
© ACM 2020. This is the author’s version of the work. It is posted here for your personal use. 
Not for redistribution. The definitive Version of Record was published in ACM SCOPES 2020, 
https://doi.org/10.1145/3378678.3391888

https://doi.org/10.1145/3378678.3391888


Configuring Loosely Time-Triggered Wireless Control Software
Philipp H. Kindt
philipp.kindt@tum.de
TU Munich, Germany

Sumana Ghosh
sumana.ghosh@tum.de
TU Munich, Germany

Samarjit Chakraborty
samarjit@cs.unc.edu

University of North Carolina at
Chapel Hill, USA

ABSTRACT
In many wireless control networks, sensor data and controller data
are exchanged periodically, which requires periodic packet trans-
missions between the physical plant and the controller. As an alter-
native, event-triggered control paradigms imply that data is only
exchanged when there are significant changes in the state of the
plant, e.g., because of disturbances. This is the nature of many
IoT scenarios and requires that a receiving device has to listen to
the channel for incoming packets during all times. However, espe-
cially in mobile networks, in which all devices are battery-powered,
continuous scanning would drain the battery quickly and hence,
reception needs to be duty-cycled. When optimizing such duty-
cycled operation, significant energy savings are possible using in-
telligent software-enabled communication scheduling. In this paper,
we propose a wireless transmission scheme that supports loosely
time-triggered control. When optimizing the scheduling of trans-
missions and reception windows in the communication protocol,
our proposed scheme allows for energy-efficient communication
without requiring strict clock-synchronization between the devices.
We show that such a scheme is practical and can greatly reduce the
energy consumption in event-triggered control applications.
ACM Reference Format:
Philipp H. Kindt, Sumana Ghosh, and Samarjit Chakraborty. 2020. Configur-
ing Loosely Time-TriggeredWireless Control Software. In 23rd International
Workshop on Software and Compilers for Embedded Systems (SCOPES ’20),
May 25–26, 2020, Sankt Goar, Germany. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3378678.3391888

1 INTRODUCTION
Recently, many networked control systems use wireless connec-
tivity for interconnecting sensors, controllers and actuators. Such
networks are especially beneficial in Internet of Things (IoT) or
smart home applications. For example, consider multiple sensors
that are deployed within a building for sensing temperature, humid-
ity and the open/close status of all windows. The sensed data is used
to control heating using multiple battery-driven thermostats, such
as the popular Google Nest [2]. Alternatively, consider a scenario in
which the control algorithms are executed on a smartphone, thereby
tailoring the control goals to the needs of different users. In all such
scenarios, every participating device is energy-constrained. This
imposes requirements on the wireless network, which we describe
next.
Network Operation: Whereas a base-station without any energy
constraints could always listen to the channel for incoming packets,
energy-constrained devices need to apply a duty-cycled (on/off)
reception pattern. Furthermore, the low penetration properties of
SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany
2020. ACM ISBN 978-1-4503-7131-5/20/05. . . $15.00
https://doi.org/10.1145/3378678.3391888

