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ABSTRACT
Several researchers have studied that developers contributing to
open source systems tend to self-organize in “emerging” teams. The
structure of these latent teams has a significant impact on software
quality, with development teams structure somewhat reflected in
the way developers communicate and contribute in the subsystems
of a system. Therefore, in order to study socio-technical interactions
as well as the software evolution dynamics of open source systems,
in this paper, we present a novel dataset, gathered from 20 open
source projects, which report the developers’ activities in the scope
of commits and issues at the level of subsystems. Thus, the new,
generated dataset comprises of emerging and explicit links among
developers, commits, issues, and source code artifacts, with data
grouped around the subsystems point of view, which can be used
to better study the system dynamics behind the extracted socio-
technical interactions.

CCS CONCEPTS
• Software and its engineering → Collaboration in soft-

ware development.
KEYWORDS
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1 INTRODUCTION
In industrial organizations most of the team building decisions are
influenced by the project domain and organization size [1]. Vice
versa, in open source system developers tend to spread across the
world, working in different time zones [2, 3] and contributing to
their desired part of the system i.e., subsystems. Most of developers’
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socio-technical interactions happens using electronic means (e.g.,
mailing lists, issue tracking systems, IRC chats) [4, 5].

Many researchers studied different aspects of socio-technical in-
teractions of open source systems [6–9]. We argue that, in the case
of contemporary systems— e.g., systems based on microservices
architectures and DevOps infrastructures— it’s likely that develop-
ers contributing to such systems often self-organize in “emerging”
teams [10, 11]. Which are somewhat reflected in the way developers
communicate and contribute in the subsystems of a system. There-
fore, in order to study socio-technical interactions of open source
systems, we could observe developers’ involvement in commits and
issues at the level of subsystems.

Research Opportunities We prepared a dataset based on de-
velopers, commits, issues, source code artifacts, and the emerging
and explicit links among these entities. We link these entities to
their corresponding subsystem. Our dataset allows researchers to
investigate how developers interact, through issues fixing activities
[12] or (temporal and) similar (or conceptual related) commits with
other contributors, also determining other “socio-technical roles”
[4, 5] played by developers working in various subsystems.

Related Available Datasets Rath et al. [13] provide a smaller
dataset, built from seven open source software projects, which en-
able to study social aspects of developers. However, developers
in their dataset are not de-duplicated (i.e., developers do not use
different accounts) and commits are not linked to corresponding
subsystems. Moreover, less source of information have been con-
sidered to study developer interactions as issue comments are not
a part of their dataset.

2 DATASET OVERVIEW
Our dataset consists of socio-technical information extracted from
20 projects hosted on Github (limited in number and size due to the
manual processing effort required in step 1 and step 5 (Fig.1)). Out
of these, 8 projects use the Apache Jira server for managing issues
(aside from GitHub for managing pull requests) and the remainder
use Github Issues exclusively. The dataset contains unique artifacts
across commits, with unique issues and developers involvement
such as code committing, issue commenting, and issue watching.
Moreover, artifacts and issues have explicit links to subsystems.
This dataset is provided as a MySQL database which can serve as a
base to extract socio-technical information. Moreover, our dataset
includes two Neo4J1 graphs for each project based on developer
and subsystem interactions respectively.

1https://neo4j.com/
1
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Figure 1: Steps of the dataset construction

3 DATASET CONSTRUCTION
3.1 Project Selection
Candidate projects in our study (Fig.1(Step 1)) are selected according
to the following requirements:

1. Subsystem Structure Projects needed to exhibit a non-trivial
(i.e., at least 10 subsystems) structure that reflects the real under-
lying decomposition. For micro-services based projects, we addi-
tionally aimed to select projects that manage code across multiple
repositories (multi-repo), i.e., one repository per subsystem, as well
as in a single repository (mono-repo), i.e., one folder per subsys-
tem. For selecting monolithic projects having an explicit set of
subsystems, we manually inspected all projects on the Apache Jira
server (below 10000 issues due to manual processing effort) that
exhibited a significant number of issues with a component property
set and where the top level source code folders (hosted on Github)
closely (or identically) matched those component names. We inter-
preted those components/folders as subsystems. For the purpose
of selecting microservices-based projects, we searched on Github
with queries consisting of specific terms such as Microservices Ar-
chitecture, Spring Cloud, Netflix OSS, and Kubernetes. We manually
classified the projects into mono-repo or multi-repo. For mono-repo
micro-services projects, we manually inspected the folder names
for clear indication that a folder represents one subsystem.

