Edinburgh Research Explorer

The Serverkernel Operating System

Citation for published version:

Larrea, J & Barbalace, A 2020, The Serverkernel Operating System. in Proceedings of the Third ACM
International Workshop on Edge Systems, Analytics and Networking. ACM Association for Computing
Machinery, New York, NY, USA, pp. 13-18, 3rd International Workshop on Edge Systems, Analytics and
Networking, Heraklion, Crete, Greece, 27/04/20. https://doi.org/10.1145/3378679.3394537

Digital Object Identifier (DOI):
10.1145/3378679.3394537

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 09. May. 2024

https://doi.org/10.1145/3378679.3394537
https://doi.org/10.1145/3378679.3394537
https://www.research.ed.ac.uk/en/publications/af2f983e-a07d-495c-8ce2-908aacffa244

The Serverkernel Operating System

Jon Larrea
University of Edinburgh
$2004865@ed.ac.uk

ABSTRACT

With the idea of exploiting all the computational resources that an
IoT environment with multiple mostly-idle interconnected devices
offers, the serverkernel is presented as a new operating system (OS)
architecture that blends ideas from Unikernels and RTOSes. These
ideas are further mixed with a FaaS-like programming model to
provide a server in which a user can remotely offload computations
and get the result. Such OS architecture is minimalistic — a bare-
metal OS in which only drivers for CPU, network, and accelerators
are required in order to provide service.

To demonstrate the advantages of the serverkernel, jonOS, an
open-source C implementation of this architecture for Raspberry P4,
is provided. Compared with traditional OSes used in IoT devices, the
serverkernel achieves an improvement ratio of 1.5 in CPU time, 2.5
in execution time, and around 9 times better in network processing.

KEYWORDS
Operating Systems, Serverkernel, IoT, Unikernel, FaaS

ACM Reference Format:

Jon Larrea and Antonio Barbalace. 2020. The Serverkernel Operating System.
In 3rd International Workshop on Edge Systems, Analytics and Networking
(EdgeSys °20), April 27, 2020, Heraklion, Greece. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3378679.3394537

1 INTRODUCTION

In the last years, the demand for IoT devices has grown exponen-
tially, stimulating vendors to broaden the offer of available devices
on the market. With more IoT devices on the market, vendors
compete for higher performance, smaller physical sizes (miniatur-
ization), lower power consumption, etc. while the per-device price
dropped down. Thus, IoT devices are today part of our life; they can
be found in our city (e.g., intelligent hospital), workplace, home,
and on our body (e.g., smartwatch). As a consequence, there are
research and development to further make IoT devices part of our
lives, including their integration in wearable and textiles [9, 16, 30],
as well as into medical devices and prothesis [17, 28], which are
supported by innovative production mechanisms, such as replacing
the traditional silicon wafer with flexible materials [7]. Moreover,
as many of these devices are battery-powered, but batteries cannot
easily be charged, energy-harvesting technologies, which aims to
implement power-independent platforms that can reap energy from
movements or the environment, are at raise [20, 22,27, 29].

Now we have an uncommon scenario with many devices at-
tached to everyday objects. No one gets surprised when, at the

EdgeSys 20, April 27, 2020, Heraklion, Greece

© 2020 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 3rd International
Workshop on Edge Systems, Analytics and Networking (EdgeSys 20), April 27, 2020,
Heraklion, Greece, https://doi.org/10.1145/3378679.3394537.

Antonio Barbalace
University of Edinburgh
abarbala@ed.ac.uk

shop, familiar items like speakers or lamps come with integrated
voice assistant capabilities (e.g., Amazon Echo with Alexa support)!
From a compute capacity perspective, this scenario opens the door
to a world that provides a broad set of network interconnected pro-
cessing units that remains the majority of the time in idle status. IoT
lamps and lighting devices prove the truthfulness of this statement:
their integrated processing units, commonly part of a System on
Chip (SoC), leaves the idle status only when a new turn-on/turn-off
command arrives from the WiFi chip. Ergo, creating a substrate of
compute devices that can be opportunistically exploited to offload
computations — especially when they are not energy-constrained,
or have enough power to still correctly functioning for what they
have been built.

