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ABSTRACT
Software traceability establishes associations between diverse soft-
ware artifacts such as requirements, design, code, and test cases.
Due to the non-trivial costs of manually creating and maintain-
ing links, many researchers have proposed automated approaches
based on information retrieval techniques. However, many globally
distributed software projects produce software artifacts written in
two or more languages. The use of intermingled languages reduces
the efficacy of automated tracing solutions. In this paper, we first
analyze and discuss patterns of intermingled language use across
multiple projects, and then evaluate several different tracing algo-
rithms including the Vector Space Model (VSM), Latent Semantic
Indexing (LSI), Latent Dirichlet Allocation (LDA), and various mod-
els that combine mono- and cross-lingual word embeddings with
the Generative Vector Space Model (GVSM). Based on an analysis
of 14 Chinese-English projects, our results show that best perfor-
mance is achieved using mono-lingual word embeddings integrated
into GVSM with machine translation as a preprocessing step.
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1 INTRODUCTION
Software traceability establishes links between related artifacts such
as requirements, design, code, and test cases [12, 18]. It provides
useful supports for software engineering activities such as change
impact analysis, safety assurance, test selection, and compliance
analysis [17, 35], and is prescribed in many safety-critical domains
[44]. The process of manually creating trace links is arduous and
error-prone [22] and therefore researchers have focused significant
effort on automating the process through adopting diverse infor-
mation retrieval techniques [20, 22, 33, 43]. Automated techniques
are of particular importance for reconstructing trace links after-
the-fact, for example to fill in the gaps of an existing trace matrix,
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trace back to a new set of regulatory codes, or to establish trace
links across existing Open Source Systems (OSS) for integration
into safety-critical solutions [47].

The most prevalent automated tracing techniques include the
Vector Space Model (VSM) [22], Latent Dirichlet Allocation (LDA)
[8], Latent Semantic Indexing (LSI) [5], and deep-learning tech-
niques [20]. Automated approaches typically analyze the textual
content of each artifact, compute their syntactic and semantic simi-
larity, and assign a relatedness score between each pair of artifacts
that depicts the likelihood that the artifacts are associated. Despite
the fact that industrial projects in involving international corpora-
tions often include artifacts with intermingled languages, research
efforts have not addressed the challenge of intermingled languages.

We observed the problem of intermingled language use in a
recent collaboration with an international corporation. Our goal
was to help the company implement state-of-the-art automated
tracing techniques across a repository of diverse artifacts; however,
we found that many documents included a combination of two
different languages (in this case English and Chinese). We then
searched for other examples of intermingled language use in issues,
requirements, and source code in OSS projects developed in com-
mon outsourcing countries, especially those that exhibited lower
than average scores on the English Proficiency Index (EPI)[1].

This observation raised new questions about the effectiveness
of different tracing algorithms when applied to artifacts containing
two or more different languages. We hypothesized that existing
trace algorithms that are effective in mono-lingual environments
are not necessarily effective when applied to bilingual ones. We
focused our efforts primarily on intermingled bilingual artifacts
(IBAs) that included English and Chinese because our collaborators’
project included these two languages, and because we found this
to be the most prevalent language combination in OSS.

This paper, therefore, investigates the automatic generation of
trace links within software projects with IBAs, which we formally
specify as follows. Given a dataset of artifactsD with source artifact
set AS and target artifact set AT , then source artifact asi ∈ AS is
composed of terms in a vocabulary V, whereV = Lp∪Lf . The target
artifacts are constituted similarly to the source artifacts. Further,
Lp and Lf are vocabulary subsets of primary language and foreign
language.

The remainder of the paper is laid out as follows. Section 2 de-
scribes the datasets that were used throughout the remainder of
the paper. Section 3 analyzes the usage of intermingled language
across 10 different Chinese-English projects and identifies com-
monly occurring usage patterns. Section 4 describes three classic
tracing algorithms – namely the Vector Space Model (VSM), Latent
Dirichlet Allocation (LDA) and Latent Semantic Indexing (LSI), and
evaluates their accuracy in multilingual project environments with
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Table 1: OSS projects from Github used in our study

Lang Project Abbrv. Comp. Domain

Chinese

Arthas Ar Alibaba Java diagnostics
bk-cmdb BK Tencent Config. Manage.
Canal Ca Alibaba Database log parser
Druid Dr Alibaba Database connect.
Emmagee Em Netease Performance test
Nacos Na Alibaba Service discovery
NCNN Nc Tencent Neural network
Pegasus Pe Xiaomi Storage system
QMUI_Android QMA Tencent Mobile UI
QMUI_IOS QMI Tencent Mobile UI
Rax Ra Alibaba Application builder
San Sa Baidu JavaScript comp.
Weui We Tencent Mobile UI
xLua xL Tencent Programming

Korean Konlpy Ko Personal NLP package
Japanese Cica Ci Personal Font repository
German Aws-berline Ab Personal Website

and without the use of translation as a preprocessing step. Sec-
tion 5 then introduces the Generalized Vector Space Model (GVSM)
and evaluates its effectiveness in combination with both mono-
and cross-lingual word embeddings. We show that utilizing mono-
lingual word embeddings with a preprocessing translation step
tends to be more effective than the use cross-lingual embeddings;
however, to avoid the costs of an external translation service, an
individual corporation might opt for the cross-lingual approach
which is easier to train than a language translator. Finally, in Sec-
tions 7 to 9, we discuss applications to other languages, threats to
validity, related work, and finally conclude by summarizing our
results and discussing their relevance.

2 EXPERIMENTAL DATASETS
To establish the experimental environment used throughout the
experiments described in this paper, we collected a dataset of 17
OSS projects, each containing artifacts written in English plus one
additional language. We refer to this second language as the foreign
language. All projects met the following criteria:

(1) The Project contains at least 40 issues and commits in its
overall development history.

(2) Foreign terms constituted at least 1% of the vocabulary.
(3) Tags were routinely created to include issue IDs in the com-

mit messages (i.e., to generate trace links for evaluation
purposes).

(4) The project exhibited diversity in size of links between issues
and commits, in comparison to other selected projects. This
enabled us to observe the performance of our model in both
large and small projects.

