
Predicting Visual Importance Across Graphic Design Types

Camilo Fosco1, Vincent Casser1, Amish Kumar Bedi2,
Peter O’Donovan2, Aaron Hertzmann3, Zoya Bylinskii3,

1MIT 2Adobe Inc. 3Adobe Research
{camilolu, vcasser}@mit.edu {ambedi, podonova, hertzman, bylinski}@adobe.com

ABSTRACT
This paper introduces a Unified Model of Saliency and Impor-
tance (UMSI), which learns to predict visual importance in
input graphic designs, and saliency in natural images, along
with a new dataset and applications. Previous methods for pre-
dicting saliency or visual importance are trained individually
on specialized datasets, making them limited in application
and leading to poor generalization on novel image classes,
while requiring a user to know which model to apply to which
input. UMSI is a deep learning-based model simultaneously
trained on images from different design classes, including
posters, infographics, mobile UIs, as well as natural images,
and includes an automatic classification module to classify the
input. This allows the model to work more effectively without
requiring a user to label the input. We also introduce Imp1k, a
new dataset of designs annotated with importance information.
We demonstrate two new design interfaces that use importance
prediction, including a tool for adjusting the relative impor-
tance of design elements, and a tool for reflowing designs to
new aspect ratios while preserving visual importance.1
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INTRODUCTION
Where a viewer looks on a poster or advertisement can de-
termine whether the design is effective in communicating
its message to the viewer, or if the viewer misses important
concepts or details. Indeed, numerous companies offer eye
tracking analyses of graphic designs, providing insight into
the effectiveness of the design, but these typically depend on a
separate eye tracking study for each design. Establishing vi-
sual hierarchy and importance is a common task for designers,
ideally guiding the reader through the design from elements of
1The model, code, and importance dataset are available at:
http://predimportance.mit.edu.

Note: This is the author’s preprint copy. This is not the official ACM pub-
lished version, which will appear at UIST 2020.

Figure 1. Our Unified Model of Saliency and Importance, UMSI, is
able to predict human attention on both natural images and graphic de-
signs. Its performance is comparable to state-of-the-art models specifi-
cally built for natural image saliency [13] and it outperforms the existing
visual importance models [6, 28].

higher to lesser importance. Methods that predict visual impor-
tance accurately in real-time could thus be used in a number
of UI applications, including providing real-time feedback to
designers, as well as automatic reflow.

Prior approaches have tackled various aspects of attention
modeling on graphic designs, including saliency on visual-
izations [26] and mobile UIs [15], visual flow on comics [9]
and webpages [29], and importance prediction on visualiza-
tions [6] and posters [6, 28]. Unlike saliency or visual flow
which model eye fixations and trajectories, respectively, im-
portance identifies design elements of interest/relevance to
the viewer. This makes it more practical as a building block
for downstream design applications. Moreover, the narrow
focus of prior work on particular design types, datasets, and
tasks makes the models difficult to adapt to other problems
and generalize to broader sets of design classes. Graphic de-
signs in domains such as advertising, art and education show
significant differences in terms of content, layout and appear-
ance, which means that a designer would need to find a model
trained specifically for their class of design.
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This paper proposes a unified model for predicting importance
in graphic designs from multiple design classes, as well as for
predicting saliency in natural images. Our model, the Unified
Model of Saliency and Importance (UMSI), is a deep neu-
ral network that automatically classifies the input design into
one of five design classes before predicting the importance or
saliency of the input image. Moreover, we introduce a new
dataset, Imp1k, that contains 1000 annotated designs, cover-
ing webpages, movie posters, mobile UIs, infographics and
advertisements. We show that our model either outperforms or
remains competitive with state-of-the-art approaches on previ-
ous datasets of graphic designs and natural images (Figure 1).
We also show that current state-of-the-art models struggle on
Imp1k, highlighting a lack of generalization to diverse design
classes. Our model successfully generalizes to the attention
patterns that are unique to these different design classes.

This approach offers several benefits. First, our model can take
many different kinds of designs and images as input, without
having to train a separate model for each. A user does not
need to explicitly label or classify the input design. Second,
the model leverages training data more effectively by using
a shared representation, learning what is both common and
unique across datasets. Indeed, we show that our unified model
gives superior performance on individual tasks as compared
to models trained on individual tasks. Third, design repre-
sents a spectrum, and our model can generalize accordingly.
Since our model trains on both designs and natural images,
it works well on designs that include photographs, whether
the photograph dominates the design or represents a small
portion of it. While our method is already suitable for real ap-
plications, our training procedure can be generalized to more
design categories in the future, simply by adding more classes.