protocols that operate in the 2.4GHz band, e.g., WiFi, Bluetooth,
Zigbee, etc., often induce the need for multi-hop communication.
For realizing this, a device needs to relay all incoming data, which
imposes the need for duty-cycled reception of mobile devices also
when a base-station is present. When reception is duty-cycled, a
device typically listens to the channel for a certain amount of time
d every TR time-units, as depicted in Figure 1. As a result, a packet
can only be transmitted successfully within one of these reception
windows. In the worst-case, a device has to wait for TR time-units
until its packet can be transmitted. This periodic communication
scheme meets the requirements of synchronous, periodic control.
In particular, when the period of the controller andTR are identical
and synchronized, the wireless network can achieve similar delays
to those of a wired network. However, in event-triggered control
strategies, data is only transmitted when significant changes in the
state of the plant occur. For such paradigms, periodically transmit-
ting packets is wasteful, since packets being sent in the absence of
events carry no useful state or control information.
This Paper: The points in time at which packets are sent and the
device listens to the channel are entirely defined by software. Hence,
intelligent software that optimizes the communication schedule can
significantly reduce the overall energy-consumption. In particular,
current wireless protocols typically assume that a pair of devices
are always synchronized with each other, i.e., every transmitted
packet always meets a reception window of the opposite device.
If now the transmitter is allowed to “skip” a certain number of
instances of TR , the maximum possible clock skew can become
large. Hence, for event-triggered control, in which there are larger
idle-phases without any packet transmissions, devices get out of
synchronization. Existing strategies for nevertheless maintaining
synchronization rely on extending the reception window [5]. This
is energy-expensive and also limits the maximum allowed idle-time
before synchronization is lost. As an alternative, the embedded
software running on the nodes could drop the connection and re-
synchronize when data is to be sent. In this paper, we propose a
software-enabled networking paradigm that lies in between full
synchronization and entirely dropping the connection. In particular,
we propose a lightweight re-synchronization mechanism imple-
mented in software, which exploits the fact that clock drift remains
bounded even after longer idle periods. Hence, a re-synchronization
mechanism that consumes less energy and induces a lower latency
than a full re-synchronization can be carried out. The resulting
protocol supports the paradigm of loosely time-triggered architec-
tures (LTTA) [1] for mobile wireless control networks: every device
can wirelessly dump its data at almost any point in time, while
reducing the energy-consumption to an extent that makes LTTA
feasible in mobile networks.
Paper Organization: The rest of this paper is organized as fol-
lows. In Section 2, we describe how current wireless protocol stack

https://doi.org/10.1145/3378678.3391888
https://doi.org/10.1145/3378678.3391888


SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany Philipp H. Kindt, Sumana Ghosh, and Samarjit Chakraborty

Figure 1: Duty-cycled communication. A device schedules its
receptionwindows R1,R2, ...with an interval TR. Another de-
vice aims to transmit packets within the centers of the recep-
tionwindows, which is aggrevated by a clock skew of ρ ≤ ρm
between sender and receiver.

software addresses the clock synchronization problem. In Section 3,
we describe our proposed solution. In Section 4, we present a case-
study to show that our proposed solution is significantly more
energy-efficient than known techniques. We conclude our findings
in Section 5.

2 MAINTAINING SYNCHRONIZATION
Rather than periodically executing a control algorithm, it is often
sufficient to compute new control input only when certain events
occur. For example, a temperature sensor only needs to transmit
its measured values to a controller when the difference from its
previously transmitted value exceeds a certain threshold. When
using a periodic reception pattern, a delay of up to TR time-units
is induced, since the transmission needs to be postponed until the
next reception window arises. The value of TR is determined by
the maximally allowed delay and hence by stability and control
performance requirements. In other words, if a certain bounded
delay can be accepted from the control perspective, duty-cycled
reception can be applied for event-triggered control.

While such a communication scheme is easy to realize on an
ideal radio, real-world hardware is prone to clock inaccuracies.
For being able to communicate, a transmitting device (T ) needs to
estimate the next point in time at which the receiving device (R)
will schedule a reception window. This requires some form of clock
synchronization among both devices. In particular, T ’s objective is
to estimate the center of a reception window.Whenever R receives a
packet from T, it can measure the relative clock skew ρ (cf. Figure 1)
between both devices as the difference in time of expected and
actual reception. Based on this, R can slightly adjust the beginning
of its next reception window, thereby preventing an accumulation
of the skew.

Typically, the clock accuracy on each device is specified by amax-
imum relative deviation ∆ from its nominal value. The maximum
skew ρm between two devices is given by

ρm (t) = 2 · ∆ · t , (1)
where t is the time since the last packet from T has been received
by R. In synchronous control systems with periodic transmissions,
t = TR and hence, ρm always remains on a low level. In event
triggered control, t can become considerably larger. For this reason,
the following technique is commonly used.

2.1 Skipping Windows and WindowWidening
Existing wireless protocols support that T may skip multiple in-
stances of TR without transmitting a packet, which is clearly bene-
ficial for event-triggered control. For example, the Bluetooth Low

Energy (BLE) protocol applies a concept called slave latency [5].
Here, T can skip up a certain number of reception windows in a row.
To compensate for the clock skew, R estimates ρm based on the time
since the last reception. Every reception window therefore starts
ρm time-units earlier, while ending ρm time-units later. Hence,
packets are still received also in the presence of clock skew. As a
drawback, since every reception window is increased by 2 · ρm (t),
with t becoming larger in each instance ofTR , the energy consump-
tion is significantly increased. Though becoming infeasible from an
energy-perspective before, the idle-time is limited by the size of the
reception window reaching TR . This leads to a maximum possible
idle-time tm of tm = 1/4 · (TR − d).

