skip to main content
10.1145/3379337.3415886acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

ZebraSense: A Double-sided Textile Touch Sensor for Smart Clothing

Published:20 October 2020Publication History

ABSTRACT

ZebraSense is a novel dual-sided woven touch sensor that can recognize and differentiate interactions on the top and bottom surfaces of the sensor. ZebraSense is based on an industrial multi-layer textile weaving technique, yet it enables a novel capacitive sensing paradigm, where each sensing element contributes to touch detection on both surfaces of the sensor simultaneously. Unlike the common "sensor sandwich" approach used in previous work, ZebraSense inherently minimizes the number of sensing elements, which drastically simplifies both sensor construction and its integration into soft goods, while preserving maximum sensor resolution. The experimental evaluation confirmed the validity of our approach and demonstrated that ZebraSense is a reliable, efficient, and accurate solution for detecting user gestures in various dual-sided interaction scenarios, allowing for new use cases in smart apparel, home decoration, toys, and other textile objects.

Skip Supplemental Material Section

Supplemental Material

ufp8415pv.mp4

mp4

12.2 MB

ufp8415vf.mp4

mp4

56.4 MB

3379337.3415886.mp4

Presentation Video

mp4

56.4 MB

References

  1. Nur Al-Huda Hamdan, Florian Heller, Chat Wacharamanotham, Jan Thar, and Jan Borchers. 2016. Grabrics: A foldable two-dimensional textile input controller. In CHI 2016 Extended Abstracts. ACM, 2497--2503. http://dx.doi.org/10.1145/2851581.2892529Google ScholarGoogle Scholar
  2. E. J. W. Barber. 1991. Prehistoric Textiles: The Development of Cloth in the Neolithic and Bronze Ages, with Special Reference to the Aegean. Princeton University. 471 pages. http://dx.doi.org/10.1017/s0009840x00284357Google ScholarGoogle Scholar
  3. Leah Buechley, Mike Eisenberg, Jaime Catchen, and Ali Crockett. 2008. The LilyPad Arduino: Using computational textiles to investigate engagement, aesthetics, and diversity in computer science education. In CHI 2008. ACM, 423--432. http://dx.doi.org/10.1145/1357054.1357123Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ashley Colley, Juho Rantakari, and Jonna H"a kkil"a. 2015. Dual sided tablet supporting doctor-patient interaction. In CSCW 2015. ACM, 13--16. http://dx.doi.org/10.1145/2685553.2702672Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Ashley Colley, Pawel W. Wozniak, Francisco Kiss, and Jonna H"a kkil"a. 2018. Shoe integrated displays: A prototype sports shoe display and design space. In NordiCHI 2018. ACM, 39--46. http://dx.doi.org/10.1145/3240167.3240216Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Artem Dementyev, Tomá s Vega Gá lvez, and Alex Olwal. 2019. SensorSnaps: Integrating wireless sensor nodes into fabric snap fasteners for textile interfaces. In UIST 2019. 17--28. http://dx.doi.org/10.1145/3332165.3347913Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Laura Devendorf, Kimiko Ryokai, Joanne Lo, Noura Howell, Jung Lin Lee, Nan-Wei Gong, M. Emre Karagozler, Shiho Fukuhara, Ivan Poupyrev, and Eric Paulos. 2016. “I don't want to wear a screen”: Probing Perceptions of and Possibilities for Dynamic Displays on Clothing. In CHI 2016. ACM, 6028--6039. http://dx.doi.org/10.1145/2858036.2858192Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. David Dobbelstein, Christian Winkler, Gabriel Haas, and Enrico Rukzio. 2017. PocketThumb: a Wearable Dual-Sided Touch Interface for Cursor-based Control of Smart-Eyewear. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 2 (jun 2017), 1--17. http://dx.doi.org/10.1145/3090055Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Francine Gemperle, Chris Kasabach, John Stivoric, Malcolm Bauer, and Richard Martin. 1998. Design for wearability. In ISWC 1998. IEEE, 116--122. http://dx.doi.org/10.1109/ISWC.1998.729537Google ScholarGoogle ScholarCross RefCross Ref
  10. Guido Gioberto, James Coughlin, Kaila Bibeau, and Lucy E. Dunne. 2013. Detecting bends and fabric folds using stitched sensors. In ISWC 2013. ACM, 53--56. http://dx.doi.org/10.1145/2493988.2494355Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jun Gong, Yu Wu, Lei Yan, Teddy Seyed, and Xing Dong Yang. 2019. Tessutivo: Contextual interactions on interactive fabrics with inductive sensing. In UIST 2019. ACM, 29--41. http://dx.doi.org/10.1145/3332165.3347897Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Tobias Grosse-Puppendahl, Christian Holz, Gabe Cohn, Raphael Wimmer, Oskar Bechtold, Steve Hodges, Matthew S. Reynolds, and Joshua R. Smith. 2017. Finding common ground: A survey of capacitive sensing in human-computer interaction. In CHI 2017. ACM, 3293--3316. http://dx.doi.org/10.1145/3025453.3025808Google ScholarGoogle Scholar