At this point is where this research work comes into the scene,
providing a high-performance solution to delegate load on mostly-
idle IoT and generic embedded devices. The serverkernel is presented
as a new OS architecture that takes advantage of this multi-device
scenario allowing remote computation offloads, efficiently and se-
curely. This new OS architecture mixes ideas from Unikernels, Func-
tion as a Service, and Cyclic Executive.

jon0S is the result of implementing the serverkernel OS on real
hardware targeting high performance. After exhaustive bench-
marks, jon0S demonstrated better performance of using traditional
operating systems, namely Linux, in the described targe scenario.

2 BACKGROUND

Minimal OSes. Recently, there has been a returned interest in
minimal operating systems with Unikernels [18] in the domain of
cloud computing, and little real-time OSes in the domain of IoT
[5, 6]. These fundamentally differ from the well documented tradi-
tional multi-user/task OS architectures described in [25] — which
Linux [13] is a reference implementation. Linux has many variants
that provide a complete solution for all kinds of scenarios, including
embedded systems [31]. Thus, it is preferred in several deployments
because it may reduce the time to market, and also because it is
backed by a large development community that makes it easy to
find people trained on Linux.

Unikernels are somewhat derived by the Exokernel OS design [14].
Such design strives to provide the closest access to hardware re-
sources to the application itself, enabling the application developer
to make low-level decisions. In an Exokernel OS most of the oper-
ating system services are deployed into a user-space library, called
1ibOS, which is linked with the application itself. A Unikernel is
quite similar; in fact, it also provides a libOS that is linked with
the application itself. Of the libOS, only the functionalities that
are strictly required by the application to run are used, the oth-
ers are discarded during the compilation process - reducing the
trusted computing base (TCB), and improving security [19]. Thus,
Unikernels are tailored to fit the specific needs of an application.
Additionally, the application and the /ibOS run in the same address

https://doi.org/10.1145/3378679.3394537
https://doi.org/10.1145/3378679.3394537

EdgeSys '20, April 27, 2020, Heraklion, Greece

space, which is kernel-space for a Unikernel. Due to the single
address space, a unikernelized application does not cross address-
space boundaries and has direct access to (potentially) all devices
on a platform - thus, it can access them with the maximum perfor-
mance.

Besides the security and performance advantages brought by
Unikernels, Unikernels were not designed to run on bare-metal,
but atop a hypervisor that exposes standard virtualized devices.
Running a hypervisor is not always an option on embedded de-
vices [23], and when it is, it may introduce non-trivial overheads,
not just because of the hardware but also due to the software [21].
Unikernels usually support a very narrow set of devices, hence
are not a good fit for embedded devices, including IoT. Therefore,
most [oT devices today adopt little real-time operating systems [26]
(RTOS). Such OSes offer time guarantees for applications that need
to process data as it comes to the device - i.e., producing an answer
in a specific amount of time from when the data is received. How-
ever, most RTOS today are bloated with additional code to support
multimedia, multi-tasking, etc., incorporating design traits from
traditional multi-user/task OS architectures. Hence, less suitable
for maximum performance.

Function as a Service. Function as a service (FaaS) is probably the
most successful Cloud innovation so far. FaaS$ is a category of cloud
computing services that provides a platform allowing customers to
develop, run, and manage applications, but without the burden of
building and maintaining the infrastructure [10, 24].

With FaaS, a developer identifies language code-level functions
(or hierarchy of them) to be executed on event triggers, on a ma-
chine in the cloud data-centre. Thus, FaaS enables the execution
of modular pieces of application code on a remote machine when
an event, e.g., a service request, or data ingestion, happens. FaaS
application code can access cloud storage and maybe, provided with
input data. Where and when the application code is executed is com-
pletely under the control of the service provider. Major examples
are AWS Lambda [2] and Azure Functions [3].

3 DESIGN AND ARCHITECTURE

The proposed OS is based on the design principle of extreme mini-
mality, for high performance and energy conservation, to the detri-
ment of being general-purpose, but without sacrificing security. It
targets IoT and generic embedded devices with a network connec-
tion of any kind, including Bluetooth, WiFi, and Ethernet, which
are mostly idle or have computing and network resources that are
mostly idle. The proposed OS controls such idle hardware resources
whenever they become available, and make them exploitable by
other computing devices on the network, which can use them to of-
fload computing tasks. Once the OS gets in control of the hardware
resources, it acts as a server waiting for a request on a network
interface, but in this case, a request consists of a compute task to
execute and the associate data. When the task is received by the OS,
it is executed, and the eventual result of the computation sent back.
It is essential to highlight that the proposed OS does not define
any computing task by its own; the task is defined remotely by the
client. Even so, we don’t impose the data to be shipped by the client
(see below).