Furthermore, we introduce two new interactive applications
enabled by this model. In our first application, a designer can
specify the target importance of an element in an existing de-
sign, and the algorithm updates the layout to achieve this goal.
Second, we show a reflow application that converts a vector
design into a new size and aspect ratio while maintaining the
relative importance of design elements. Reflow is a critical
problem for modern designers, who are typically tasked to
retarget designs to a wide variety of display sizes and form
factors. We show that using UMSI in these applications gives
substantially better results than with existing baselines.

To summarize, our contributions include: UMSI, a unified
model for predicting importance in different kinds of designs,
and saliency in natural images; the Imp1k dataset, containing
importance annotations for 1000 designs from 5 classes; a tool
for revising a design to match target importance values; and a
reflow application that uses UMSI to preserve importance.

RELATED WORK
Many previous studies analyze design perception, understand-
ing, and memorability, e.g., [1, 2, 3, 17], including the use
of eye tracking as an analysis tool. However, obtaining reli-
able eye movement data is typically far too costly and time-
consuming to be used in most design scenarios.

Most prior work on automatic saliency prediction has focused
on eye movements in natural images. Lately, these efforts
have progressed significantly with the help of deep learning [4,
12, 13, 19, 22, 23]. When applied to graphic designs, models
trained on natural images perform poorly [6, 16]. Specialized
saliency models have been designed for visualizations [26],
mobile UIs [9] and webpages [29, 31], but with limited gener-
alization ability outside each design class.

In contrast to saliency, O’Donovan et al. [28] introduced
the first approach using importance: they collected the GDI
dataset, a crowdsourced dataset where people were asked to
manually label what they thought was important in a design.
With this data, they trained a model for importance prediction
on graphic designs. Their method, however, requires annota-
tion of design element position and alignment to generalize
to new designs. Bylinskii et al. [6] followed up with the first
end-to-end deep learning approach for importance prediction.
Their model predicts importance from the original image using
a Fully Convolutional Network [25], with pre-trained weights
from semantic segmentation, fine-tuned on the GDI dataset.
As in prior work [6, 28], we are using a viewer-identified
notion of importance rather than a designer-specified notion.
We are not explicitly taking into account aesthetics or design
heuristics, but are focused on modeling the behavior of the
viewer of the content.

Importance and saliency have previously been used for tasks
such as retargeting [6, 28] and thumbnailing [20, 30]. For the
design process, however, recent work focused on visualizing
predicted importance as passive feedback for the designer [6].
In this work, we introduce applications of our model within
interactive interfaces where the user can more actively engage
with the importance model during the design process. Fur-
thermore, our retargeting application works on vector designs,
and is thus more practical for design applications, compared
to image-based retargeting [6], and without requiring manual
annotations as in prior work [28].

IMP1K DATASET
The previously available graphic design dataset with impor-
tance annotations is limited to posters and advertisements [28].
However, the structure of other types of designs like web-
pages and mobile UIs is quite different, and a model trained
to predict importance on posters alone will not generalize. At
the same time, there is great interest in predicting attention
patterns on webpages and mobile UIs due to their widespread
use and commercial impacts. Towards expanding the general-
izability of an importance model, we collected a new graphic
design dataset covering five diverse design classes and use
cases: infographics representing design for knowledge trans-
fer, webpages and mobile UIs representing design for utility,
and advertisements and movie posters representing design for
promotion. While prior work addresses importance for data vi-
sualizations [6], we omit them because their highly structured
layouts (axes, data marks, etc.) make them less amenable to
the design applications that are the focus of this work. The de-
tails of the data collection and annotation are provided below,
along with an analysis of the importance patterns common to,
and differing between, the design classes.
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Dataset collection
We collected designs from existing research datasets so that
the stimuli and annotations may be shared broadly with the
research community. Infographics were sourced from Visu-
ally29k [33], webpages from ClueWeb09 [7], movie posters
from Chu et al.’s movie poster dataset [11], mobile UIs from
RICO [14], and advertisements from the Pitt Image Ads [18].
To compose our multi-class importance dataset, Imp1k (Fig. 2),
we randomly sampled 200 designs per design class, after fil-
tering out designs that had too few elements, skewed aspect
ratios, or that were outliers among their design class.

For annotating the importance in each of the 1000 designs
from our Imp1k dataset, we used the ImportAnnots UI [27].
Based on the original implementation of O’Donovan et al. [28],
this UI provides participants with three options for annota-
tion: (i) "regular stroke" involves painting with paintbrush-
like strokes with the mouse button held down, (ii) "polygon
stroke" allows drawing polygons through connecting vertices,
and (iii) "fill stroke" fills an area delimited by the initial mouse
click position and the most recent mouse position, allowing
smooth tracing over continuous contours of a shape. Using
any of these tools, a participant can produce a binary mask to
annotate the most important design elements.