2. Active developers We selected projects with at least 40 con-
tributing developers over the project’s life time. This guarantees
that there are sufficiently many developers involved to study mean-
ingful socio-technical interaction patterns.

3. Commits and issues Furthermore, we filtered out projects
with less than 1,500 commits or 200 issues. This ensures that a
relation between two developers based on editing the same artifact

or being active in the same issue may occur sufficiently often to
signify a meaningful relation between the developers.

Figure 2: Data Schema - Relational Part

3.2 Data Extraction and Storing
We used Perceval [14] to extract commits and issues information
from Github (Step 2). For the purpose of extracting data from
Apache Jira we used the Jira python client.

Figure 2 depicts a simplified relational data model overview.
Commits, the involved Artifacts, and Issue details make up the core
information of our data set. In our dataset an Issue may represent a
Jira issue, a Github Issue, or a Github Pull request (or a combination,
e.g., a pull request references a Jira issue).

A developer may contribute in a project in various ways: for ex-
ample, committing code changes, commenting of issues, reviewing
pull requests, or watching an issue. We introduce three Involvement
types to harmonize activities across Jira and GitHub. 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔
is equal to committing artifacts; 𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 describes input to
an issue such as having reported it, commented on it, or having
reviewed artifacts; 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑 describes passive actions such as
watching an issue or being assignee without having commented or
committed yet. We encode these three types of actions as integers
of value 10, 5, and 1, respectively, to reflect the amount of effort
behind the activities.

3.3 Developer De-Duplication
When recording a developer’s involvement across commits and
issues, we need to take care of situations where a developer uses
multiple accounts (email-ids) on Github. More importantly, a devel-
oper’s id on Jira doesn’t match the Github account id of the same
developer as Jira doesn’t use email addresses as part of a user id
while Github does. This will result in inconsistencies as one devel-
oper will appear as multiple individual in the data set, hence the
need for deduplication (Step 3).

We used the Dedupe2 library which uses machine learning to
perform deduplication. The input to Dedupe is a list of triples, each
2https://github.com/dedupeio/dedupe

2
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containing a processed display name, a processed identifier, and a
derived short identifier.

Dedupe Training: We trained and evaluated Dedupe on a sam-
ple Jira-backed open source project achieving 100% precision and
recall. We saved results of our training in a JSON file and ranDedupe
for the complete set of user details from all 20 projects. We store
for each developer the list of duplicates, using the first encountered
identifier (email in Github or Jira user id) as the UserID in the De-
veloper table (Fig. 2) and use the duplicate list to ensure that all
involvements in Jira and Github of the same developer (regardless
of their used identity) point to the same developer in our data set.

3.4 Extraction of Commit-To-Issue Relations
Github commitmessages often refer to issues to identify the purpose
of the changes. We manually inspected each project what patterns
developers tend to apply for identifying issues and applied that
pattern when parsing the commit messages (Step 4).

We apply the same mechanism to pull requests. Whenever a pull
request identifies a Github issue, we merge pull request and Github
issue into one data set Issue and link all commits that are part of
the pull request to it. This is particularly helpful when commit
messages lack a reference to an issue.

For the Jira-backed projects we regularly find pull requests and
commits without a reference to a Github issue but instead a refer-
ence to a Jira issue. Whenever a pull request identifies a Jira issue,
we subsequently merged them into a single Issue in our data set
(we never encountered multiple pull requests referencing the same
issue) and link all involvements from the pull request and Jira issue
to that merged Issue. We proceed likewise whenever we find a
Github issue referencing (in the comments or title) a Jira issue.

3.5 Subsystem Mapping
For those projects that utilize Apache Jira for issue management
we need to map a Jira project’s components to the corresponding
folders on Github (Step 5). We manually mapped each component
of the eight Jira projects to their corresponding Github folders
(multiple folders where necessary to map all Github folders).

The mapping for Github multi-repo projects is straight forward:
each repository in the project becomes a subsystem. In the case of a
Github mono-repo (non-Jira backed), we determined the subsystem
based on manual inspection of folder names.

In our datamodel the Subsystem table’s SubsystemURLs JSON
blob contains the list of folders that make up a subsystem. This
allows us to relate all Artifacts to a unique Subsystem by matching
a code artifact’s URL path to the subsystem’s URL.