Jon Larrea and Antonio Barbalace

The serverkernel is a single-address space mono-task OS. The
OS kernel and the application code — which has been received via
the network, reside both in kernel-space to avoid context switch-
ing overhead. At the same time, to do not expose the hardware to
security risks, application code is run in a shielded environment,
and a watchdog periodically checks for OS liveliness. For the sake
of minimality, the serverkernel offers a limited set of functionalities.
Only device drivers for network cards, CPU, and accelerators (in-
cluded security engines) are necessary to achieve high-performance
executions.

This could be thought of as a Unikernel, which is also single-
address space, but its main functionality is a server. However, a
serverkernel cannot be optimized according to just one application’s
requirements because it has been designed to run generic appli-
cation code. From the functionality perspective, the proposed OS
sounds similar to a FaaS runtime, but the latter runs in user-space,
not integrated within the OS kernel. Moreover, the dispatching of
application code to the serverkernel is directed by the client itself,
while in Faa$ it is the responsibility of the data-center provider.
Hence, the serverkenel borrows concepts from Unikernels and FaaS,
and further combines them within a cyclic executive [4] state ma-
chine which, after receiving a new execution request in the idle
state, goes to the running state and, after the execution, goes again
to the idle state.

The proposed mono-task execution model allows for one ap-
plication running at the time. Although this is acceptable for an
embedded devices dedicated to run a serverkernel, most IoT and
generic embedded devices are shipped with their own proprietary
software. Therefore, we envision a serverkernel to either run atop
an hypervisor [23] together with the proprietary software, or coop-
erative coexist with the proprietary software [11, 12, 32]. In the first
case, the hypervisor sandboxes any eventually malicious running
on the serverkernel. In the second case, additional measures should
be taken; including auto-resetting if the system detects that it has
been attacked.

From the client perspective, the serverkernel requires the applica-
tion code to be offloaded to be compiled in a specific format. Thus,
a developer, or the client software, should be able to finalize the
application code in that format.

3.1 Operating Principles

In order for remote devices to run application code on a serverkernel
they have to (1) identify a serverkernel that can be accessed from
a network connection; (2) attest the serverkernel is not malicious;
(3) compile the code in the format advertised by the serverkernel;
(4) establish a secure connection; (5) send the code and eventual
data to the serverkernel; (6) wait for the result, which will also drop
the connection.

In order to be discovered by remote devices, a serverkernel sends
broadcast messages on any of its network connections periodically
when ready to accept incoming tasks for processing — different
network technologies implement broadcasting differently. Remote
devices would then attest the serverkernel is a genuine one, running
on a genuine board. Thus, the client attempts remote attestation
of the serverkernel [15]. During this phase, the serverkernel adver-
tises its available hardware and software resources - this includes

The Serverkernel Operating System

the specification of all available processing units, and the offered
processing time, as well as the accepted binary format(s). At this
point, the remote device can compile, or finalize an intermediate
representation, to one of the advertised binary formats. Then, it will
establish a secure connection with the serverkernel to download
the binary and associated data. When received, the serverkernel
execute it, and send back the results of the computations. Before
executing a binary, the serverkernel checks its integrity and loads it
in memory with associated data — during this phase, it may perform
some sort of runtime linking for symbols provided by the kernel.

4 IMPLEMENTATION

To prove the viability of the proposed OS architecture, we imple-
mented an initial prototype capable of running bare-metal from
scratch, and we called it jonOS. The prototype integrates most of
the functionalities required by the serverkernel OS design, and it is
a stepping stone to implement our vision. Although most function-
alities are implemented, and application code and data offloading
from remote devices works, the binary blob including code and data
must be prepared manually - i.e. we did not add yet automatic code
synthesis capability to any mobile OS framework, e.g., Android or
i0S. Moreover, security-related features are under development.

jon0S is our open-source! implementation of the serverkernel.
Currently, jonOS supports different low-cost ARM boards based on
the BCM2835 SoC [1] — a mono-core ARM 6, including Raspberry
Pi 1B and the Raspberry Pi Zero, which can be bought for as few as
5GBP [8] and it comes with WiFi connectivity! jon0S has been im-
plemented in C (around 6100 LOC), and assembly language (around
850 LOC) to seek performance improvements. jon0S is modular, a
module is an OS kernel device driver or library, and modules are
grouped by their purpose. The most relevant device driver modules
are the Serial (or UART), Network (or NIC), Screen, and CPU/GIC.
Atop of these, there are the manger modules, such as network, de-
bugging, and memory, which enable application code to run thanks
to the modules in the cyclic executive and standard library. Figure 1
depicts this architecture. Additionally, jonOS comes with a compiler
toolchain to simplify the creation of its binary blobs.

| Application |
Cyclic executive Standard Library
Address Memory .
‘ ety ‘ Resolver alloc/free ‘ String ‘
Network Debugging Memory
Manager Manager Manager
NG -
CRUTGIC

| Low-level libraries |

| Hardware |

Figure 1: jon0S modular architecture.