  13. Jaehyun Han, Jiseong Gu, and Geehyuk Lee. 2014. Trampoline: A double-sided elastic touch device to create reliefs. In UIST 2014. ACM, 383--388. http://dx.doi.org/10.1145/2642918.2647381Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Chris Harrison and Haakon Faste. 2014. Implications of location and touch for on-body projected interfaces. In DIS 2014. ACM, 543--552. http://dx.doi.org/10.1145/2598510.2598587Google ScholarGoogle Scholar
  15. Florian Heller, Stefan Ivanov, Chat Wacharamanotham, and Jan Borchers. 2014. FabriTouch: Exploring Flexible Touch Input on Textiles. In ISWC 2014. ACM, 59--62. http://dx.doi.org/10.1145/2634317.2634345Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Heejeong Heo, Jeeyong Chung, Hyung Kun Park, Geehyuk Lee, Seungki Kim, and Woohun Lee. 2014. TransWall: A transparent double-sided touch display facilitating co-located face-to-face interactions. In CHI 2014 Extended Proceedings. ACM, 435--438. http://dx.doi.org/10.1145/2559206.2574828Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Paul Holleis, Albrecht Schmidt, Susanna Paasovaara, Arto Puikkonen, and Jonna H"a kkil"a. 2008. Evaluating capacitive touch input on clothes. In MobileHCI 2008. ACM, 81--90. http://dx.doi.org/10.1145/1409240.1409250Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Thorsten Karrer, Moritz Wittenhagen, Leonhard Lichtschlag, Florian Heller, and Jan Borchers. 2011. Pinstripe: Eyes-free Continuous Input on Interactive Clothing. In CHI 2011. ACM, 1313--1322.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Pin-Sung Ku, Jun Gong, Te-Yen Wu, Yixin Wei, Yiwen Tang, Barrett Ens, and Xing-Dong Yang. 2020. Zippro: The Design and Implementation of An Interactive Zipper. In CHI 2020. ACM, 1--13.Google ScholarGoogle Scholar
  20. Diana Marculescu, Radu Marculescu, Nicholas H. Zamora, Phillip Stanley-Marbell, Pradeep K. Khosla, Sungmee Park, Sundaresan Jayaraman, Stefan Jung, Christl Lauterbach, Werner Weber, Tü nde Kirstein, Didier Cottet, Janusz Grzyb, Gerhard Trö ster, Mark Jones, Tom Martin, and Zahi Nakad. 2003. Electronic textiles: A platform for pervasive computing. Proc. IEEE 91, 12 (2003), 1995--2016. http://dx.doi.org/10.1109/JPROC.2003.819612Google ScholarGoogle ScholarCross RefCross Ref
  21. Alex Olwal, Jon Moeller, Greg Priest-Dorman, Thad Starner, and Ben Carroll. 2018. I/O braid: Scalable touch-sensitive lighted cords using spiraling, repeating sensing textiles and fiber optics. In UIST 2018. ACM, 485--497. http://dx.doi.org/10.1145/3242587.3242638Google ScholarGoogle Scholar
  22. Maggie Orth, Rehmi Post, and Emily Cooper. 1998. Fabric computing interfaces. In CHI 98 Conference Summary. ACM, 331--332. http://dx.doi.org/10.1145/286498.286800Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rita Paradiso, Giannicola Loriga, and Nicola Taccini. 2005. A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine 9, 3 (sep 2005), 337--344. http://dx.doi.org/10.1109/TITB.2005.854512Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Patrick Parzer, Adwait Sharma, Anita Vogl, Jü rgen Steimle, Alex Olwal, and Michael Haller. 2017. SmartSleeve: Realtime sensing of surface and deformation gestures on flexible, interactive textiles, using a hybrid gesture detection pipeline. In UIST 2017. ACM, 565--577. http://dx.doi.org/10.1145/3126594.3126652Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Alex P Pentland. 1998. Wearable Intelligence. Scientific American (1998), 90--95.Google ScholarGoogle Scholar
  26. E.R. Post, M. Orth, P. R. Russo, and N. Gershenfeld. 2000. E-broidery: Design and fabrication of textile-based computing. IBM Systems Journal 39, 3&4 (2000), 840--855.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ivan Poupyrev, Nan-Wei Gong, Shiho Fukuhara, Mustafa Emre Karagozler, Carsten Schwesig, and Karen E Robinson. 2016. Project Jacquard: Interactive Digital Textiles at Scale. In CHI 2016. ACM, 4216--4227. http://dx.doi.org/10.1145/2858036.2858176Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Rekimoto. 2001. GestureWrist and GesturePad: Unobtrusive wearable interaction devices. In ISWC 2001. IEEE, 21--27. http://dx.doi.org/10.1109/ISWC.2001.962092Google ScholarGoogle ScholarCross RefCross Ref
  29. C. Schwesig, I. Poupyrev, and E. Mori. 2004. Gummi: A bendable computer. In CHI 2004. ACM, 263--270.Google ScholarGoogle Scholar
  30. Matteo Stoppa and Alessandro Chiolerio. 2014. Wearable electronics and smart textiles: a critical review. Sensors 14, 7 (jan 2014), 11957--92. http://dx.doi.org/10.3390/s140711957Google ScholarGoogle ScholarCross RefCross Ref
  31. Aaron Toney, Barrie Mulley, Bruce H. Thomas, and Wayne Piekarski. 2003. Social weight: Designing to minimise the social consequences arising from technology use by the mobile professional. Personal and Ubiquitous Computing 7, 5 (2003), 309--320. http://dx.doi.org/10.1007/s00779-003-0245--8Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Daniel Wigdor, Clifton Forlines, Patrick Baudisch, John Barnwell, and Chia Shen. 2007. LucidTouch: A See-Through Mobile Device. In UIST 2007. ACM, 269--278.Google ScholarGoogle Scholar

Index Terms

  1. ZebraSense: A Double-sided Textile Touch Sensor for Smart Clothing

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader