
OpenMP to CUDA graphs: a compiler-based transformation to
enhance the programmability of NVIDIA devices
Chenle Yu

chenle.yu@bsc.es
Barcelona Supercomputing Center

Sara Royuela
sara.royuela@bsc.es

Barcelona Supercomputing Center

Eduardo Quiñones
eduardo.quinones@bsc.es

Barcelona Supercomputing Center

ABSTRACT
Heterogeneous computing is increasingly being used in a diversity
of computing systems, ranging from HPC to the real-time embed-
ded domain, to cope with the performance requirements. Due to the
variety of accelerators, e.g., FPGAs, GPUs, the use of high-level par-
allel programming models is desirable to exploit the performance
capabilities of them, while maintaining an adequate productivity
level. In that regard, OpenMP is a well-known high-level program-
ming model that incorporates powerful task and accelerator models
capable of efficiently exploiting structured and unstructured par-
allelism in heterogeneous computing. This paper presents a novel
compiler transformation technique that automatically transforms
OpenMP code into CUDA graphs, combining the benefits of pro-
grammability of a high-level programming model such as OpenMP,
with the performance benefits of a low-level programming model
such as CUDA. Evaluations have been performed on two NVIDIA
GPUs from the HPC and embedded domains, i.e., the V100 and the
Jetson AGX respectively.

KEYWORDS
CUDA Graphs, OpenMP, Programmability, Compiler Optimization

1 INTRODUCTION
Heterogeneous computing is being deployed in a diverse range of
computing systems, varying from HPC to embedded computing.
This is especially relevant in application domains such as automo-
tive, manufacturing equipment or aerospace among others, to cope
with the high-performance requirements of the most advanced
system functionalities (e.g., autonomous driving). As a result, cur-
rent embedded processor architectures combine general purpose
multi-core systems with accelerators, such as Graphics Processing
Units (GPU) and Field Processing Gate Arrays (FPGA), the so-called
Multi-Processor Systems-on-Chip, MPSoC.

However, these architectures are typically programmed using
diverse low-level models (e.g., CUDA, OpenCL), which reduces the
programmability and portability of the system, forcing program-
mers to (1) tune the applications to the target architectures, and so
(2) master different languages and understand the peculiarities of
each system. Consequently, the adoption of new embedded architec-
tures becomes difficult. The use of high-level parallel programming
models is therefore desirable to leverage the computational capa-
bilities of the different processor architectures.

OpenMP is a high-level parallel programming model that has
become the de-facto standard for shared memory systems in HPC

, ,
.

by virtue of its productivity, including programmability, portabil-
ity and performance. Moreover, in recent years, there is a grow-
ing interest in the embedded domain as well. The reason is that
OpenMP includes a very powerful tasking model capable of sup-
porting highly-dynamic and unstructured parallelism, augmented
with an accelerator model for heterogeneous systems. These two
models allow the representation of OpenMP programs in the form
of a Task Dependency Graph (TDG) in which nodes are tasks (to be
executed either in the host or in the target device), and edges are
data dependencies between tasks.

Recent works have proposed the extraction of the TDG by means
of compiler analysis techniques to bound the amount of memory
used by the OpenMP run-time [29], and characterize the timing
behavior of both dynamic and static scheduling approaches [25, 26].
This paper proposes to further exploit the expressiveness of the
TDG representation to enhance the programmability of NVIDIA
GPUs through OpenMP. CUDA 10 introduced support for CUDA
graph, i.e., an unstructured sequence of CUDA kernels or memory
operations connected by dependencies. Graphs enable a define-once-
run-repeatedly execution flow that reduces the overhead of kernel
launching. They also allow a number of optimizations because the
whole workflow is visible, including execution, data movement,
and synchronizations. They do so by separating the definition of
the graph from its execution.

Interestingly, the TDG representation of the OpenMP tasking
and accelerator models and CUDA Graphs have several similarities:
(1) the creation, instantiation, and execution of a task/kernel is
uncoupled, (2) tasks/kernels are synchronized at specific points in
the code (e.g., the taskwait construct in OpenMP, or the cudaS-
treamSynchronize call in CUDA), and (3) both models allow defining
a data-flow execution model of tasks (in OpenMP) or kernels (in
CUDA) that can be mapped into a TDG.

