
Process Inspection Support: an Industrial Case Study
Christoph Mayr-Dorn

Institute for Software Systems
Engineering

Johannes Kepler University, Linz
Austria

christoph.mayr-dorn@jku.at

Johann Tuder
formerly ACME
Linz, Austria

Alexander Egyed
Institute for Software Systems

Engineering
Johannes Kepler University, Linz

Austria
alexander.egyed@jku.at

ABSTRACT
Organizational factors such as team structure, coordination among
engineers, or processes have a significant impact on software qual-
ity and development progress. Projects often take much longer to
complete than planned and miscommunications among engineers
are common. Yet, the process for exploring the project-specific or
organization-specific root causes why this happens is still poorly
supported. Investigations are cumbersome and require significant
effort. In the context of this industrial case study, our industry
partner was interested in measuring and assessing how the organi-
zation structure and issue handling processes ultimately affected
software quality and time. Reducing the effort of such investiga-
tions/retrospectives and speeding up fact finding is important as it
allows for more frequent, informed engineering process improve-
ments and feedback to managers, team leads, and engineers. This
paper describes our approach of pairing process metrics with vi-
sual historical inspection of issues. Stakeholders such as managers,
team leads, or quality assurance engineers inspect metrics (and
deviations from expected values) for individual issues and utilize
a historical visualization of the affected (and related) issues to ob-
tain insights into the reason for the metric (deviation) and its root
cause. We demonstrate the usefulness of our approach based on
our ProcessInspector prototype providing access to data on four real
industry projects and a qualitative evaluation with team leads and
group leads from our industry partner.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement.

KEYWORDS
issue, organizational structure, software engineering process, met-
rics, prototype, JIRA, history visualization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

ACM Reference Format:
Christoph Mayr-Dorn, Johann Tuder, and Alexander Egyed. 2018. Process
Inspection Support: an Industrial Case Study. InWoodstock ’18: ACM Sym-
posium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Software engineering projects often last much longer than planned
and miscommunication between engineers occurs on a regular
basis. The process for exploring the exact project- or organization-
specific root causes why this happens is still poorly supported. In-
vestigations are cumbersome and require significant manual effort.
Retrospective analyses, such as done at the end of sprints in agile de-
velopment environments, are important to happen jointly as a group
effort but benefit significantly from tools that assist in better under-
standing the cause of undesirable situations such as missed mile-
stones. Reducing the effort of such investigations/retrospectives
and speeding up fact finding is important as it allows for more fre-
quent, informed engineering process improvements and feedback
to managers, team leads, and engineers.

Research over the past decades has shown that organizational
factors such as team structure, coordination among engineers, or
processes have a significant impact on software quality and de-
velopment progress [16]. Engineers working on strongly coupled
artifacts tend to require frequent communication to coordinate their
engineering efforts [22]. Hence, achieving socio-technical congru-
ence (STC) is one aspect towards improving software development
performance [6].

Therefore, in the context of this industrial case study investi-
gated in this paper, our industry partner was interested in mea-
suring and assessing how its organizational structures and issue
handling processes ultimately affect coordination among engineers
and timely delivery in order to obtain insights in how and where
to focus on improvements. Typically, software process metrics pro-
vide such insights and multiple research efforts aim to improve
them [7, 8, 15, 20]. Yet, determining which metrics are useful and
accurately describe the ongoing development efforts is non-trivial
as this differs among companies and often also among departments
and groups within the same company.

To this end, we propose an approach of pairing process metrics
with visual historical inspection of issues to overcome the limita-
tions of metric inspection without context on the one hand and vi-
sualization without guidance on the other hand. Stakeholders such
as managers, team leads, or quality assurance engineers inspect
metrics (and deviations from expected values) for individual issues
and utilize a historical visualization of the affected (and related)
issues to obtain insights into the reason for the metric (deviation)

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Mayr-Dorn et al.

and its root cause. We designed the accompanying prototypical tool
(Process Inspector) light-weight and flexible to support easy integra-
tion and adaptation of metrics. We demonstrate the usefulness of
our approach based on a prototype providing access to data on four
real industry projects and a qualitative evaluation with team leads
and group leads from our industry partner.

The contributions of this paper are:

• A flexible approach for combining process metrics and issue
history visualization

• A prototypical tool implementation (Process Inspector)
• A data set describing the complete set of issues from four
industry projects

• A qualitative evaluation of the approach

The remainder of this paper is structured as follows: Section
2 provides case study background information. We introduce our
approach in Section 3 and the corresponding prototype in Section 4.
We qualitatively evaluate and discuss our approach in Section 5.
Section 6 compares our approach to related work, before Section 7
concludes this paper with an outlook on future work.

2 CASE STUDY BACKGROUND
2.1 Industry Context
ACME is in the business of hosting a recreational activities web
platform. The company’s identity and project names have to remain
confidential due to the sensitive nature of the analyzed data. At
the time of data extraction and paper evaluation, the company was
structured into ten departments. Those departments consisted of
22 groups. The following groups are of primary interest for this
paper: software developers-frontend, software developers-backend,
database, graphics, quality assurance, and product & project man-
agement.1 These groups are heavily involved in the software de-
velopment process. The departments are physically distributed
across two buildings. A project team usually consists of at least one
member from each of the above listed groups of interest. When
a project’s software is released for public access the project team
remains responsible for maintenance. This implies that the team
works together during the product’s complete life-cycle from ini-
tial project setup, to implementation, and ongoing support even
though team members are situated in different offices. This cross-
departmental/group organization style comes with a significant
number of necessary meetings and informal communication chan-
nels within the team. From experience, this often resulted in mis-
communication, unclear assignments, and in undocumented deci-
sions in any of the used tools: the company uses JIRA, Confluence,
Skype, rocketChat and Outlook to keep track of projects. JIRA is
used as ticketing system and also provides further information such
as comments and lists of changed source code files. The intended
process to follow for software development is reflected in JIRA is-
sues, issue relations, and issue properties such as state, milestones,
releases, and assignee.

