
On the implementation and execution of adaptive streaming applications
modeled as MADF
Niknam, S.; Wang, P.; Stefanov, T.P.; Stuijk, S.

Citation
Niknam, S., Wang, P., & Stefanov, T. P. (2020). On the implementation and execution of
adaptive streaming applications modeled as MADF. Proceedings Of The 23Th International
Workshop On Software And Compilers For Embedded Systems. Scopes'20, 13-18.
doi:10.1145/3378678.3391876

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3638517

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3638517

On the Implementation and Execution of Adaptive Streaming
Applications Modeled as MADF

Sobhan Niknam, Peng Wang, Todor Stefanov
Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

Email: {s.niknam, p.wang, t.p.stefanov}@liacs.leidenuniv.nl

ABSTRACT
It has been shown that the mode-aware dataflow (MADF) is an
advantageous analysis model for adaptive streaming applications.
However, no attention has been paid on how to implement and ex-
ecute an application, modeled and analyzed with the MADF model,
on a Multi-Processor System-on-Chip, such that the properties of
the analysis model are preserved. Therefore, in this paper, we con-
sider this matter and propose a generic parallel implementation and
execution approach for adaptive streaming applications modeled
with MADF. Our approach can be easily realized on top of exist-
ing operating systems while supporting the utilization of a wider
range of schedules. In particular, we demonstrate our approach on
LITMUSRT as one of the existing real-time extensions of the Linux
kernel. Finally, to show the practical applicability of our approach
and its conformity to the analysis model, we present a case study
using a real-life adaptive streaming application.

1 INTRODUCTION
Nowadays, many modern streaming applications, in the domain of
multimedia, image, and signal processing, increasingly show adap-
tive behavior at run-time. For example, a computer vision system
processes different parts of an image continuously to obtain infor-
mation from several regions of interest depending on the actions
taken by the external environment. To handle the ever-increasing
computational demand and real-time (RT) constraints of such adap-
tive streaming applications, a Multi-Processor System-on-Chip (MP-
SoC), which contains an increasing number of Processing Elements
(PEs), has become a standard platform that is widely adopted in
embedded systems design to benefit from parallel execution. De-
signing such an embedded MPSoC system, however, imposes two
major challenges: 1) how to efficiently express the adaptive be-
havior and parallelism found in streaming applications in order
to analyze their behavior and guarantee their timing constraints,
and 2) how to implement and execute the analyzed applications on
MPSoC platforms.

To address the first challenge and facilitate the analysis of adap-
tive streaming applications, several parallel models of computation
(MoCs), referred as adaptive MoCs in this paper, such as mode-
aware dataflow (MADF) [1], mode-controlled dataflow (MCDF) [2],
and finite-state machine scenario-aware dataflow (FSM-SADF) [3]
have been proposed. These adaptive MoCs are able to capture the
behavior of an adaptive streaming application as a collection of
a finite number of different dataflow graphs, called scenarios or
modes, that are controlled by parameters which values need to be
updated at run-time to activate different graphs. In this way, the ap-
plication’s behavior is switched from one scenario/mode to another
scenario/mode, thereby expressing the adaptive behavior. Each sce-
nario or mode is modeled using a static MoC such as synchronous
dataflow (SDF) graph [4] or cyclo-static dataflow (CSDF) graph [5]
and is individually analyzable in terms of performance and resource
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7131-5/20/05. . . $15.00
https://doi.org/10.1145/3378678.3391876

usage at design-time. As a result, design-time analyzability of the
adaptive streaming applications, modeled with the aforementioned
adaptive MoCs, can be provided to some extent, e.g., hard real-time
(HRT) analysis[1], worst-case performance analysis [3], etc.

Apart from the expressive power, the major difference between
the aforementioned adaptive MoCs is in how the actors in a graph,
representing application’s tasks in a particular mode, are sched-
uled during mode transitions. In FSM-SADF [3] and MCDF [2], a
protocol, referred as self-timed (ST) transition protocol, has been
adopted which specifies that tasks are scheduled as soon as possible
during mode transitions. This protocol, however, introduces timing
interference of one mode execution with another one that can sig-
nificantly affect and fluctuate the latency of an adaptive streaming
application across a long sequence of mode transitions. To avoid
such undesirable behavior caused by the ST transition protocol, a
simple, yet effective transition protocol, called maximum-overlap
offset (MOO), is proposed for the MADF model [1]. The MOO proto-
col can resolve the timing interference between modes upon mode
transitions by properly offsetting the starting time of the new mode.
In [1], it has been shown that such offset for the MOO protocol can
be calculated when using the strictly periodic scheduling (SPS) [6]
in each mode to schedule the application tasks.

Although MADF has the above-discussed advantage compared
to FSM-SADF [3] and MCDF [2] due to its powerful MOO transition
protocol, so far no attention has been paid on how to address the
aforementioned second major challenge, i.e., how to implement
and execute an application, modeled and analyzed with the MADF
model, on an MPSoC, such that the properties of the analyzed model
are preserved. Therefore, in this paper, we consider this matter
and propose a simple, yet efficient, parallel implementation and
execution approach for adaptive streaming applications, modeled
with MADF model, that can be easily realized on top of existing
operating systems. Moreover, we extend the offset calculation of the
MOO protocol for the MADF model in order to enable the utilization
of a wider range of schedules, i.e., K-periodic schedules [7], during
the mode analysis, implementation, and execution depending on
the scheduling support provided by the MPSoC and its operating
system onto which the streaming application runs. More specifically,
the main contributions of this paper are summarized as follows:
• We extend the MOO protocol employed by the MADF model.