Debugging Management. The Universal Asynchronous Receiver-
Transmitter module (UART) is a serial communication device driver
that uses the GPIO 14 port for the transmission and GPIO 15 port for

IThe code is available at https://github.com/j0lama/jonOS .

EdgeSys °20, April 27, 2020, Heraklion, Greece

the reception at 115200 bauds. This module has been implemented
for debugging purposes in an early version of the operating system.
However, the serial line for debugging purposes is a temporary
solution, and the goal is to provide a remote alternative.

Network Manager. The network module has three main com-
ponents: Ethernet driver, USB LAN9512 hub, and the network stack.
To get access to most the devices in the Raspberry boards, it is nec-
essary to do it through the LAN9512 USB hub that has a bandwidth
of 100Mbps. This USB driver also includes a low latency diver to
get access to the Ethernet driver that is connected to it. On top of
this driver, a lightweight and high-performance UDP/IP stack has
been implemented to reduce latency. This optimization has been
possible thanks to a naive implementation of the IP header, which
uses default values in fields such as type of service, time to live, or
header length. This decision reduces the number of checks that the
stack has to do to validate the header. Another unused field is the
port number in the UDP header. Because there is only one running
process at the time, the port number loses its utility (differentiate
among processes). Despite, this implementation allows filter by
port or allows traffic at any port. This stack uses a 16 entries ARP
table to reduce times in the sending process to known hosts.

Screen. The screen module allows access to the HDMI port
through the Videocore IV GPU using the mailbox protocol. This
diver automatically detects the size of the connected screen and
provides a POSIX “printf” function to display a text on it. The
displayed text is configurable with different colours, backgrounds,
and sizes. This driver also allows displaying BMP (Bitmap image)
images.

Memory Management. The dynamic memory module provides
a naive implementation of malloc and free functions. This module
works using the same mechanism around “sbrk” function and “brk”
pointer but with a single linked-list. The reason for that is that the
complexity of a double linked-list is higher and eventually produces
higher latency.

Standard library. The standard library provides a high-per-
formance implementation of some of the most commonly used
functions in the C library. Some of the functions are: memory
management (e.g., “memset”), string management (e.g., “strlen”)
and types conversion (e.g., “atoi”). The improvements done in
this module are related to memory management. As an example,
“memcpy” function copies a chunk of memory of specific length from
one position to another. This is done by copying every byte, pointed
by a “uint8_t” pointer, from the origin to the destination address.
This implementation calculates if the length parameter is module 2
and 4 and if so, then replaces the “uint8_t” pointer by “uint16_t”
pointer or “uint32_t” pointer in order to reduce the number of
memory access by 2 or 4 respectively.

Low-level libraries. In the low-level libraries set, there is a large
variety of functions. The interrupt controller and cache utilities are
two subsets of the functionality implemented in C. Other functions
require to be implemented in ARM assembler because they are more
frequently used. Even though the ARM1176JZFS (CPU integrated
into the BCM2835 SoC) has floating-point support, there is no native

https://github.com/j0lama/jonOS

EdgeSys '20, April 27, 2020, Heraklion, Greece

division instruction. An efficient division routine is an example of
functionality implemented in assembler.

4.1 jonO0S Executable Binaries

As mentioned in the serverkernel requirements, every implementa-
tion has to provide a toolchain that allows a client to compile and de-
ploy applications remotely on the serverkernel device. jonOS comes
with a toolchain that allows remotely compile a payload (name
received by the applications compiled with this tool-chain) and
execute it sending it through the network. This toolchain requires
the use of an ARM cross compiler to generate code runnable in the
Raspberry. This is achieved by the GNU Toolchain arm-none-eabi
that generates binaries (32 bits).

