
.

We recall that δn is a quantity to be determined satisfying δn = o(1). It is
of our interest to write

Φ′
n,ε(b) =

3

√
3λβ2

ε

8n log(n/λ)

(
−3

2
δn + o(δn)

)
,

as this would allow us to determine if Φ′
n,ε(b) is positive or negative, depending

on the value of δn. To this end we choose δn = (log logn)2/ logn and conclude
that Φ′

n,ε(b) < 0 for sufficiently large n. One proves similarly that Φ′
n,ε(a) > 0,

so Equation (23) holds indeed; this proves Equation (21).
We estimate now the value of Φn,ε(x∗) = logφn,ε(x∗). We have from Equa-

tion (16) that

Φn,ε(x∗) =x∗ log k + log Γ(r) − log Γ(r − x∗ + 1) + log Γ(n− x∗)− log Γ(n)

+ βε

√
x∗

log x∗
+O(log n).

Since x∗ log k + x∗ log r − x∗ logn = 0, Lemma 2 implies

Φn,ε(x∗) = −λx2
∗

2n
+ βε

√
x∗

log x∗
+O(log n). (26)

We note that Equation (21) implies

λx2
∗

2n
=

1

2

(
3

√
3β2

ε

8

)2
(n/λ)1/3

log2/3(n/λ)

(
1 + o(1)

)
(27)

and

βε

√
x∗

log x∗
∼ βε

(
3

√
3β2

ε

8

)1/2
(n/λ)1/3

log1/6(n/λ)

(
2

3
log(n/λ) +O(log logn)

)−1/2

,

that is,

βε

√
x∗

log x∗
= βε

(
3

2

3

√
3β2

ε

8

)1/2 (n
λ

)1/3 1

log2/3(n/λ)

(
1 + o(1)

)
. (28)
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Hence, using Equations (26), (27) and (28) and the fact that k = o(n1−α), we
obtain

Φn,ε(x∗) = kε
(n/λ)1/3

log2/3(n/λ)

(
1 + o(1)

)
,

where, as desired,

kε = −1

2

(
3

√
3β2

ε

8

)2

+ βε

(
3

2

3

√
3β2

ε

8

)1/2

=

(
−1

8
+

1

2

)
3

√
32β4

ε =
3

√
35β4

ε

8
.

Lemma 9. Let m∗ = m∗(n) be the integer that maximizes P
{0,k}
n (Z = m)Mm

for 1 ≤ m ≤ n. Let ε > 0 and let x∗ be as in Proposition 1. Then m∗ approaches
infinity when so does n and, if k = o(n1−α) for some 0 < α < 1,

max
1≤m≤n

P
{0,k}
n (Z = m)Mm ≤ φn,ε(x∗).

Proof. First we prove that the integer m∗(n) approaches infinity when so does
n. Assume that there exists K > 0 and a subsequence m∗(nj), j ≥ 1, such that

m∗(nj) ≤ K for all j ≥ 1. It follows that P
{0,k}
nj (Z = m)Mm is bounded for

j ≥ 1. However, it follows from Lemmas 3 and 8 that, for m =
⌊
(n/λ)1/2

⌋
,

P
{0,k}
n (Z = m)Mm = (n/λ)−1/2 exp

(
−1

2
+ o(1) +

β0(n/λ)
1/4

1
2 log

1/2(n/λ)
(1 + o(1))

)
,

= exp

(
−1

2
log(n/λ) + β0

(n/λ)1/4

1
2 log

1/2(n/λ)
(1 + o(1))

)
,

and this quantity approaches infinity when so does n. This contradicts the

fact that P
{0,k}
nj (Z = m)Mm is bounded for j ≥ 1, so we have indeed that

m∗(n) −→ ∞ as n −→ ∞.
As a consequence of the first part of the lemma, that we just proved, we

have m∗ > N for any fixed integer N . Thus Lemma 8 and Equation (16) imply

that, if ε > 0, then P
{0,k}
n (Z = m∗)Mm∗

≤ φn,ε(m∗) holds for sufficiently large
n. The result follows from the definition of x∗ in Proposition 1.

Theorem 2. Let k = k(r) and n = n(r) be sequences such that n = kr and,

for some 0 < α < 1, k = o(n1−α) as r approaches infinity. Let E
{0,k}
n (T) be

the expected value of T over the class of mappings on n nodes with indegrees
restricted to the set {0, k}. Then,

logE{0,k}
n (T) = k0

(n/λ)1/3

log2/3(n/λ)
(1 + o(1)),

as r approaches infinity, where λ = k − 1, k0 = 3
2 (3I)

2/3 and I is given in
Equation (15).
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Proof. It follows from Equation (14) that, if 1 ≤ m0 ≤ n and m∗ is the integer

that maximizes P
{0,k}
n (Z = m)Mm for 1 ≤ m ≤ n, then

P
{0,k}
n (Z = m0)Mm0

≤ E
{0,k}
n (T) ≤ nP{0,k}

n (Z = m∗)Mm∗
.

Let ε ∈ (−1, 0). Since m0 = ⌊t∗⌋ implies m0 = t∗
(
1 + o(1)

)
, it follows from

Lemma 8, Equation (3) and Proposition 1 that

logE{0,k}
n (T) ≥ kε

(n/λ)1/3

log2/3(n/λ)
(1 + o(1)). (29)

On the other hand, if ε ∈ (0, 1), then Lemma 9 implies that E
{0,k}
n (T) ≤

nφn,ε(x∗) and thus, by Proposition 1,

logE{0,k}
n (T) ≤ kε

(n
λ

)1/3 1

log2/3 n
(1 + o(1)). (30)

Let ε1 > 0. Since kε → k0 as ε → 0, we have (1 − ε1)k0 < kε < (1 + ε1)k0
for sufficiently small ε. The result follows from Equations (29) and (30) and
Lemma 7.

Corollary 1. Let k ≥ 2 be a fixed integer and let E
{0,k}
n (T) be the expected

value of T over the class of mappings on n nodes with indegrees restricted to
the set {0, k}. Then,

logE{0,k}
n (T) = k0

(n/λ)1/3

log2/3(n/λ)
(1 + o(1)),

as n approaches infinity, where λ = k − 1, k0 = 3
2 (3I)

2/3 and I is given in
Equation (15).