3.6 Linking Issues to Subsystems
Linking Issues to Subsystems (Step 6) works similar relating Ar-
tifacts to Subsystems. Jira issues exhibit a Component/s property
that identifies all affected subsystems (potentially multiple). Github
multi-repo projects provide separate issue lists for each repository,
thus the link to subsystems is unambiguous there as well. For the
two Github mono-repo projects, we need to identify subsystems
by traversing from Issues via Commits and Artifacts to Subsystems.
Hence, here, we can only link those issues to subsystems that are
also linked to commits.

3.7 Linking Issues to Issues
Issues may point to other issues from explicit fields (only available
in Jira). For all such Jira-backed projects we store these links (Step
7) in LinkedIssues table.

4 DATASET STATISTICS
Table 1 provides an overview of the 20 chosen open source projects.
Type column specifies project structure and Time Period column
describes the overall time (in months) in which we extracted com-
mits and issues. All subsequent rows report values from this time
period. The Commits column reports how many commits are made
in total in a project.3 Recall that in multi-repo projects, commits per
subsystem belong to one repository, thus the reported numbers are
the sum of commits over all repositories in such a project. In case
of mono-repo projects, all commits come from a single, main repos-
itory. The Dev column provides the total number of developers in
each projects. We consider any person a developer who is contribut-
ing, informative, or interested in at least one subsystem. Subsys, Art,
and Issue columns report the number of subsystems, total source
code artifacts, and issues in a project, respectively. The columnsArts
Linked to Subsys and Issues Linked to Subsys show the percentage
of artifacts and issues linked to subsystems respectively. Similarly,
the columns Issue Linked to Commits, and Commits Linked to Issue
provide the percentage of issues linked to commits and vice versa,
respectively. Finally, the column Dev Interaction Graph Density rep-
resents the density value of each developer interaction graph (see
section 5.1).

5 DATASET: GRAPH-BASED PART
We use graphs to give an interactive and easy representation of
socio-technical information. TheMySQL database provides the base
data and context for the extraction of information which we export
to a graph database (Neo4J). The following section describes the
graphs we include in our dataset.

5.1 Developers Interaction Graph
We built developer interaction graph from developers’ involvement
in issues and editing of source code artifacts over the life time of
the project (Fig. 1 (8)). We model the developer interaction graph
with developers as nodes (𝑑 ∈ 𝑉 ) and edges (𝑒 (𝑑𝑖 , 𝑑𝑘 ) ∈ 𝐸) between
those developers that interact. Specifically we add an edge between
two developers when at least one of the following two conditions
are fulfilled: First, the two developers changed at least once the
same file within the temporal proximity of 4 months. The edge’s
common changed artifact count property stores how many distinct
source code artifacts were changed by both developers. Second,
the two developers are involved in the same issue, for example,
one developer adding a comment to an issue, the other developer
committing an artifact update linked to the same issue. The edge’s
issue involvement intensity measures in how many issues the two
developers are active in, weighted by their involvement type.

The linear combination of common changed artifact count and
issue involvement intensity produces a single edge weight that bal-
ances contributing source code changes with issue management.
3Note that GitHub only shows the number of commits from master branch. However,
Perceval fetches commits from all branches in the repository including master branch.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Woodstock ’18, June 03–05, 2018, Woodstock, NY Ashraf, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Overview of the analysed projects.

Project Type Time Period
[Months] Commits Dev Subsys Arts Issues Arts Linked to

Subsys [%]
Issues Linked To

Subsys [%]
Issues Linked To
Commits [%]

Commits Linked To
Issues [%]

