Check for
Updates

Crop Knowledge Discovery Based on
Agricultural Big Data Integration

Vuong M. Ngo
School of Computer Science, University College Dublin
Belfield, Dublin 4, Ireland
vuong.ngo@ucd.ie

ABSTRACT

Nowadays, the agricultural data can be generated through various
sources, such as: Internet of Thing (IoT), sensors, satellites, weather
stations, robots, farm equipment, agricultural laboratories, farmers,
government agencies and agribusinesses. The analysis of this big
data enables farmers, companies and agronomists to extract high
business and scientific knowledge, improving their operational pro-
cesses and product quality. However, before analysing this data,
different data sources need to be normalised, homogenised and
integrated into a unified data representation. In this paper, we pro-
pose an agricultural data integration method using a constellation
schema which is designed to be flexible enough to incorporate
other datasets and big data models. We also apply some methods
to extract knowledge with the view to improve crop yield; these
include finding suitable quantities of soil properties, herbicides
and insecticides for both increasing crop yield and protecting the
environment.
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1 INTRODUCTION

Although, annual world cereal production in 2018 and 2019 were
2,595 million tons [4] and 2, 706 million tons, respectively [5], there
are about 124 million people in 51 countries facing food crisis and
food insecurity [6]. This will get even worse in the coming years. It
is expected that the world population will increase from 7.7 billion
in 2019 to 8.5 billion in 2030 [22]. Moreover, with limitation of
available freshwater and cropland, crop yields must be significantly
increased to satisfy the growing world population by using new
farming approaches, such as precision farming also called precision
agriculture.
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Precision farming uses historical data along with data mining
algorithms to make specific decisions for determining which crops
and which nutrients with suitable quantities will produce the best
crop yield. For examples, instead of applying the same large quan-
tities of pesticides to all crops, you can apply smaller amounts to
specific plants. This will certainly reduce the production costs and
waste, avoid damaging the environment, and reduce negative effect
on some other insects species. The collected historical big data will
be mined and analysed so that the whole ecosystem will be taken
into account and some key decisions will come out to efficiently
use the land and other required resources.

In this paper, we propose a constellation schema which includes
many fact and dimension tables containing information about crops,
fields, products, operations, testings and management of the farms.
This schema is designed to be flexible to integrate any agri datasets
in a unified representation. Besides, this schema also can be used
to build a data warehouse (DW), adapting quality criteria of agri-
cultural Big Data. In addition, the datasets originated from various
sources are extracted, transferred and loaded using the unified
schema to become a unified dataset. Intelligent methods based on
a range of crops and their crop yields are applied to discover new
knowledge and get better understanding of some farming processes.
We limit the scope of this paper to discovering knowledge about
soil properties, herbicides and insecticides.

The rest of this paper is organised as follows: in the next Section,
we reviewed the related work on data integration and knowledge
discovery in agriculture. In Section 3, benefits, challenges and pro-
posed schema for agricultural data integration are presented. Sec-
tion 4 presents a methodology of how to find appropriate quantities
of soil properties, herbicides and insecticides for a range of crops,
based on Big Data. Finally, we conclude and comment on future
work in Section 5.

2 RELATED WORK

There are numerous research works in the literature about the anal-
ysis and mining of agricultural datasets with the view to improve
farming operations. These include crop yield increments, pest con-
trol, early warning, and farm management. In [12], data mining
techniques were applied on crop, soil and climatic datasets to max-
imise the crop production. While, [3] combined surveys of farming
practices with model-based simulations to determine the relation
between weeds and crop yield. In [19], the authors predicted pest
population dynamics using time series clustering and structural
change detection of different pest species and groups. In [21], the
authors provide optimal management solutions to efficiently iden-
tify nutrients and water; a multi-objective genetic algorithm was
used to implement an E-Water system. Finally, in [16], [17] and
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[18] the authors presented interesting decision support systems
for early warning, soil nutrient and financial services, respectively.
However, all the mentioned works did not tackle agricultural Big
Data integration. So, their datasets contain only a reasonably small
agricultural information.

Data integration is very important task in large enterprises and
organisations, which own various data sources. It is implemented
in large-scale scientific projects. Without it, it is very challenging
to access data across many autonomous and heterogeneous data
sources and formats [9]. The paper [1] proposed a set of ontologies
to facilitate the agricultural data integration, the authors in [20] pro-
posed to loaded the data into RDF triples before being transformed
into a relational schema. In [2], the authors proposed a system based
on JSON format and provided an API, which centralised and stan-
dardised to communicate with different applications to integrate
the various datasets. They chose PostgreSQL being a relational
database, as the database management system. Further, in [7], a
relational schema and geographic information were used to build
a decision support system about weather, crops, regions and bugs.
However, the ontologies and relational schemas are not flexible for
adding new datasets and cannot deal with high-performance data
analysis. To overcome these limitations, [13] used data warehouse
constellation schema to integrate agricultural Big Data. However,
its schema does not include some important information about
farming operation, such as crop, soil and nutrient testings, and
treatment, spray, fertiliser and zone managements. Besides, it is
about data warehouse design and implementation, it did not use
data mining algorithms to discovery crop knowledge.