4 Expected Value of B

We obtain asymptotic estimates for the expectation of B over {0, k}-mappings
using arguments similar to those in Section 3. Let µm denote the expected value
of the product of the cycle lengths of a uniform random permutation of Sm.
Using Lemma 6 we can write the expected value of B over all {0, k}-mappings
on n = kr nodes as

E
{0,k}
n (B) =

n∑

m=1

P
{0,k}
n (Z = m)µm. (31)

The following lemma gives an asymptotic estimate for µm as m approaches
infinity.
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Lemma 10. Let µm be the expected value of the product of the cycle lengths of
a random uniform permutation of Sm. Then, as m approaches infinity,

µm =
exp(2

√
m)

2
√
πem3/4

(1 + o(1)).

In particular, for any ε > 0, there exists Nε such that, for all m > Nε,

(2− ε)
√
m < logµm < (2 + ε)

√
m.

It is clear from Equation (31) that, if m∗ is the integer that maximizes

P
{0,k}
n (Z = m)µm for 1 ≤ m ≤ n and m0 is an integer in [1, n], then

P
{0,k}
n (Z = m0)µm0

≤ E
{0,k}
n (B) ≤ nP{0,k}

n (Z = m∗)µm∗
.

Let ε > 0. It follows from Lemma 10 that, for sufficiently large n,

P
{0,k}
n (Z = m0)e

(2−ε)
√
m0 ≤ E

{0,k}
n (B) ≤ nP{0,k}

n (Z = m∗)e
(2+ε)

√
m∗ , (32)

provided that m∗ approaches infinity when so does n; we defer the proof of this
claim to the proof of Theorem 3.

In light of Equation (3), in order to obtain upper and lower bounds by
Equation (32) we consider the function

Un,ε(x) = λxkx−1 Γ(r)

Γ(r − x+ 1)

Γ(n− x)

Γ(n)
exp((2 + ε)

√
x), (33)

where ε denotes a real number that may be positive or negative. If x∗ is the
point that maximizes Un(x) for x ∈ (0, n) and m0 is an integer in [1, n], then
Equation (32) implies, for sufficiently large n, that

Un,−ε(m0) ≤ E
{0,k}
n (B) ≤ n · Un,ε(x∗). (34)

In order to simplify the next calculations, we consider Hn,ε(x) = logUn,ε(x) and
note that x∗ is a local maximum of Un,ε(x) if and only if it is a local maximum
of Hn,ε(x). It is known that the inverse of the Gamma function has simple
zeroes in the non-positive integers, so the function Hn,ε(x) is not well defined
for x ∈ {r + 1, r + 2, . . . }. We consider the range [1, r] and note that this is
not an issue because Pn(Z = m) = 0 for m > r. Indeed, every cyclic node in
a {0, k}-mapping ϕ : [n] −→ [n] has indegree k, hence n and m must satisfy
k ·m ≤ n.

We recall that a real function is differentiable in this range if and only if it
is differentiable in (1 − δ, h+ δ) for some δ > 0.

Proposition 2. For each r ≥ 1, there exists a unique point x∗ that maximizes
the function Hn,ε(x) for x ∈ [1, r], where n = rk. Moreover, Hn,ε(x∗) and
Hn,ε(⌊x∗⌋) are both given by

(
1 +

ε

2

)4/3 3

2

(n
λ

)1/3
(1 + o(1)),

where λ = k − 1.
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Proof. The function log Γ(x) is infinitely differentiable for x > 0; see [1]. Hence,
for each n ≥ 1, Hn,ε(x) is infinitely differentiable for x ∈ [1, r]. It follows from
Lemma 1 that, for x ∈ [1, r],

H ′
n,ε(x) =

1

x
+ log k +

d

dx
log

(
Γ(n− x)

Γ(r − x+ 1)

)
+
(
1 +

ε

2

)
x−1/2

= log k +
1

x
+
(
1 +

ε

2

)
x−1/2 +Ψ(r − x+ 1)−Ψ(n− x).

(35)

Using Lemma 1 we obtain

H ′
n,ε(1) = log k + 2 +

ε

2
+ Ψ(r)−Ψ(n− 1)

= log k + 2 +
ε

2
+ log r +O

(
1

r

)
− log(n− 1) + O

(
1

n− 1

)

= log k + 2 +
ε

2
+ log r − logn− log

(
1− 1

n

)
+O

(
1

r

)

= log k + 2 +
ε

2
+ log r − log k − log r +O

(
1

n

)
= 2 +

ε

2
+O

(
1

r

)
.

Therefore H ′
n,ε(1) > 0 for sufficiently large values of n. On the other hand,

H ′
n,ε(r) = log k +

1

r
+
(
1 +

ε

2

)
r−1/2 +Ψ(1)−Ψ(n− r)

= log k +
1

r
+
(
1 +

ε

2

)
r−1/2 +Ψ(1)− log(n− r) +O

(
1

n− r

)
.

Since
1

n− r
=

1

k − 1
· 1
r
= O

(
1

r

)
,

it follows that

H ′
n,ε(r) = log k +Ψ(1)− log(k − 1)− log r + O

(
1

r1/2

)
= − log r +O(1).

Hence n = kr implies that H ′
n,ε(r) < 0 for sufficiently large n. This proves the

existence of a point x∗ that is a local maximum of Hn,ε(x). Also,

H ′′
n,ε(x) = −x−2 −

(
1

2
+

ε

4

)
x−3/2 −Ψ′(r − x+ 1) + Ψ′(n− x).

Since r−x+1 < n−x, it follows from Lemma 1 that Ψ′(n−x) < Ψ′(r−x+1)
and thus H ′′

n,ε(x) < 0 for x ∈ [1, r]. This proves that x∗ is unique.
We obtain next a heuristic estimate for x∗ as n approaches infinity. Using

Equation (35) and Lemma 2 one proves that, for x = o(r),

H ′
n,ε(x) =

1

x
+
(
1 +

ε

2

)
x−1/2 − x

r
+

x

n
+O

(
x2

r2

)
+O

(
1

r

)

=
1

x
+
(
1 +

ε

2

)
x−1/2 − (k − 1)x

n
+O

(
x2

r2

)
+O

(
1

r

)
.

(36)
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We recall that λ = k − 1 and consider the equation

1

x
+
(
1 +

ε

2

)
x−1/2 − λx

n
= 0,

that is, (
1 +

ε

2

)
x−1/2

(
1 +O

(
1√
x

))
=

λx

n
.