Concretely, this paper presents a novel compiler transformation
that translates OpenMP code into CUDA graphs. The contributions
are the following: (1) an intermediate representation in the form of
static TDG that captures the data-flow behavior of a parallel appli-
cation implemented with the OpenMP tasking/accelerator model;
(2) a compiler analysis and optimization phase able to transform
OpenMP target tasks into a CUDA graph under certain limitations
(further explained in Section 4); (3) an evaluation that shows the
potential of the static TDG to exploit parallelism from two NVIDIA
platforms from the HPC and embedded domain.

2 CONVERGING PERFORMANCE AND
PROGRAMMABILITY

NVIDIA introduced General-Purpose GPUs (GPGPU) in 2007 ac-
companied by the CUDA development environment [19], designed
for GPUs. Two years later, the Khronos Group introduced its open

“The final publication is available at ACM via https://doi.org/10.1145/3378678.3391881”

, , Chenle Yu, Sara Royuela, and EduardoQuiñones

standard OpenCL [28], for CPU and GPU programming. While
CUDA disregards portability in favor of performance, OpenCL
clearly boosts portability, and performance has been shown to be
similar for the two models [7]. Unfortunately, both require a steep
learning curve to achieve the best performance, becoming an ob-
stacle to deliver programmability.

Later, in 2011, NVIDIA and other companies released OpenACC
[30], a user-driven, directive-based, performance-portable parallel
programming model. It was designed to enhance the programma-
bility and portability of heterogeneous systems. However, the per-
formance capabilities of the model where still far from reaching
those of CUDA [8, 21].

At that time, OpenMP [20] was already a well-known program-
ming model for shared-memory machines by virtue of its perfor-
mance [9, 27], portability and programmability [15]. These features
boosted OpenMP as a gateway to explore automatic transforma-
tions of OpenMP into CUDA [1, 11, 17]. Although limited regarding
the input sources accepted, the tools proved that automatic trans-
formations lead to performance levels comparable to hand-written
CUDA codes for a number of benchmarks.

In 2013, OpenMP released its accelerator model, a host-centric
model in which a host device drives the execution and offloads
kernels to an accelerator device. The thread model mimics that of
CUDA: OpenMP threads belong to OpenMP teams, which belong to
OpenMP leagues and CUDA threads belong to CUDA blocks, which
belong to grids. This accelerator model, although promising [2, 10],
is still far from getting performance levels similar to CUDA [14].
Overcoming this limitation, the OmpSs model [6] introduced a way
to easily exploit CUDA and OpenCL kernels in C/C++ applications
by augmenting them with pragmas for kernel offloading [24], while
offering a convenient fast-prototyping platform.

Although centered in the productivity of HPC systems, the
OpenMP tasking and accelerator models have caught the atten-
tion of the embedded systems community [4, 13]. The data-flow
execution these models define allows the characterization of the
program as a Task Dependency Graph, where nodes are tasks, and
edges are dependencies between tasks.

The TDG of an OpenMP program is typically extracted dynam-
ically at run-time, when the values of the tasks are instantiated
and the addresses of the dependencies are solved. This mechanism
can be used at runtime for dynamic scheduling based, for example,
on the critical path [5]. However, in critical real-time systems, the
TDG can typically be derived at compile-time [29]. This ahead of
time characterization of the program allows optimizations such as
bounding the amount of memory required and avoiding the use
of dynamic memory by the parallel runtime [16], and enables de-
riving the timing properties of the system, and hence ensuring its
schedulability [25]. In the same line, the OpenMP specification has
been analized and augmented regarding time criticality [26] and
functional safety [22].

This work takes advantage of the recently introduced CUDA
graphs, in 2018, and its mapping into a Directed Acyclic Graph
(DAG) equivalent to the OpenMP TDG, to enhance the productivity
of current MPSoCs, considering programmability, portability and
performance. Specifically, it proposes the use of the OpenMP accel-
erator model as a facilitator for leveraging the benefits of CUDA

graphs while managing tedious tasks such as data movements,
dependencies, and synchronizations.