We deployed the ImportAnnots UI on Amazon’s Mechanical
Turk (MTurk) to collect importance data on all 1000 designs,
splitting them into 10 designs of the same class per task (HIT),
and requesting 30 participants per HIT. Participants could
complete several HITs. Data from 249 individual participants
was collected. To ensure good data quality, we additionally
included 3 sentinels per HIT. These are simple, artificial de-
signs where the importance annotation is expected to cover
the only visible element in the design. We designed 40 such
sentinels, which we manually annotated with ground truth
importance. For the task to proceed, we automatically ver-
ified that participant annotations matched the ground truth
annotations (with a computed intersection over union value
over 0.6) for at least 2/3 of the sentinels. Participants were
paid $1.00 for completing the task. For each of the 1000 de-
signs collected, we computed an associated importance map
by averaging the 25-30 individual binary annotations. While
each participant’s importance annotation is subjective, prior
work has reported that the average over participants produces
heatmaps that approximate attention maps [6, 21, 28].

Analysis
Each class in our dataset exhibits slightly modified patterns
of importance (Fig. 3). We qualitatively observe that impor-
tance on movie posters is dominated by the title and human
faces, while webpages tend to draw attention to the site name
or company running the site, usually on the top left. Info-
graphics have importance distributed across the full design,
as do mobile UIs. Ads, on the other hand, concentrate most
of their importance on a few elements in the center of the
design. Across classes, human annotations tend to highlight
a set of up to 7 different elements; more detailed annotations
were rare in our data. We performed a basic analysis of text
and face importance on different design types. Specifically,
we used open source face [24] and text [32] detectors and

Figure 2. Examples of the 5 classes of the Imp1k dataset.

calculated the mean importance map value over the face and
text bounding boxes per design. We observe that the rela-
tive importance of faces is highest on ads and movie posters,
where they are nearly tied in importance. The importance of
text is highest in ads, where it is perceived to be on average
32% more important than the text in infographics (the class
with the second highest average importance of text). These
differences in importance patterns across classes motivate the
development of a model that can generalize to these designs,
and tailor predictions for each design class.

UMSI MODEL
Motivated by these observations, we introduce a unified im-
portance prediction model that is trained jointly on different
design classes as well as natural images. The model contains
a classification branch that infers the input design category,
allowing it to produce results appropriate for the input design.

Model architecture
Given an input image, our objective is to predict a heatmap
with an importance value assigned to every pixel. This is re-
lated to other image-to-image prediction tasks like saliency
and segmentation, which motivate our architectural choices.
Encoder-decoder architectures are common for such tasks,
whereby features are first downsampled (encoded) before be-
ing upsampled (decoded) to produce the final prediction at the
original image size. The previous state-of-the-art importance
model [6] was based on a semantic segmentation architecture
[25]. Similarly, we use a segmentation-inspired pyramid pool-
ing module to leverage features at different scales and improve
the fidelity of the heatmaps. The addition of a classification
branch helps our importance model make use of class-specific
information. The full architecture is visualized in Fig. 4 and
the technical details of each component are detailed below.

Encoder. This is a low-level feature network that extracts
basic image features. We used the Xception encoder, a high-
performing state-of-the-art network common for segmenta-
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Figure 3. General importance trends on Imp1k across ground truth
maps and our predicted maps. Our model captures the trends correctly,
evidencing a pronounced class specialization. This is further supported
by UMSI’s high classification accuracy: our model learns to recognize
the input’s class and tailor its output to the particularities of that class.

tion [10] and saliency [8] tasks. It is composed of depthwise
separable convolutions, which come with great computational
savings at a minimal cost on accuracy. We modified this net-
work to output feature maps by removing the final global
average pooling and fully-connected layers. To obtain higher
resolution maps, we reduced the strides of both the 1x1 resid-
ual connection and the last two max pooling layers to one.

Atrous Separable Pyramid Pooling (ASPP). To aggregate
image information at multiple scales, we used an ASPP mod-
ule [10] after our encoding module. This module applies
several dilated convolutions with different dilation rates in par-
allel to a given set of feature maps. The output maps are then
concatenated and passed through a projecting convolutional
layer to reduce the channel dimensionality of the feature block.
We used an ASPP module with 4 parallel convolutional layers
with 256 filters, with dilation rates of 1, 6, 12 and 18.