To identify datasets meeting these criteria we (1) collected the
names of top Chinese IT companies based on a survey published
by Meeker et al. [36]. Nine Chinese companies, including Alibaba,
Tencent, Meitaun, JD, Baidu, NetEase and XiaoMi, were recognized

Table 2: An example of IBA artifacts. In this case, the com-
mit message, issue summary, and commit content all con-
tain foreign terms intermingled with English ones.

Commit ID 2017fb7cf12c...
Commit
message

PagerUtils offset的bug，当0 ti需要修改为0时，取值
不正确

Change set [-] if (offset > 0) {
[+] if (offset >= 0) {
[+] //测试mysql 4
[+] public void test_mysql_4() throws Exception {
. . .

(a) The commit message and its change set served as the source arti-
fact. + sign (-sign) refer to added (deleted) content in a commit

Issue ID Issue #3428
Summary 缺少java.sql.Time类型适配
Description - ’2019-08-29 13:54:29.999888’这个为啥是6位，不

是3位么?
- MySQL 5.7 has fractional seconds support for TIME,
DATETIME, and TIMESTAMP values, with up to mi-
croseconds (6 digits) precision. 因为这里的sql仅仅是
用来看看的，不能拿去数据库执行，如果要执行的

话还得考虑mysql时区与程序时区的问题
. . .

(b) The issue including its description and subsequent discussion
served as the target artifact.

amongst the top 30 global IT companies and were included in
our project search. (2) We searched Github using these company
names to retrieve a list of their open source repositories. We found
enterprise-level open source repositories for eight of the nine com-
panies (excluding JD). (3) We then sorted the projects in the re-
trieved repositories by the numbers of stars to identify the most
active projects. (4) Finally, we selected the top scoring projects that
met our defined criteria. In addition, while our focus throughout
this paper is on English-Chinese projects, we also included three ad-
ditional projects based on Korean, Japanese, and German. However,
as large companies in those three countries, e.g. Samsung, Hitachi
and Siemens, produce few bilingual projects, we selected three pop-
ular personal projects in those languages instead. We searched by
the language name, and then followed steps (3) and (4) as described
above. We discuss results from these additional languages towards
the end of the paper. The selected projects are depicted in Table 1.

We used the Github Rest API to parse each of the selected projects
and to extract information from commits and issues. We retrieved
both the commit message and the source code change set to
establish source artifacts for the trace links. We then collected
issue discussions, and issue summaries to construct our target
artifact sets. We removed personal identifications from all issues,
while retaining comments. By selecting issues and commits for our
tracing artifacts we were able to automatically establish a golden
link set by using regular expressions to parse commit messages
and extracting explicitly defined connections between commits and
issues. An example of a commit and issue is depicted in Table 2,
and statistics for the collected datasets are shown in Table 3a.

Rath et al., studied commit messages in five OSS projects and
found that an average of 48% were not linked to any issue ID [43].
This implies that our golden link set is likely to be incomplete
and that ‘true positive’ instances in the evaluation step could be
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Table 3: OSS datasets used for experiments showing counts of artifacts and links, and percentages of foreign terms. 14 Chinese
datasets are shown on the left, and three non-Chinese datasets on the right.

Project Name Ar Bk Ca Dr Em Na NC Pe QMA QMI Ra Sa We xL Ko Ci Ab
Issue 437 1701 1080 2859 106 303 746 254 483 478 846 46 752 520 241 49 107

Commit 489 4504 718 5840 139 471 568 261 296 464 3340 1426 507 741 503 188 299
Links 167 1183 274 1173 32 161 101 163 71 35 573 276 159 53 33 27 75

Foreign Terms 11.0% 7.6% 4.3% 6.7% 19.5 1.0% 29.1% 35.8% 15.5%% 19.4% 8.5% 4.0% 6.0% 30.0% 2.9% 11.0% 14.0%

(a) Artifact counts for each dataset as mined from the OSS

Project Name Ar Bk Ca Dr Em Na NC Pe QMA QMI Ra Sa We xL Ko Ci Ab
Issue 122 895 232 1092 31 132 97 160 70 32 560 186 154 52 32 25 74

Commit 167 1178 273 1161 32 161 99 160 71 35 571 275 159 52 33 27 74
Links 167 1179 273 1161 32 161 99 160 71 35 571 275 159 52 33 27 74

Foreign Terms 14.6% 8.3% 5.4% 7.3% 21.9% 1.0% 28.0% 35.3% 16.8% 20.8% 9.0% 8.2% 7.1% 29.5% 7.0% 11.7% 31.0%

(b) Artifact counts following pruning to remove artifacts that are not impacted directly, or indirectly, by IBA.

mistakenly treated as ‘false positives’. To partially mitigate this
problem, we limited the scope of artifacts to those included in at
least one of the explicitly specified links from the golden link set.
All other artifacts (i.e., issues and commits) were removed. This
created a dataset with denser ground-truth link coverage and fewer
inaccuracies. Furthermore, we decided to remove all artifacts that
were not impacted, directly or indirectly, by the IBAs. For each link
in the golden artifact set, if at least one artifact associated with
that link included a foreign language term, then we retained both
artifacts and labeled the link as an intermingled link. All other
artifacts were removed. In effect, it removed artifacts that were
never involved in any intermingled link, and allowed us to focus
the evaluation on artifacts and links that were impacted by the
use of foreign language terms. Applying these two pruning steps
reduced the pruned dataset to an average of approximately 27%
of the original issues, 17% of the commits, and 77% of the links as
shown in Table 3b 1.

For all tracing experiments using these datasets, we applied a
time-based heuristic proposed by Rath et al.[43]. This heuristic
states that as Issuecreate < Commitcreate < Issueclose , then com-
mits can only be linked to currently open issues, as closed issues
are unlikely to represent a valid trace link.

3 MULTILINGUAL ARTIFACTS IN PRACTICE
To lay a foundation for our work, we first investigate how terms
from two different languages are intermingled across issues and
commits in projects where both English and Chinese are used. Our
first research question is therefore defined as follows:
• RQ1: How are Chinese and English terms intermingled across
different artifacts?