3 THE NEED FOR HIGH-LEVEL PARALLEL
PROGRAMMING MODELS

High-level parallel programming models are a defensive program-
mingmechanism against low-level APIs, such as CUDA andOpenCL,
because of several reasons: (1) they usually hide most of the com-
plexities exposed to the programmer in the latter (e.g., data transfers,
load balancing, etc.); (2) they offer a condensed form of express-
ing parallelism (generally through compiler directives), that is less
error-prone than low-level APIs, which typically require rewrit-
ing many parts (if not all) of the code; and (3) they can easily be
deactivated at compile time, enhancing debugging. What’s more,
they not only favor programmability, but also portability, still con-
sidering performance as a key aspect. There are two mainstream
high-level user-directed models for offloading kernels to GPU de-
vices: OpenMP and OpenACC. Additionally, OmpSs is also a high-
level paradigm for fast prototyping that has been a forerunner of
the OpenMP tasking model. In this paper, we focus on OpenMP
for several reasons: (1) it targets both SMPs and heterogeneous
systems, (2) it is supported by most chip and compiler vendors (in-
cluding NVIDIA), and (3) it provides great expressiveness by means
of an exhaustive interface. Overall, OpenMP is a well candidate to
leverage the power of GPUs by virtue of its programmability.

3.1 OpenMP
OpenMP describes a fork-join model where parallelism is spawned
through the parallel construct, and distributed based on two
paradigms, the thread model providing work-sharing constructs,
e.g., for, and the tasking model providing tasking constructs, e.g.,
task. OpenMP allows synchronizing threads through synchro-
nization constructs, e.g., barrier and taskwait, and data de-
pendency clauses for tasks, i.e., depend([in,out, inout]).
The tasking model defines a data-flow execution that can be charac-
terized as a TDG. The accelerator model, built on top of the tasking
model, allows offloading tasks to an accelerator device for further
exploiting parallelism by means of device directives, e.g., target.
These tasks, called target tasks, can be executed synchronously or
asynchronously (i.e., using the nowait clause). As regular tasks,
they can be represented in a TDG as well.

As an illustration, Figure 1a shows a snippet of an OpenMP
Cholesky decomposition using the OpenMP tasking and accelera-
tor models. The most computationally intensive kernel (potrf, at
line 3) is sent to the accelerator using the target construct, while
the others (trsm, gemm and syrk at lines 6, 12 and 15 respectively)
are executed on the host using the task directive. The unstruc-
tured nature of Cholesky is expressed by means of the depend
synchronization clauses in the target and task directives. The
corresponding TDG, when considering NB=4, is shown in Figure 1b
(it has been statically computed with the mechanisms presented in
Section 4.1). Red nodes correspond to the potrf function executed
in the device; green, blue and purple nodes correspond to the trsm,
gemm and syrk functions, respectively, executed on the host. Each
node is identified by an unique id. The edges correspond to the data
dependencies among nodes as expressed by the depend clauses.

OpenMP to CUDA graphs: a compiler-based transformation to enhance the programmability of NVIDIA devices , ,

1 for (k = 0 ; k < NB ; k++) {
2 #pragma omp target depend (inout : Ah[k] [k])
3 p o t r f (Ah[k] [k] , t s , t s) ;
4 for (i = k + 1 ; i < NB ; i ++) {
5 #pragma omp task depend (in : Ah[k] [k]) depend (inout : Ah[k] [i])
6 trsm (Ah[k] [k] ,Ah[k] [i] , t s , t s) ;
7 }
8 for (l = k + 1 ; l < NB ; l ++) {
9 for (j = k + 1 ; j < l ; j ++) {
10 #pragma omp task depend (in : Ah[k] [l]) depend (in : Ah[k] [j]) \
11 depend (inout : Ah[j] [l])
12 gemm(Ah[k] [l] ,Ah[k] [j] ,Ah[j] [l] , t s , t s) ;
13 }
14 #pragma omp task depend (in : Ah[k] [l]) depend (inout : Ah[l] [l])
15 syrk (Ah[k] [l] ,Ah[l] [l] , t s , t s) ;
16 }
17 }

(a) OpenMP tasking source code snippet.

17

82

210 146

467 403

84

162

164 419

116

65

potrf (line 2) trsm (line 5) gemm (line 10) syrk (line 14)

114

98

100

49

33723212 148

(b) TDG composed of 20 OpenMP tasks.

Figure 1: Cholesky decomposition using OpenMP tasking/acceleration and its corresponding TDG for NB=4.