The equation above suggests that

x∗ =
((

1 +
ε

2

) n

λ

)2/3 (
1 + o(1)

)
. (37)

In order to confirm that Equation (37) holds, we prove that

H ′
n,ε

([(
1 +

ε

2

) n

λ

]2/3
(1 + δn)

)
< 0 (38)

and

H ′
n,ε

([(
1 +

ε

2

) n

λ

]2/3
(1− δn)

)
> 0, (39)

for some small δn = o(1) to be determined. We observe that Equation (36)
implies

H ′
n,ε

([(
1 +

ε

2

) n

λ

]2/3
(1 + δn)

)

=
((

1 +
ε

2

) n

λ

)−2/3

(1 + δn)
−1 +

(
1 +

ε

2

)((
1 +

ε

2

) n

λ

)−1/3

(1 + δn)
−1/2

− (k − 1)

n

((
1 +

ε

2

) n

λ

)2/3
(1 + δn) +O

(
r−2/3

)
+O

(
r−1
)

=
(
1 +

ε

2

)2/3 (n
λ

)−1/3

(1 + δn)
−1/2 −

(
1 +

ε

2

)2/3 (n
λ

)−1/3

(1 + δn)

+O
(
r−2/3

)

=
(
1 +

ε

2

)2/3 (n
λ

)−1/3 [
(1 + δn)

−1/2 − (1 + δn) +O
(
r−1/3

)]

=
(
1 +

ε

2

)2/3 (n
λ

)−1/3
[(

1− 1

2
δn +O(δ2n)

)
− (1 + δn) +O

(
r−1/3

)]

=
(
1 +

ε

2

)2/3 (n
λ

)−1/3
(
−3

2
δn +O(δ2n) +O

(
r−1/3

))
.

It is of our interest to write

H ′
n,ε

([(
1 +

ε

2

) n

λ

]2/3
(1 + δn)

)
=
(
1 +

ε

2

)2/3 (n
λ

)−1/3
(
−3

2
δn + o(δn)

)
,

as this would allow us to determine if the left-hand side of the equation above
is positive or negative, depending on the value of δn. We set δn = r−1/4 and
conclude that

H ′
n,ε

([(
1 +

ε

2

) n

λ

]2/3
(1 + δn)

)
< 0, (40)
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for sufficiently large n. One proves similarly that, for sufficiently large n, we
have

H ′
n,ε

([(
1 +

ε

2

) n

λ

]2/3
(1− δn)

)
=
(
1 +

ε

2

)2/3 (n
λ

)−1/3
(
3

2
δn + o(δn)

)
.

Hence, for sufficiently large n,

H ′
n,ε

([(
1 +

ε

2

) n

λ

]2/3
(1− δn)

)
> 0. (41)

Equations (40) and (41) imply that Equation (37) holds indeed.
We estimate the value of Hn,ε(x∗). We recall that Hn,ε(x∗) = logUn,ε(x∗),

where Un,ε(x∗) is defined in Equation (33). It follows from Lemma 2 that

Hn,ε(x∗) = x∗ log k − x2
∗

2h
+ x∗ log r +

x2
∗

2n
− x∗ logn+ (2 + ε)

√
x∗ +O(log r)

= −(k − 1)
x2
∗

2n
+ (2 + ε)

√
x∗ +O(log r).

Hence, by Equation (37),

Hn,ε(x∗) =
(n
λ

)1/3
[
−1

2

(
2 + ε

2

)4/3

+ (2 + ε)

(
2 + ε

2

)1/3
]
(
1 + o(1)

)

=
(
1 +

ε

2

)4/3 (n
λ

)1/3 [
−1

2
+ 2

] (
1 + o(1)

)

=
(
1 +

ε

2

)4/3 3

2

(n
λ

)1/3 (
1 + o(1)

)
,

as desired. The estimate of Hn,ε(⌊x∗⌋) follows easily from the fact that

⌊x∗⌋ = x∗ − {x∗} = x∗ +O(1) = x∗
(
1 + o(1)

)
.

Theorem 3. Let k = k(r) and n = n(r) be sequences such that n = kr and,

for some 0 < α < 1, k = o(n1−α) as r approaches infinity. Let E
{0,k}
n (B) be

the expected value of B over the class of mappings on n nodes with indegrees
restricted to the set {0, k}. Then,

logE{0,k}
n (B) =

3

2

(n
λ

)1/3
(1 + o(1)),

where λ = k − 1.

Proof. We recall that the bounds in Equation (32) hold provided that the integer

m∗ = m∗(n) that maximizes P
{0,k}
n (Z = m)µm for 1 ≤ m ≤ n tends to infinity

when so does n. We prove this claim next. Indeed, if there exists C > 0 and
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a subsequence (m∗(nj))j such that m∗(nj) ≤ C for all j ≥ 1, then P
{0,k}
nj (Z =

m)µm is bounded for j ≥ 1. However, it follows from Lemma 3 that, for
m =

⌊
n1/2

⌋
,

P
{0,k}
n (Z = m)µm ∼ λn1/2

n2
√
πen3/4

exp

(
−λ(n1/2)2

2n
+ 2(n1/2)1/2

)
,

hence,

P
{0,k}
n (Z = m)µm ∼

(
λ2ek

4π

)1/2
e2n

1/4

n5/4
.

Thus, for m =
⌊
n1/2

⌋
, P

{0,k}
n (Z = m)µm approaches infinity when so does n.

This is a contradiction, so we have indeed that m∗(n) −→ ∞ as n −→ ∞.
Let h = n/k. We recall that Pn(Z = m) = 0 for m > h. It follows from

Equation (34) that

max
1≤m≤n

Pn(Z = m)µm = max
1≤m≤h

Pn(Z = m)µm ≤ n · max
1≤x≤h

Un,ε(x) = n ·Un,ε(x∗).

Since n = exp(logn), using Proposition 2 we conclude that

logE{0,k}
n (B) ≤

(
1 +

ε

2

)4/3 3

2

(n
λ

)1/3
(1 + o(1)). (42)

If ε > 0 and m0 = ⌊x∗⌋, then Equation (34) and Proposition 2 imply

logE{0,k}
n (B) ≥ Hn,−ε(m0) =

(
1− ε

2

)4/3 3

2

(n
λ

)1/3
(1 + o(1)). (43)

Let ε1 > 0 Since (1 + ε/2)4/3 → 1 as ε → 0, we have 1− ε1 < (1− ε/2)4/3 and

(1 + ε/2)
4/3

< 1+ ε1 for sufficiently small ε. The result follows from Equations
(29) and (30) and Lemma 7.

Corollary 2. Let k ≥ 2 be a fixed integer and let E
{0,k}
n (B) be the expected

value of B over the class of mappings on n nodes with indegrees restricted to
the set {0, k}. Then, as n approaches infinity,

logE{0,k}
n (B) =

3

2

(n
λ

)1/3
(1 + o(1)),

where λ = k − 1.