Executable Format. Because the serverkenel allocates the ap-
plication in different addresses every execution, the code has to
be generated as position-independent code (PIC). This guarantees
that the code can be executed at different memory addresses. The
second requirement pretends to provide access to the . DATA section
variables regardless of the address in which the application resides.
To do that, all the variables accessed in the . TEXT section has to
be referenced through the IP/PC register, and all the variables are
introduced in the . TEXT section. The last compiler requirement
tries to provide more versatility to the programmers allowing them
to use reserved function names such as “main” in is application/-
function. Because the compiled application has to be a function to
be loaded in the serverkernel, this option allows the programmer to
call the function “main” without compiling it as an entry point of
an ELF executable.

There is a set of Python tools included in jonOS that reduces
the size of the payload. These tools extract from the generated ELF
binary only the required sections, and then, a new binary structure
is assembled with significant size reduction. An explanation of this
process is shown in Figure 2, where only the . TEXT section and a
particular .RODATA subsection, in which strings are allocated, are
used to produce the jonOS executable.

For example, a function with a “while(1)” statement that locks
the execution in an infinite loop is an example of this reduction.
The generated ELF executable before the size reduction process is
612 bytes binary, whereas the generated Payload after this process
is a 14 bytes binary. The reduction rate for this example is almost
44 times, but it is reduced in larger applications in which the bulk
of the size resides in the . TEXT section.

Executable Loading. One of the most relevant features is how
jon0S deals with the system call addresses in a simple but effective
way. Because the Payloads are only compiled and not linked, the
serverkernel OS has to provide a tool-chain to allow the client to
use functions implemented in the system. As mention before, the
main focus of this implementation is increased performance but
keeping simplicity. The selected address resolver is a MAP structure
in with the keys are integer variables, and the values are pointers
to the associated function. To access this map structure, the kernel
implements a function whose address has to be known by the
client that, given a pre-defined number, return the address of the
associated function. These numbers are all defined in the tool-chain
library necessary to compile Payloads. The disadvantage of this

Jon Larrea and Antonio Barbalace

ELF executable (Linux)

ELF Header

Segment table
LTEXT jonOS executable (Payload)
.RODATA LTEXT

.RODATA.STR1.4

.DATA

Section table

Figure 2: Binary structure comparison between ELF exe-
cutable (Linux) and Payload (jonOS).

method is that the tool-chain has to have the address of this function
hardcoded what implies that every kernel version requires a specific
tool-chain or at least a specific address hardcoded on it. On the
other hand, this method provides a O(1) performance because the
MAP structure has been implemented as a Hash-MAP structure.
Another advantage of this method is that the OS admin can define
a set of functions that are only available for the Payload, increasing
the security.

The client has to define the function as a pointer and call the
address resolver function provided by the tool-chain with the num-
ber associated with that function, also defined in the tool-chain. In
Figure 3 this process is illustrated.

#include "libkernel.h"

int function ()

Qe W o e

int«(+»recv)(uintl6_t, void «, size_t) =
solveFunction (RECV) ;

Figure 3: The procedure to get the effective address of "recv"”
function through the address solver library.

This method not only helps to reduce the time required to resolve
the system call addresses but also helps to decrease the size of the
payload because no extra code is added to the TEXT section during
compilation.

5 INITIAL RESULTS

The main objective behind this research is to defining a new OS
architecture that takes full advantage of the idle resources available
on IoT and embedded devices by delegating computational work-
loads over to them on demand. However, the same functionality
can be implemented by traditional OSes. Therefore, in order to
demonstrate the advantages of this new OS architecture, time mea-
surements have been made on three different experiments. Trying
to approximate this experiments to a real scenario, a Linux operat-
ing system has been chosen as a representation of the traditional OS
deployed in commercial devices. The chosen Linux OS is Raspbian;
a Debian fork, adapted to Raspberry Pi boards, that is extensively

The Serverkernel Operating System

used in this platform. Raspbian has been developed by Raspberry
Pi Foundation, the same company that produces Raspberry Pi.

The experiments can be classified into two different groups:
compute and network. The reason of that is because, in this scenario,
where many devices are connected to the network in order to offload
computational task on them, compute and network performance
are the critical parameters in order to decide what OS architecture
to use.

5.1 Compute Performance

To measure compute performance, CPU time and execution time
have been used. CPU time is defined as the time that a specific
task spends running on the CPU, without accounting for kernel or
device access times. Execution time is defined as the time that a
specific task takes until it ends. Thus, kernel and device access times
are included. Note that the CPU time and the execution time in a
mono-task operating system are the same because the operating
system does not need to change context between processes.