3.2 CUDA Graphs
CUDA graphs, first introduced in CUDA 10, is a new model that
allows defining work as a DAG rather than as single kernel oper-
ations. A CUDA graph is a set of nodes representing operations,
i.e., memory operations and kernel launches, connected by edges
representing run-after dependencies. Graphs enable a define-once-
run-repeatedly execution flow by separating the definition and the
execution of the graph, and allowing graphs to be launched sev-
eral times. CUDA 10 includes explicit APIs for creating graphs,
e.g., cudaGraphCreate, to create a graph; cudaGraphAddKernelN-
ode/cudaGraphAddHostNode, to add a new node to the graph with
the corresponding run-after dependencies with previous nodes, to
be executed on the host/GPU; cudaGraphInstantiate, to create an
executable graph; and cudaGraphLaunch, to launch an executable
graph in a stream. The synchronization of graph launches is done by
calling cudastreamSynchronize of the corresponding stream. Addi-
tionally, graphs can also be captured from an existing stream-based
API (this feature is further discussed in Section 6).

Interestingly, the TDG representation of the OpenMP tasking
and acceleration models and CUDA Graphs have several similar-
ities. Figure 2 shows a snippet of the API to generate the CUDA
graph of the two first nodes of the Cholesky TDG shown in Fig-
ure 1b, i.e., nodes with the unique ids 17 and 82, corresponding
to the first execution of the potrf and trsm functions respec-
tively. The former is executed on the GPU and so created with the
cudaGraphAddKernelNode API at line 9. The API includes
the function pointer (defined at line 5) and arguments (defined at
line 6). Since this is the first node of the graph, no dependencies
are defined (the third parameter at line 9 is set to NULL). The latter
is executed on the host and so created with the cudaGraphAd-
dHostNode API at line 18. In this case, a dependency with the

1 . . .
2 / / C r e a t i o n o f t h e k e r n e l node 17
3 cudaGraphNode_t node_17 ;
4 cudaKernelNodeParams nodeArgs_17 = { 0 } ;
5 nodeArgs_17 . func = (void ∗) p o t r f ;
6 void ∗ k e rne lArg s_17 [3] = {&Ah [1] [1] , &t s , &t s } ;
7 nodeArgs_17 . ke rne lPa rams =(void ∗ ∗) k e rne lArg s_17 ;
8 cudaGraphAddKernelNode (
9 &node_17 , graph [0] , NULL , 0 , &nodeArgs_17) ;
10 / / C r e a t i o n o f t h e h o s t node 82
11 cudaGraphNode_t node_82 ;
12 cudaHostNodeParams nodeArgs_82 = { 0 } ;
13 nodeArgs_82 . func = (void ∗) t rsm ;
14 void ∗ hos tArgs_82 [4] =
15 {&Ah [1] [1] , &Ah [1] [1] , &t s , &t s } ;
16 nodeArgs_82 . ke rne lPa rams =(void ∗ ∗) hos tArgs_82 ;
17 cudaGraphAddHostNode (
18 &node_82 , graph [0] , &node_17 , 1 , &nodeArgs_82) ;
19 . . . / / C r e a t i o n o f t h e r e s t o f t h e nod e s

Figure 2: Snippet of the CUDAgraph correspondingwith the
TDG shown in Figure 1b.

previously created node 17 is set (defined by the third parameter of
the cudaGraphAddHostNode API).

Manually generating the CUDA graph of a parallel application
as the Cholesky decomposition is a very tedious and error-prone
process due to the unstructured parallel nature of the application.
When the number of nodes in the TDG increases (e.g., in Figure 1a,
the parallel execution forNB = 20 generates a TDGof 1540 nodes),
this process becomes impossible.

, , Chenle Yu, Sara Royuela, and EduardoQuiñones

4 OPENMP TO CUDA GRAPH
TRANSFORMATION

This section presents a new compiler transformation that, based
on the generation of a TDG at compile-time, is able to transform
code using the offloading mechanism of OpenMP (i.e., the target
directive) into CUDA graphs. This new technique has two benefits:
(1) enhance the OpenMP target performance by avoiding offload-
ing overheads and exploiting the define-once-run-repeatedly model
allowed by CUDA graphs, and (2) improve the programmability and
testability of NVIDIA CUDA graphs. The compiler transformation
is based on first statically generating a TDG that holds all the in-
formation needed to execute the user code, and then transforming
the OpenMP directives into calls to the CUDA graphs API. The
following subsections describe these steps.