5 Lognormality

Let µ∗
n = 1

2 log
2(
√
n), σ∗

n = 1√
3
log3/2(

√
n) and µn = 1

2 log
2(
√

n
λ ), σn =

1√
3
log3/2(

√
n
λ ). Harris proved that the sequence of random variables defined

over the space of random mappings on n nodes as Xn = (logT−µ∗
n)/σ

∗
n, n ≥ 1,
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converges weakly to a standard normal distribution [17]. In this section we
prove an analogue of this result for {0, k}-mappings:

lim
n→∞

P
{0,k}
n

(
logT− µn

σn
≤ x

)
=

1√
2π

∫ x

−∞
e−t2/2dt. (44)

The analogous result for the parameter B is proved from Equation (44) by
showing that the random variable χn = logB−logT, when properly normalized,
converges in probability to zero.

We write the probability in Equation (44) using the law of total probability:
we partition the space of {0, k}-mappings according to the values m ∈ [1, r] that
Z assumes. Let ξ1, ξ2 be as in Lemma 5. We partition the interval [1, r] into
three subintervals:

• I1 = {m : 1 ≤ m < ξ1},
• I2 = {m : ξ1 ≤ m ≤ ξ2},
• I3 = {m : ξ2 < m ≤ r}.

Then, by the law of total probability,

P
{0,k}
n (logT ≤ µn + xσn) = ζ1 + ζ2 + ζ3, (45)

where
ζj =

∑

m∈Ij

P
{0,k}
n (Z = m)P{0,k}

n (logT ≤ µn + xσn|Z = m). (46)

The conditional probabilities P
{0,k}
n (logT ≤ µn + xσn|Z = m) in Equation (46)

can be trivially bounded by 1, so Lemma 5 clearly implies that

ζ1 = O
(
exp

(
−c log1/4

(n
λ

)))
and ζ3 = O

(
exp

(
−c log1/4

(n
λ

)))
, (47)

where c is any positive constant less than 23/4. Our estimates for ζ2, the asymp-
totic main term in (45), use a strong version of the well known fact that the
order of a random permutation is asymptotically log-normal [6, 11]. Denote
by Qm the uniform probability measure on the symmetric group Sm and by
φ(x) = 1

2π

∫ x

−∞ e−t2/2dt the standard normal distribution.

Theorem 4 (Barbour and Tavaré [6]). Let αm = 1
2 log

2 m+logm log logm and

βm = 1√
3
log3/2 m. Then, there exists a constant K > 0 such that, for all real

numbers x and all integers m > 1,
∣∣∣∣Qm (logT ≤ αm + xβm)− φ(x)

∣∣∣∣ ≤
K√
logm

.

In the next lemma, we use Lemma 6 and Theorem 4 to approximate all the
conditional probabilities in the definition of ζ2. It turns out that the interval
[ξ1, ξ2] is narrow enough so that all conditional probabilities in the summand of
ζ2 are approximately φ(x).
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Lemma 11. For n = kr and m ∈ I2, let

δx(m,n) = P
{0,k}
n (logT ≤ µn + xσn|Z = m)− φ(x),

and let ∆x(n) = max{|δx(m,n)|,m ∈ I2}. There are positive constants K1,K2

such that

∆x(n) = max
m∈I2

|δx(m,n)| ≤ K1

log1/4(
√
n/λ)

+
K2|x|

log3/4(
√
n/λ)

.

Proof. It follows from Lemma 6 that, for any m ∈ I2,

P
{0,k}
n

(
logT− µn

σn
≤ x

∣∣∣Z = m

)
= Qm

(
logT− µn

σn
≤ x

)
. (48)

Let αm and βm be as in Theorem 4. Define y = y(n,m, x) to be the real number
for which µn + xσn = αm + yβm. Then,

Qm

(
logT− µn

σn
≤ x

)
= Qm

(
logT− αm

βm
≤ y

)
. (49)

Therefore, by Equations (48) and (49),

|δx(m,n)| =
∣∣∣∣Qm

(
logT− αm

βm
≤ y

)
− φ(x)

∣∣∣∣ ,

and thus, by the triangle inequality,

|δx(m,n)| ≤
∣∣∣∣Qm

(
logT− αm

βm
≤ y

)
− φ(y)

∣∣∣∣+ |φ(y)− φ(x)| . (50)

We note that Theorem 4 implies that, for some constant K3 > 0,

∣∣∣∣Qm

(
logT− αm

βm
≤ y

)
− φ(y)

∣∣∣∣ ≤
K3√
logm

. (51)

Also, from the definition of φ we obtain

|φ(y)− φ(x)| =
∣∣∣∣∣

∫ y

x

e−t2/2

√
2π

dt

∣∣∣∣∣ ≤ |y − x|. (52)

Combining Equations (50)-(52) we obtain

|δx(m,n)| ≤ K3√
logm

+ |y − x|. (53)

In order to estimate |y − x|, we note that the definition of y implies

y − x =
(µn − αm) + x(σn − βm)

βm
. (54)

23



Since I2 = {m : m1−εn
# ≤ m ≤ m1+εn

# }, where m# =
√
n/λ + O(1) and

εn = log−3/4(
√
n/λ), we have for m ∈ I2 that

logm = log
(√

n/λ
)
(1 +O(εn)).

Combining this with βm = 1√
3
log3/2 m and σn = 1√

3
log3/2

√
n/λ, we obtain

βm = σn(1 +O(εn)), hence

σn − βm = O(σnεn) = O(βmεn). (55)

Using the same argument we prove that µn = αm(1 +O(εn)), and thus

αm − µn = O(αmεn) = O
(
βm log−1/4

(√
n/λ

))
. (56)

It follows from Equations (54)-(56) that

y − x = O
(
log−1/4

(√
n/λ

))
+O(|x|εn). (57)

Since m > ξ1 = O
(
log
√

n/λ
)
, it follows from Equations (53) and (57) that

|δx(m,n)| = O
(
log−1/2

(√
n/λ

))
+O

(
log−1/4

(√
n/λ

))
+O

(
|x| log−3/4(n)

)
.

We note that the right-hand side of the equation above depends on n and x,
but not on m. The result follows at once from the estimate

∆x(n) = max
m∈I2

|δx(m,n)| ≤ K1

log1/4(
√
n/λ)

+
K2|x|

log3/4(
√
n/λ)

, (58)

where K1,K2 are positive constants.