Dev Interaction Graph
Density

lagom Multi-Repo 44 6089 540 17 27490 3381 100 100 59 62 0.05
nameko Multi-Repo 85 3861 233 14 960 867 100 100 65 93 0.02
kumuluz Multi-Repo 54 2487 83 19 2083 274 100 100 45 22 0.06
jhipster Multi-Repo 71 10391 767 11 7146 3267 100 100 64 59 0.01
networknt Multi-Repo 38 5369 110 12 16127 2005 100 100 74 36 0.04
ibm-cloud-architecture Multi-Repo 30 3519 54 15 2207 593 100 100 72 70 0.08
MitocGroup Multi-Repo 38 5513 46 16 8270 1825 100 100 65 86 0.17
nodezoo Multi-Repo 62 1589 65 13 1070 687 100 100 59 62 0.11
spring-petclinic Multi-Repo 74 1579 148 11 4603 261 100 100 51 19 0.02
microservices-demo Multi-Repo 36 3122 139 20 2297 1314 100 100 56 81 0.05
flume Mono-Repo (Jira) 114 2623 1199 16 3403 3638 51 57 29 86 0.01
stanbol Mono-Repo (Jira) 107 6953 149 21 17469 1490 54 80 47 62 0.04
genie Mono-Repo 68 2905 71 16 3873 829 54 0 32 37 0.07
spring-cloud-dataflow Mono-Repo 65 2129 247 17 2383 2991 62 0 29 67 0.04
batik Mono-Repo (Jira) 221 3711 755 18 8760 1274 52 91 4 4 0.01
falcon Mono-Repo (Jira) 87 2556 190 19 7362 2760 56 38 47 63 0.07
arrow Mono-Repo (Jira) 47 3772 942 24 4431 8717 96 48 36 95 0.03
tika Mono-Repo (Jira) 154 5848 1327 21 6509 3335 71 65 46 67 0.01
openjpa Mono-Repo (Jira) 164 7215 831 27 10696 2849 54 73 57 68 0.01
oodt Mono-Repo (Jira) 118 2772 103 23 38200 1138 60 78 20 31 0.07

Figure 3: Range of average subsystem developer team mem-
bership heterogeneity per project.

5.2 Subsystem Interaction Graph
We provide a subsystem interaction graph as a counterpart to the
developer interaction graph. Here nodes (𝑠𝑦 ∈ 𝑉 ) are subsystems
and edges (𝑒 (𝑠𝑦𝑖 , 𝑠𝑦𝑘 ) ∈ 𝐸) between them describe dependencies
based on i) links among issues that belong to different subsystems
and ii) and developers that are involved in issues that belong to
different subsystems. In the former case, the edge identifies all issues
(issue count) with cross-subsystem references. In the latter case, the
edge identifies the developers (developer count) that are informative
or contributing in the two linked subsystems. We combine the issue
count and the developer count to produce an edge’s weight.

6 DATA USAGE
6.1 Using the dataset
Our supporting online material (SOM) 4 includes relational dataset,
per-project interaction graphs, and source code. The relational
dataset (Dump.sql) includes the schema (see Fig. 2) for importing
to a local MySQL server. The graphs.cypher has the cypher 5 script
for developer and subsystem interaction graphs of each project
which can be created and viewed using Neo4j browser.6 The src
contains the Python code for extraction of raw data, preprocessing,
and interaction graph calculation.

4http://doi.org/10.5281/zenodo.3707756
5https://neo4j.com/developer/cypher-query-language/
6https://neo4j.com/developer/neo4j-browser/

6.2 Example Research Questions
We analyzed projects from our dataset to detect latent developer
communities and investigate the overlap (Heterogeneity) of the
subsystem developer teams with these detected communities. This
allows us to identify subsystems where the communication among
developers is non-optimal. The figure 3 shows our results.

Our dataset can be valuable in order to find the answers of re-
search questions e.g., “How does socio-technical congruence manifest
in micro-services architecture? How do developer networks span across
subsystems? What is the impact of socio-technical interaction patterns
in the number and average time to close issue reports?". Moreover, for
studying potential differences between mono-repo and multi-repo
projects, respectively monolithic and micro-services based systems.

7 CHALLENGES AND LIMITATIONS
We cannot be absolutely certain that the mapping between Jira
issue components and GitHub folders is absolutely correct as a non
negligible manual effort is necessary to investigate folder content.

We did not consider other possible developer communication
channels i.e., mailing lists and IRC etc. Panichella et al. [4] found that
communication links obtained from mailing lists have high overlap
with links obtained from issue trackers and that mining links from
chat is less reliable as this (i) tends to produce too many links and
(ii) conversations are less easily associated to issues. We, therefore,
believe that we miss only negligible information by leaving out
mailing list and chats.

8 CONCLUSION
In this paper we described and published our mixed relational and
graph based dataset which is based on developers’ activities from
20 projects. These activities are in the scope of commits and issues
and grouped to subsystems. We provided details regarding dataset
construction and its usage. We hope that our dataset will help
the research community to study novel aspects of socio-technical
interactions.
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