This extension enables the applicability of many different sched-
ules to the MADF model, thereby generalizing the MADF model
and making MADF schedule-agnostic as long as K-periodic
schedules are considered;
• We propose a generic parallel implementation and execution

approach for adaptive streaming applications modeled with
MADF that conforms to the analysis model and its operational
semantics [1]. We demonstrate our approach on LITMUSRT [8]
which is one of the existing RT extensions of the Linux kernel;
• Finally, to demonstrate the practical applicability of our parallel

implementation and execution approach and its conformity
to the analysis model, we present a case study on a real-life
adaptive streaming application.

The remainder of the paper is organized as follows: Section 2
gives an overview of the related work. Section 3 introduces the
background material needed for understanding the contributions
of this paper. Section 4 presents the proposed extension of the
MOO transition protocol followed by Section 5 presenting the par-
allel implementation and execution approach for the MADF MoC.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3378678.3391876&domain=pdf&date_stamp=2020-05-25

SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany Sobhan Niknam, Peng Wang, Todor Stefanov

Section 6 presents a case study to show the applicability of our
approach presented in Section 5 and Section 7 ends the paper with
conclusions.

2 RELATED WORK
In [2], the MCDF model is presented where the same application
graph is used for both analysis and execution on a platform. In
such graph, special actors, namely switch and select actors, are
used to enable reconfiguration of the graph structure according to
an identified mode by a mode controller at run-time. In the MCDF
model, every mode is represented as a single-rate SDF graph and
the actors are scheduled on each PE according to a precomputed
static schedule, called quasi-static order schedule, in which extra
switch and select actors are required to model the schedule in the
graph. In contrast to MCDF, the MADF model [1], we consider in
this paper, is more expressive as each mode is represented as a
CSDF graph. Moreover, our proposed MOO protocol extension and
our implementation and execution approach for the MADF model
are schedule agnostic and do not require extra switch and select
actors. Therefore, our approach enables the utilization of many
different schedules than only a static-order schedule, with no need
of extra actors.

In [3], the FSM-SADF model is presented as another analysis
model for adaptive streaming applications. To implement an appli-
cation modeled and analyzed with FSM-SADF, two programming
models have been proposed in [9] and [10]. In [9], the programming
model is constructed by merging the SDF graphs of all scenarios
into a single graph which may be larger than the FSM-SADF analy-
sis graph. Then, to enable switching to a new scenario, all actors
in all scenarios are constantly kept active while only those actors
belonging to the identified new scenario by a detecting actor(s)
will be executed after switching. In this way, a single static-order
schedule can be used for the application in all scenarios. In con-
trast to [9], the proposed programming model in [10] uses a similar
switch/select actors, as in MCDF [2], in the constructed graph for
switching between scenario graphs at run-time. Then, the graph is
reconfigured at run-time using the switch/select actors according
to the identified scenario by a detecting actor(s) while updating
the application’s static-order schedule accordingly. However, the
proposed programming models in [9] and [10] need to be derived
manually, thereby requiring extra effort by the designer. More im-
portantly, these programming models assume that actors in all
scenarios of an application are active all the time. This can result
in a huge overhead for applications with a high number of modes,
thereby leading to inefficient resource utilization. In contrast to
[9] and [10], our implementation and execution approach does not
require derivation of an additional model and enables the utilization
of many different schedules rather than only static-order sched-
ule. Moreover, our approach (de)activates actors in different modes
at run-time, so we do not need to keep all modes active all the
time, thereby avoiding the unnecessary overhead imposed by the
approaches in [9] and [10].

In [11], the task allocation of adaptive streaming applications
onto MPSoC platforms under ST scheduling is studied when con-
sidering transition delay during mode transitions. In [11], however,
the verification of the proposed approach and mode transition
mechanism is limited to simulations and no implementation and
execution approach is provided. In contrast, in this paper, we pro-
pose a generic parallel implementation and execution approach for
applications modeled with MADF which enables the applicability
of many different schedules on the application as well as execution
of the application on existing operating systems.

3 BACKGROUND
In Section 3.3, we provide an overview of the MADF model. Since
each mode in the MADF model is represented as a CSDF graph,
the CSDF model is introduce in Section 3.1. Then, the notion of the
K-periodic schedules [7] for CSDF graphs is briefly explained in

Section 3.2, which covers the wide range of schedules considered
in this paper.

3.1 Cyclo-Static Data Flow (CSDF)
A CSDF graph [5] is defined as a directed graph G = (A,E) which
consists of a set of actors A that communicate with each other
through a set of edges E. Actors represent computation and edges
represent the communication using FIFO channels to transfer data
tokens between actors. Each actor Ai ∈ A may consume/produce
a varied but predefined number of data tokens in its consecutive
executions, called consumption/production sequence. It has been
proven in [5] that a valid static schedule of a CSDF graph can be
generated at design-time if the graph is consistent and live. A CSDF
graph is said to be consistent if a non-trivial solution exists for
the repetition vector q⃗ = [q1,q2, . . . ,q |A |]T ∈ N |A | . An entry
qi ∈ q⃗ indicates the number of invocations of actor Ai ∈ A in one
graph iteration of graph G. Fig. 1(b) show a CSDF graph (G1

1) with
q⃗ = [4,2,2,2]T . The worst-case execution time (WCET) of each
actor is shown below its name. For instance, actor A1

5 has WCET of
2 time units and its data consumption sequence on FIFO channel
E3 is [2,0], i.e., consuming 2 and 0 token(s) from E3 in its every two
consecutive invocations, respectively.