Decoder. Our decoder is a set of convolutions followed by
upsampling layers and dropout. This allows the feature maps
to be scaled up to the original image size, without a significant
increase in parameters. We use three different blocks: the first
two composed of two convolutional layers followed by a 2x2
upsampling layer, and the last composed of one convolutional
and one upsampling layer. A 1x1 convolutional layer then
transforms the feature maps into our final importance map.
The convolutional layers have kernels of size 3 and the dropout
applied is 0.3. We use ReLU activations throughout.

Classification. The output of our encoder is also passed in
parallel to a classification submodule. It is composed of two
3x3 convolutional layers, followed by a convolutional layer
with stride 3 to reduce dimensionality, then another 3x3 convo-
lutional layer. The resulting feature maps are globally pooled
and a dense layer with dropout transforms the maps into a
1x1x256 feature vector C f . This vector is used both (i) for
directly outputting the predicted image class, and (ii) for intro-

ducing class-specific information for importance prediction. In
the first case, C f is fed to a dense layer with 6 outputs and soft-
max activation, to produce a 1x6 vector of class probabilities.
In the second case, C f is resized to the required dimensions
and concatenated with the output from the ASPP module along
the channel dimension as part of the Concatenation layer.

Model training
Our challenge is to produce a model with good performance
both on natural images and graphic designs, which tend to
have quite different layouts and attributes (e.g., graphic el-
ements, text regions, etc.). Moreover, the available ground
truth attention data on natural images and graphic designs has
been collected using different means, producing differences in
formats and data quantity. The largest available dataset com-
monly used for training saliency models on natural images is
SALICON, containing 20K images with mouse movements
aggregated into saliency maps [19]. The only available impor-
tance dataset for graphic designs until this paper was GDI [28],
containing 1000 designs with binary annotations aggregated
into importance maps. Our Imp1k dataset also contains 1000
designs, but split across 5 distinct classes, while GDI is com-
posed mainly of ads and posters from Flickr. Training a model
to learn the attention patterns on both natural images and
graphic designs, while using differently sized and formatted
datasets, involved a specialized procedure, detailed below.

Training procedure. We first pre-train our model on SALI-
CON for 10-15 epochs. This allows our model to learn about
image features broadly relevant to saliency. We then fine-tune
on a graphic design importance dataset - which is either GDI
or Imp1k, depending on the particular evaluation (next sec-
tion). To prevent the network from “forgetting" saliency while
learning design importance, we mix in 160 new SALICON
images during each fine-tuning epoch. This number maintains
class balance when training on Imp1k, since the training set
consists of 80% of 200 designs per class.

Training details. We use the 10K training, 5K validation, and
5K test splits from SALICON [19]. For GDI, we use the same
training/testing split as in [6]. For Imp1k, we define a test set
by randomly selecting 20% of images from each class. We
train with KL and CC losses, with coefficients of 10 and -3,
respectively. A binary cross-entropy loss with a weight of 5
is used for the classification submodule. The learning rate is
1e−4, and is decreased by a factor of 10 every 3 epochs. To
limit overfitting, we use a dropout of 0.3 on all layers. We
train with a batch size of 8 using the Adam optimizer.

MODEL EVALUATION
We next compare with existing methods, on our dataset as
well as previous importance datasets. We compare different
variants, including retraining previous models on our data, and
training subsets of our model (e.g., without classification), in
order to evaluate each element of our method separately.

Importance prediction
We evaluated our model on two importance datasets, GDI
and Imp1k, the results of which can be found in Tables 1 and
2, respectively. On both datasets we compare against, and
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Figure 4. The architecture of our Unified Model of Saliency and Importance (UMSI). Our model leverages Xception-based encoder and decoder modules
to generate accurate maps with few parameters. An atrous spatial pyramid pooling (ASPP) module captures features at different scales, and a separate
classification module classifies the input into one of six categories, represented by colored letters in the figure: Ads (A), Infographics (I), Mobile-UIs
(M), Movie posters (P), Webpages (W) and Natural Images (N). Central to our model is the concatenation layer, which combines the outputs from the
ASPP with class-specific features obtained from the classification module and allows for tailored heatmaps for each input class.

outperform, the prior state-of-the-art importance model [6]
across all four evaluation metrics. On the GDI dataset, UMSI
notably achieves an improvement of 54% over the prior model
according to the Pearson’s Correlation Coefficient (CC metric),
the recommended metric for saliency evaluation [5].