3.1 Approach
First, we applied stratified random selection to collect 5 issues
and 5 commits from each of the first 10 projects listed in Table. 1,
producing an overall dataset of 50 issues and 50 commits. To analyze
the Chinese and English usage patterns we adopted an inductive
open coding technique[29]. For each artifact, we first determined
whether it was primarily written in Chinese or English (i.e., its

1Dataset can be found at http://doi.org/10.5281/zenodo.3713256

Table 4: Inductive open coding tags for 50 issues and 50 com-
mits

Tag Usage Examples Eng Ch
ID Issue

summary
Primary language of issue summary 24 76

IA Issue
description

Primary language of issue description 4 98

CM Commit
message

Primary language of commit message 86 14

(a) Tags used to label the dominant language of the artifacts

Tag Usage Examples Eng Ch
CR Ext. reference External system e.g., Tomcat,

dashboard
56 0

V Verb usage Verbs from non-dominant language
e.g., kill, debug

9 0

T Noun usage Common objects from
non-dominant language e.g., demo,
thread, timestamp,资源池 for
resource pool

36 6

ER Errors and
traces

Error messages and stack traces 10 7

AC Acronym 报错 =报告错误; PR = pull
request

9 0

TAG Tag use [feature request], [中文说
明](README_CN.md)

6 9

CD Code snippets println("代码植入成功"); 28 19
CC Code

comments
Comments in natural languages 0 68

BD Bilingual
Duplication

Duplicated content written in two
languages

2 2

(b) Tags used to label roles of non-dominate phrases in a dominate
language sentence

dominant language). We then identified all phrases not written in
the dominant language, and manually evaluated the role of those
phrases within the artifact. Based on these observations, we created
distinctive tags to categorize the discovered roles and used these
tags to mark up each issue and commit artifact. We report results
in Table 4.



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Yalin Liu, Jinfeng Lin, Jane Cleland-Huang

3.2 Observations
Observing the combinations and occurrence of these tags, enables
us to infer how Chinese and English languages were intermingled
in the analyzed artifacts. In the following discussion we use the
tags reported in Table 4 annotated with subscripts for Chinese (C)
and English (E).

• 87% of our analyzed issues were tagged with IDC or IAC , mean-
ing that in our datasets, the majority of issues were primarily
described and answered in Chinese.

• While 28% of issues were tagged with IDE or IAE , we did not
observe any cases in which they also included Chinese words.

• In contrast, IDC and IAC were combinedwithmost types of Eng-
lish tags listed in Table. 4. Chinese sentences were frequently
intermingled with English terms.

• 86% of the commits are tagged as CME , meaning that commit
message were likely to be written in English and 14% in Chinese.

• 68% of commits were tagged with CCC and 38% with CDC
because Chinese frequently appeared in code comments and
source code especially where database query and UI elements
were discussed such as SQL query condition, output messages
and UI widget labels.

• For the commits contain Chinese Commits (with CCC tag), 58%,
51%, 6% and 6% of them are also tagged with CRE , TE , VE and
TAGE . It indicates that Chinese comments are also likely to
intermingled with English phrase, in which CR and T are the
most common intermingle scenarios.

To summarize, we observed that Chinese sentences tended to
include intermingled English phrases in both issue and source code,
while English sentences rarely included Chinese phrases. Finally,
the predominant role of a secondary language within the context of
the primary languagewas to reference components or to use specific
terminology. In related work, Timo et al. [42], investigated 15 OSS
projects in which English was intermingled with other European
languages. They found both identifiers and comments written in a
second language were intermingled with source code. This differs
from our observations of Chinese-English projects, in which we
only found comments, but not identifiers, written in Chinese or
pinyin (an alphabetic representation of Chinese characters).

4 BASIC TRANSLATION APPROACHES
For our first series of traceability experiments, we utilize three
commonly adopted tracing algorithms with and without the use
of a basic translation step. This preliminary research question is
an important one, because it addresses the question of whether
the IBA issue can be addressed simply through applying a prepro-
cessing translation step. We explore the improvement obtained by
leveraging neural machine translation (NMT) as part of the tracing
process to address the following research question:

• RQ2: To what extent does the use of a neural machine translation
(NMT) approach improve the traceability performance of VSM,
LDA and LSI for an IBA dataset?

4.1 Baseline Algorithms
The Vector Space Model (VSM), Latent Dirichlet Allocation (LDA)
and Latent semantic indexing (LSI) are three models commonly

used to generate trace links. Researchers have successfully applied
those models for various tracing scenarios within mono-lingual
environments [3, 7, 32]. However, it is unknown whether those
models are effective for IBA datasets. In this section, we therefore
describe these three common trace models.

4.1.1 Vector Space Model. VSM is one of the simplest techniques
for computing similarity between documents and has been used to
support diverse trace link recovery tasks [22, 33]. Despite its sim-
plicity it has been shown to frequently outperform other techniques
across many different datasets [31]. VSM represents the vocabulary
of discourse as an indexed linear vector of terms, while individual
documents (aka artifacts) are represented as weighted vectors in
this space. Weights are commonly assigned using TF-IDF (Term
frequency-inverse document frequency) in which the importance
of a term is based on its occurrence and distribution across the text
corpus. VSM assumes the Bag of Words (BOW) model in which
the ordering of words is not preserved. Let AS be the collection of
source artifacts and AT the collection of target artifacts then each
artifact ai ∈ AS ∪AT is represented by the terms {t1...tn } it con-
tains regardless of their order. Each artifact ai is transformed into
a numeric format ai = {w1,w2, . . . ,wn } where wn indicates the
TF-IDF score for ti . The similarity of two artifacts is then estimated
by measuring the distance between their vector representations –
often by computing the cosine similarity between source and target
vectors as follows:

Similarity(ai ,aj ) =
aTi · aj√

aTi · ai
√
aTj · aj

(1)

From the perspective of VSM, words are indexed as atomic units
and are orthogonal to each other regardless of their semantic sim-
ilarity. Therefore, the affinity between two artifacts is evaluated
based on the volume and quality of their common vocabulary. IBA
datasets, in contrast to mono-lingual ones, have a richer vocab-
ulary composed from two different languages; therefore, source
and target artifacts could be semantically similar, yet written using
terminology from two distinct languages. This consequently could
lead to an underestimation of the artifacts’ affinity.