As a benchmark for both measured times, a Message-Digest
Algorithm 5 (MD5) hash calculation function has been used. The
code, written in C, is identical for both operating systems. The
benchmark consists of an increasing number of executions of the
hash function in order to provide a significant load amount.

CPU-time. Only on Raspbian, two different approaches have
been used to measure CPU time and real-time. For CPU time, the
clock() function has been used to get the time before and after
the task, and then calculate the elapsed time. For the real-time
measurement, a PL-2303 converter has been used to notify through
the UART when the task begins and ends. This latter method has
been used to measure the CPU time/real time on jonOS.

Figure 4 shows the CPU time comparison for different values of
N between 1 and 1000000, where N is the number of executions of
the hash function.

jonOS F—+— Raspbian (Linux) ——%—

1.000000 11—
@ 0.100000 7 9
% 0. 9
; i <
8 0.010000 g 7
8 7 3 & b
0.001000 S
£ . E i
F 0.000100 J- 3
2 E 2 //
& 0.000010 5 2%
| | | |
0.000001 Lot vt wivia 0 s o ©
N QQ QQ N N \ QQ QQ N
S S

Number of Executions Number of Executions

Figure 4: CPU time comparison using MD5 benchmark.

The graph reflects an improvement of 45.67%. This is because a
multi-task OS has to change context between task; thus, it updates
cache memories. In the Raspberry Pi context, the cache memories
that need to be updated after a change of context are data cache
L1, L2 and instruction cache. This delay is directly reflected in the
CPU time.

EdgeSys °20, April 27, 2020, Heraklion, Greece

Execution time. A TTL to USB converter connected to GPIO
14 and GPIO 15 has been used to measure the real-time. From an
external computer, a start message is sent to both operating systems
to start a timer. At the end of the execution, the operating systems
send a message to the external computer that is waiting to stop
the timer. Because the same Python script has been used for both
operating systems, the additional time added by the script is not
relevant.

As Figure 5 depicts, values of N between 1 and 1000000 has
been used in order to provide different scenarios with a different
workload.

[jon0S —— Raspbian (Linux) —%—

_1.000000 grrmmmrrem—rrm—rrrm 22 —— ‘
) € 20
5 0.100000 s 18
o / 8 16
o) [0
3 0.010000 // % 14 o
[} 12
£ 0.001000 E 10 o
c v/ < 8
S 0.000100 [s e
3 3 4 e
@ 0.000010 2 > o
U><.I))) w 0 /T/ | ! !
0.000001, === o S & & &3
PSS IO
N v ™ © L9

Number of Executions Number of Executions
Figure 5: Execution time comparison using MD5 as bench-
mark.

For the real-time, jonOS reduces it in 62% compared to Rasp-
bian (improvement ratio of 2.5x on average). This data reflects the
performance difference between share resources among multiple
processes (Raspbian) and dedicate all of them to only one. Further-
more, the algorithms implemented in the scheduler of the multi-task
operating system may harm this task if a low priority is assigned
to it. It is essential to highlight that, by default, in Linux, multiples
processes are running after the boot process, and the task shall
share resources with them.

5.2 Network Performance

One of the simplest ways to measure the network stack performance
is by using an echo server. An echo server works by replying to
the origin, with the message content received. For this experiment,
a Python UDP client has been used. This client sends N number
of messages to the server and waits until receiving all the echo
packets. The measured time starts when the first packet is sent
by the client and finishes when the last echo packet is received.
A relevant factor that can affect the measured times is network
architecture. Therefore, a point to point connection between the
Raspberry and the computer that executes the client has been used.
This network topology removes all the possible router bottlenecks
in between of the hosts. Besides, the noise produced by other kinds
of traffic is also removed.

The same echo server has been implemented in both systems
but using each native network stacks.

Times for values of N between 1 and 100000 requests are shown
in Figure 6.

EdgeSys '20, April 27, 2020, Heraklion, Greece

[jonOS —+—
10.00000 T 70 T T T

Raspbian (Linux) —%— |

y
1.00000 60
// o 50 ./
0.10000 2 /'
/ / 8 40

0.01000 3 el

by 30

£

i

Time (seconds)

0.00100 § E o0 X

0.00010 / 10

0.00001, -~ QQ‘ QQ‘ S 0 S &
S S ©

pd

4

| |
e & &
e &
& & &
¢ & &
Number of Requests Number of Requests
Figure 6: Network experiment time comparison using a echo
server as benchmark.