1We identify a member of such groups as an engineer and use the term developer when
explicitly referring to a member from the frontend or backend group.

2.2 An Industry Challenge
As most software development companies, ACME is interested in
improving its workflows and software development process. Af-
ter each completed major project the current process is evaluated
and adapted to fit new organizational circumstances such as new
teams. To this end it needs to compare differences among teams
at project and at issue level (e.g., issues bottlenecks at a specific
group) to establish how differences in process and structure affect
performance. ACME also needs to distinguish if problems result
from e.g. workflow flaws, inefficient organizational structure, or
insufficiently accurate artifacts such as unclear requirements. Given
ACME’s organizational structure, a particularly interesting question
was whether vertically organized teams (team members from dif-
ferent groups become co-located) perform better than horizontally
organized teams (team members from different groups remain with
their groups). This evaluation process is cumbersome currently
as the reasons for deviations and comparisons across teams and
projects are not easily obtainable from ACME’s tool landscape.

2.3 Process Improvement Method
One typical approach to process improvement is through a Goal-
Question-Metric (GQM) driven method [5]. In the context of our
industry partner, the purpose of such a study is to evaluate the
impact of the current team structure and issue ticket usage on
efficiency and coordination effort from the point of view of team-
leads (manage projects) and group-leads (manage an expertise-
centric set of engineers such as testers) in the context of lightly
distributed teams.

According to the taxonomy by Smite et al. [21], ACME’s teams
can be classified as Location: Onshore, Legal Entity: Insourcing, Ge-
ographic Distance: Close, Temporal Distance: Similar. These teams
can nevertheless be considered distributed as already a separation
by floors or buildings can significantly reduce informal contacts
and thus influence coordination [1].

ACME identified four key questions that they need to answer
on their path to process improvement:2

(1) Is engineering effort accurately estimated?
(2) How much coordination is happening?
(3) How efficient are coordination actions?
(4) How efficient is project planning?
Here questions and metrics (see Section 3.1) are iteratively re-

fined upon feedback from our industry partner.

3 APPROACH
Our approach (see Figure 1) supports the stakeholders during met-
ric interpretation by pairing metric calculation (and presentation)
with issue event timelines as metric context. As a side effect, our
approach assists the stakeholders to determine which metrics are
useful and applicable in measuring process improvement (in our
case study with a focus on the subgoal of measuring team coordi-
nation).

The GQM method (as applied by ACME) typically consists of
following six steps:

(1) Define improvement goals.

2Note, that these are not the research questions to be answered in this paper.

Process Inspection Support: an Industrial Case Study Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 1: Approach to assisting process inspection in
the scope of a GQM method: full/black arrows show in-
put/output between GQM steps, dashed/blue arrows depict
supported feedback between steps applying the Process In-
spector prototype.

(2) Develop questions that allow the goals to be quantified.
(3) Determine which metrics answer these questions.
(4) Implement data collection mechanisms.
(5) Collect and interpret the metrics for immediate feedback/

improvement.
(6) Assess how the gathered metrics support reaching the goal

and derive recommendations.

Deriving accurate and meaningful metrics is difficult as their
measurement context changes over time (e.g., teams are restruc-
tured, processes change) or they become applied in situations they
are not sufficiently suitable for (low priority, short term, technol-
ogy exploration project). As a consequence, metrics need careful
interpretation in their measurement context.

Our approach addresses this concern by supporting a stakeholder
to easily move between metric calculation, respectively inspection,
(here on the level of issues) and the context that gave rise to that
particular metric instance (here the history of the issue and its
related issues).

In our particular case, this allows a stakeholder to become aware
(at a coarse-grained level) of projects that seem to be poorly per-
forming, and (at a fine-grained level) of issues that need attention.
The stakeholder then inspects the visual history of these issues that
give raise to a critical metric value to understand if there is truly a
problem at hand, whether the particular situation constitutes an
exception to the rule, or whether the metric is not suitable (any-
more) in the larger context of this project. For example, metrics that
measure how long an issue is in state Open and In Progress before it
is Closed become unreliable when engineers forget to transition an
issue upon starting their work and only briefly set the issue to In
Progress shortly before completing it. This type of deviation from
expected behavior results from the flexibility engineers require.
Too rigid, explicit process control greatly limits engineers’ freedom,
respectively forces engineers to work outside the process to handle
unforeseen situations and optimizations not foreseen by the pro-
cess. Diebold and Scherr [10] show that in industrial practice the
majority of processes, therefore, focus on description rather than
using formal notations or models. Visual inspection provides, on
the one hand, rapid feedback on the brittleness of metrics and, on
the other hand, points out potential for tool improvement to assist
engineers in following the intended process.

Likewise, the timeline visualization allows stakeholders to browse
issue progress and, upon finding suspicious looking event sequences,
the stakeholder can easily cross-check with metrics how that par-
ticular issue measures against other (similar) issues.

In short, our approach, respectively prototype, directly addresses
step 4 and 5 of the GQM method, and indirectly supports the re-
evaluation of metric selection in step 3.

Ultimately, the research question addressed in this paper (and
answered in the evaluation section) is: Is the combination of the
provided process metrics and issue history visualization effective
for obtaining insights into coordination problems? Note that it’s
not a goal of this paper to investigate whether the proposed metrics
or the GQM method indeed lead to process improvement.

3.1 Metrics
We selected the following set of metrics and refined them together
with engineers at ACME to ensure they are relevant in ACME’s
development context. The metrics come at various granularity lev-
els: per-issue, per-occurrence (multiple times per issue possible),
informational/aggregating (information at issue level, project-level
metric value).

(1) Issue resolved/closed date <= issue due date: The resolved date
is set e.g., if an engineer finishes a bug-fix implementation.
The closed date is set when e.g., a tester finished testing of a
bug-fix. In the ideal case every issue should be closed before
its due-date. For this metric the relevant fields of an issue
are the closed-, resolved- and due-date. A negative difference
value describes an issue that was closed/resolved before its
due-date, a positive value that it missed its due-date deadline,
respectively. Large deviations in either direction are indica-
tors of estimation errors. Positive deviations indicate that
engineers required less time, negative deviations indicate
unforeseen complexity in implementation or coordination.
(per-issue metric: duration in days)

(2) Due dates aren’t changed: Due dates are set at the beginning
of a project. Project managers and engineers then arrange
the workload and determine when the various components
of a project should be completed. Due date changes indicate
that project planning was not accurate (e.g., lower/higher
effort/coordination estimation) or an assigned engineer (no
longer) needed to work on a higher prioritized task. Specif-
ically, this metric counts the number of due-date changes
per issue (not considering the initial setting of the due-date,
which is also a change event) and derives a project overall
ratio. (per-occurrence metric: duration in days for from/to
due date change; project-level metric: ratio of “issues with
changes” compared to “issues without changes”)

(3) Fix version wasn’t changed: A fix version identifies the release
or milestone this issue’s result should be available in. Fix ver-
sion changes reflect issues being moved between milestones
during planning or implementation (or even when already
completed). Many such changes may indicate challenges in
project planning and also the release workflow. This metric
is calculated similar to M2 but based on changes to the fix
version property. (per-occurrence metric: changes: count of

Woodstock ’18, June 03–05, 2018, Woodstock, NY Mayr-Dorn et al.

from/to fix version changes; project-level metric: ratio of
“issues with changes” compared to “issues without changes”)

(4) Duration in approve state: Some issues have to be approved by
team leads before work can start. Usually such an approval
process does not take very long and this metrics informs the
responsible decision maker when delays happen repeatedly.
Approval delays block the actual engineers from working on
the issue. This metric is calculated only for issues that have
had a status changed to “Approval necessary”. The temporal
distance to the next status entry is then the metric value.
(per-issue metric: duration in days)

(5) Re-open distance to due date: Issues that are re-opened mul-
tiple times might indicate an engineer-to-issue assignment
mismatch or unclear/incomplete requirements. Whenever
an issues state is changed to “Open”, “Open Again” or “Re-
opened” the change date’s difference to the due date is cal-
culated. A positive value describes re-opening after the due
date, a negative value a re-opened before the due date. (per-
issue metric: how often changed; per-occurrence metric: how
long before due date in days)

(6) Assignee Changes: Assignee changes are part of the workflow.
For example, a project manager creates an issue and assigns it
to an engineer. After the implementation the issue is assigned
to a tester. A high number of changes potentially indicates
communication problems between departments or that an
issue was not implemented correctly. Especially assignments
within a department, e.g., from front-end developer to an-
other front-end developer, should not happen. Therefore the
metric is split into the number of intra-department changes
and the number of cross-department changes. (per-issue
metric: number of changes)

(7) Use of comments: ACME expects complex issues to require
additional refinement and clarification via comments, es-
pecially when an issue involves engineers from multiple
departments. This metric subset also provides an indication
whether discussions, decisions, and assumptions are docu-
mented within Jira or using other tools. (per-issue metric:
comment count, commenter count, count per commenter,
min/max/avg comment length).

(8) Issue re-assignment without documented communication:Chang-
ing the assignee typically requires no documentation when
the engineers follow the intended workflow, e.g., a devel-
oper finishes the implementation and a tester has to start.
However if an issue re-assignment happens multiple times
and deviates from the usual workflow then this should be
documented in the comments. The metric uses the changelog
entries of type “assignee”. The metric counts for each issue,
how many pairs of such changes exist without a comment
in between. For each of these change pairs, the metric also
collects the duration between assignment changes in days.
(per-issue metric: number of assignments, total duration in
days between two assignments without comment)

(9) Issue re-assignments without status changes: Usually an is-
sue is re-assigned to another engineer if the issue’s status
changes, e.g. the developer finishes implementation and sets
the status to “Resolved”, assigns it to a tester who changes
the status to “In Testing”. If issues are re-assigned without a

status change something could be wrong either in the work-
flow or how engineers handle issues. This metric uses the
same assignee changelog entries as the previous metric M8
but considers status changelog entries instead of comments.
(per-issue metric: number of reassignment, total duration
between two assignments without status change)

(10) Duration between re-assignment and subsequent status change:
Issue re-assignment indicate that another engineer can start
their work, indicating this start by updating the issue’s state
(see previous metric). This metric measures for each re-
assignment the duration until the subsequent status change.
A long timespan could indicate that the assigned engineer
is overloaded and that the issue should have been better
worked on by someone else, respectively that project plan-
ning overlooked/created a bottleneck. (per-issue metric: du-
ration in days)

(11) Issue resolved date compared to code freeze date: The metric
shows the difference between the resolve date of an issue and
the code freeze date. Usually issues should be resolved be-
fore code freeze because during code freeze no new features
are implemented for the current milestone and the time to
release is reserved for bug fixing and testing. Issues resolved
after code freeze indicate work overload and wrong project
planning or normal bug fixing. A positive value indicates
that an issue was resolved before the code freeze, a negative
value the opposite. (per-issue metric: difference in days to
code freeze date)

(12) Issue of future milestone started in an earlier milestone: The
metric calculates the time span between the first progress of
an issue to the start date of its milestone’s predecessor. This
metric highlights which and how many issues of a project
were started earlier than planned. This indicates that some
engineers do not have enough issues assigned or that project
planning was not accurate enough: towards the end of the
milestone, engineers were already doing work for another
milestone and they could have moved more features into the
current one. A positive time span shows that an issue was
started before the official milestone start, a negative number
shows the opposite. (per-issue metric: difference in days to
milestone)

All these metrics rely on a small set of issue change event (i.e.,
timeline events). Displaying them in their temporal order as they
have occurred (sometimes in isolation, somethings almost simulta-
neously) allows to better place the metric values in the engineering
process context.