4.1.2 TopicModeling Approaches. Topicmodeling is also frequently
used to support automated trace link generation [6].Topic modeling
techniques discover the hidden semantic structures of artifacts as
abstract concepts and then represent the artifact as a distribution
over the concepts. The most commonly adopted approaches are
Latent Dirichlet Allocation (LDA), Latent Semantic Indexing (LSI)
and Probabilistic Latent Semantic Indexing (PLSI). LSI, also known
as Latent Semantic Analysis (LSA), represents each artifact ai as
a vector of word counts cn such that each word is represented as
ai = {c1, c2, ..., cn }. Thus the artifact corpus A can be represented
as a matrix A = {a1,a2, ...,am } wherem refers to the total number
of all artifacts in A. LSI learns the latent topics by applying matrix
decomposition, e.g Singular Value Decomposition (SVD) [33]. Hof-
mann et al. proposed a probabilistic variant of LSI which is known
as PLSI in 1999 [23] in which a probabilistic model with latent topics
is leveraged as a replacement of SVD. LDA then can be regarded as
a Bayesian version of PLSI where dirichlet priors are introduced
for the topic distribution. Given the topic distribution vector of
source and target artifacts, the affinity between two artifacts can
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be calculated either with Cosine similarity or with Hellinger dis-
tance [28] which quantifies the similarity between two probability
distributions. As we know, topic modeling methods represent each
topic by eliciting a group of distinctive words associated with a
similar theme. The per-artifact topic distribution probability, indi-
cating the affinity between the artifact and a topic, is obtained by
analyzing the artifact vocabulary and those selected words. When
project artifacts contain foreign languages, the representative topic
words are constituted from two (or more) distinct languages. Topic
modeling methods therefore face similar vocabulary challenges to
VSM. The use of foreign languages introduces a new set of words
from a different language and thereby reduces the likelihood that
related artifacts use the same words.

4.2 Leveraging Neural Machine Translation
Neural machine translation services, such as Google Translate, are
capable of translating documents with complex grammars into di-
verse languages. Wu et al. demonstrated that, for a specific set of
datasets, Google Translate achieved the average accuracy of bilin-
gual human translators. Furthermore, current versions of Google
Translate have addressed approximately 60% of known transla-
tion errors in popular languages such as English-Chinese, thereby
significantly improving performance [56]. Fu [16] manually com-
pared the performance of 7 translation services and found Google
Translate to be one of the best English-Chinese translations. We
therefore opted to use Google translation services for this series of
experiments.

4.2.1 Translation as a Preprocessing Step. Our basic approach uses
an NMT (Google Translation services) to transform all artifacts in
our dataset into mono-lingual (English) representations. This is
accomplished by translating the documents sentence by sentence.
Artifacts were first split into sentences using the pre-trained sen-
tence tokenizer provided by NLTK’s PunktSentenceTokenizer [9].
Regular expressions were then used to identify bilingual sentences.
In our case, both English and Chinese used within an artifact are
represented with UTF-8 encoding, regular expressions capture non-
English sentences by checking the encoding of their characters.
Finally, each of the bilingual sentences were processed by Google
Translate to generate their English counterparts. These were then
used to replace the bilingual sentences in their relevant artifacts.
As a result, the IBA dataset was transformed into an English mono-
lingual dataset.

Although Markus et al. [40] suggested the use of token-by-token
translation, we opted for sentence level translation for several rea-
sons. First, the sentence-level approach allows words to be consid-
ered within context and thereby to better retain their semantics
following the translation. Furthermore, Google Translation Service
is capable of handling intermingled terms and phrases within a
sentence automatically, as it leverages a single NMT model to trans-
late between multiple languages even in cases where a sentence
contains intermingled phrases [24]. Taking the commit message
in Table 2a as an example, Google’s sentence level translation will
generate a result such as "PagerUtils offset bug, when offset needs
to be modified to 0, the value is incorrect", while token level trans-
lation will produce a sentence such as "PagerUtils offset of bug,
when offset need modify for 0 time, value incorrect". In this case,

the token level translation distorted the sentence semantics as it
translated the Chinese phrases without fully understanding their
context. Our approach is also more efficient and cost-effective than
document-level translation, as it significantly reduces the volume
of data submitted to translation service by removing sentences writ-
ten in pure English. This is important as Google Translate charges
more money and responds more slowly on a larger text corpus.

4.3 Evaluating NMT as a preprocessing step
We utilized VSM, LSI, and LDA models, to automatically generate
trace links for both sets of artifacts (i.e., the original IBA artifacts
and the translated mono-lingual ones). We then applied the time-
constraints described in Section 2 to filter the resulting links.

4.3.1 Metrics. Results were evaluated using the commonly adopted
average precision (AP) metric [46]. AP evaluates the extent to which
correct links are returned at the top of a list of ranked links. In this
sense, it is considered more insightful than recall and precision
metrics which simply measure whether a link is found within a set
of candidate links. AP is calculated as follows:

AP =

∑n
i=1 Precision(i) × rel(i)

|true links | (2)

where n is the number of candidate links, and rel(i) is an indicator
function returning 1 if the link at ith ranking is a true link, otherwise
return 0. Precision(i) is the precision score at the cut-off of ith
ranking in the returned result. The |truelinks | denominator refers
to the total number of true links, meaning that we evaluate average
precision for all true links and report AP scores at recall of 100%.

4.3.2 Results and Analysis. To address RQ2 we compared the AP
scores produced for each of the models, with and without Google
Translate, for all 14 IBA datasets. The basic models are labeled
VSM, LDA and LSI and the corresponding models using NMT are
labeled VSMtr , LDAtr , and LSItr . Detailed results for each project
are reported in Fig. 1, and aggregated results across all projects are
presented in Fig. 2. We used the Wilcoxon signed-rank test [55]
to measure whether the use of translation statistically improved
the performance for each technique. This is a standard test used to
evaluate tracing algorithms due to the non-normal distribution of
data points. We tested 14 pairs of AP scores achieved from the 14
datasets, with and without translation, using Scipy’s [25] Wilcoxon
test function and adopted the standard significance threshold of
0.05.