Theorem 5. Let k = k(r) and n = n(r) be sequences such that n = kr and, for
some 0 < α < 1, k = o(n1−α) as r approaches infinity. Let µn = 1

2 log
2(
√
n/λ),

σ2
n = 1

3 log
3(
√
n/λ). Let T(f) denote the least common multiple of the length

of the cycles of a mapping f and, for r ≥ 1, let Xn be the random variable
defined over the space of {0, k}-mappings on n nodes as Xn = (logT− µn)/σn.
Then, the sequence defined by Xn converges in distribution to a standard normal
distribution. Furthermore

P
{0,k}
n (logT ≤ µn + xσn) = φ(x) +O

(
|x|+ log1/2(

√
n/λ)

log3/4(
√
n/λ)

)
. (59)

Remark. Because the distribution function of Xn converges pointwise to φ(x),
we know from Lemma 3 in Section 8.2 of [9] that Xn must also converge uni-
formly; there is a function ω(n) such that ω(n) → ∞ and, for all x ∈ R,

∣∣∣∣ P
{0,k}
n (logT ≤ µn + xσn)− φ(x)

∣∣∣∣ ≤
1

ω(n)
. (60)
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However, we are not free to choose ω(n); it is an unspecified function that
could grow arbitrarily slowly. If we impose the restriction that |x| ≤ bn,

where bn = log1/2(
√
n/λ), or any other specific function we choose that is

o
(
log3/4(

√
n/λ)

)
, then Equation (59) gives a better error term than the uni-

form bound in (60).

Proof. It follows from Equation (45) that

|P{0,k}
n (logT ≤ µn + xσn)− φ(x)| = |ζ1 + ζ2 + ζ3 − φ(x)|.

Hence, by the triangle inequality,

|P{0,k}
n (logT ≤ µn + xσn)− φ(x)| ≤ |ζ2 − φ(x)| + ζ1 + ζ3. (61)

Using Lemma 5 we are able to write

φ(x) =
∑

m∈I2

P
{0,k}
n (Z = m)φ(x) +O

(
exp

(
−c log1/4

(n
λ

)))
.

Therefore, by the triangle inequality and Equation (46),

|ζ2 − φ(x)| ≤
∑

m∈I2

P
{0,k}
n (Z = m)

∣∣∣∣P
{0,k}
n

(
logT− µn

σn
≤ x

∣∣Z = m

)
− φ(x)

∣∣∣∣

+O(exp
(
−c log1/4

(n
λ

))
.

Using the definition of ∆x(n) in Lemma 11, we have

|ζ2 − φ(x)| ≤ ∆x(n)
∑

m∈I2

P
{0,k}
n (Z = m) +O(exp

(
−c log1/4

(n
λ

))
. (62)

Using Lemma 11 in (62), and putting (47) into (61), we get

|P{0,k}
n (logT ≤ µn + xσn)− φ(x)|

≤ K2

log1/4(
√
n/λ)

+
K3|x|

log3/4(
√
n/λ)

+O(exp
(
−c log1/4

(n
λ

))
.

The last of the three terms is negligible.

The next theorem implies that, for most {0, k}-mappings on n nodes, logB
and logT are approximately equal. (Later this fact will be used to prove that
logB is also asymptotically normal.)

Theorem 6. Let k = k(r) and n = n(r) be sequences such that n = kr and,
for some 0 < α < 1, k = o(n1−α) as r approaches infinity. For r ≥ 1, let
χn be the random variable defined over {0, k}-mappings on n nodes as χn =

(logB− logT)/σn, where σn = 1√
3
log3/2(

√
n/λ). Then, for any ε > 0,

P
{0,k}
n (χn > ε) = O

(
(log logn)2 logn

εσn

)
,

as r approaches infinity.
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Proof. Let D = (logB − logT) = σnχn. By the Law of Total Probability we
have, for any ξ,

P
{0,k}
n (D > ξ) =

r∑

m=1

P
{0,k}
n (Z = m)P{0,k}

n (D > ξ|Z = m)

=

r∑

m=1

P
{0,k}
n (Z = m)Qm(D > ξ). (63)

Define L(1) = L(2) = 1, and L(m) = (log logm)2 logm for all m > 2. It is
known ([5], page 333) that there is a positive constant κ such that, for uniformly
random permutations of [m], the expected value of logB − logT is bounded
above by κL(m). We note that κL(m) is a non-decreasing function of m. It
follows from Markov’s Inequality (Section 3.4 of [22]) that, for any ξ > 0, and
for 1 ≤ m ≤ r,

Qm(D > ξ) ≤ κL(m)

ξ
≤ κL(n)

ξ
.

Putting this back into (63), we get P
{0,k}
n (D > ξ) ≤ κL(n)

ξ . In particular, with

ξ = εσn, we have P
{0,k}
n (χn > ε) ≤ κL(n)

εσn
.

Next we prove, using Theorem 6 and a variant of Slutsky’s theorem, that B
is asymptotically lognormal.

Theorem 7. Let k = k(r) and n = n(r) be sequences such that n = kr and, for
some 0 < α < 1, k = o(n1−α) as r approaches infinity. Let µn = 1

2 log
2(
√
n/λ),

σ2
n = 1

3 log
3(
√

n/λ). Let B(f) denote the product the cycle lengths of a mapping
f and, for r ≥ 1, let Yn be the normalized random variable Yn = (logB−µn)/σn.
Then, the sequence defined by Yn converges in distribution to a standard normal
distribution. Furthermore

P
{0,k}
n (logB ≤ µn + xσn)

= φ(x) +O

(
|x|

log3/4(
√
n/λ)

)
+O

(
(log logn)2

log1/4(n/λ)

)
.

Proof. One direction is trivial: logT ≤ logB, so by Theorem 5,

P
{0,k}
n (Yn ≤ x) ≤ P

{0,k}
n (Xn ≤ x) = φ(x) +O

(
|x|+ log1/2(

√
n/λ)

log3/4(
√

n/λ)

)
. (64)
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In the other direction, we have for any ε > 0,

P
{0,k}
n (Yn ≤ x)

≥ P
{0,k}
n (Yn ≤ x and χn ≤ ε)

= P
{0,k}
n (Xn + χn ≤ x and χn ≤ ε )

≥ P
{0,k}
n (Xn + ε ≤ x and χn ≤ ε )

≥ P
{0,k}
n (Xn ≤ x− ε)− P

{0,k}
n (χn > ε)

= φ(x− ε) +O

(
|x− ε|+ log1/2(

√
n/λ)

log3/4(
√

n/λ)

)
+O

(
(log logn)2 logn

εσn

)
,

where in the last step we used Theorem 5 and Theorem 6. Finally, choose ε =
1

log1/4(
√

n/λ)
, and use the mean value theorem to write φ(x− ε) = φ(x) +O(ε).