3.2 K-Periodic Schedules (K-PS)
In [7], K-periodic schedules (K-PS) of streaming applications mod-
eled as CSDF graphs are introduced, implying that Ki consecutive
invocations of an actor Ai ∈ A occur periodically in the schedule.
For example, when Ki = qi for every actor Ai ∈ A, such K-PS is
equivalent to a ST schedule [12] where all qi invocations of the
actor Ai in one graph iteration occur in each period and can result
in the maximum throughput for a given CSDF graph. On the other
hand, when Ki = 1 for every actor Ai ∈ A, 1-PS is achieved in
which only a single invocation of the actor occurs in each period.
The SPS schedule [6] is a special case of 1-PS in which the actors
are converted to RT tasks to enable the application of classical HRT
scheduling algorithms [13], e.g., EDF, to streaming applications
modeled as CSDF graphs. In general, the K-PS notion covers a wide
set of schedules ranging between 1-PS and ST schedules. In all K-PS,
discussed above, the duration needed by the graph to complete one
iteration is called iteration period and denoted by H . In addition, the
time distance between the starting times of the source (input) actor
and the sink (output) actor is called iteration latency and denoted
by L. For instance, a K-PS of G1

1 is shown in Fig. 2(a), with H1 = 8
and L1 = 10 time units.

3.3 Mode-Aware Data Flow (MADF)
MADF [1] is an adaptive MoC which can capture multiple appli-
cation modes associated with an adaptive streaming application,
where each individual mode is represented as a CSDF graph [5].
Here, we explain the MADF intuitively by an example. The MADF
graph G1 of an adaptive streaming application with two different
modes is shown in Fig. 1(a). This graph consists of 5 computation
actors A1 to A5 that communicate data over FIFO channels E1 to
E6. Also, there is an extra actor Ac which controls the switching
between modes through control FIFO channels E11, E22, E33 E44,
and E55 at run-time. Each FIFO channel contains a production and
a consumption pattern, and some of these production and con-
sumption patterns are parameterized. Having different values of
parameters and WCET of the actors determine different modes. For
example, to specify the consumption pattern with variable length
on a FIFO channel in graph G1, the parameterized notation [x[y]]
is used to represent a sequence of x elements with integer value
y, e.g., [2[1]] = [1,1] and [1[2]] = [2]. Assume in this particular
example that the parameter vector [p1,p2,p4,p5,p6] can take only
two values [0,2,0,2,0] and [1,1,1,1,1]. Then, Ac can switch the
application between two corresponding modes SI1 and SI2 by set-
ting the parameter vector to the first value and the second value,

Implementation and Execution of Streaming Applications Modeled as MADF SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany

A1 A2 A3 A5
[1[1], 1[0]]

OP1:
[p2[1]]

A4
[1[0], 1[p6]]

[1[p5], 1[0]]

[1[0], 1[p1]]

Ac

[1[1], 1[0]]
IP1:

[p2[1]]
E1

[1[p4]] [1[p4]]

[1[1]][1[1]]

[1[0], 1[1]]

IC

E22

E2 E3

E4 E5

E6

E44 E11

E55

IC1

E33

A1
1 A2

1 A3
1 A5

1[1, 0] [1, 1] [2, 0]

[0, 1]

[1, 0][1, 1] [1] [1]

A1
2 A2

2 A3
2 A5

2[1, 0]

A4
2

[0, 1]
[1, 0]

[0, 1]

[0, 1]

[1, 0]

[1] [1]

[1] [1][1] [1]

A1 A2

A3

A5

PE1 PE2

A4

Ac

PE4

PE3

(a) (c)

(b)

(d)

1 4 1 2

1 5 1 2

2

E1 E2 E3

E1 E2 E3

E4 E5

E6

E6

Figure 1: (a) An example of MADF graph (G1), (b) CSDF graph G1
1 of mode SI1, and (c) CSDF graph G2

1 of mode SI2, (d) mapping
of G1 on 4 PEs.
respectively, at run-time. Fig. 1(b) and (c) show the corresponding
CSDF graphs of modes SI1 and SI2.

As an important part of the operational semantics of MADF,
MADF employs the MOO transition protocol [1] when switching
an application’s mode by receiving a mode change request (MCR)
from the external environment via the IC port of actor Ac . To
resolve the timing interference of modes (in terms of overlapping
iteration periods H) during mode transitions, this protocol delays
the starting time of the new mode by the offset xo→n , computed as
follows:

xo→n =


max
Ai ∈Ao∩An

(Soi − Sni) if max
Ai ∈Ao∩An

(Soi − Sni) > 0
0 otherwise,

(1)

where Soi and Sni are the starting times of actor Ai in modes SIo
and SIn , i.e., the old and the new modes, respectively. For instance,
consider the K-periodic schedule of modes SI1 and SI2 shown in
Fig. 2 (a) and (b), respectively. Then, the offsets x1→2 and x2→1 for
mode transitions from SI1 to SI2 and vice versa, computed using
Eq. (1), are 3 and 1, respectively. An execution ofG1 with two mode
transitions and the computed offsets is illustrated in Fig. 3(a), in
which, as explained in Section 1, the iteration latency L of the K-
periodic schedule of the modes, in Fig. 2 (a) and (b), are preserved
during mode transitions. When multiple actors are mapped on
the same PE, the PE can be potentially overloaded during mode
transitions due to simultaneous execution of actors from different
modes. Therefore, a larger offset may be needed to delay the start-
ing time of the new mode during a mode transition in order to
avoid processor overloading. In [1], this offset, represented with
δo→n , is computed under the SPS schedule [6]. To quantify the
responsiveness of a transition protocol, a metric, called transition
delay and denoted by ∆o→n , is also introduced in [1] and calculated
as ∆o→n = σo→n

snk − tMCR, where σo→n
snk is the earliest starting time

of the sink actor in the new mode SIn and tMCR is the time when
the MCR occurred. In Fig. 3(a), we can compute the transition delay
for MCR1 occurred at time tMCR1 = 1 as ∆2→1 = 16 − 1 = 15 time
units.