4.1 Augmenting the static TDG
The static generation of a TDG has already proven its applicability
in embedded systems, as introduced in Section 2. The originally pre-
sented TDG [29] is constructed based on the information extracted
from classic control-flow and data-flow analyses extended to repre-
sent OpenMP semantics, including (a) Parallel Control-Flow Graph
(PCFG) [23] (for representing the flow of the parallel application),
(b) constant propagation and common sub-expression elimination
(to simplify the computation of values), (c) induction variables anal-
ysis and scalar evolution (to decide the values of variables within
loops), and (d) loop unrolling (to recognize task instances).

Drowning from that mechanism, this section presents an aug-
mented version of the TDG that enables its use to generate CUDA
graphs. The modifications are listed as follows:

– A new directive with the syntax
#pragma omp taskgraph

dims(integer-expr, integer-expr)
encloses the region of code that is to generate the TDG (or
a subpart of the TDG) that will be transformed to a CUDA
graph. This enlightens the analysis needed by the compiler
to understand what part of a TDG, or complete TDG, is
to be transformed into a CUDA graph, and what part is
to be lowered to the SMP. However, computing the proper
dimensions for a CUDA kernel is not straightforward. Hence,
the directive includes the dims clause, which allows users
to provide this information to the compiler.

– The TDG now includes regular tasks and target tasks, and
also includes a new type of node that represents the task-
graph region.

– During the expansion process, not only dependencies are
resolved, but also the data consumed by each task. This is
possible when there is no aliasing, and the addresses (i.e.,
offsets) of each access can be computed at compile time.

Next section explains the proposed compiler transformation
based on the augmented TDG.

4.2 Compiler Transformation
When the TDG of an application can be derived at compile-time,
i.e., the values involved in the execution of the tasks are statically
defined (which is common in critical real-time systems), and it

contains all the user code that needs to be executed, i.e., all code
is taskified within a given region, then, the TDG of that region
represents an execution flow that can be perfectly mapped to a
CUDA graph. Taking advantage of this, we have implemented a
new stage in the Mercurium source-to-source compiler that, based
on the static TDG previously described, lowers OpenMP target
constructs into calls to the CUDA graph API. The transformation
occurs, for each taskgraph node in the TDG, as follows:

(1) Allocate the memory structures in the device (e.g. through
cudaMalloc).

(2) Declaration of generic variables, needed by CUDA Graph
API functions.

(3) For each node within the corresponding taskgraph:
(a) Set up a list of parameters, of type cudaKernelNodeParams

or cudaHostNodeParams, including (i) the pointer to the
kernel to be executed, (ii) the grid dimension (number of
blocks), and the block dimension (threads per block) for
device functions, and (iii) the required data, among others.

(b) Associate the set of parameters with a cudaGraphNode_t
node.

(c) Add the node to the graph, including its dependencies, i.e.,
the list of previous nodes with which the new node has
run-after dependencies.

(4) Instantiate the graph, through cudaGraphInstantiate.
(5) Execute the graph, via cudaGraphLaunch.
(6) Synchronize the graph, by calling cudastreamSynchronize.
In order to exploit the define-once-run-repeatedly execution flow

allowed by the CUDA graphs model, the compiler generates extra
code: it wraps the code creating the graph in a condition statement
that is true only the first time this code is traversed at run-time.
In this case, the graph executed is stored for use in subsequent
executions. When the condition is false, the corresponding stored
graph is launched and synchronized.

5 EVALUATION
This section evaluates the benefits of our proposal in terms of
performance and programmability. The former shows the gain in
terms of execution time of using CUDA graphs instead of OpenMP
offloading for each CUDA kernel separately. The latter shows the
gain, in terms of code lines, of using OpenMP instead of CUDA
graphs to parallelize task-based parallel applications.

5.1 Experimental Setup
Applications. Evaluations are performed on two different applica-
tions: (1) Saxpy, Single Precision AX Plus Y, a structured benchmark
using a vector of 1024x1024 elements, and blocks of 1024 elements,
resulting in 1024 tasks, and (2) Cholesky decomposition, an unstruc-
tured benchmark with a matrix of 4000x4000 elements, and blocks
of 20x20 elements, resulting in 1540 tasks. We have implemented
the applications using the OpenMP target construct to offload
CUDA kernels to the GPU, and we have used our automatic tool to
generate the CUDA graph version of both benchmarks.
Tools. Three types of tools were used: (1) compilers, particularly
Mercurium v2 [3] as source-to-source compiler for static TDG and
code transformation, IBM XL 16.1.1 as back-end compiler for the
OpenMP version, and NVCC v10 for the CUDA and CUDA graphs