R2 ↑ RMSE ↓ CC ↑ KL ↓
O. et al., Auto [28] 0.539 0.212 - -
O. et al., Full [28] 0.754 0.155 - -
B. et al. [6] 0.576 0.203 0.596 0.409
B. et al. + O. [6] 0.769 0.150 - -
SAM [13] 0.693 0.146 0.884 0.102
UMSI 0.781 0.120 0.915 0.086

Table 1. Evaluation of models on importance prediction on the GDI
dataset. We compare our model, UMSI, to the prior state-of-the-art im-
portance models [6] and [28], and to a strong saliency model finetuned
on importance [13]. Our model outperforms all other alternatives.

R2 ↑ RMSE ↓ CC ↑ KL ↓ Acc ↑
B. et al. [6] 0.072 0.181 0.758 0.301 -
B. et al. x5 [6] 0.061 0.205 0.732 0.388 -
SAM [13] 0.108 0.168 0.866 0.166 -
UMSI-nc 0.095 0.152 0.802 0.177 -
UMSI-2stream 0.105 0.141 0.852 0.168 0.91
UMSI 0.115 0.134 0.875 0.164 0.98

Table 2. Evaluation of models on importance prediction on the Imp1k
dataset. We compare our model, UMSI, to the prior state-of-the-art
model trained on the entire dataset (B. et al. [6]) and on each class sep-
arately (B. et al. x5 [6]). We include SAM [13], a strong saliency model
also fine-tuned on the Imp1k dataset. UMSI-nc corresponds to UMSI
without a classification module, while UMSI-2stream is an alternative ar-
chitecture with classification. UMSI outperforms all other alternatives.

We additionally surpass the performance of the "Full"
O’Donovan model [28], a non-automatic approach which re-
quires human annotations of the graphical element locations at
test-time. The poorer-performing, fully-automatic O’Donovan

model is also included for comparison. The best-performing
model out of the alternatives was a combination of the two
prior models [5] and [28], which was previously reported
in [5]. UMSI outperformed this combined model too.

As another comparison point, we trained the state-of-the-art
saliency model SAM [13] to predict importance, by first pre-
training on SALICON, and then fine-tuning on the GDI and
Imp1k datasets, to report performances on each dataset. On
the Imp1k dataset, we also re-trained five instances of the
prior state-of-art importance model [6] on each of the 5 design
classes, separately ("B. et al. x5"). From Tables 1 and 2, we
see that UMSI outperforms these alternative re-trained models,
demonstrating the contributions of our architecture design,
beyond the training data alone.

Example predictions can be found in Fig. 7. Training on
both natural images and graphic designs allows our model
to correctly distribute importance in images that contain dif-
ferent amounts of text and visuals. In these cases, a saliency
model might over-predict visual regions, whereas an impor-
tance model trained only on posters and ads (such as [6])
struggles to generalize to more complex designs.

Saliency prediction
We also evaluated our model on the SALICON test set [19].
On saliency, our model performs comparably to state-of-the-
art. UMSI obtains a CC of 0.782 and KL of 0.341, compared
to a CC of 0.811 and KL of 0.324 for SAM [13]. Qualita-
tively, we observe very similar patterns as SAM on the output
heatmaps: our model correctly detects people and faces, and
identifies elements of high contrast (see Figs. 1 and 5a).

The ability of our model to generalize to natural images and
graphic designs alike make it usable within a typical design
workflow. As a proof-of-concept, we generated some designs
with a SALICON image as background, and collected impor-
tance annotations on designs corresponding to different stages
of the design process. On natural images, our model predicts
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Figure 5. Our model updates importance predictions throughout the
design process. Letters on the lower left represent ground truth and
predicted design classes. (a) On a background natural image, UMSI
predicts traditional saliency. This can inform the designer about which
parts to emphasize or de-emphasize. (b) The designer adds a title ele-
ment to the image. The model predicts the design is an advertisement
and that the title is now most important. (c-d) As the designer adds
more elements, the output map correctly captures their importance and
diminishes the importance of the image background.

Figure 6. Failure modes of UMSI. Letters on the lower left represent
ground truth and predicted design classes. (a) Our model classifies
the input as a natural image, missing the subtle text overlay, and over-
emphasizing the faces. (b) Our model missclassifies this ad as an info-
graphic due to the multitude of details. Nevertheless, importance is still
highest at the top of the design. (c) A complex and busy design poses a
challenge for our model. Although the classification is correct, the model
selects a relevant but secondary text overlay as most important.

accurate saliency maps. As the designs become more com-
plex, our model switches to distributing importance across
the image and design elements (Fig. 5). We also observe a
diminished text bias, as our model accurately recognizes the
importance of secondary design elements over text. We note
that excessive text bias was one of the limitations of [6].