3.2 Issue Timeline Events
The selected issue timeline events are driven by the metrics that
make use of these events. As such, these events are exemplary and
we make no claim for completeness (additional/different metrics
may introduce other events). These events, however, are central
to coordinating engineering efforts. In general, we distinguish be-
tween two event categories: events that are placed at the time
they occurred and events that represent predefined dates such as
fix-versions and due dates. The currently considered event list com-
prises:

Process Inspection Support: an Industrial Case Study Woodstock ’18, June 03–05, 2018, Woodstock, NY

(1) created: marks the date the issue was added to the issue
tracker (here Jira).

(2) status: marks changes to the status, e.g., from “Open” to “In
Progress”.

(3) assignee: marks handing over the ticket from one responsible
team member to another.

(4) fix version set: marks changes to the release version in which
this issue should be included.

(5) resolved: marks when the issue was set to resolved.
(6) due date: marks when the issue is planned to be completed.
(7) due date changes: marks updates to the due date.
(8) comment: marks when a engineer commented on the issue.
(9) last updated: marks the last change to any of the issue prop-

erties.

Figure 2: Prototype Architecture.

4 PROTOTYPE TOOL SUPPORT
In this section we present the current prototypical tool support for
calculating metrics and inspecting issue histories. We deliberately
aimed for a maximally light-weight prototype to allow for rapid
prototyping and iterative refinement.

The current prototype (see Figure 2) consists of three main com-
ponents: the Jira Extractor, a Database for caching processed issues,
and aWeb Frontend for calculating and displaying metrics and issue
history.

The Jira Extractor is responsible for accessing a Jira server’s REST
API for retrieving all issues of a given project as json documents
(in our industry partner’s case identified by a root issue with all
related issues obtained via an issue’s “Part” relations). It then reads
an engineer’s department from a configuration file, anonymizes
the engineer id, prepends the department id to the anonymized
engineer id, and replaces this throughout the issue json document
before storing each issue json document in the CouchDB.

CouchDB is a schemaless JSON database merely used to store the
processed issues and making them available to the Web Frontend.

The Web Frontend is a locally hosted HTML page making heavy
use of javascript libraries for calculating and displaying metric re-
sult tables, timeline visualization, and connecting (directly) to the
CouchDB. The set of metrics can be easily adapted as each metric
is implemented as a separate class and located in its respective,
separate javascript file (e.g., metric 1 in M1.js). Each metric class
simply needs to provide a calculate, getDataTable, and getSumma-
ryDataTable method for triggering metrics calculation across all
issues of the project, returning the overall metric result table with
values for each issue (for per-issue metrics) or occurrence (for per-
occurrence metrics), and a summary table displaying, for example,

averages, maximum, and minimum values (customizable per met-
ric), respectively. A standard workstation is sufficiently fast to carry
out issue retrieval (from the CouchDB), metric computation, and
visualization on demand without the need to include server side
data (pre)-processing facilities. The Web Frontend consists of the
following UI elements (see also Figure 3):

• Project Selector (A, top left corner) is a dropdown input that
allows the user to pick a project. Each project is stored in a
separate “database” in CouchDB.

• Timeline Scope (B, left) enables the user to select start and
end dates for the timeline. The timelines for all visible issues
shrinks or expands to the desired values. A press on the
“Reset to default Dates” button adjust all timelines to the
default values.

• Metric Selector (C, left) allows a user to switch between indi-
viual metrics (one at a time). Upon selecting an option input,
the metric algorithm runs on the fly and outputs a result
table above the timelines (shown in Figure 5).

• Issue Selector (D, left) supports the filtering for issues in a
project. The checkbox beside the issue key includes, respec-
tively removes, a timeline for this issue.

• Timeline Area (E, middle) contains for each selected issue
a separate timeline. A single timeline shows all events that
occurred during the issues lifetime. By hovering over a single
event additional information is displayed (see Figure 4).

• Event Selector (F, right) lists all the symbols, i.e., event types,
thatmay occur on a timeline. Un/selecting a symbol hides/includes
all corresponding event instances from all timelines.

5 QUALITATIVE EVALUATION
5.1 Study Design
We conducted semi-structured interviews with four stakeholders
(i.e., actual end-users of the prototype): team-leads and group-leads.
Group-leads are responsible for the engineers in their group and
assign work packages to them. Whereas team-leads are responsible
for the group-leads and assign them projects and want frequent
updates about project progress and workload. Each (separate) in-
terview consisted of an introduction of the prototype including
explanation of the metrics, used data, and user interface features.
Subsequently, each participant was asked to assess three issues with
respect to identifying coordination problems (Section 5.4). There-
after, participants were asked to choose the three most insightful
metrics (Section 5.5), score the user interfaces on a Likert scale
from 1 to 5 stars (5 stars being best) along Jacob Nielsen’s heuristics
[17] (Section 5.6), before providing free-form feedback on positive
and negative impression as well as ideas for additional prototype
features.