OpenMP to CUDA graphs: a compiler-based transformation to enhance the programmability of NVIDIA devices , ,

version; (2) runtimes, particularly Nanos++ implementing OpenMP
plus extensions for offloading work to the GPU based on the target
directive; and (3) analysis tools, particularly nvproof [18].
Platform. Experiments have been conducted in two different het-
erogeneous systems: (1) a node of the CTE-Power cluster, running
a Linux OS, and containing 2 IBM Power9 8335-GTH processors
@2.4GHz, 512GB of memory, and 4 GPU NVIDIA V100 (Volta) with
16GB HBM2, and running CUDA version 10.1, and (2) a Jetson AGX
Xavier, running a Linux OS, and containing an 8-core ARM v8.2
64-bit CPU, 8MB L2 + 4MB L3, and a 512-core Volta GPU. Although
it is inconceivable to use the V100 in an embedded system because
of the amount of energy it consumes, we use the CTE-Power cluster
because it supports OpenMP, while the Jetson does not. The CUDA
graphs versions are evaluated in both architectures.

5.2 Performance evaluation
This section shows the performance evaluation of the different
applications and configurations, to demonstrate the benefits, con-
sidering execution time, of exploiting CUDA graphs instead of the
OpenMP native mechanism for offloading.

Figures 3a and 3b show the evolution of the execution time of
the two benchmarks (Saxpy and Cholesky), when increasing the
number of times the TDG executes (form 1 to 100). In both cases,
the OpenMP offloading version is much slower than the automati-
cally generated CUDA graph version. In this sense, the nvproof tool
reveals that synchronizations take most of the time in the OpenMP
version, while in the generated CUDA graphs applications, time
spent in synchronizations is minimal. The increase of time, nonethe-
less, is exponential in both cases, indicating that, in OpenMP, the
overhead of dynamically creating the TDG each time it is launched
is not too high.

5.3 Programmability evaluation
To evaluate the usefulness of our tool, we compare the effort needed
to implement the presented benchmarks by transforming OpenMP
to CUDA graphs, and using only CUDA graph API functions. The
comparison is in terms of complexity, including the amount of code
lines needed, and also the difficulty of characterizing the benchmark
with the two models.

Table 1 approximates the number of lines needed to, based on
a sequential version of a benchmark, produce its parallel version
using OpenMP and CUDA graphs. Numbers are revealing: on one
hand, Saxpy, a structured algorithm with independent tasks, al-
lows programmers creating the CUDA graph within the original
loop traversing the vector; even so, the number of lines needed
to generate this version is one order of magnitude larger than
using OpenMP; on the other hand, Cholesky, an unstructured algo-
rithm where the dependencies of the different tasks/kernels change
across iterations, forcing the explicit definition, not only of each
node (1540 in our case), but also of their dependencies (which need
additional computations to determine), reaching 4 orders of magni-
tude more lines than OpenMP. It is therefore unrealistic to use the
CUDA graphs API to express unstructured parallelism such as that
exploited in the Cholesky decomposition.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 10 100

Ex
e

cu
ti

o
n

 t
im

e
(s

)

Number of iterations

OpenMP CUDA GRAPH V100 CUDA GRAPH Xavier

(a) Saxpy

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1 10 100

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Number of iterations

OpenMP CUDA GRAPH on V100 CUDA Graph on Xavier

(b) Cholesky

Figure 3: Execution time evolution based on the number of
TDG executions for different benchmarks.

OpenMP CUDA Graphs
Saxpy 1 25

Cholesky 4 15500
Table 1: Number of lines needed to parallelize Cholesky and
Saxpy depending on the parallel programming model.

6 FURTHER DISCUSSION
This paper presents the OpenMP tasking model as an enabler to
exploit unstructured kernels with CUDA graphs by means of the
static generation of the Task Dependency Graph that represents the
flow of the application. In this work, we also present a prototype
implementation that uses the proposed taskgraph directive to
wrap the regions of code that can be mapped to CUDA graphs. For
the sake of simplicity, the prototype is limited to OpenMP codes
using the tasking/accelerator models to call CUDA kernels. In this
sense, other works have explored the possibility of transforming
OpenMP code into CUDA kernels [1, 12, 17]. Such works, com-
bined with ours, could transform native OpenMP codes into CUDA
graphs. However, theseworks do not consider the acceleratormodel,
because it was introduced later. There is no work, to the best of
our knowledge, that explores the automatic transformation of the
OpenMP accelerator model (including directives such as teams,
distribute) into CUDA code, and this remains out of the scope
of this paper.