2.2 Re-Synchronization
The natural alternative to dropping events is entirely giving up the
synchronous connection and re-synchronizing opportunistically,
once data is to be transmitted. The synchronization procedure relies
on transmitting a sequence of probing packets using a pattern that
guarantees an overlap with a reception window within bounded
time. It has recently been shown in [3] that the minimum number
M of packets that need to be transmitted for guaranteeing that a
probing packet overlaps with a reception window is as follows.

M =

⌈
TR
d

⌉
(2)

Practically, we can sendM synchronization packets withinTR time-
units to guarantee re-synchronization without violating our latency
constraints. We will discuss the transmission pattern of these M
packets in the next section. The receiving device R uses the same
values of TR or d as for exchanging packets synchronously and
hence, no additional energy is required for R. Clearly, the energy
needed for synchronization required by T is given by the number of
packetsM and hence does not depend on the amount of clock skew.
If the idle-time t becomes sufficiently large, a re-synchronization
might consume less energy than maintaining a synchronous con-
nection using window-widening.

Strategies that, depending on the current value of t , drop the
synchronization and re-synchronize if needed, have not yet received
significant attention. It is worth mentioning that different values of
TR and d , which might deviate from what is used in a synchronous
connection, lead to a different energy-consumption of T and R.
However, solutions with reduced energy consumption also lead to
higher latencies, and we require a maximum latency of TR , as in a
synchronous connection. In many cases, a full re-synchronization is
not necessary, since some degree of synchronization has remained
since the last encounter. We next describe a solution exploiting this
insight, which further reduces the energy consumption.

3 LOOSELY-SYNCHRONOUS
COMMUNICATION

Equation 2 can be derived as follows. The first packet sent in a
sequence of packets for synchronization has a random time-offset
Φ between 0 andTR from the closest scan window that is temporally
on its left (cf. Figure 2). Whenever such a packet is sent without
being received successfully, we can exclude a contiguous range of
initial offset of length d , i.e., no beacons sent with such an offset
can overlap with the reception window (see [3] for details). Hence,



Configuring Loosely Time-Triggered Wireless Control Software SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany

Figure 2: Partial Re-Synchronization

for probing all possible offsets,M = ⌈
TR
d ⌉ packets are needed. If the

maximumpossible shift between the center of the receptionwindow
and the first beacon in a synchronization sequence is bounded to
±ρm , also the range of possible offsets Φ is constrained. As a result,
the number of beacons to be sent can be reduced, as described next.

3.1 Adaptive Re-Synchronization
Let us assume that T sends a packet after an idle-time of t time-
units, which leads to a maximum clock drift of ±ρm , as given by
Equation 1. We know that the packet that is supposed to be sent at
the center of d may be sent by ρm time-units too early (negative
skew) or too late (positive skew) due to the clock drift. We can
exploit this insight to schedule our packets for synchronization. Our
proposed scheme for achieving re-synchronization withM ′ ≤ M
packets, which is depicted in Figure 2, works as follows.

(1) Assume an idle-time of t , after which T attempts to transmit
a packet to R.

(2) Before transmitting, T estimates ρm (based on the idle-time
t and using Equation 1) and artificially sends its packet by
ρm time-units too early.

(3) In the best case, there is a positive clock skew of ρm time-
units (i.e., a delay) and hence, this packet overlaps with d .

(4) To account for all other potential values of the clock skew,
we re-transmit the packetM ′ times. The distance between
two consecutive packets is given by d . When accounting for
the worst-case, where the clock skew has a value of −ρm ,
the numberM ′ of synchronization packets is as follows.