Then,

P
{0,k}
n (Yn ≤ x)

≥ φ(x) +O(ε) +O

(
|x|+ log1/2(

√
n/λ)

log3/4(
√
n/λ)

)
+O

(
(log logn)2 logn

εσn

)

= φ(x) +O

(
|x|

log3/4(
√
n/λ)

)
+O

(
(log logn)2

log1/4(n/λ)

)
.

6 Heuristics

In the analysis of his rho factorization method [21], Pollard conjectured that
quadratic polynomials modulo large primes behave like random mappings with
respect to their average rho length. However, it should be noted that the inde-
gree distribution of a class of mappings impacts the asymptotic distribution of a
number of parameters [2]; the indegree distribution of a mapping f on n nodes is
defined as the sequence nj = #{y ∈ [n] : |f−1(y)| = j}, j ≥ 0. Since a quadratic
polynomial modulo an odd prime p has a very particular indegree distribution,
namely (n0, n1, n2) = (p−1

2 , 1, p−1
2 ), one might wonder if {0, 2}-mappings do not

represent a better heuristic model. Furthermore, there are classes of polynomi-
als from which one might not expect the typical random mapping behavior, and
it is possible to use different classes of mappings as heuristic models. This is
the case for the polynomials of the form f(x) = xd + a ∈ Fq[x], where, as usual,
Fq denotes the finite field on q elements. Their indegree distribution satisfies

n0 =

(
1− 1

k

)
(q − 1), n1 = 1, nk =

1

k
(q − 1), (65)

where k = gcd(q − 1, d). We note that the indegree distribution of these
polynomials satisfies n0/q ∼ 1 − 1/k, n1/q = o(1) and nk/q ∼ 1/k as q ap-
proaches infinity. We refer to the polynomials with indegree distribution (65)
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as {0, k}-polynomials. As a particular case, we note that a polynomial of the
form xk + a ∈ Fp[x], p ≡ 1 (mod k), is a {0, k}-polynomial.

The interest in the heuristic approximation mentioned above can be at-
tributed at least in part to the wealth of asymptotic results on the statistics
of mappings with indegree restrictions, when compared to the literature on the
number theoretical setting; see for example [2, 10]. The main term of several
asymptotic results on the statistics of a class F of mappings with restrictions on
the indegrees depends on its asymptotic average coalescence λ = λ(F), defined
as in Section 2. This is the case for the rho length of a random node, parame-
ter involved in the analysis of Pollard factorization algorithm. Since λ = 1 for
unrestricted mappings and {0, 2}-mappings, these two classes represent equally
accurate models for the average rho length of quadratic polynomials [20]. It
is curious that the knowledge of the indegree distribution of these polynomials
does not represent an improvement on the heuristic in this case. It is worth
noting that our asymptotic results on different classes of {0, k}-mappings are
determined by their coalescence λ as well; compare Theorems 2 and 3 with
Equations (1) and (2). Compare µn and µ∗

m with σn and σ∗
m as well, under the

light of the fact that the expected number of cyclic nodes over all unrestricted
or {0, k}-mappings are asymptotically equivalent to

√
πn/2 and

√
πn/2λ, re-

spectively. We note that if log k = o(log n) then µn ∼ µ∗
n and σn ∼ σ∗

n as r
approaches infinity.

In this section we consider classes of {0, k}-mappings, treated in the previous
sections, as heuristic models for {0, k}-polynomials. Our focus lies on polyno-
mials of a certain degree modulo large prime numbers, hence from this point on
we restrict our attention to {0, k}-mappings with k ≥ 2 fixed, even though the
results of the previous sections hold in a more general setting. The asymptotic
results in this section are taken as n approaches infinity.

6.1 Sampling {0, k}-Mappings

In our experiments, for each prime number p ≡ 1 (mod k) considered, we select
p {0, k}-mappings on n = p − 1 nodes uniformly at random according to the
following algorithm. For f a {0, k}-mapping, let Nk = {y ∈ [n] : |f−1(y)| = k}.
We note that |Nk| = r. We determine the set Nk by selecting a permutation
σ = σ1 · · ·σn ∈ Sn uniformly at random and defining Nk = {σ1, . . . , σr}. The
image f(x) of every element x ∈ [n] is defined by choosing again a permutation
τ = τ1 · · · τn ∈ Sn uniformly at random. The first k elements define the preimage
of σ1: f−1(σ1) = {τ1, . . . , τk}. The next k elements determine the preimage of
the element of σ2, and so on. We make this process precise in the algorithm
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below.

Algorithm 1: Generating a random uniform {0, k}-mapping.
Input: Integers r ≥ 1 and k ≥ 2.
Output: {0, k}-mapping f on n = kr nodes.

1 Pick a permutation σ = σ1 · · ·σn ∈ Sn uniformly at random.
2 Pick a permutation τ = τ1 · · · τn ∈ Sn uniformly at random.
3 for i = 0, . . . , r − 1 do

4 for j = 1, . . . , k do

5 f(τ [ik + j]) = σ[i + 1] // τ [ℓ] denotes τℓ, same for σ[ℓ].

6 end

7 end

8 return f .

Theorem 8. Assume that the permutations σ, τ in Steps 1 and 2 of Algorithm
1 are uniform random permutation of Sn. Then Algorithm 1 returns a uniform
random {0, k}-mapping.

Proof. Let f be a {0, k}-mapping on n nodes andNk as above. We note that the
probability that Step 1 returns a given permutation σ ∈ Sn is 1/n!. Also, the
number of permutation that define the same set Nk = {σ1, . . . , σr} is given by
the number of permutations of {σ1, . . . , σr} times the number of permutations
of {σr+1, . . . , σn}. Hence the probability pNk

that the set Nk is chosen in Step
1 is

pNk
=

r!(n − r)!

n!
. (66)

Again, the probability that a given permutation is chosen in Step 2 is 1/n!.
Moreover, the number of permutations that define the same sequence of sets
Ai = f−1(σi), i = 1, . . . , r, equals the product of the number of permutations
on each Ai. Therefore, the probability p(A1,...,Ar) that (A1, . . . , Ar) is chosen
satisfies

p(A1,...,Ar) =
k! · · · k!

n!
=

(k!)r

n!
. (67)

It follows from Equations (66) and (67) that the probability that f is returned
by Algorithm 1 is pNk

·p(A1,...,Ar) = r!(n− r)!(k!)r/(n!)2 which does not depend
on f .