4 EXTENSION OF THE MOO TRANSITION
PROTOCOL

As the SPS schedule has the notion of a task utilization, by convert-
ing the actors in a CSDF graph to RT tasks, the aforementioned
offset δo→n in [1] is computed by making the total utilization of the
RT tasks mapped on each PE during mode transition instants to not
exceed the PE capacity. However, since the K-periodic schedules,
considered in this paper, have no notion of a task utilization, the
offset δo→n for any K-PS cannot be computed as in [1]. Therefore,
in this section, we extend the MOO transition protocol to compute
such an offset for any K-PS. In fact, to avoid the PE overloading
under any K-PS, the schedule interferences of modes (in terms of
overlapping iteration period H) during mode transitions must be
resolved on each PE. For instance, Fig. 1(d) shows an example of
a mapping of all actors of G1 to four PEs. Considering the execu-
tion of G1 in Fig. 3(a), the schedule interferences on PE1 happen
during time periods [6,11] and [25,27] for mode transition from

5 10 15

L1

S21

S31

S51

A11

A21

A31

A41

A51

20

H1

H1

H1

0

H1

(a) Mode SI1 in Fig. 1(b)
5 10 15

S22

S32

S42

S52

A22

A12

A32

A42

A52

200

H2

H2

H2

H2

H2

(b) Mode SI2 in Fig. 1(c)

Figure 2: Execution of both modes SI1 and SI2 under a K-PS.

SI2 to SI1 and vice versa, respectively, while no schedule interfer-
ence happens on PE2 and PE3. Obviously, to resolve the schedule
interferences on PE1, the earliest starting time of actors in the new
mode should be further offset by the length of the time period
in which the schedule interferences happen. Therefore, the extra
offsets for mode transitions from SI2 to SI1 and vice versa on PE1
are 11 − 6 = 5 and 27 − 25 = 2 time units, respectively, thereby
resolving the schedule interferences on PE1, as shown in Fig. 3(b).
In this example, δ2→1 = x2→1 + 5 = 6 and δ1→2 = x1→2 + 2 = 5.

Now, considering any K-PS, the offset δo→n can be computed
as the maximum schedule overlap among all PEs when the new
mode SIn starts immediately after the source actor of the old mode
SIo completes its last iteration, as follows:
δo→n = max {xo→n , max

∀Ψoi ∈Ψo∧Ψni ∈Ψn
Ψoi ,∅∧Ψni ,∅

(max
Aoj ∈Ψoi

Soj − min
Ank ∈Ψni

Snk)} (2)

where Ψ = {Ψ1, . . . ,Ψm } ism-partition of all actors onm number of
PEs, i.e., Ψo

i and Ψn
i are the sets of actors mapped on the i-th PE (PEi)

in the old mode SIo and the new mode SIn , respectively. For instance,
consider the mapping ofG1 on the four PEs, shown in Fig. 1(d), and
the K-PS of modes SI1 and SI2 given in Fig. 2 (a) and (b), respectively.
The offset δ1→2 of the mode transition from SI1 to SI2 on each PE is
computed using Eq. (2) as follows: (PE1) S1

3 − S2
1 = 5 − 0 = 5, (PE2)

S1
2 −S2

2 = 1−1 = 0, and (PE3) S1
5 −S2

5 = 10−7 = 3, thereby resulting
in the offset δ1→2 = max(3,max(5,0,3)) = 5 for the starting time
of mode SI2, as shown in Fig. 3(b). Similarly, the offset δ2→1 of
the mode transition from SI2 to SI1 on each PE is computed using
Eq. (2) as follows: (PE1) S2

3 − S1
1 = 6, (PE2) S2

2 − S1
2 = 0, and (PE3)

S2
5 − S1

5 = −3, and δ2→1 = max(1,max(6,0,−3)) = 6.

5 IMPLEMENTATION AND EXECUTION
APPROACH FOR MADF

In this section, we first present our generic parallel implementation
and execution approach (Section 5.1) for an application modeled as
an MADF. Then, in Section 5.2, we demonstrate our approach on
LITMUSRT [8].

5.1 Generic parallel implementation and
execution approach

In this section, we will explaine our approach by an illustrative
example. Consider the MADF graph G1 shown Fig. 1(a). Our imple-
mentation consists of three main components: 1) (normal) actors,

SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany Sobhan Niknam, Peng Wang, Todor Stefanov

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30 35

L1 L2

Start of mode SI1

H1

Start of mod e SI2

H2
Start of mod e SI 2

Δ2→1 Δ1→2

tMCR1 tMCR2

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30 35

L1 L2

Start of mode SI1

H2 H1

40

Δ2→1
Δ1→2

δ 2→1tMCR1 tMCR2

Start of mode SI2

(a) (b)

δ 1→2x1→2
x2→1

Figure 3: Execution ofG1 with two mode transitions under (a) the MOO protocol, and (b) the extended MOO protocol with the
mapping shown in Fig. 1(d).