As a second point, in this work we are using the CUDA API
to exploit CUDA graphs. However, CUDA also includes another
mechanism to create CUDA graphs based on capturing information
on GPU activities that are submitted to the stream between the

, , Chenle Yu, Sara Royuela, and EduardoQuiñones

cudaStreamBeginCapture and cudaStreamEndCapture calls. This
mechanism could also be applied to SMPs and easily exploited with
OpenMP by dynamically capturing regions of code in the form of a
TDG, for later execution. This feature is remarkable in HPC where
environments are highly dynamic, and the cost (both in time and
energy) and the performance are paramount. The exploration of
this possibility remains also as a future work.

The potential of the TDG representation is not only tied to
OpenMP and CUDA graphs. Other models, such as OpenACC and
OmpSs, also allow describing the parallelism as a series of kernel-
s/tasks with dependencies, i.e., the async and wait clauses in
OpenACC, and the in, out, and inout clauses in OmpSs. For
this reason, the same TDG representation can be used to charac-
terize the applications written with these models, and thus, similar
transformations to the one presented in this paper could be applied.

Last but not least, a research line within the OpenMP tasking sub-
group of the OpenMP Language Committee for the next OpenMP
6.0 specification, expected by November 2023, is the concept of
re-usable tasks or task graphs. What’s more, the concept of recurrent
task, as a task containing a DAG (andmaybe a period and a deadline)
that is created once and can be executed several times, is also being
studied within the OpenMP community for environments such as
critical real-time systems [26]. These features strongly resemble the
implementation of the presented taskgraph directive, only that
the latter is executed in NVIDIA GPU by means of CUDA graphs,
while the former is meant for SMPs (at least, initially).

All the interesting research lines just outlined support the impor-
tance of our contribution. The prototype presented shows, on one
hand, the capabilities of the OpenMP tasking/acceleration models
to describe unstructured parallelism, and, on the other hand, the po-
tential of the TDG representation to map this highly programmable
language into other task-based models like CUDA graphs. Further-
more, the evaluation presented shows the significance of using
the adequate language for each platform. However, as revealed in
Section 3, in some cases, such as highly unstructured algorithms,
this is only possible by means of a high-level abstraction parallel
programming model such as OpenMP.

ACKNOWLEDGMENTS
This work has been supported by the EU H2020 project AMPERE
under the grant agreement no. 871669.

REFERENCES
[1] MuthuManikandan Baskaran, Jj Ramanujam, and P Sadayappan. 2010. Automatic

C-to-CUDA Code Generation for Affine Programs. In CC. 244–263.
[2] Carlo Bertolli, Samuel F Antao, Alexandre E Eichenberger, Kevin OBrien Zehra

Sura, Arpith C Jacob, Tong Chen, and Olivier Sallenave. 2014. Coordinating GPU
threads for OpenMP 4.0 in LLVM. In LLVM Compiler Infrastructure in HPC.

[3] BSC. 2020. Mercurium. https://pm.bsc.es/mcxx
[4] Barbara Chapman, Lei Huang, Eric Biscondi, Eric Stotzer, Ashish Shrivastava, and

Alan Gatherer. 2009. Implementing OpenMP on a High Performance Embedded
Multicore MPSoC. In IPDPS.

[5] Kallia Chronaki, Alejandro Rico, Rosa M Badia, Eduard Ayguadé, Jesús Labarta,
and Mateo Valero. 2015. Criticality-aware Dynamic Task Scheduling for Hetero-
geneous Architectures. In ICS.

[6] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Martinell,
Xavier Martorell, and Judit Planas. 2011. OmpSs: a Proposal for Programming
Heterogeneous Multi-core Architectures. Parallel Processing Letters 21, 02 (2011).

[7] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. 2011. A comprehensive
Performance Comparison of CUDA and OpenCL. In ICPP. 216–225.

[8] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, and Ryoji Takaki. 2013.
CUDA vs OpenACC: Performance case studies with kernel benchmarks and a
memory-bound CFD application. In CCGRID. IEEE, 136–143.

[9] Géraud Krawezik. 2003. Performance Comparison of MPI and Three OpenMP
Programming Styles on Shared Memory Multiprocessors. In SPAA. 118–127.