As Figure 6 shows, performance up to 8.94x (8.53x on average)
times better than Raspbian is given by jonOS. The reason for this
time difference resides in multiple implementation/design aspects:

(1) Similarly to the hash calculation, the CPU and network stack
are shared among multiple processes in Raspbian, and the
echo server can be interrupted by a higher priority process.

(2) Because in the serverkernel there is only one running process,
the operating system does not need to use the port to redirect
the packet to the process bind to that port and reducing the
time spent in the transport layer.

(3) When in a Linux system, a message is sent to the network
using the socket library, the packet may wait until the out-
put buffer gets enough size to be emptied by the operating
system. In the current jon0S implementation, the packets
are directly sent to the network.

(4) The stack used in jonOS is a high-performance stack whose
objective is to reduce latency whereas Linux stack is a generic
stack that focuses on reliability.

With the topology used in this experiment, it is not possible to
determine if the times marked as jonOS times in the graph corre-
sponds with jonOS network stack or this limit is reached by the
computer that was running the client. This experiment guarantees
that jonOS has a maximum latency ceiling in the values showed in
the graph.

6 CONCLUSIONS

This work introduces the serverkernel, a new operating system ar-
chitecture. The serverkernel, through the jon0S implementation,
has proved to be a better alternative to traditional OSes for an
environment in which a user wants to offload computations on re-
mote IoT and generic embedded devices that are mostly idle. jon0S
shows to be on average 1.5 times, 2.5 times, and 8.5 times faster
than Linux in CPU time, execution time, and network processing.

REFERENCES

[1] 2012. BCM2835 ARM Peripherals. (2012). https://www.raspberrypi.org/app/
uploads/2012/02/BCM2835- ARM-Peripherals.pdf
[2] 2020. AWS Lambda. (2020). https://aws.amazon.com/lambda/
] 2020. Azure Functions. (2020). https://azure.microsoft.com/en-gb/services/
functions/
] 2020. Cyclic executive. (2020). https://en.wikipedia.org/wiki/Cyclic_executive
[5] 2020. FreeRTOS. (2020). https://www.freertos.org/

[13

(14

[15

=
&

(17]

[18

[19

[20

[21

[22]

[23

[24

~
2

[26

[27

(28]

[29

[30

@
=

(32

Jon Larrea and Antonio Barbalace

2020. Huawei LiteOS. (2020). https://www.huawei.com/minisite/liteos/en/about.
html

2020. PragmatIC. (2020). https://www.pragmatic.tech/

2020. Rapsberry Pi Zero. (2020). https://thepihut.com/products/raspberry-pi-
zero?src=raspberrypi

ATHOS. 2020. Athos Training System. (2020). https://www.liveathos.com/
Abel Avram. 2016. FaaS, PaaS, and the Benefits of the Serverless Architecture m.
(2016). https://www.infoq.com/news/2016/06/faas-serverless-architecture/
Antonio Barbalace, Binoy Ravindran, and David Katz. 2014. Popcorn: a Replicated-
kernel OS Based on Linux. In In Proceedings of Ottawa Linux Symposium (OLS
14).

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schiipbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP °09). 29-44.

Daniel P. Bovet and Marco Cesati. 2002. Understanding the Linux Kernel (first
ed.). O'Reilly.

D. R. Engler and others. 1995. Exokernel: An Operating System Architecture for
Application-Level Resource Management. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles (SOSP ’95). 251-266.

Matthew Garrett. 2019. What does Remote Attestation buy you? (2019).
https://www.linuxplumbersconf.org/event/4/contributions/295/attachments/
374/608/What_does_Remote_Attestation_buy_you_.pdf

Tuan [Nguyen Gia], Victor Kathan Sarker, Igor Tcarenko, Amir M. Rahmani,
Tomi Westerlund, Pasi Liljeberg, and Hannu Tenhunen. 2018. Energy efficient
wearable sensor node for IoT-based fall detection systems. Microprocessors and
Microsystems 56 (2018), 34 — 46.

C. Kulkarni, H. Karhade, S. Gupta, P. Bhende, and S. Bhandare. 2016. Health
companion device using IoT and wearable computing. In 2016 International
Conference on Internet of Things and Applications (IOTA). 152-156.