Classification
Our classification module achieves an average accuracy of
95% when determining which of 5 classes the designs from
Imp1k belong to (per-class accuracy scores are reported in
Fig. 3). From Fig. 3, we see that our model has learned to
capture general trends of importance that differentiate the 5
design classes. We include some interesting failure cases of
our model, when it misclassifies designs, in Fig. 6.

We evaluated the contribution of our classification module to
importance prediction (Table 2). To do so, we trained an ad-
ditional two versions of UMSI, one without the classification
module at all (UMSI-nc), and one where the classification
module does not feed directly back into the importance predic-
tion (as in Fig. 4), but branches off after the ASPP module, and
still affects the features learned by both the encoder and ASPP
module (UMSI-2stream). Both alternatives to our architecture
performed worse, where not having a classification stream at
all (UMSI-nc) affected the scores most.

APPLICATIONS
In this section we present two new applications of our impor-
tance prediction model. These are proofs-of-concept intended
to demonstrate how such a model can help support iterative
design and automate some common design workflows.

Model-assisted interactive design
Previous work used importance prediction within a design
tool as passive feedback in the form of real-time importance
visualization [6]. Here we consider a use case where the
user can more actively engage with the importance model
during the design process to receive design suggestions. We
developed a bare-bones prototype with minimal design support
to evaluate the ability of our model, when coupled with an
optimization procedure, to actively adjust a design according
to user-imposed constraints.

The workflow allows a user to manipulate design elements on a
canvas, and to receive immediate feedback about the predicted
importance of each element, similar to the visualizations in
[6]. However, different from [6] is a new ability to directly
interact with the importance scores of each design element,
allowing the user to specify constraints to increase or decrease
the importance of design elements.

The application then depends on an optimization procedure
to generate new design variants, which are scored by the im-
portance model. For this demo, we chose a genetic algorithm
that makes adjustments to the visual arrangement (scale and
location) of the design elements and selects adjustments that
reduce the gap between the current predicted values and the
target values specified by the user. As the optimization algo-
rithm itself is not a contribution of this paper, we leave its
implementation details to the Supplemental Material.
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(a)

(b)

(c)

(d)

(e)

(f)
Figure 7. Example images and model predictions from the Imp1k dataset. (a) In this advertisement, the brand is rated as the most important part of the
design by human annotators (ground truth). (b) For this webpage and the advertisement above, the natural image saliency model (SAM) over-focuses
on the faces. (c) A movie poster, where the prior state-of-the-art importance model (B. et al. [6]) over-predicts all the text elements as having similar
importance. (d) A mobile UI, composed of text and images in equal parts, where SAM focuses on the images and B. et al. distributes importance
evenly. In all the above examples, UMSI correctly detects the most important design elements, regardless of their spatial location on the image. (e) A
challenging infographic for all the models, where correctly predicting importance requires an understanding of the data presented. (f) A drawing that
does not belong to any other design class, but nevertheless generates correct predictions of importance by the first two models.
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UI design. We developed a simple UI for this task which al-
lows drag-and-drop placement of graphical elements (Fig. 8A-
B). A real-time (TCP network-based) interface between our
front-end UI and our back-end importance model allows for
remote computation on GPU-enabled computing infrastruc-
ture. As users manipulate the design, continuous execution
of the importance model in the back-end allows real-time up-
dates of the importance predictions, visualized as a heatmap
(Fig. 8C). We also compute the individual importance of all
the design elements by averaging the importance values inside
the mask of each design element. We plot these element-wise
importance values as an interactive bar plot (Fig. 8D). The
user can then set individual target importance values for each
design element, by adjusting the level of the respective bar in
the plot. This interaction triggers an optimization procedure
that tries to reduce the discrepancy/gap between the current
predicted and target importance values (Fig. 8E).

User studies. We evaluated the ability of our importance
model to accurately guide the optimization procedure towards
design variants matching user-specified constraints. Using
6 initial designs, we selected 3 elements per design that we
wanted to separately increase the importance of. Specifically,
we used the interactive bar plot within our UI to constrain
the importance of the chosen design element to have max-
imal importance in the final design. We then launched the
optimization procedure for 5 consecutive runs, to produce 5
possible design variants that meet the specified constraints.
We produced a total of 90 design variants = 6 (initial designs)
x 3 (separate constraints) x 5 (runs). We then launched the
ImportAnnots UI to collect importance maps (25 participants
worth of annotations per design) for all 90 design variants, as
well as for the 6 initial designs. We compared these ground
truth importance maps to the ones predicted by our model and
used by the optimization procedure to produce each design
variant. The average CC score across all 90 variants was 0.928
(where the upper bound of CC is 1.0), indicating a high corre-
spondence between the model and ground truth. On average,
across the 6 designs x 3 constraints per design, the optimiza-
tion algorithm succeeded in increasing the importance of the
target element in 87% of the runs.