We discuss next the problems that can occur in the numerical estimate of
the expectation of a random variable by sampling. To simplify notation, let
~S = f1, f2, f3, . . . denote a sequence of independent random samples chosen
uniformly at random from the class of {0, k}-mappings on n nodes. We consider

the sequence of numbers defined by ξ = ξ(n) =
(
E
{0,k}
n (T)

)a
, where a depends

on n as well. We define

N = N(n, ~S, a) = min{t : T(ft) ≥ ξ}.
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Thus N has a geometric distribution: for j ≥ 1 we have

P
{0,k}
n (N = j) = P

{0,k}
n (T ≥ ξ) · P{0,k}

n (T < ξ)j−1,

E
{0,k}
n (N) =

1

Pn(T ≥ ξ)
.

(68)

We note that if a = log−1/4 n, then the ratio between ξ and E
{0,k}
n (T) approaches

zero as n → ∞. We prove in Theorem 9 that this particular choice of a defines
a random variable N whose expectation has exponential growth. We remember
that in this section we assume that k ≥ 2 is a fixed integer.

Lemma 12. Let f be a {0, k}-mapping on n = kr nodes and let α = n2/3

log3 n
. If

a−1 log−1/3 n = o(1) then, for sufficiently large n, Z(f) ≤ α implies T(f) < ξ.

Proof. If f : [n] → [n] is a {0, k}-mapping and Z(f) = m, then clearly T(f) ≤
max
σ∈Sm

T(σ). It follows from Landau’s theorem [19, 26] that

max
σ∈Sm

T(σ) = exp
(√

m logm(1 + o(1))
)
,

hence, for sufficiently large n,

T(f) < exp
(
2
√
m logm

)
. (69)

We note that, if m ≤ α, then

m logm ≤ α logα =
n2/3

log3 n

(
2

3
logn− log log3 n

)
≤ 2

3

n2/3

log2 n
.

Therefore,

2
√
m logm ≤ 2

n1/3

logn
, (70)

where Theorem 2 and the definition of ξ and α imply

2n1/3 log−1 n

log ξ
= O

(
a−1 log−1/3 n

)
.

If a−1 log−1/3 n = o(1), then exp
(
2n1/3 log−1 n

)
< ξ for sufficiently large n.

The result follows from Equations (69) and (70).

Theorem 9. If a−1 log−1/3 n = o(1) then, for sufficiently large n, we have

E
{0,k}
n (N) > exp

(
λn1/3

3 log6 n

)
,

and, in addition,

P
{0,k}
n

(
N ≤ exp

(
λn1/3

4 log6 n

))
≤ exp

(
− λn1/3

12 log6 n

)
.
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Proof. Let α = n2/3

log3 n
. Using first the Law of Total Probability we obtain

P
{0,k}
n (T ≥ ξ) = P

{0,k}
n (T ≥ ξ|Z ≤ α) · P{0,k}

n (Z ≤ α) +

P
{0,k}
n (T ≥ ξ|Z > α) · P{0,k}

n (Z > α).

We note that Lemma 12 implies P
{0,k}
n (T ≥ ξ|Z ≤ α) = 0 for r large enough.

Since P
{0,k}
n (T ≥ ξ|Z > α) ≤ 1, it follows that

P
{0,k}
n (T ≥ ξ) ≤ P

{0,k}
n (Z > α). (71)

We have by Lemma 4 that α is greater than the mode m# of Z, thus using
Equation (71) one obtains

P
{0,k}
n (T ≥ ξ) ≤

n∑

m=⌈α⌉
P
{0,k}
n (Z = m) ≤

n∑

m=⌊α⌋
P
{0,k}
n (Z = ⌊α⌋),

hence,
P
{0,k}
n (T ≥ ξ) ≤ nP{0,k}

n (Z = ⌊α⌋). (72)

We note that Lemma 3 implies

nP{0,k}
n (Z = ⌊α⌋) = λ

n2/3

log3 n
exp

(
− λ

2n

n4/3

log6 n
+O

(
1

n2

n2

log9 n

)
+ o(1)

)

= exp

(
− λn1/3

2 log6 n
+ logλ+

2

3
logn− log log3 n+ o(1)

)
,

hence, for sufficiently large n,

nP{0,k}
n (Z = ⌊α⌋) < exp

(
− λn1/3

3 log6 n

)
. (73)

The bound for E
{0,k}
n (N) follows at once from Equations (68), (72) and (73).

We note that, for any positive integer s, Equation (68) implies

P
{0,k}
n (N ≤ s) =

∑

1≤j≤s

P
{0,k}
n (N = j) ≤

∑

1≤j≤s

P
{0,k}
n (T ≥ ξ)P{0,k}

n (T < ξ)j−1,

so P
{0,k}
n (N ≤ s) ≤ sP

{0,k}
n (T ≥ ξ). In particular, if s = exp

(
λn1/3

4 log6 n

)
, then

Equations (72) and (73) imply

P
{0,k}
n

(
N ≤ exp

(
λn1/3

4 log6 n

))
≤ exp

((
1

4
− 1

3

)
λn1/3

log6 n

)
= exp

(
− λn1/3

12 log6 n

)
,

as desired.
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Let ξ̃ =
(
E
{0,k}
n (B)

)b
where b = b(n). We prove, as a particular case of The-

orem 10 below, that if b = log−1 n then the expected number of random map-
pings f sampled before encountering one such that B(f) ≥ ξ̃ is exponentially

large. As before, we consider a sequence ~S = f1, f2, f3, . . . of {0, k}-mappings
on n nodes chosen independently and uniformly at random. We estimate the
asymptotic behavior of the random variable Ñ = min{t : B(ft) ≥ ξ̃}.

Lemma 13. Let f be a {0, k}-mapping on n = kr nodes and let α̃ = n1/3

log3 n
. If

b−1 log−2 n = o(1) then, for sufficiently large n, C(f) < α̃ implies B(f) < ξ̃.

Proof. If Z(f) = m, then B is the product of C positive numbers whose sum is
m. Hence B ≤ (m/C)C ≤ (n/C)C. The function C 7→ (n/C)C is increasing for
C ≤ α̃. Therefore, when C < α̃, we have for all sufficiently large n that

B < (n/α̃)
α̃
= exp (α̃ log(n/α̃)) . (74)

It follows from Theorem 3 and the definition of ξ̃ and α̃ that

α̃ log(n/α̃)

log ξ̃
= O

(
n1/3

log3 n
log

(
n1/3

log3 n

)
b−1n−1/3

)
= O

(
b−1 log−2 n

)
.