Results showed that VSMtr outperformed VSM with statistical
significance (W=2, P = 0.001). On the other hand, in the cases of LSI
vs LSItr and LSI, (W = 34,P = 0.079) and for LDAtr and LDA (W = 43,
P = 0.113) there was no statistically significant difference, given that
in both cases, the p-values were above the significance threshold.
These results indicate that translation improves performance in the
case of VSM, but not necessarily for LSI and LDA, quite possibly
because both of these techniques create topic models which can
include terms from both languages. As we can see in Fig. 2, both
LDAtr , and LSItr have higher medians, Q1, and Q3 values than their
non-translation versions but a lower minimum value. It indicates
that in certain cases, translation can degrade the performance of
the tracing algorithm instead of improving it. This phenomenon is
highlighted in Fig. 1, where we observe that in most projects, the



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Yalin Liu, Jinfeng Lin, Jane Cleland-Huang

(a) VSM. Average AP score 0.62 (VSM) and 0.68
(VSMtr )

(b) LDA. Average AP score 0.45 (LDA) and 0.48
(LDAtr )

(c) LSI. Average AP score 0.55 (LSI) and 0.58
(LSItr )

Figure 1: AP scores for three basic trace models, with and without Google Translate, for 17 IBA datasets. Overall best results
are observed for the Vector Space Model (VSM).

Figure 2: AP score distribution achieved when applying
three models for 14 Chinese IBA datasets

‘trans’ version of LDA and LSI have a higher AP score, but there are a
few exceptions in which the basic trace models perform better. This
result also confirms previous findings that VSM often outperforms
LDA and LSI in various mono-lingual tracing scenarios [31, 41],
our experiment therefore extends this finding to the IBA domain.
Given that VSM tends to outperform LSI and LDA on software
engineering traceability datasets, it is particularly significant that
VSMtr provides additional improvements. These results show that
in the case of VSM, the translational preprocessing step improves
accuracy of the results, and further imply that the presence of
bilingual artifacts has a negative effect on traceability results.

4.3.3 Translation Related Pitfalls. A careful analysis of individual
tracing results unearthed three scenarios in which translation neg-
atively impacted the results.
Scenario 1: A single Chinese term occurring in both source and
target artifacts is sometimes translated into different English terms
by NMT due to differing contexts. For example, before the trans-
lation step, a foreign term ‘启动’ appeared as a verb written in

Chinese and was shared by both source and target artifacts. It re-
sulted in high similarity scores between the artifacts. Following the
translation step, the term was transformed to ‘start’ in the source
artifact and as ‘startup’ in the target artifact. Neither VSM, LDA,
or LSI captured the semantic similarity between these terms. As
observed in our earlier study of usage patterns, English sentences
seldom contain intermingled Chinese terms; therefore we primar-
ily observed this scenario when tracing between pairs of artifacts
written in Chinese (e.g., issues and code comments).
Scenario 2: A relatively specific term in Chinese, translated into
a common English term could introduce noise and subsequently
increase the number of false positive links. As summarized in RQ1,
commits with CDC tags may contain Chinese terms representing
SQL query keywords or UI widget labels. Although these terms
are usually sparse with respect to the size of the source code, they
serve as strong indicators of true links when directly referenced in
an issue discussion.
Scenario 3: Unique phrases that describe specific features in Chi-
nese, are eliminated or weakened by the translation step. We ob-
served that artifact creators appeared to deliberately reference Chi-
nese language content from other artifacts as signature features,
indicating that two artifacts are closely related. Translation may
inadvertently weaken the association by translating distinctive Chi-
nese terms into common English words, some of which might even
be removed as common stop words. This scenario was observed in
some artifacts tagged as TAGC tag.

Despite these limitations, our results show that adding a transla-
tion step into the tracing workflow generally improves results with
statistical significance as previously discussed. The main reason
that NMT impairs tracing results is that similar terms can become
distant from each other following translation. We therefore lever-
aged word embedding as a semantic layer to enable those terms to
be mapped closer together in the multi-dimensional space in order
to improve the tracing results.

5 GENERALIZED VECTOR SPACE MODELS
Even though the results from our first experiment showed that
integrating an NMT approach as a preprocessing step can improve
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trace accuracy in IBA datasets, we also identified three transla-
tion related pitfalls. To address these problems we propose a novel
approach that combines the use of the Generalized Vector Space
Model (GVSM) with both cross-lingual and mono-lingual word em-
beddings. We specifically address the following research questions
which are described more extensively in subsequent sections:

• RQ3:Towhat extent does cross-lingual word embedding improve
GVSM performance for tracing across IBA datasets?

• RQ4: Which of the tracing techniques presented in this paper
perform best on IBA datasets?

5.1 Brief Overview of GVSM
GVSM [54] is a generalization of the traditional VSM, designed
specifically for information retrieval tasks. One of the known weak-
nesses of VSM is that terms only contribute to the similarity score
if they appear in both source and target artifacts. GVSM directly ad-
dresses this problem by creating an additional layer of latent space,
in which the distance between the terms is determined by their
semantic similarity. Given a collection of artifacts ai ∈ AS ∪ AT ,
ai is vectorized using the standard VSM approach such that ai =
{w1,w2, . . . ,wn } wherewn are the weights for the terms in artifact
ai . Considering the vocabulary V = {t1, t2, . . . , tN } composed by
all the terms in artifacts, the pairwise term-correlation can be rep-
resented as a correlation matrix G of N ×N shape, where sim(ti , tj )
is the semantic relevance for term ti and tj

G =

��������
sim(t1, t1) sim(t1, t2) . . .
...

. . .

sim(tN , t1) sim(tN , tN )

�������� (3)

In GVSM the similarity between two artifacts is then calculated as
follow:

Similarity(ai ,aj ) =
aTi ·G · aj√

aTi ·G · ai
√
aTj ·G · aj

(4)

GVSM has been effectively used for to support bilingual tasks
related to document clustering [48], query processing[53], and text
retrieval[49].