A12 A22 A32 A52
[1, 0] [1] [2, 0][1]

A42

[1] [1]

[0, 1][0, 1]
[1] [1]

[0, 1]

[1, 0]

E1 E2 E3

E5E4

E6
A12 A22 A32 A52[1, 0] [1]

[2, 0]

[1]

A42

[1]

[1]

[0, 1][0, 1]
[1] [1]

A11 A21 A31 A51[1, 0] [1, 1] [1, 1] [1]

[1, 0][1]
[0, 1]

[0, 1]
[1, 0]

[1, 0] E6

E6A21A11 A31 A21A11 A51A31[1,1][1,0] [1,1] [1] [1] [1,1][1,0] [1,1] [1] [1]

A21
A52
[0, 1]

A11

A51
A31

[1,1][1,0] [1,1] [1] [1]

[0, 1]

[0, 1]
[1, 0]

[1, 0]

A21A11 A31
[1,1][1,0] [1,1] [1] [1]

A51

[0, 1]

[1, 0]
[2, 0]

A51

[0, 1]

[1, 0]
[2, 0]

E6

E6

Ac

IC

[1, 0]

[2, 0]

[0, 1]

[1, 0]
[2, 0]

(a) (b) (c)

(d) (e) (f)

E1 E2 E3

E5E4 E5E4

E5E4E5E4E5E4

E1 E2 E3 E1 E2 E3 E1 E2 E3
E6

E1 E2 E3

Figure 4: Mode transition ofG1 from mode SI2 to mode SI1 (from (a) to (f)). The control actor and the control edges are omitted
in figures (b) to (f) to avoid cluttering.

2) a control actor, and 3) FIFO channels. We implement the actors
as separate threads and the FIFO channels as circular buffers [14]
with non-blocking read/write access. Thus, the execution of the
threads and the read/write from/to the FIFO channels are controlled
explicitly by an operating system supporting and using any K-PS,
briefly introduced in Section 3.2. A valid K-PS schedule always
ensures the existence of sufficient data tokens to read from all input
FIFO channels and sufficient space to write data tokens to all output
FIFO channels when an actor executes.

In our implementation, all FIFO channels in the MADF graph
of an application are created statically before the start of the ap-
plication execution to avoid duplication of FIFO channels and un-
necessary use of more memory during mode transitions. On the
other hand, the threads corresponding to the actors are handled at
run-time. This means that when an MCR occurs, in order to switch
the application’s mode, the executing threads in the old mode are
stopped and terminated whereas the threads corresponding to the
actors in the requested new mode are created and launched at
run-time. In this way, our implementation enables task migration
during mode transitions by using a different task mapping in each
application’s mode. For instance, the implementation and execution
of the mode transition from mode SI2 to mode SI1 of G1, with the
given schedule in Fig. 3(b), is shown in Fig. 4 and has the follow-
ing sequence - Fig. 4(a): The application is in mode SI2 where the
threads corresponding to the actors in this mode run. The threads
are connected to the control threadAc , which runs on a separate PE,
through the control FIFO channels (the dashed arrows in Fig. 4(a)).
In our approach, two extra FIFO channels, shown in the red color
in Fig. 4(a), are required, both from the thread of source actor A1
to control thread Ac in order to notify the control thread in which
graph iteration number the source actor is currently running and
the time when the thread of the source actor is terminated; Fig. 4(b):
When MCR1 occurs at time instant tMCR1 = 1 to switch to mode
SI1, the threads corresponding to the actors in mode SI1 are created
and connected to the corresponding FIFO channels. At this stage
the newly-created threads (the red nodes in Fig. 4(b)) are suspended
and they wait to be released. Note that the mode transitions cannot
be performed at any moment. According to the operational semantics
of the MADF model, a mode transition is only allowed in a consistent
state, that is, after the graph iteration in which the MCR occurred, has
completed and the graph has returned to its initial state. Therefore,

control thread Ac needs to check the current graph iteration num-
ber of the source actor A2

1 and notify all threads at which graph
iteration number they have to be terminated; Fig. 4(c): Next, when
the thread of the source actor A2

1 is terminated at time instant 5
(according to Fig. 3(b)), which is notified to control thread Ac as
well, the control thread signals the suspended threads to be released
synchronously δ2→1 = 6 time units later at time instant 11 (accord-
ing to Fig. 3(b)). At this stage, a mixture of threads in both modes
may be running on PEs. In the meanwhile, the threads of the actors
in the old mode SI2 are gradually finishing their execution and ter-
minated at the same graph iteration number; Fig. 4(d)-(f): Since the
actors have different starting time in the new mode SI1, as shown
in Fig. 3(b), the threads in mode SI1 start executing accordingly
after the releasing time. The threads which are released but not yet
running, are shown in the green color. Then, the released threads
in the new mode SI1 gradually start running and finally, the appli-
cation is switched to mode SI1 where all created threads run and
the unused channels E4 and E5 in this mode are left unconnected
to the threads.

5.2 Demonstration of our approach on
LITMUSRT

In this section, we demonstrate how to realize our implementation
and execution approach on LITMUSRT [8] as one of the existing
RT extensions of the Linux kernel. The realizations of a normal
actor and the control actor in our approach are given in C++ in
Listing 1 and 2, respectively, in which the bolded primitives belong
to LITMUSRT. Note that, any other RT operating system which has
similar primitives, e.g., FreeRTOS [15], can be used instead. We also
use the standard POSIX Threads (Pthreads) and the corresponding
API integrated in Linux to create the threads of the actors.