Anil Madhavapeddy and others. 2013. Unikernels: Library Operating Systems
for the Cloud. SIGARCH Comput. Archit. News 41, 1 (March 2013), 461-472.
Anil Madhavapeddy and David J Scott. 2013. Unikernels: Rise of the virtual
library operating system. ACM Queue 11, 11 (2013).

Elizabeth Montalbano. 2016. Energy Harvesting, Low Power Con-
sumption Are the Way Forward for IoT, Wearables. (2016). https:
/[www.designnews.com/iot/energy-harvesting-low-power-consumption-
are-way-forward-iot-wearables/212976763446132

Vlad Nitu, Pierre Olivier, Alain Tchana, Daniel Chiba, Antonio Barbalace, Daniel
Hagimont, and Binoy Ravindran. 2017. Swift Birth and Quick Death: Enabling
Fast Parallel Guest Boot and Destruction in the Xen Hypervisor. In Proceedings
of the 13th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’17). 1-14.

K. Z. Panatik, K. Kamardin, S. A. Shariff, S. S. Yuhaniz, N. A. Ahmad, O. M. Yusop,
and S. Ismail. 2016. Energy harvesting in wireless sensor networks: A survey. In
2016 IEEE 3rd International Symposium on Telecommunication Technologies (ISTT).
53-58.

S. Pinto, J. Pereira, T. Gomes, M. Ekpanyapong, and A. Tavares. 2017. Towards a
TrustZone-Assisted Hypervisor for Real-Time Embedded Systems. IEEE Computer
Architecture Letters 16, 2 (2017), 158-161.

Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural
Implications of Function-as-a-Service Computing. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’52).
1063-1075.

William Stallings. 2001. Operative Systems: Internals and Design Principles (fourth
ed.). Pearson.

John A. Stankovic and others. 2004. Real-Time Operating Systems. Real-Time
Syst. 28, 2-3 (Nov. 2004), 237-253.

S. Sudevalayam and P. Kulkarni. 2011. Energy Harvesting Sensor Nodes: Survey
and Implications. IEEE Communications Surveys Tutorials 13, 3 (2011), 443-461.
Ashok Vaseashta. 2018. Roadmapping the Future in Defense and Security: Innova-
tions in Technology Using Multidisciplinary Convergence. In Advanced Nanotech-
nologies for Detection and Defence against CBRN Agents. Springer Netherlands,
3-14.

vesper. 2020. Voice interface devices are everywhere, including where there is
no access to power outlets. (2020). https://vespermems.com/applications/smart-
home-smart-office-iot/

Gary M. Weiss and Md. Zakirul Alam Bhuiyan. 2019. An Overview of Wearable
Computing. 313-349.

Karim Yaghmour and others Jon Masters. 2008. Building Embedded Linux Systems
(second ed.). O’Reilly.

Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe. 2014.
Decoupling Cores, Kernels, and Operating Systems. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation (OSDI'14).
17-31.

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-gb/services/functions/
https://azure.microsoft.com/en-gb/services/functions/
https://en.wikipedia.org/wiki/Cyclic_executive
https://www.freertos.org/
https://www.huawei.com/minisite/liteos/en/about.html
https://www.huawei.com/minisite/liteos/en/about.html
https://www.pragmatic.tech/
https://thepihut.com/products/raspberry-pi-zero?src=raspberrypi
https://thepihut.com/products/raspberry-pi-zero?src=raspberrypi
https://www.liveathos.com/
https://www.infoq.com/news/2016/06/faas-serverless-architecture/
https://www.linuxplumbersconf.org/event/4/contributions/295/attachments/374/608/What_does_Remote_Attestation_buy_you_.pdf
https://www.linuxplumbersconf.org/event/4/contributions/295/attachments/374/608/What_does_Remote_Attestation_buy_you_.pdf
https://www.designnews.com/iot/energy-harvesting-low-power-consumption-are-way-forward-iot-wearables/212976763446132
https://www.designnews.com/iot/energy-harvesting-low-power-consumption-are-way-forward-iot-wearables/212976763446132
https://www.designnews.com/iot/energy-harvesting-low-power-consumption-are-way-forward-iot-wearables/212976763446132
https://vespermems.com/applications/smart-home-smart-office-iot/
https://vespermems.com/applications/smart-home-smart-office-iot/

	Abstract
	1 Introduction
	2 Background
	3 Design and Architecture
	3.1 Operating Principles

	4 Implementation
	4.1 jonOS Executable Binaries

	5 Initial Results
	5.1 Compute Performance
	5.2 Network Performance

	6 Conclusions
	References