5.2 Data Set
The participants had access to data from four projects via the pro-
totype within 30 minutes. These four real ACME projects are: P1,
a low-priority Android app development project; P2 and P3, two
business-critical Android app development projects; and project P4
integrating two types of recreational activities that involved experts
beyond front-end, business logic, design, and database engineering

Woodstock ’18, June 03–05, 2018, Woodstock, NY Mayr-Dorn et al.

Figure 3: Prototype screenshot.

Figure 4: Example icon hover-over information for status, assignee changes as well as comments.

Figure 5: Prototype screenshot for metric M6.

(e.g., marketing and legal departments). The four projects P1–P4
contain a total of 1017, 2676, 1052, and 939 issues, respectively. The
five most common issue types are Task, Bug, Improvement, Local-
ization, and Project Management and make up between 80% and
90% of all issues. During data extraction, the department prefixes
in Table 1 were added to the anonymized engineer ids.

Table 1: Department prefixes

Department Prefixed short name
Development Web devW
Development Client devC
Database db
Graphics gfx
Product & Project Management ppm
Quality Assurance qa
Marketing mkt
IT Administration adm
Controlling ctrl
CIO cio

5.3 Participant Demographics
The voluntary participant list consisted of two team-leads and
two group-leads. The job title for both team-leads is “Teamlead
WebDev”. Group-lead job titles were “Grouplead Architecture &
Performance” and “Grouplead App” thus spanning a range of the
industry partner’s engineering departments. The group-leads are
in their position since 0.5 and 1 year, the team-leads since 1 and 10
years, having software engineering experience for 12 and 5 years,
and for 6 and 17 years, respectively.

Process Inspection Support: an Industrial Case Study Woodstock ’18, June 03–05, 2018, Woodstock, NY

5.4 Task: Issue Assessment
Each participant received the same three issues selected from across
three projects (P2, P3, P4; P1 is used for comparison only). Theywere
asked to assess these issues using timelines and metrics (available
for the complete projects) but without no additional information
from Jira (see Figure 6 for the timelines of the three issues: BETDB-
1475, BAH-71, WWW-7370). The issues BETDB-1475 and BAH-71
were chosen, because they show problems in organization and
workflow. The issue WWW-7370 represents a normal issue without
anomalies. Since this task was part of an interview, we report the
answers for the following two questions together:

• Can you spot any problem that occurred during the issues’
lifetimes?

• Can you identify high coordination efforts?

BETDB-1475 (Figure 6 top)
BETDB is an issue primarily involving the database team. Every
participant noted that status changes appear in quick succession
from which they concluded (not only from this single issue but
rather confirming their experience): the workflow for handling
database issues is badly designed. When an SQL query needs to be
fixed, nearly the whole workflow has to be executed again, except
for an initial approval step. One problematic aspect, as mentioned
by one of the participants, is that it is not clearly defined what
should be done in the approval process. Furthermore approval does
not seem to work if issues are re-opened that often. Participants
remarked that the ill-design workflow is mitigated currently by the
database team reacting very quickly on changes and immediately
tackling them so that long delays are prevented.

Another hypothesis postulated by the participants is that require-
ments were not written well enough. This hypothesis is based on
the fact that preparation (at the beginning of the lifetime) lasted one
month and this is not the usual case. This is a problem because other
teams have to wait. Also the issue was often re-assigned within the
database team and it was also once re-assigned to a developer.

BAH-71 (Figure 6 bottom)
For this issue all participants identified problems in how milestone
and status fields are used and the overall lifetime of project issues.
All participants stated that the lifetime is very long and it has to be
asked if it was planned for that long at the beginning. Furthermore
they mentioned that the issue was moved a lot to other milestones
without any work in between and this indicates that issue planning
is not efficient. Also status for issues are not handled correctly.
Some are superfluous, e.g. “QA Test” which indicates that the whole
project is in testing. However sub-issues are already tested before
and the status does not make sense at project level. This problem
is supported by the event on March 31st, where status changed
from “In Progress” to “Internal Review” to “External Review” and
then to “Softwaredesign”. A participant mentioned that it is not
possible to review specifications of a whole project within a single
day. Furthermore a project of this size should not stay one month
in the design-stage, this is usually done faster. At the other end it
seems that the whole project was tested in only three days which
also cannot have occurred in reality. It was mentioned that the end
of the timeline (beginning in May) represents the usual workflow.

Table 2: Most valuable metrics for participants

Metric GL1 GL2 TL1 TL2
M1 x x x x
M3 x x x
M5 x
M6 x x
M9 x
M10 x

WWW-7370 (Figure 6 middle)
All participants declared that this is the usual workflow of a devel-
oper issue. This is the ideal case and it was probably a simple bug
fix.

Participants identified the three causes for these specific issues
mainly through timeline investigations. When the participants
wanted to analyze the whole project they used the metrics. When
a result of a metric was displayed they used timelines to analyze
the outliers (e.g. issues with minimum or maximum metric values).

5.5 Top Rated Metrics
The next question asked the participants to select the three most
valuable metrics for their work (see Table 2 GL = group-lead, TL =
team-lead). We further report summarized participant statements
regarding the usefulness and applicability of a metric together with
the historical timeline visualization.

As shown in Table 2, every participant listed Metric 1 (Issue
resolved/closed date <= issue due date) as one of the most valuable
metrics. For the participants the metric is suitable for comparing
projects and the timeline visualization can assist in answering the
following questions:

• How long is an issue at a specific department?
• How was the project planned?

Metric 3 (Fix version wasn’t changed) was mentioned by 3 par-
ticipants. It may indicate work overload and the visualization of
the affected issue (and other contemporary issues) may provide
insights to:

• Why were issues moved?
• How many issues are moved to the backlog or come from
the backlog?

• Was an issue planned for an unrealistic time-frame?
Metric 5 (Re-open distance to due date), participants found, assists

in finding out why issues were re-opened and the visualization
supports detecting if there is a pattern for the re-open changes.