In Listing 1, the RT parameters of an actor, e.g., actorA2 of graph
G1 in Fig. 1(a), are set up using the data structure threadInfo
passed to the function as argument in Lines 2-6. Under partitioned
scheduling algorithms, e.g., Partitioned EDF, the PE core which
the thread should be statically executing on, is set in Line 7. Then,
the RT configuration of the thread is sent to the LITMUSRT kernel
for validation, in Line 8, in which if it is verified, the thread is
admitted as a RT task in LITMUSRT, in Line 9. In Line 10, the RT

Implementation and Execution of Streaming Applications Modeled as MADF SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany

1void Actor_A2(void ∗threadarg) {
2 threadInfo = (threadInfo ∗)threadarg; // Get the thread parameters
3 struct rt_task param; // Set up RT parameters
4 param.period = threadInfo.period;
5 param.relative_deadline = threadInfo.relative_deadline;
6 param.phase = threadInfo.start_time;
7 be_migrate_to_domain(threadInfo.PE_core); // For partitioned schedulers
8 set_rt_task_param(gettid(), ¶m));
9 task_mode(LITMUS_RT_TASK); // The actor is now executing as a RT task

10 wait_for_ts_release(); // The RT task is waiting for a release signal
11 int graph_iteration = 1;
12 while(1) { // Enter to the main body of the task
13 lt_t now = litmus_clock();
14 for(i=1; i<=threadInfo.repetition; i++){
15 lt_sleep_until(now + threadInfo.slot_offset[i]);
16 if(IC1 is not empty) READ(& terminate, threadInfo.IC1);
17 if(i == 1 && graph_iteration > terminate){
18 WRITE(& now, threadInfo.OCtrig);
19 task_mode(BACKGROUND_TASK); //Trans. back to non−RT mode
20 return NULL; }
21 if(i == 1) WRITE(& graph_iteration, threadInfo.OCiter);
22 if(threadInfo.mode == 1){ // Do action according to the task's mode
23 READ(& in1, threadInfo.IP1);
24 task_function(& in1, & out1);
25 WRITE(& out1, threadInfo.OP1);
26 }/∗ Actions according to the other modes ∗/ { . . . }
27 if(i%threadInfo.K == 0) sleep_next_period();
28 }
29 graph_iteration += 1; } }

Listing 1: C++ code of actor A2

task is suspended, in order to synchronize the starting time of the
tasks, until signaled by the control actor to begin its execution. Next,
the task enters to a while loop in Lines 12-29, in which iterates
infinitely. At the beginning of each graph iteration, the current
time instant is captured and stored in variable now in Line 13. Then,
the task iterates as many repetition times as it has in one graph
iteration in a for loop, in Lines 14-28. In Line 15, the task sleeps
until reaching the starting time of its i-th invocation, corresponding
to the K-PS, from the time instant captured in now. After finishing
Ki invocations, the task sleeps again, in Line 27, until finishing the
current period. In fact, in this line, a kernel-space mechanism is
triggered for moving the task from the ready queue to the release
queue. Then, LITMUSRT will move the task back to the ready queue
at the starting time of the next period when the task will again
be eligible for execution. In Line 16, the state of the input control
port IC1 is checked in which if it is not empty, the graph iteration
number where the task has to be terminated is read. Then, the
termination condition is checked in Line 17. If the condition holds,
the mode of the thread is changed to non-RT in Line 19 and the
thread is terminated in Line 20. Otherwise, the task reads from its
input FIFO channels, executes its function, and writes the result
to the output FIFO channels, in Lines 22-26. Only for the source
actor, the latest graph iteration number where the task is currently
running and the time instant now are written to the output control
ports OCiter and OCtrig, in Lines 21 and 18 highlighted with the
red color, respectively, which are needed by the control thread, as
explained in Section 5.1.

In Listing 2, realizing control actor Ac , all FIFO channels are cre-
ated and the needed memory is allocated to them using the standard
calloc() function, in Lines 2-6. In Line 7, the interface with the
LITMUSRT kernel is initialized. In Lines 10-19, the data structure of
threadInfo is initialized for each actor of the requested new mode
and the corresponding threads of the actors in the new mode are
created and launched. In Lines 20 and 21, the number of suspended
RT tasks is checked which if is equal to the number of the actors in
the new mode, they can be signaled to be released simultaneously.
Therefore, in Line 26, the global release signal is sent by δ time units
after receiving the time instant now on the input port ICtrig from
the thread of the source actor in the old mode in Line 24, implying
the termination of the thread and acting as a trigger. Afterwards,
the control actor continuously monitors the occurrence of a new
MCR in Line 27. If an MCR occurs to a new mode which differs from
the current mode, the graph iteration number in which the threads
in the current mode need to be terminated is computed in Lines

1void main(int argc, char ∗∗argv) {
/∗ Create FIFO channel E1 ∗/

2 size_E1_in_tokens = 4;
3 size_token_E1= sizeof(token_structure)/sizeof(int);
4 size_fifo_E1 = size_E1_in_tokens × size_token_E1;
5 E1 = calloc(size_fifo_E1+2, sizeof(int)); // Allocate memory for E1
6 /∗ Create other FIFO channels∗/ {· · ·}
7 init_litmus(); // Initialize the interface with the kernel
8 old_mode = 1, new_mode = 1;
9 while(1){