M ′ =

⌈
2 · ρm − d/2

d

⌉
+ 1 (3)

(5) For “resetting” the idle time t for the next transmission, ev-
ery packet piggy-backs a counter value k , which represents
the packet count in the current sequence of synchroniza-
tion packets. R will receive a packet that contains a certain
counter value k , using which it can compute the actual clock
skew ρ that has occurred as

ρ = −ρm + k · d + ρc , (4)
where ρc is the difference of the reception time of the re-
ceived packet from the center of d (cf. Figure 2).

In the above, we have implicitly assumed that a packet being sent
such that it protrudes beyond d is also received successfully, since
d will be extended upon a partial reception.

Clearly, M ′ ≤ M , as long as ρm ≤ (⌈TR/d⌉ − 1/2) · d . Therefore,
whenever ρm > (⌈TR/d⌉ − 1/2), a full re-synchronization is applied
by sendingM consecutive beacons with a spacing of d time-units,
while the scheme described above is applied for smaller values of
ρm . Both techniques bound the delay to TR time-units.

With the described scheme, T can send control data with a gran-
ularity of TR time-units, while being allowed to skip an arbitrary

Figure 3: BLE advertising packet

number of reception windows. We call this scheme adaptive re-
synchronization. It supports loosely time-triggered communication,
since the communication is carried out in a loosely synchronized
manner using the periodic reception windows, while an event-
triggered control system can initiate a transmission with a suf-
ficiently fine time granularity. Note that the described adaptive
re-synchronization scheme provides disjoint coverage (i.e., for no
clock skew, no more than one beacon is received successfully).
Hence, the re-synchronization procedure provides the lowest pos-
sible energy consumption for the given latency (see [4] for details).
In the next section, we compare the energy efficiency of the overall
scheme to the alternative ones.

4 PERFORMANCE EVALUATION
In this section, we evaluate the energy consumption of the 3 de-
scribed strategies, viz., (i) not maintaining any synchronization
an re-synchronizing on demand, (ii) maintaining a synchronous
connection usingwindow-widening, and (iii) adaptive re-synchroni-
zation. We first discuss the energy characteristics of wireless radios.

4.1 Energy Model
When a radio listens for incoming packets in a synchronous con-
nection, there is a minimal idle-listening duration, below which
an incoming packet is risked to be overheard. We can estimate
this length by accounting for three components. First, we assume
that a packet is detected upon the reception of a 1-byte preamble,
as specified for BLE [5]. Second, we assume that our radio uses
a common 32 768Hz clock for scheduling reception windows. We
therefore assume that our minimal reception window has an ad-
ditional length of two clock ticks to compensate for quantization
errors. Third, we compute and add the window widening needed to
compensate for the clock-skew that arises within 1 ·TR . We assume
a clock accuracy of ∆ = 500 · 10−6, which is equal to the minimum
requirement for BLE. On a 1MBit/s radio, we obtain a reception
window for idle-listening of length d = 169 µs, which is extended
by the time to receive the additional bytes upon a partial reception.

Figure 3 depicts the measured current of a Nordic nRF518222 BLE
radio. There are two distinguishable peaks. The first one is related to
transmitting a BLE packet, the second one is related to listening for a
potential response. As can be seen, in addition to the energy needed
for actually transmitting and receiving packets, wireless radios
induce various overheads. The overheads required for running the
BLE protocol on a Bluegiga BLE112 radio have beenmeasured in [4].
We reuse these overheads for estimating the energy consumption
in our considered scenario (particularly, we account for the head,



SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany Philipp H. Kindt, Sumana Ghosh, and Samarjit Chakraborty

Figure 4: Joint power consumption for reception and trans-
mission for different strategies with TR = 10 ms.

cpre, prerx, tra, tail, to overheads upon reception and head, cpre,
pretx, tra, tail, to overheads upon transmission, as described in
[4]). For example, according to [4], idle-listening takes an effective
duration of 123 µs, in which the radio consumes its characteristic
reception current. Note that this duration is not identical to the
actual length of d , since it accounts for various overheads. Though
the values from [4] might differ slightly for non-BLE operation,
they will allow for a reasonable comparison of our strategies. We
further assume that each transmitted packet contains 10 bytes,
which already include the 1-byte preamble. Further, we assume an
operating voltage of 3 V.