Discussion. Some example results are provided in Fig 9. The
top example contains a simple advertisement where a user
wants to emphasize the discount. Our application automat-
ically rearranges the elements such that the design element
selected is enlarged and takes a more central position. In the
bottom example, a user wants to put more emphasis on the
location of the advertised event, while also decreasing the
prominence of the event title. In the automatic redesign, text
about the event time and date is separated from the location,
creating more room to enlarge the relevant information.

In this section we provided a means by which our importance
model can be coupled with a separate optimization procedure
to offer design suggestions in an interactive design tool. The
design tool itself is bare-bones and does not optimize for
balance, symmetry, or other aesthetic properties, and so the
returned results are not guaranteed to be good quality designs.
Despite this, we were able to guarantee, with 87% success rate,

Figure 8. At the top we demonstrate our model-assisted interactive de-
sign UI: A) Canvas onto which a user can drag a vector graphics file. B)
A set of layers that can be used to compose design elements together. C)
A preview of the interactively-computed importance map for the current
design. D) An interactive bar plot listing all the design elements and their
predicted importance scores. E) A progress bar for the optimization pro-
cedure launched when users adjust the interactive bar plot values. Below
the UI is a sample interaction sequence: (i) Clicking on a design element
highlights the element’s predicted importance score in the interactive
bar graph. (ii) Making adjustments to the bar graph launches an opti-
mization procedure that automatically adjusts the design (iii) until the
target importance values are reached for all the elements. (iv) Selecting
the importance heatmap overlays it on the final design.
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Figure 9. Model-assisted design examples. Left: initial designs. Right:
designs after optimization. We maximize the importance of elements
marked in green. The algorithm accomplishes this through spatial rear-
rangement (top) and/or changing proportions (bottom). Changing tar-
get importance of one element commonly also affects neighboring ele-
ments to preserve their importance levels as closely as possible while
giving room for the other element to gain importance.

that the importance objectives specified by the user were met,
in accurately increasing the importance of specified design
elements. These initial investigations show promise for the
utility of an importance model in future design tools. How
best to incorporate AI and other forms of automatic assistance
and collaboration in interfaces is a substantial open problem
for the field.

Model-assisted design reflow
We also investigated the benefits of using importance pre-
diction as a back-end mechanism for creating different sized
variations of an input design. This is required for adapting
designs to alternative form factors and devices. We propose us-
ing the importance scores of design elements computed from
the importance heatmaps to guide repositioning and rescaling
of the elements when reflowing a graphic design (Fig. 10).

We worked with the developers of a commercially-available
layout application to integrate our importance models into
design reflow. The application lets users create or upload their
existing designs and perform basic operations, like placing,
scaling, and grouping graphical elements. Once the user is
content with the initial design, the design is sent as an image
to our back-end importance model. The predicted importance
heatmap is then used to rank the graphic elements by impor-
tance, by computing the average importance value over each
element’s extent. Our proposition is that by preserving the
relative importance values of all the design elements in the re-
flow result, we maintain the designer’s intention in allocating
attention across design elements.

Reflow algorithm. Given an input design and a new target
design size (Fig. 10a), the reflow algorithm selects a new

position and scale for each design element (Fig. 10b). For
designs of a few different sizes and numbers of elements, we
manually composed templates indicating the importance rank
of each element in that design (examples in Fig. 10c). We
composed these templates based on professional designs of
similar sizes and number of elements. The templates are stored
in the reflow application. At test-time, we retrieve the template
matching the input design in number of design elements, and
with similar aspect ratio to the target design size. Next, we map
each element from the initial design to a placeholder in the
template with a matching importance rank. This step preserves
the importance ranks of the elements from the original design.