10 switch(new_mode){
11 case 1: /∗ Create and launch the thread of actor A2 in mode SI1∗/
12 threadInfo.mode = 1; thread.repetition = 2; threadInfo.PE_core = 1;
13 threadInfo.IP1 = E1; /∗ Connect other FIFO channels to the thread∗/ {· · ·}
14 threadInfo.period = 8; threadInfo.relative_deadline = 8;
15 threadInfo.phase = 1; threadInfo.slot_offset = [0, 4];
16 pthread_create(&threadInfo.id, NULL, &Actor_A2, &threadInfo);
17 /∗ Create and launch the threads of the other actors in mode SI1∗/ { . . . }
18 case 2: { /∗ Create and launch the thread of the actors in mode SI2∗/ }
19 }
20 while(rt_task == ready_rt_tasks)
21 read_litmus_stats(&ready_rt_tasks);
22 if(new_mode != old_mode){
23 while(ICtrig is empty);
24 READ(& now, ICtrig);
25 }else now = litmus_clock();
26 release_ts(δ); old_mode = new_mode;
27 do{ READ(& new_mode, IC); }while(new_mode == old_mode)
28 READ(& graph_iteration, ICiter);
29 tleft = H o −(litmus_clock() − now − δ)%H o ;
30 if(tleft < tOV) graph_iteration += ⌈(tOV − tleft)/H o ⌉;
31 for(all active actor Ai) WRITE(& graph_iteration, OCi); }

Listing 2: C++ code of control actor Ac
28-30. The primary graph iteration number is simply the current
graph iteration number of the source actor, read from the input
port ICiter in Line 28. However, since the control actor has certain
timing overhead, represented by tOV, the primary graph iteration
number needs to be revised corresponding to the time left from the
current graph iteration of the source actor tleft, computed in Line
29, and tOV, in Line 30, to ensure that all threads will be terminated
in the same graph iteration number. Then, the new graph iteration
number is written on the control port of all threads in the current
mode in Line 31 to notify them when they have to be terminated.

6 CASE STUDY
In this section, we present a case study, using a real-life adaptive
streaming application, to demonstrate the practical applicability
of our parallel implementation and execution approach for MADF.
Moreover, we show that our approach conforms to the MADF
analysis model in [1] by measuring the application’s performance,
in terms of the achieved iteration period, iteration latency, and
mode transition delay, and comparing them with the computed
ones using the MADF analysis model. We perform this case study
on the ARM big.LITTLE architecture [16], including a quad-core
Cortex A15 (big) cluster and a quad-core Cortex A7 (LITTLE) cluster,
available on the Odroid-XU4 platform [17]. The Odroid-XU4 runs
Ubuntu 14.04.1 LTS along with LITMUSRT version 2014.2.

In this case study, we take a real-life adaptive streaming applica-
tion from the StreamIT benchmark suit [18], called Vocoder, which
implements a phase voice encoder and performs pitch transposition
of recorded sounds from male to female. We modeled Vocoder using
the MADF graph, shown in Fig. 5, with four modes which captures
different workloads. The four modes {SI8,SI16,SI32,SI64} specify
different lengths of the discrete Fourier transform (DFT), denoted
by dl ∈ {8,16,32,64}. Mode SI8 (dl = 8) requires the least amount of
computation at the cost of the worst voice encoding quality among
all DFT lengths. Mode SI64 (dl = 64) produces the best quality of
voice encoding among all modes, but is computationally intensive.
The other two modes SI16 and SI32 exploit the trade-off between
the quality of the encoding and the computational workload. There-
fore, the resource manager of an MPSoC can take advantage of this
trade-off and adjust the quality of the encoding according to the
available resources, such as energy budget and number/type of PEs,
at run-time.

SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany Sobhan Niknam, Peng Wang, Todor Stefanov

Read
Wave DFT AddCosWin Rec2Polar Unwrap

Spec2Envmale2femalePolar2RecInvDFTWrite
Wave

Ac

IC

[1[128dl]][1[256]] [128[dl]][1[256]] [128[dl]] [128[dl]]

[1[256]] [1[256]] [1[128dl]] [128[dl]] [128[dl]] [128[dl]]
[128[dl]] [128[dl]]

[128[dl]] [128[dl]]

[128[dl]]
[128[dl]] [128[dl]]

[128[dl]]

[128[dl]] [128[dl]]
[128[dl]]

[128[dl]]

Figure 5: MADF graph of the Vocoder application.

 0
 50

 100
 150
 200

5 10 15 20 25 30 35 40 45 50Ti
m

e
(m

illi
se

co
nd

)

Number of actors of the application

Figure 6: The execution time of control actorAc .
Table 1: Performance results of each individual mode of
Vocoder.

Mode Analysis [1] Implementation and execution Number/Type of PE
H (ms) L (ms) H (ms) L (ms)

SI8 25 21 25 21 1 LITTLE
SI16 25 19 25 19 1 big
SI32 25 33 25 33 2 big
SI64 25 56 25 56 3 big

Table 2: Performance results for all mode transitions of
Vocoder (in ms).