Metric 6 (Assignee Changes), participants noted, supports inves-
tigations if requirements were not formulated clearly or if perhaps
task responsibilities were vague.

Metric 9 (Issue re-assignments without status changes), partic-
ipants explained, highlights problems with long-running issues
and visualization provides clues whether the workflow should be
revised.

Metric 10 (Duration between re-assignment and subsequent status
change), participants expressed, helps to identify poorly planned
projects.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Mayr-Dorn et al.

Figure 6: Issues under evaluation by study participants.

Table 3: Average tool scores.

Measure Average
Responsiveness (performance with a large amounts
of data)

4.25

Forgiveness (allows exploration) 4.00
Intuitivity (easy to navigate) 4.00
Icons & Symbols understandable 4.00
Information overload (sufficient/too much informa-
tion)

4.50

Low learning curve (easy to understand) 4.00
Match to the real world (terminology) 3.25
Flexibility/Efficiency of use (expert vs novice) 4.00

5.6 Usability Scores
The next part of the questionnaire asked the participants to rate
the tool on a Likert scale of 1 (not good) to 5 (very good). Table
3 reports the chosen eight aspects (based on Nielsen’s heuristics
[17]) and the average participant rating. Given the prototypical
nature of our tool, the participants rated it very well across the eight
aspects, with exception to “Match to real world (terminology)”. Here
participants remarked that some metric names could be improved
to more accurately convey their semantics.

5.7 Discussion
The answers to the two questionswithin the scope of the assessment
task (see Subsection 5.4) revealed that metrics allow for quickly
analysing a project and finding anomalies (participants had 10
minutes on average per issue). When investigating an issue in more
detail, the participants always used the timeline visualization. The
feedback on the tools usability (see Subsection 5.6) lets us assume
that the Project Inspector prototype was sufficiently mature to assist

the participants in their task. Most explicit negative criticism by
participants concerned minor usability aspects such as tool tips,
descriptions, font size.

In the free-form feedback part, participants explicitly highlighted
the usefulness of combining metrics and timelines, quickly finding
process flaws in short time, comparing projects, and the prototype’s
simple design. Participants even suggested as future work to inten-
sify this aspect by highlighting the events on the timeline that are
relevant to the chosen metric.
Key Observation 1: switching back and forth between metrics
and timeline is essential to quickly, easily obtaining insights into
situations that would benefit from process improvement.

Participants also noted that for properly interpreting metrics
and timelines, knowledge about how Jira is used by the teams is
necessary: for understanding based on what data/events a metric
is derived, but also to understand when engineers deviate from ex-
pected process behavior. During metric development our industry
co-author but also the case study participants noticed that state
transitions occurred often within unreasonable long or short time,
implying that engineers were not accurately following the pre-
scribed process. As potential future work, participants suggested
to include additional coordination-centric meta information such
as displaying the department of the engineer that made a status
change.
Key Observation 2: an iterative cycle of metric selection, data
collection, and metric interpretation is vital for ensuring that the
metrics really measure something meaningful and for identifying
additional useful metrics. Being able to flexibly integrate new or
updated metrics is thus a key requirement, as enabled by our pro-
totype.

Process Inspection Support: an Industrial Case Study Woodstock ’18, June 03–05, 2018, Woodstock, NY

The scoring of metrics (see Subsection 5.5) indicated that not
all metrics were considered immediately useful during the assess-
ment task. The most useful metrics either utilized changes to re-
assignment of issue responsibility, state changes, or date changes.
Participants mentioned in the free-form part of the questionaire
the lower-than-initially-expected usefulness of comment-centric
metrics. They noted that the semantics of comments would need
to be considered as well (most likely also other informal communi-
cation channels such as skype) and still potentially miss relevant
face-to-face communication during the occasional physical meet-
ings.
Key Observation 3: avoid, if possible, message content-based met-
rics (e.g., based on analysing comments, emails, etc.) that would
require extensive coverage of multiple channels.

5.8 Threats to Validity
Internal Validity.We address researcher bias by analyzing data from
an actual company rather than conducting controlled experiments.
The approach works on arbitrary issue events and was not specifi-
cally tailored to Jira issues or the used dataset.

External Validity. Rather than claiming for wide generalizability
of our results, we argue in line with Briand et al. [4] that context-
driven research will yield more realistic results. In this paper, we
thus evaluated the usefulness of the process metrics and issue time-
line visualization with multiple engineers working at our industry
partner. We analyzed data from this single company only as such
data from real-world, industrial environments is extremely hard
to get. Companies are very reluctant to provide insights into their
working processes at that level of detail. As different engineers
and roles (e.g., database expert, designer, team lead) have different
concerns, they might evaluate the metrics’ usefulness differently.
The positive feedback from multiple engineers familiar with the de-
velopment processes under study, however, at least shows that the
approach is applicable and indeed useful in the observed context.

We make no claim that our approach will yield equally useful
results when applied to data from a Jira server used for open-source
development. Often these servers, such as those hosted by the
Apache Software Foundation3 provide only the default issue types
and issue states and thus require engineers to limit their coordina-
tion to processes based on this limited set of states, or apply other
non-structured mechanisms such as comments, mailing-lists, and
tacit knowledge to manage processes. Even less structured are is-
sues in projects hosted on GitHub. GitHub issues4 are either “Open”
or “Closed”, any intermediary state needs managing via arbitrary
labels (i.e., tagging) with no support for defining or restricting valid
transitions. This restricts the ability to determine fine-granular met-
rics. The visualization prototype, however, is flexible to incorporate
custom build metrics as long as they are provided with the JSON
data items in the CouchDB.

Engineers assigned to departments and roles are a second, context-
specific characteristic of the analyzed data set. Jira itself is unaware
of roles (i.e., who should be changing a issue’s state) and hence such
information cannot easily be extracted via its REST API. As many
of the metrics derived from the data set include roles, we cannot

3https://issues.apache.org/jira
4https://help.github.com/articles/about-issues/

infer how useful our approach will be for environments where no
role information is available or where roles and departments are
not clearly assignable. This will often be the case in open-source
projects because they rarely exhibit a clear department and/or role
assignment structure. Hence a comparison of the four projects,
respectively the metric usefulness, to open source projects would
make little sense.

6 RELATEDWORK
Issue trackers have become an important tool for teams to coordi-
nate their work. Managing the increased number of issues, however,
has become a challenge [2] that multiple researchers aim to address.

Luijten et al. [15] introduced a tool to generate three different
views that enable assessment of the issue handling process: a high-
level (Issue Churn View), a quantitative (Issue Risk Profiles) and
a detailed life-cycle (Issue Lifecycle View) view. Knab et al. [13]
visualize the duration of a process step (submitted, in_analysis,
in_resolution, in_evaluation) with a pie chart and provide a state
transition view for problem reports.

Sarma et al. [20] proposed Tesseract, a socio-technical depen-
dency browser that enables exploration of relationships between
artifacts, developers, bugs, and communications, for example high-
lighting developers that are modifying interdependent code but are
not communicating with each other.

Dal Sassc and Lanza [8] implemented in*Bug, a web-based soft-
ware visual analytics platform. Extracting data from bug tracking
systems, different panels describe highlevel information such as
duration (as a horizontal stacked bar chart) and status of bugs as
well as fine grained views describing changes to a bug report’s
properties.

Similar, D’Ambros et al. [9] focus on becoming aware of critical
issues. Their “Bug Watch” visualization helps to understand the
various phases that it traversed. They note that the criticality of a
bug is not only dependent on its severity and priority but also on
its life cycle. Frequently opened bugs indicate deeper problems.

Halversion et al. [12] describe problematic patterns of change
management for example recurrent loops (e.g. repeatedly resolving
and reopening or reassigning) or unattended issues (when an issue
remains too long without resolution).

Tüzün et al. [23] describe their progress towards a unified project
monitoring solution based on the Essence language and kernel. Also
Brandt et al. [3] build on the Essence framework for project state
visualization but focus on a Kanban style visualization rather than
metrics and issue history.

Poncin et al. [18, 19] introduced the Framework for Analyzing
Software Repositories (FRASR) for combining data from source
code repositories, email lists, and bug trackers. They subsequently
utilize the ProM process mining framework for obtaining insights
such as classifying developers in open source software projects
to roles such as project leader, core member, peripheral developer,
bug fixer, or reader. They also analyzed typical bug report state
transitions on Bugzilla.

Gupta et al. [11] conducted process mining across an issue-
tracking system, a code review system, and a version control system.
They map events from these systems into a single process (based on

https://issues.apache.org/jira
https://help.github.com/articles/about-issues/

Woodstock ’18, June 03–05, 2018, Woodstock, NY Mayr-Dorn et al.

states) and determine transition occurrences. Based on this anno-
tated transition diagram, they analyze the bug-fixing process from
reporting to resolution to discover bottlenecks, deviations from the
intended process, joint activities, and work handover.

None of these approaches provide a combination of (flexibly
selectable) metrics and timeline visualization. In our previous work,
we investigated an alternative approach to defining explicit metrics
[14]. We applied constraints mining to issue histories from multiple
projects to derive meaningful metrics for describing the software
development process. Such an approach is suitable to identify addi-
tional metrics for integration into our prototype.

7 CONCLUSIONS AND FUTUREWORK
In this paper we presented an industrial case study and approach
for supporting metric-driven process improvement. Specifically, we
focused on coordination-centric metrics and consequently targeted
process-related data and events in our evaluation prototype Process
Inspector. Qualitative analysis with team-leads and groups-leads
from our industry partner demonstrated that the combination of
metric data with issue timeline visualization is a powerful approach
to obtain process insights and quickly identify flaws in the pro-
cess, inefficient coordination in issues, and comparing coordination
aspects across projects.

As part of future work, we plan to improve the prototype along
the received feedback, but more importantly, evaluate the use of
the prototype across a project’s lifetime. This includes also eval-
uating to what extent these metrics are able to detect concrete
differences when project teams are structured vertically as opposed
to horizontally.

ACKNOWLEDGMENTS
This work was supported in part by the Austrian Science Fund
(FWF): P29415-NBL funded by the Government of Upper Austria;
and the FFG, Contract No. 854184. Pro2Future is funded within
the Austrian COMET Program—Competence Centers for Excellent
Technologies — under the auspices of the Austrian Federal Ministry
of Transport, Innovation and Technology, the Austrian Federal
Ministry for Digital and Economic Affairs and of the Provinces
of Upper Austria and Styria. COMET is managed by the Austrian
Research Promotion Agency FFG.

REFERENCES
[1] Thomas J Allen et al. 1984. Managing the flow of technology: Technology transfer

and the dissemination of technological information within the R&D organization.
MIT Press Books 1 (1984).

[2] John Anvik, Lyndon Hiew, and Gail C Murphy. 2005. Coping with an open bug
repository. In Proceedings of the 2005 OOPSLA workshop on Eclipse technology
eXchange. ACM, 35–39.

[3] S. Brandt, M. Striewe, F. Beck, and M. Goedicke. 2017. A Dashboard for Visualiz-
ing Software Engineering Processes Based on ESSENCE. In 2017 IEEE Working
Conference on Software Visualization (VISSOFT). 134–138. https://doi.org/10.
1109/VISSOFT.2017.14

[4] L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabetzadeh. 2017. The Case for
Context-Driven Software Engineering Research: Generalizability Is Overrated.
IEEE Software 34, 5 (2017), 72–75.

[5] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. 1994. The goal
question metric approach. Encyclopedia of software engineering (1994), 528–532.

[6] Marcelo Cataldo, Audris Mockus, Jeffrey A Roberts, and James D Herbsleb. 2009.
Software dependencies, work dependencies, and their impact on failures. IEEE
Transactions on Software Engineering 35, 6 (2009), 864–878.

[7] Davor Cubranic, Gail CMurphy, Janice Singer, and Kellogg S Booth. 2005. Hipikat:
A project memory for software development. IEEE Transactions on Software
Engineering 31, 6 (2005), 446–465.

[8] Tommaso Dal Sassc and Michele Lanza. 2013. A closer look at bugs. In Software
Visualization (VISSOFT), 2013 First IEEE Working Conference on. IEEE, 1–4.

[9] Marco D’Ambros, Michele Lanza, and Martin Pinzger. 2007. " A Bug’s Life" Visu-
alizing a Bug Database. In Visualizing Software for Understanding and Analysis,
2007. VISSOFT 2007. 4th IEEE International Workshop on. IEEE, 113–120.

[10] Philipp Diebold and Simon André Scherr. 2017. Software process models vs
descriptions: What do practitioners use and need? Journal of Software: Evolution
and Process 29, 11 (2017), e1879:1–e1879:13.

[11] Monika Gupta, Ashish Sureka, and Srinivas Padmanabhuni. 2014. Process mining
multiple repositories for software defect resolution from control and organiza-
tional perspective. In Proc. of the 11th Working Conference on Mining Software
Repositories. ACM, 122–131.

[12] Christine A Halverson, Jason B Ellis, Catalina Danis, and Wendy A Kellogg. 2006.
Designing task visualizations to support the coordination of work in software
development. In Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work. ACM, 39–48.

[13] Patrick Knab, Beat Fluri, Harald C Gall, and Martin Pinzger. 2009. Interactive
views for analyzing problem reports. In Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on. IEEE, 527–530.

[14] Thomas Krismayer, Christoph Mayr-Dorn, Johann Tuder, Rick Rabiser, and Paul
Grünbacher. 2019. Using constraint mining to analyze software development
processes. In Proceedings of the International Conference on Software and System
Processes, ICSSP 2019, Montreal, QC, Canada, May 25-26, 2019, Stanley M. Sutton
Jr., Ove Armbrust, and Regina Hebig (Eds.). IEEE / ACM, 94–103. https://doi.org/
10.1109/ICSSP.2019.00021

[15] Bart Luijten, Joost Visser, and Andy Zaidman. 2010. Assessment of issue han-
dling efficiency. In Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on. IEEE, 94–97.

[16] Nachiappan Nagappan, Brendan Murphy, and Victor Basili. 2008. The influence
of organizational structure on software quality. In Software Engineering, 2008.
ICSE’08. ACM/IEEE 30th International Conference on. IEEE, 521–530.

[17] Jakob Nielsen. 1994. Usability engineering. Elsevier.
[18] Wouter Poncin, Alexander Serebrenik, and Mark van den Brand. 2011. Mining

Student Capstone Projects with FRASR and ProM. In Proc. of the ACM Interna-
tional Conference Companion on Object Oriented Programming Systems Languages
and Applications Companion. ACM, 87–96.

[19] Wouter Poncin, Alexander Serebrenik, and Mark van den Brand. 2011. Process
Mining Software Repositories. In Proc. of the 15th European Conference on Software
Maintenance and Reengineering. IEEE CS, 5–14.

[20] Anita Sarma, Larry Maccherone, Patrick Wagstrom, and James Herbsleb. 2009.
Tesseract: Interactive visual exploration of socio-technical relationships in soft-
ware development. In Proceedings of the 31st International Conference on Software
Engineering. IEEE Computer Society, 23–33.

[21] Darja Šmite, Claes Wohlin, Zane Galvin, a, and Rafael Prikladnicki. 2014. An
empirically based terminology and taxonomy for global software engineering.
Empirical Software Engineering 19, 1 (2014), 105–153.

[22] Manuel E Sosa, Steven D Eppinger, Michael Pich, David G McKendrick, and
Suzanne K Stout. 2002. Factors that influence technical communication in dis-
tributed product development: an empirical study in the telecommunications
industry. IEEE transactions on engineering management 49, 1 (2002), 45–58.

[23] E. Tüzün, Ç. Üsfekes, Y. Macit, and G. Giray. 2019. Towards Unified Software
Project Monitoring for Organizations using Hybrid Processes and Tools. In 2019
IEEE/ACM International Conference on Software and System Processes (ICSSP).
115–119. https://doi.org/10.1109/ICSSP.2019.00023

https://doi.org/10.1109/VISSOFT.2017.14
https://doi.org/10.1109/VISSOFT.2017.14
https://doi.org/10.1109/ICSSP.2019.00021
https://doi.org/10.1109/ICSSP.2019.00021
https://doi.org/10.1109/ICSSP.2019.00023

	Abstract
	1 Introduction
	2 Case Study Background
	2.1 Industry Context
	2.2 An Industry Challenge
	2.3 Process Improvement Method

	3 Approach
	3.1 Metrics
	3.2 Issue Timeline Events

	4 Prototype Tool Support
	5 Qualitative Evaluation
	5.1 Study Design
	5.2 Data Set
	5.3 Participant Demographics
	5.4 Task: Issue Assessment
	5.5 Top Rated Metrics
	5.6 Usability Scores
	5.7 Discussion
	5.8 Threats to Validity

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