If b−1 log−2 n = o(1) then, for sufficiently large n, we have exp (α̃ log(n/α̃)) < ξ̃.
The result follows from Equation (74).

Theorem 10. If b−1 log−2 n = o(1), then there exist positive constants c1, c2
such that, for sufficiently large n,

E
{0,k}
n (Ñ) > exp

(
c1

(n/λ)1/3

log3(n/λ)

)
,

and, in addition,

P
{0,k}
n

(
Ñ ≤ exp

(
c2

(n/λ)1/3

log3(n/λ)

))
≤ exp

(
−c2

(n/λ)1/3

log3(n/λ)

)
,

Proof. The random variable Ñ has a geometric distribution, hence

E
{0,k}
n (Ñ) =

1

P
{0,k}
n (B ≥ ξ̃)

, (75)

where, by the Law of Total Probability,

P
{0,k}
n (B ≥ ξ̃) = P

{0,k}
n (B ≥ ξ̃|C ≥ α̃)P{0,k}

n (C ≥ α̃) +

P
{0,k}
n (B ≥ ξ̃|C < α̃)P{0,k}

n (C < α̃).

As a consequence of Lemma 13 we have P
{0,k}
n (B ≥ ξ̃|C < α̃) = 0, so P

{0,k}
n (B ≥

ξ̃|C ≥ α̃) ≤ 1 implies

P
{0,k}
n (B ≥ ξ̃) ≤ P

{0,k}
n (C ≥ α̃). (76)
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Using again the Law of Total Probability one obtains

P
{0,k}
n (C ≥ α̃) =

∑

m

P
{0,k}
n (C ≥ α̃|Z = m)P{0,k}

n (Z = m)

=
∑

m

Qm(C ≥ α̃)P{0,k}
n (Z = m).

(77)

Using moment generating functions [14] one is able to prove that there exist
constants ρ > 1 and c0 > 0 such that Qm(C ≥ α̃) ≤ c0ρ

−α̃ for all 1 ≤ m ≤ n.
Thus Equations (76) and (77) imply

P
{0,k}
n (B ≥ ξ̃) ≤ c0ρ

−α̃
n∑

m=1

P
{0,k}
n (Z = m) ≤ c0ρ

−α̃.

It follows from Equation (75) that

E
{0,k}
n (Ñ) ≥ exp

(
− log c0 +

(n/λ)1/3

log3(n/λ)
log ρ

)
≥ exp

(
c1

(n/λ)1/3

log3(n/λ)

)
, (78)

for c1 = (log ρ)/2 and sufficiently large n.
We conclude the proof with an argument analogous to the one in the proof

of Theorem 9. For any positive integer s we have

P
{0,k}
n (Ñ ≤ s) =

∑

1≤j≤s

P
{0,k}
n (Ñ = j) ≤

∑

1≤j≤s

P
{0,k}
n (B ≥ ξ̃)P{0,k}

n (B < ξ̃)j−1,

so P
{0,k}
n (Ñ ≤ s) ≤ sP

{0,k}
n (B ≥ ξ̃). It follows from Equations (75) and (78)

that, for s = exp
(
c2

(n/λ)1/3

log3(n/λ)

)
and c2 = c1/2,

P
{0,k}
n

(
Ñ ≤ exp

(
c2

(n/λ)1/3

log3(n/λ)

))
≤ exp

(
(c2 − c1)

(n/λ)1/3

log3(n/λ)

)
,

where c2 − c1 = −c2.

6.2 Numerical Results

We exhibit in Table 1 our numerical results on the behavior of T and B over
different classes of polynomials over finite fields and different classes of map-
pings. For each value of k, we consider the first 100 primes greater than 103

of the form indicated in Table 1. For each such prime, we select, according to
Algorithm 1, p mappings on n = p− 1 nodes; we also consider all p polynomials
of the form indicated in Table 1. We compute the exact value of T for each
function and compute the corresponding average values T(p). We compute the
ratio RT(p) between logT(p) and the quantity in Theorem 2. In Table 1 we
exhibit the average value RT of RT(p) over all primes considered; we stress the
dependence of this calculation on the coalescence λ of the corresponding class
by adopting the notation RT(λ). The same is done for the parameter B.
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Class of functions Asymptotic Coalescence RT(λ) RB(λ)
Unrestricted mappings 1 0.8090 0.7247

{0, 2}-mappings 1 0.7929 0.7097
x2 + a ∈ Fp[x] 1 0.8031 2.4183

x4 + a ∈ Fp[x], p ≡ 3 (mod 4) 1 0.8033 3.9237
{0, 3}-mappings 2 0.7700 0.7043

x3 + a ∈ Fp[x], p ≡ 1 (mod 3) 2 0.7631 2.5067
{0, 4}-mappings 3 0.7436 0.7007

x4 + a ∈ Fp[x], p ≡ 1 (mod 4) 3 0.7391 2.6055
{0, 5}-mappings 4 0.7465 0.7041

x5 + a ∈ Fp[x], p ≡ 1 (mod 5) 4 0.7435 3.3597
{0, 6}-mappings 5 0.6986 0.6789

x6 + a ∈ Fp[x], p ≡ 1 (mod 6) 5 0.6989 1.3522

Table 1: Experimental results on mappings and polynomials according to their
coalescence.

It is not surprising to have the ratio RT distant from 1 even in the case of
{0, k}-mappings, where we have an asymptotic result proved on the logarithm
of the expectation of T. It is proved in Theorem 9 that most of the contribution

to E
{0,k}
n (T) comes from a relatively small set of exceptional maps. Unless the

number of samples is enormous, as stated in the first part of the theorem, none
of these exceptional maps is likely to be sampled, so our empirical estimate for

E
{0,k}
n (T) is likely to be poor. The ratios RT appear to decrease as λ grows

large, but this agrees, in a way, with the fact that the upper bound in Theorem
9 decreases as k grows large.

Regardless of the sampling problem explained in Section 6.1, it is remark-
able that the ratio between any two entries in the table above for RT with the
same value of λ lies in the interval (0.97, 1.03). This suggests that the behavior
of a typical {0, k}-polynomial can be approximated by the behavior of a typi-
cal {0, k}-mapping. However, one must be careful when using the asymptotic
estimate in Theorem 2 as a reference, due to the results in Theorem 9. The
numerical results for the parameter B, on the other hand, represent a different
scenario, where the ratio between numerical results for classes with the same
value of asymptotic coalescence were found to be as high as 4.8835. It is inter-
esting but not clear why the heuristic performs so poorly in the approximation
of the statistics of polynomials by mappings in the case of the parameter B.
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