5.2 Word Embedding (WE)
For text processing purposes, all terms need to be represented in
a format that is conducive to machine learning. Many traceability
algorithms encode terms as distinct symbols without considering
their semantic associations. A common approach is to use ‘one
hot encoding’ in which terms are represented as vectors in a high
dimensional orthogonal space in which each term is a dimension
of the vector space. In contrast, word embeddings transform the
word representation from a high dimensional orthogonal space to a
low dimensional non-orthogonal space. The distribution of vectors
within the space varies depending on the specific approach taken.
The use of word embedding has achieved significant success for
addressing NLP challenges in domains such as ad-hoc information
retrieval[4][51], bug localization[57], question answering[15] and
also trace link recovery[58][20].

5.2.1 Mono-lingual Neural Word Embedding. Word embeddings
typically represent terms from a single language, and have the intu-
itive assumption that terms with similar distribution patterns have
closer semantic meaning than those with dissimilar distributions
[21]. This means that term vectors tend to form clusters according
to their semantic affinity. Mono-lingual neural word embeddings
(MNWE) leverage the context of each term and include the Skip-
Gram model and Continuous Bag Of Words (CBOW) model [37].
While both of these models are built upon simple three-layer neural
networks, the Skip-Gram model makes predictions of surrounding
terms based on the current terms while the CBOWmodel predicts a
single term using all surrounding terms as context. In our study, we
adopt pre-trainedmono-lingual word embedding that are trained on
Common Crawl dataset with enhanced CBOW model[38]. Vectors
in such a space have 300 dimensions.

5.2.2 Cross-lingual Word Embedding (CLWE). Cross-lingual word
embeddings project the vocabulary from two or more distinct lan-
guages into a single vector space. As with mono-lingual embed-
dings, a reasonable cross-lingual embedding model should be ca-
pable of organizing term vectors in an embedding space according
to their semantic affinities. Cross-lingual embeddings can there-
fore serve as a semantic bridge between different languages, and
can be used to support diverse cross-lingual NLP tasks such as
machine translation, cross-lingual IR, and cross-lingual entity link-
ing. Various techniques have been explored for aligning multiple
mono-lingual vector spaces [45]. Techniques based on word-level
alignment tend to leverage cross-lingual lexicons to supervise the
vector mapping. With this approach, mono-lingual word embed-
dings are first created for both languages, and then the unseen term
vectors for both languages are transformed using a trained mapping
model. Researchers have explored other approaches for relaxing
word-level alignment constraints, for example by leveraging align-
ment information at the sentence level [19] or even the document
level [50], or entirely foregoing supervision [52], in order to extend
the use of cross-lingual word embedding to additional scenarios.

For our experiments we utilized relaxed cross-domain similarity
local scaling (RCSLS), which is based on word-level alignment [26].
We selected RCSLS for two reasons. First it has been shown to
deliver the best overall performance in comparison to other state-
of-the-art techniques across 28 different languages [26], and second,
pre-trained models with support for 44 languages is available from
Facebook [27]. Facebook trained their model using Wikipedia docu-
ments, and leveraged theMUSE library[13] which includes bilingual
dictionaries for over 110 languages and mono-lingual word embed-
dings for 157 languages including English and Chinese. Vectors in
cross-lingual embedding space also have a dimension of 300.

5.3 Combining GVSM with Cross-Lingual WE
Prior work has already investigated the application of GVSM for
cross-lingual information retrieval tasks in other domains. For ex-
ample, Tang et al. [48] proposed CLGVSM which exploited seman-
tic information from (1) a knowledge base e.g. HowNet (Xia et al.,
2011), (2) statistical similarity measures, e.g cosine similarity of
term vector covariance (COV), and (3) a bilingual dictionary which
contains the translation probability between terms. Another branch
of study attempts to leverage Cross-Lingual Word Embedding to



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Yalin Liu, Jinfeng Lin, Jane Cleland-Huang

Table 5: The acronyms and details of the three GVSM and
word embedding integrated methods: WE=Mono-lingual
word embedding, CL=Cross-lingual word embedding,
TR=Google translation to English

Abbr GVSMWECL TRDescription

CLG ■ ■
Uses Cross-Lingual word embedding with
GVSM. Inputs a bilingual dataset to the model

WEG ■ ■

Uses reduced size EnglishWord embedding with
GVSM. Inputs a bilingual dataset to the model.
WEG∗ variant uses full-sized English word em-
bedding.

WEGtr ■ ■ ■

Uses reduced size English word embedding with
GVSM. Uses Google Translate to preprocess IBA
data. Inputs resulting mono-lingual dataset to
model.WEG∗

tr variant uses full-sized English
word embedding.

address cross-lingual information retrieval tasks. Vulic et al. [51]
proposed a model known as cross-lingual information retrieval
(CLIR) which directly leverages the distributed representation of
cross-lingual vocabulary to accomplish document embedding (DE).
Given documents represented by term vectors d = { ®t1, ®t2, . . . , ®tn }
where ®ti is the vector representation of terms, a document vector
®d can be created by merging the term vectors with simple addi-
tion. The self-information of the terms [14], e.g. frequency of terms
within a document, can be combined to weight the vectors. The
final representation of a document is given as:

®d = w1 ®t1 +w2 ®t2 + · · · +wn ®tn (5)

This method, referred to as ADD-SI, projects the documents into
the same vector space of terms so that the document affinities
can be evaluated using distance measures such as cosine similar-
ity. However, we could not find any publications describing the
combined use of both GVSM and Cross-Lingual Word Embedding.
We replaced the cross-lingual knowledge base in CLGVSM with
(Cross-Lingual) Word Embedding, because knowledge tended to
be domain-specific and costly to construct for individual software
project domains. We therefore propose three different techniques
for combining GVSM with Word Embeddings.