[10] V Vergara Larrea, Wayne Joubert, M Graham Lopez, and Oscar Hernandez. 2016.
Early Experiences Writing Performance Portable OpenMP 4 Codes. In Cray User
Group Meeting, London, England.

[11] Seyong Lee and Rudolf Eigenmann. 2010. OpenMPC: Extended OpenMP Pro-
gramming and Tuning for GPUs. In SC. 1–11.

[12] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. 2009. OpenMP to GPGPU: a
Compiler Framework for Automatic Translation and Optimization. ACM Sigplan
Notices 44, 4 (2009).

[13] Andrea Marongiu, Paolo Burgio, and Luca Benini. 2011. Supporting OpenMP
on a Multi-cluster Embedded MPSoC. Microprocessors and Microsystems 35, 8
(2011).

[14] Matt Martineau, Simon McIntosh-Smith, and Wayne Gaudin. 2016. Evaluating
OpenMP 4.0’s Effectiveness as a Heterogeneous Parallel Programming Model. In
IPDPSW. 338–347.

[15] Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kołodziej, and Christoph Kessler. 2017.
Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: Programming Produc-
tivity, Performance, and Energy Consumption. InWorkshop on Adaptive Resource
Management and Scheduling for Cloud Computing. 1–6.

[16] Adrián Munera Sánchez, Sara Royuela, and Eduardo Quiñones. 2020. Towards a
Qualifiable OpenMP Framework for Embedded Systems. In DATE.

[17] Gabriel Noaje, Christophe Jaillet, and Michaël Krajecki. 2011. Source-to-source
Code Translator: OpenMP C to CUDA. In HPCC. 512–519.

[18] NVIDIA. 2019. Profiler’s user guide. https://docs.nvidia.com/cuda/profiler-
users-guide/

[19] NVIDIA. 2019. Programming Guide :: CUDA Toolkit Documentation. https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/

[20] OpenMP ARB. 2018. OpenMP Application Program Interface, version 5.0. https:
//www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

[21] Ruymán Reyes, Iván López, Juan J Fumero, and Francisco de Sande. 2013. A
preliminary evaluation of OpenACC implementations. The Journal of Supercom-
puting 65, 3 (2013), 1063–1075.

[22] Sara Royuela, Alejandro Duran, Maria A Serrano, Eduardo Quiñones, and Xavier
Martorell. 2017. A Functional Safety OpenMP* for Critical Real-Time Embedded
Systems. In IWOMP.

[23] Sara Royuela, Roger Ferrer, Diego Caballero, and XavierMartorell. 2015. Compiler
analysis for OpenMP tasks correctness. In CF. 1–8.

[24] Florentino Sainz, Sergi Mateo, Vicenç Beltran, Jose L Bosque, Xavier Martorell,
and Eduard Ayguadé. 2014. Leveraging OmpSs to Exploit Hardware Accelerators.
In SBAC-PAD. 112–119.

[25] Maria A Serrano, Alessandra Melani, Roberto Vargas, Andrea Marongiu, Marko
Bertogna, and Eduardo Quiñones. 2015. Timing Characterization of OpenMP4
Tasking Model. In CASES. 157–166.

[26] Maria A Serrano, Sara Royuela, and Eduardo Quiñones. 2018. Towards an
OpenMP Specification for Critical Real-time Systems. In IWOMP. 143–159.

[27] Jie Shen, Jianbin Fang, Henk Sips, and Ana Lucia Varbanescu. 2012. Performance
Gaps between OpenMP and OpenCL for Multi-core CPUs. In ICPP. 116–125.

[28] John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems. Computing in Science &
Engineering 12, 3 (2010).

[29] Vargas, Roberto E and Royuela, Sara and Serrano, Maria A and Martorell, Xavi
and Quiñones, Eduardo. 2016. A lightweight OpenMP4 Run-time for Embedded
Systems. In ASP-DAC.

[30] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. 2012.
OpenACC – First Experiences with Real-world Applications. In Euro-Par.

https://pm.bsc.es/mcxx
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

	Abstract
	1 Introduction
	2 Converging Performance and Programmability
	3 The Need for High-level Parallel Programming Models
	3.1 OpenMP
	3.2 CUDA Graphs

	4 OpenMP to CUDA Graph Transformation
	4.1 Augmenting the static TDG
	4.2 Compiler Transformation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance evaluation
	5.3 Programmability evaluation

	6 Further Discussion
	Acknowledgments
	References