Using this, we can estimate the power consumed by the dif-
ferent strategies. For the window-widening strategy, the power
demand for transmission is given by 1/t ·Qpkд ·3V, wereQpkд is the
charge consumed for transmitting one packet, including all over-
heads. For reception, the window-widening strategy incurs a power
of 1/TR · (ρm ·2 · IRX +Qidle )+1/t ·9 byte ·8 µs/byte, with IRX being
the current consumption for reception and Qidle the charge spent
for idle-listening. For the complete re-synchronization strat-
egy, the power spent for transmission is given by 1/t ·M ·Qpkд ·3V.
For reception, the power is given by 1/TR · (2ρm · IRX +Qidle ) +
1/t ·9 byte ·8 µs/byte. The adaptive re-synchronization strategy
dissipates the same power for reception, while the power for trans-
mission is given by 1/t ·M ′ ·Qpkд · 3V. The constant of 9 byte in
the equations above represents the packet length of 10 byte, from
which 1 byte has to be subtracted, since Qidle already accounts for
listening for the 1-byte preamble.

4.2 Evaluation
We first consider the joint power demand for transmission and
reception for a maximum latency of TR = 10ms. Figure 4 depicts
the power demand of the different strategies. As can be seen, the
window widening strategy is only beneficial for very short idle-
times t below around 150ms. For all other idle times, the adaptive
re-synchronization strategy significantly outperforms the other
strategies. For t → 1/4∆(Tr − d), a complete re-synchronization
after every t time-units incurs a similar overall power demand as
the adaptive re-synchronization strategy.

Figure 5 depicts the results for a larger maximum latency ofTR =
100ms. As can be seen, the results look similar, while the idle-time
until which adaptive re-synchronization reduces the power demand
compared to a complete re-synchronization every t time-units can
be increased significantly. Figure 6 evaluates the maximum idle

Figure 5: Joint power consumption for reception and trans-
mission for different strategies with TR = 100 ms.

Figure 6: Max. idle time until which adaptive re-
synchronization is beneficial.

time until which energy savings can be achieved using the adaptive
re-synchronization strategy, compared to a full re-synchronization.
We study different values ofTR . Especially in applications with low
latency demands, energy can be saved even for very large idle-times.
For example, if a latency of 20 s can be tolerated, idle-times of up
to 2.8 h can be realized.

5 CONCLUDING REMARKS
Our results show that adaptive re-synchronization can be very ben-
eficial for event-triggered control applications with slow dynamics.
If latencies of a few seconds can be tolerated, this technique allows
for low-energy operation with hours of idle-time. Even in scenarios
with faster dynamics and maximum tolerable latencies of around
10ms, our scheme can save energy when packets are exchanged
with an average period of up to multiple seconds. Therefore, this
scheme is especially beneficial in IoT, smart-home applications,
e.g., controlling heaters using temperature sensors, and industrial
control systems. Further research needs to measure these energy
savings on real-world hardware for obtaining more accurate re-
sults.

REFERENCES
[1] A. Benveniste, P. Caspi, M. Di Natale, C. Pinello, A. Sangiovanni-Vincentelli, and

S. Tripakis. 2007. Loosely time-triggered architectures based on communication-
by-sampling. In IEEE International Conference on Embedded Software (EMSOFT).
231–239.

[2] Google, Inc. 2020. Google Nest Learning Thermostat. (2020). store.google.com/
us/product/nest_learning_thermostat_3rd_gen_specs.

[3] P. H. Kindt and S. Chakraborty. 2019. On Optimal Neighbor Discovery. In ACM
Special Interest Group on Data Communication (SIGCOMM).

[4] P. H. Kindt, D. Yunge, R. Diemer, and S. Chakraborty. 2020. Energy Modeling for
the Bluetooth Low Energy Protocol. ACM Trans. Embed. Comput. Syst. (TECS) 19,
2 (March 2020).

[5] Bluetooth SIG. 2019. Specification of the Bluetooth System 5.2. (December 2019).
Volume 0, available via bluetooth.org.

store.google.com/us/product/nest_learning_thermostat_3rd_gen_specs
store.google.com/us/product/nest_learning_thermostat_3rd_gen_specs
bluetooth.org