5.3.1 Cross-Lingual Word Embedding with GVSM (CLG). Our first
approach uses a modified cross-lingual word embedding based on
GVSM. As shown in Equation 4, a GVSM model is composed of
TF-IDF vectors ai and a semantic relatedness matrix G. The se-
mantic relatedness matrix G can be constructed using external
knowledge[48, 49] (e.g HowNet, WordNet) to evaluate term re-
latedness based on their distance in the knowledge network; or
using statistical models that predict the probability of term co-
occurrence[54]. In the first approach, the size of the semantic relat-
edness matrix is constrained by the vocabulary of the knowledge
base. This is a critical limitation for trace link recovery, as software
artifacts tend to include a large number of technical terms which
are not commonly found in general purpose knowledge sources.
Statistical approaches therefore fall far short of capturing the true
semantics of these terms. However, these weaknesses can be ad-
dressed using word embeddings.

Given an IBA dataset with primary and foreign language vocab-
ulary Lp = {tp1 , tp2 , . . . , tpm }, Lf = {tf1 , tf2 , . . . , tfn }, the mono-
lingual vector for tpi and tfi is represented as xi , zi ∈ Rd where
d refers to the dimension of the vector space. As previously dis-
cussed, the RCSLC model is capable of projecting vectors from two
separate spaces into a shared latent space by learning an internal
translation matrix W with the supervision of bilingual lexicons.
With this translation matrix W, the vectors can be projected as
Wxi and Wzi . The vocabulary vector space of a given IBA dataset
is then represented as:

VS = {Wx1, . . . ,Wxm ,Wz1, . . . ,Wzn } (6)

As the vectors in RCSLC are l−2 normalized[26], the semantic
relevance matrix G can be created through the simple dot product
of VS and VT

S . The GVSM formula shown as equation 4 can be
transformed into the following:

Similarity(ai ,aj ) =
aTi ·VS ·VT

S · aj√
aTi · ai

√
aTj · aj

(7)

In our case, VS is the pre-built vector space provided by FastText
library as described in Sec. 5.2

5.3.2 Transforming CLG to a Mono-lingual Tracing Task. For ex-
perimental purposes we also explored a mono-lingual version of
CLG. The intrinsic difference between mono-lingual and bilingual
trace tasks lies in the dataset vocabulary. As shown in Equation 6,
the vocabulary vector space Vs of IBA dataset is composed from
two types of vectors 1) term vectors projected from the foreign
language space and 2) term vectors projected from English space.
For mono-lingual tracing tasks, the vocabulary vector space VS ′
contains term vectors of only one language; however, by simply
substituting the Vs with VS ′ in Equation 7 we can migrate CLG
to address mono-lingual tracing tasks. This can be accomplished
by training and applying a word embedding model with mono-
lingual text corpus. We name this mono-lingual model the ‘Word
Embedding GVSM’ (WEG) to distinguish it from CLG.

5.3.3 NMT preprocessing with Mono-lingual Trace Task. As we de-
scribed above, WEG is the mono-lingual version of CLG in which
cross-lingual word embedding is replaced with an English mono-
lingual embedding. We also propose a third approach which com-
bines WEG with NMT to extend its ability to trace IBAs. We fol-
lowed the same approach used in our initial experiments with
VSMtr , LDAtr and LSItr , by using Google Translation services to
translate the IBA datasets back into English mono-lingual datasets
before running WEG. We refer to this method as WEGtr to distin-
guish it from the other two GVSM models.

5.4 Experiment
All three GVSM models (i.e., CLG, WEG and WEGtr ) shown in
Table 5 were applied against our experimental datasets. However,
due to different amounts of training data available, the size of
the cross-lingual embedding tends to be smaller than the mono-
lingual word embedding. To make a fair comparison between the
techniques of using mono-lingual and cross-lingual embeddings,
we randomly sampled the vocabulary of the mono-lingual word
embedding to reduce its size. The full mono-lingual embedding
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Figure 3: Average performance of three primary GVSM models for all 17 IBA datasets

Figure 4: A comparison of the best basic model (VSMtr )
against all threeGVSM-basedmodels.WEGandWEGtr with
full size English embedding are represented as WEG∗ and
WEG∗

tr

included 2,519,371 records, while the cross-lingual embedding and
the down-sized mono-lingual embedding included only 332,648
records. However, in reality, it is far easier to construct a large
mono-lingual word embedding, and therefore we wanted to see
how WEGtr and WEG performed when allowed to use the fully
available embedding data. We therefore also include these results,
labeled as WEG∗

tr and WEG∗ respectively. Finally, as an additional
point of comparison, we include both VSM and VSMtr from our
earlier experiment. Results are reported in Figures 3 and 4.

5.4.1 RQ3: Analysis of Cross-lingual Word Embedding. To address
our research question “To what extent does cross-lingual word
embedding improve GVSM performance for tracing across IBA
datasets?” we explore the difference between CLG, WEG, and
WEGtr models.

By comparing average precision achieved for the 14 Chinese
datasets as reported in Figure 3 we observe that in 12 out of 14
cases, WEGtr was the winner. Of the remaining two cases, CLG
and WEG each won once. Furthermore, as reported in Figure 4,
WEGtr has a significantly higher median, Q1, and Q3 value than
either mono-lingual WEG or CLG. Applying full size word embed-
ding to WEGtr further improves the performance by increasing
the median value of the results distribution. This indicates that
combining WEG with NMT can effectively improve the tracing
performance. When comparing WEG and WEG∗, we observed that
increasing the embedding size for mono-lingual WEG has little
impact on model performance; however, this contrasts with the
marked improvement observed when using an increased English
embedding size on WEGtr , reinforcing our conjecture that the vo-
cabulary mismatch introduced by IBA has a clear negative impact
upon trace performance.

To determine if it would be possible to avoid the costs of building
or contracting a translation service such as Google Translation
services, we also compared the mono-lingual and cross-lingual
approaches (i.e., WEG vs. CLG) without the benefit of translation.
In this case, we observe that CLG outperforms WEG in 10 out of 14
Chinese projects, achieves equivalent performance in one project,
and underperforms in 3 projects. However, an analysis of results in
Figure 4 shows that its median, Q1, and Q3 values in comparison to
other models, show that it does not statistically outperform WEG.

We therefore answer RQ3 by stating that the cross-lingual word
embedding failed to outperform either of the mono-lingual word
embedding approaches based on the available resources, and that
the use of a preprocessing translation step followed by the use of
GVSM with mono-lingual word embedding was clearly superior.