Transition Analysis [1] Implementation and execution
(SIo to SIn) ∆o→n

min ∆o→n
max ∆o→n

SI8 → SI64 146 171 160
SI8 → SI32 123 148 131
SI8 → SI16 111 136 122
SI16 → SI64 165 190 185
SI16 → SI32 142 167 157
SI16 → SI8 112 137 130
SI32 → SI64 162 187 168
SI32 → SI16 125 150 139
SI32 → SI8 125 150 145
SI64 → SI32 160 185 182
SI64 → SI16 146 171 162
SI64 → SI8 146 171 152

We measured the WCET of the actors in Fig. 5 in the four modes
on both big and LITTLE PEs. Then, since the shortest time granu-
larity visible to LITMUSRT, i.e., the OS clock tick, is 1 millisecond
(ms), the WCET of the actors are rounded up to the nearest mul-
tiple of the OS clock tick duration. This is necessary to derive the
period and starting time of the actors under any K-PS to be exe-
cuted by LITMUSRT. Table 1 shows the performance results of each
individual mode under the ST schedule, which is a particular case
of K-PS explained in Section 3.2. In this table, columns 2-3 show
the iteration period H and iteration latency L of each individual
application mode computed by the analysis model, respectively.
The iteration period H indicates the guaranteed production of 256
samples per 25 ms, as a performance requirement, in all modes by
sink actor WriteWave. Column 6 shows the number/type of PEs re-
quired in each mode to guarantee the aforementioned performance
requirement. On the other hand, columns 4-5 show the measured
iteration periodH and iteration latency L of each individual applica-
tion mode achieved by our implementation and execution approach,
respectively. Comparing columns 2-3 with columns 4-5, we see that
the performance of Vocoder computed using the MADF analysis
model is the same as the measured performance when Vocoder is
implemented and executed using our approach. This is because
the ST schedule of each mode is implemented in our approach by
setting up, in LITMUSRT, the same periods and starting times of
the actors as in the analysis model. Based on the results, shown in
Table 1, we can conclude that our implementation and execution
approach conforms to the MADF analysis model in terms of H and
L for the Vocoder application.

Now, we focus on the performance results related to the mode
transition delays for all 12 possible transitions between the four
modes of Vocoder. Using the MADF analysis model in [1], the
computed minimum and maximum transition delays are shown in
columns 2-3 of Table 2, respectively. By using our implementation
and execution approach, however, the measured transition delay
depends on the occurrence time of an MCR at run-time, thus the

measured transition delay could vary between the computed mini-
mum and maximum values in each transition. For instance, column
4 in Table 2 shows the measured transition delay for each transition
with a random occurrence time of the MCR, within the iteration
period, at run-time. These measured transition delays (column 4)
are within the computed bounds using the analysis model (columns
2-3). Therefore, our implementation and execution approach also
conforms to the MADF analysis model in terms of mode transition
delay ∆o→n for the Vocoder application.

Finally, we evaluate the scalability of our proposed implementa-
tion and execution approach in terms of the execution time tov of
the control actor for applications with different numbers of actors.
Since the most time-consuming and variable part of the control
actor is located in Lines 10 to 21 of Listing 2, that is the time needed
for the threads creation and the threads admission as RT tasks, we
only measure the time needed for this part of the control actor. In
this regard, the measured time for applications with a varying num-
ber of actors is shown in Fig. 6. In this figure, we can clearly observe
that the execution time of the control actor follows a fairly linear
scalability when the number of actors in the application increases.

7 CONCLUSION
In this paper, we proposed a generic parallel implementation and
execution approach for adaptive streaming applications modeled
with MADF. Our approach can be easily realized on top of ex-
isting operating systems and support the utilization of a wider
range of schedules. In particular, we demonstrated our approach on
LITMUSRT which is one of the existing real-time extensions of the
Linux kernel. Finally, we performed a case study using a real-life
adaptive streaming application and showed that our approach con-
forms to the analysis model for both execution of the application
in each individual mode and during mode transitions.

REFERENCES
[1] J. T. Zhai et al. Modeling, analysis, and hard real-time scheduling of adaptive

streaming applications. IEEE TCAD, 2018.
[2] O. Moreira. Temporal analysis and scheduling of hard real-time radios running

on a multi-processor. ser. PHD Thesis, TU Eindhoven, 2012.
[3] M. Geilen and S. Stuijk. Worst-case performance analysis of synchronous dataflow

scenarios. In CODES+ISSS, 2010.
[4] E. Lee and D. Messerschmitt. Static scheduling of synchronous data flow programs

for digital signal processing. IEEE TC, 1987.
[5] G. Bilsen et al. Cycle-static dataflow. IEEE Trans. Signal Process., 1996.
[6] M. Bamakhrama and T. Stefanov. On the hard-real-time scheduling of embedded

streaming applications. DAES, 17(2):221–249, 2013.
[7] B. Bodin et al. Optimal and fast throughput evaluation of csdf. In DAC, 2016.
[8] J. M. Calandrino et al. Litmusˆ rt: A testbed for empirically comparing real-time

multiprocessor schedulers. In RTSS, 2006.
[9] R. Van Kampenhout et al. A scenario-aware dataflow programming model. In

DSD, 2015.
[10] R. van Kampenhout et al. Programming and analysing scenario-aware dataflow

on a multi-processor platform. In DATE, 2017.
[11] H. Jung et al. Multiprocessor scheduling of a multi-mode dataflow graph consid-

ering mode transition delay. ACM TODAES, 2017.
[12] S. Stuijk et al. Throughput-buffering trade-off exploration for cyclo-static and

synchronous dataflow graphs. IEEE Trans. Comput., 2008.
[13] R. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor

systems. ACM Computing Surveys (CSUR), 2011.
[14] S. Bhattacharyya and E. Lee. Memory management for dataflow programming

of multirate signal processing algorithms. IEEE Trans. Signal Process., 1994.
[15] FreeRTOS. http://www.freertos.org/.
[16] P. Greenhalgh. Big. little processing with arm cortex-a15 & cortex-a7. ARM

White paper, 17, 2011.
[17] Odroid. https://www.hardkernel.com.
[18] M. Gordon et al. Exploiting coarse-grained task, data, and pipeline parallelism in

stream programs. In ASPLOS, 2006.