User studies. To evaluate whether using our importance
model at the back-end of a layout application indeed improves
the final reflow results, we ran two user studies, with crowd-
workers and with professional designers, respectively. For 17
different graphic designs, we provided study participants with
three automatically-computed design variants in an alternative
aspect ratio. Participants were asked to rank the variants from
1 (best) to 3 (worst), based on personal judgement without
further guidance. These variants corresponded to: (i) a base-
line implementation of reflow without using importance2, and
results from the importance-aided reflow algorithm described
above, using: (ii) the previous state-of-the-art importance
model [6] and (iii) our UMSI model. The ordering of the
variants was randomized across designs and participants. We
ran the study on Amazon’s MTurk, and recruited 100 partici-
pants, each presented with 9 randomly-sampled designs and
3 repeat designs, and compensated $1.50. To ensure high
quality data, we only kept the participants that consistently
ranked the variants on 2/3 of the repeat designs. The data of 43
participants (29 male, most in their 20s and 30s) were used in
the resulting analyses. Based on an average of 23 participant
rankings for each of the 17 designs, we found that the reflow
results using the UMSI model performed significantly better
(p < 0.05, Bonferonni-corrected) than the other two reflow
variants (Fig. 11a). The difference between importance-based
reflow using [6] and the baseline was not significant, however.
We repeated the task with 6 professional designers recruited
from personal networks (3 male, between 25-45 years old,
with a variance of 3-20 years of design experience). Each pro-
fessional was asked to rank the three design variants for all 17
designs, and was compensated $5.00. Based on their average
rankings of the design variants, we confirm that the reflow
results using the UMSI model performed better than the other
two reflow variants (Fig. 11b). Examples of reflow results
from the three methods compared can be found in Fig. 10b,d,e,
along with their average ranks from the MTurk study.

Discussion. While we evaluated the benefit of guiding reflow
using an importance model within a particular design tool,
we believe that the observed gains in the quality of reflow
results are encouraging. Future reflow applications could
incorporate importance as an additional constraint (i.e., by
preserving the importance ranks of design elements in the
original and redesign versions), when combined with balance,
symmetry, and other common aesthetic metrics. Indeed, one

2An existing constraint-based engine that was the default in the
commercially-available layout application we used.
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Figure 10. Model-assisted design reflow. (a) An input design and importance heatmaps predicted by B. et al. [6] and our UMSI model, respectively.
These heatmaps are used to rank the individual design elements by importance (numbered insets). (b) During reflow, design elements are then moved
and rescaled by being mapped to placeholders in retrieved templates. (c) Template examples. The first template was used for the results in (b), while
the second template was used in (d) and (e). (d,e) More examples of reflow results, comparing a baseline (described in text), to importance-aided reflow
with the model B. et al. [6] and with UMSI. Crowdsourced ranking scores are included above each variant (the lower, the better).

Figure 11. User study results for model-assisted design reflow. We com-
pare a baseline (no importance model used) to reflow aided by a previous
importance model [6] and UMSI, respectively. All 3 reflow variants were
ranked from 1 (best) to 3 (worst) for 17 different designs by an average
of 23 novice crowdworkers (a) and 6 professional designers (b). UMSI-
aided design reflow results were rated significantly better than the alter-
natives by both participant pools.

of our professional designer participants, who was naive to the
purpose of the study and the sources of the retargeting results,
described that what makes up a good reflow result is “the
hierarchy of elements, making sure we read the most important
thing first." While our approach only modifies element size
and position, future work could consider colors, fonts, and
other features to affect visual importance during reflow.

Notably, as seen from our user study, we achieved improved
reflow results with our proposed UMSI importance model,
but not with the prior state-of-the-art model [6]. The UMSI
model generalizes better to more diverse and complex designs
and its predictions are less biased towards text (Fig. 10b,d) -
properties that make our importance model more amenable to

the reflow application. In Fig. 10e, we see an example where
the reflow results of all methods were scored comparably, with
the key difference being that each successive model zoomed in
more on the man’s face. UMSI was trained on natural images
in addition to graphic designs, and as a result has learned
that faces are very salient to human observers, and should be
prioritized. The baseline model produces a result that is most
like a crop of the input design. The original designs and more
reflow results can be found in the Supplemental Material.

CONCLUSION
In this paper, we presented the first Unified Model of Saliency
and Importance, capable of approximating a notion of human
attention on natural scenes and graphic designs alike. We
showed that our model is competitive with state-of-the-art
models that have been specialized for different tasks: predict-
ing natural scene saliency, and graphic design importance, re-
spectively. Not only can our model generalize to these broadly
different input modalities, it can also provide accurate fine-
grained predictions on different design classes, which makes
two new interactive design applications possible. We pre-
sented a model-assisted design application that automatically
adjusts the elements in a vector design to meet user-specified
importance constraints; and a graphic design reflow applica-
tion that automatically adjusts the locations and sizes of design
elements to fit to new aspect ratios. The model architecture
presented in this paper is not limited to the design classes
in Imp1k. The training procedure can be adapted, given a
new training set, to any number of additional design classes.
This opens up the possibility of continually improving the
current UMSI model to make it a one-stop shop for predicting
attention on any images, natural and designed.
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