5.4.2 RQ4: Comparison of all models. Finally, to address our re-
search question “Which of the tracing techniques presented in this
paper perform best on IBA datasets?” we compare VSMtr , LDAtr ,
and LSItr with our new GVSM-based techniques. As Fig. 2 and Fig.
4 report VSMtr and WEG∗

tr are observably the best models. We
compared AP scores achieved for these two models for all 14 Chi-
nese datasets, against each of the other models using the Wilcoxon
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Table 6: P-value of wilcoxon signed-rank test.

WEG∗ CLG LDAtr LSItr
WEG∗

tr .001 .003 0 .000 .001
VSMtr .019 .010 0 .000 .001

signed-rank test and Cohen’s d effect size. P-value of Wilcoxon
signed-rank test are reported in Table 6, show that both VSMtr and
WEG∗

tr are statistically significant better than other models given
the P-values are all below 0.05 with effect size ranging from 0.3
to 0.9 indicating a "medium" to "large" effect. However, a similar
comparison of WEG∗

tr and VSMtr returns a P-value 0.0615 and
effect size of 0.09, meaning that neither technique is significantly
better than the other even though Fig. 4 shows that WEG∗

tr has a
higher maximal, Q1, Q3 than VSMtr .

6 EXTENSION TO OTHER LANGUAGES
While our focus was on Chinese-English language projects, we also
included one project from each of three additional languages in
our experiments as a preliminary proof of concept. These projects
were Korean, Japanese, and German – all combined with English.
In all cases, including the German language, we were able to use
Unicode to identify its presence in English sentences.While wewere
able to identify language occurrences in our study (i.e., Chinese,
Japanese, Korean, and German) from English using Unicode, we will
need to adopt more diverse approaches (e.g., Python’s langdetect
project), for language detection[? ]. Traceability results for these
projects are reported throughout the paper (shown on the right
hand side of Table 3, and the graphs of Figures Fig. 3 and Fig. 2).
They show that for both Asian languages (Korean and Japanese)
our conclusion derived from the Chinese datasets is still valid, while
for the European language (German), the CLG model outperformed
WEGtr . We leave a deeper analysis of this observation to future
work.

7 THREATS TO VALIDITY
There are several threats to validity in this study. First, we used
Google as our black-box translator. As the vocabulary selection
strategy of the NMT has a direct impact on the final trace link qual-
ity, results could be different if other types of machine translation
methods are applied. However, we chose Google translation as it
has been empirically shown to deliver high quality translations
across numerous languages. Another important threat is that the
training material used for CLGwas composed of general documents
from Wikipedia and did not include domain specific corpora. We
made this decision in order to deliver a more generalized solution,
and because collecting a domain specific corpus for all 17 projects
would have been prohibitively expensive. CLG might perform bet-
ter than WEG if a domain-specific corpus of technical documents
had been available and used for training purposes. An external
threat was introduced by limiting the raw artifacts to the coverage
area of intermingled links to alleviate the link sparsity issue (see
Table 3b). This enabled us to focus on the IBA-impacted traces, but
reduced the number of participating artifacts, thereby potentially
inflating AP scores for all results. Also, we did not yet explore the

impact of embedding size on CLG. On the other hand, our exper-
iments showed that WEGtr still outperformed CLG, when equal
sized embeddings were used. The reality is that larger mono-lingual
embeddings are more readily available, and should be pragmatically
leveraged. We leave experimentation with different sized embed-
dings to future work. Finally, we extensively evaluated the results
on Chinese-English projects, but study is required to generalize our
finding to other languages.

8 RELATEDWORK
Prior work related to cross-lingual translation has already been
extensively described throughout the paper. In this section we there-
fore focus on the very limited body of work that exists in the use
of multiple languages in the software development environment.
This phenomenon tends to occur in two primary settings – first
in organizations in which English is not the primary language of
many stakeholders, but is the language of choice for supporting
the development process; and second, in global software develop-
ment environments with geographically dispersed teams speaking
multiple languages. As Abufardeh et al. [2] points out, this kind
of geographical localization for development teams is a critical
element of the success of multi-national projects.

Multi-lingual problems in global software development (GSD)
have been identified and discussed by previous researches. Al-
though English is widely accepted as an official languages in most
international IT corporations, the practice of utilizing a second
language is quite common. For example, Lutz [34] investigated the
issue in Siemens’ English-German work space and pointed out that
utilizing English as the primary language for non-native speakers
can lead to misunderstandings in both oral and written communi-
cation.

Researchers have proposed different methods to address the
multi-lingual linguistic problem. One branch of studies has focused
on developing best-practices[30] to enhance the work quality and
efficiency, while others have proposed using machine translation
as a solution for minimizing the misunderstanding brought by
multi-lingual environment [10, 11, 39]. Our approach best fits into
this second category as we have observed the problem of multi-
lingual language use in software artifacts and have applied diverse
machine-learning solutions to compensate for in the traceability
task.

9 CONCLUSION
The work in this paper was motivated by the needs of our indus-
trial collaborators who were seeking enterprise-wide traceability
solutions across software repositories containing artifacts written
in a combination of English and Chinese.

This paper has made several contributions. First, it explored the
use of intermingled Chinese and English terms across 14 different
projects and identified common usage patterns. It then showed that
using a preprocessing translation step in IBA projects in conjunc-
tion with three commonly used trace models improved accuracy
of the generated trace links. This clearly indicates that the multi-
lingual problem must be addressed for traceability in IBA datasets.
We then proposed three GVSM based methods which leveraged
the strength of word embedding to address the IBA vocabulary
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issue. Our experiment results showed that, WEG∗
tr can outperform

NMT combined classic trace models and two other GVSM based
methods proposed by us. In the cases where NMT may not be avail-
able (due to costs of an external service provider), we propose CLG
and WEG as viable alternatives, because it is easier, more effec-
tive, and less costly to train a word embedding based model than
an NMT translator. Furthermore, an internally trained CLG and
WEG model could potentially include domain-specific terminology,
thereby potentially boosting its performance.
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