3 AGRICULTURAL BIG DATA SCHEMA

Integrating Agricultural data from various sources would produce
estimates that can be used nationwide and other specialised or-
ganisations. These estimates include supply and demand, farming
income, gross domestic products, etc. Besides, data integration not
only reduces both costs and burden on survey respondents, but
also leads to higher quality information. High quality integrated
data will increase the quality of the mined results and therefore,
help farmers manage efficiently their operations and make bet-
ter decisions to fulfil specific needs, such as optimising fertiliser,
insecticides, irrigation, etc.

Raw and semi-processed agricultural data are not only collected
through various sources, but also very large, complex, unstructured,
heterogeneous, non-standardised, and inconsistent. Specifically, the
agricultural data has all the features of Big Data: (1) Volume: The
amount of agricultural data is rapidly increasing and is intensively
produced by endogenous and exogenous sources, such as operation
processes, sensors, satellites, farm equipment, government agencies,
retail agronomists, seed companies, and farmers. The exogenous
sources can help supply information about local pest and disease
outbreak tracking, market accessing, food security, products and
prices; (2) Variety: Agricultural data has many different types and
formats; structured and unstructured data, video, imagery, chart,
metrics, geo-spatial, multimedia, models, equation and text; (3) Ve-
locity: The produced and collected data increases at high rates, as
sensing and mobile devices are becoming more efficient and cheaper.
The datasets need to be cleaned, aggregated and harmonised in

47

Table 1: Descriptions of other dimension tables

No. Tables Particular attributes

1 Business BusinessID, Name, Address, Phone, Email

2 Crop CropID, CropName, VarietyID, VarietyName, EstYield, SeasonStart,
SeasonEnd, BbchScale, Scien.Name, HarvestEquipment, Equ.Weight

3 Crop State CropStateID, CropID, StageScale, Height, MajorStage, MinStage,
MaxStage, Diameter, AveHeight, CoveragePercent

4 Farmer FarmerID, Name, Address, Phone, Mobile, Email

5 Fertiliser FertiliserID, Name, Unit, Status, Description, GroupName
FieldID, FieldName, SiteID, Reference, Block, Area, AreaUnit,

6 Field WorkingArea, WorkingAreaUnit, Latitude, Longitude, Geometric-
Points, FieldImage, Notes

7 Tnspection KlspectionID, Cr(?pID, Description, ProblemType, Severity,

reaValue, AreaUnit, Order, Date, Notes, GrowthStage

8 Nutrient NutrientID, NutrientName, Date, Quantity

9 %pnf :atlon OperationTimelD, StartDate, EndDate, Season

10 Pest PestID, CommonName, ScientificName, PestType, Description, Den-
sity, MinStage, MaxStage, Coverage, CoverageUnit

1 Plan PlanID, PlanName, RegisNo, ProductName, ProductRate, Date, Wa-

terVolume
ProductID, ProductName, GroupName
SprayID, SprayProductName, ProductRate, Area, WaterVolume,

12 Product

13 Spray ConfDuration, ConfWindSpeed, ConfDirection, ConfHumidity,
ConfTemp, ActivityType

14 Site SiteID, FarmerID, SiteName, Reference, Address, GPS, CreatedBy
SoilID, NutrientID, PH, Nitrogen, Phosphorus, Potassium, Magne-

15 Soil sium, Calcium, CEC, Silt, Clay, Sand, SoilTexture, SoilType, Organic-
Matter, TopSoil, SupSoil, TestDate, Unit

16 Supplier SupplierID, SupplierName, Address, Phone, Email

17 Task TaskID, Desc, Status, TaskDate, TaskInterval, CompDate, AppCode

18 TransTime  TransTimelD, OrderDate, DeliverDate, ReceivedDate

19 Treatment TreatmentID, TreatmentName, FormType, LotCode, Rate, ApplCode,
LevINo, Type, Description, ApplDesc, TreatmentComment

Weather WeatherReadingID, WeatherStationID, ReadingDate, ReadingTime,

20 Readi AirTemper, Rainfall, SPLite, RelativeHumidity, WindSpeed, Wind-
cading Direction, SoilTemper, Leaf Wetness

21 Weather WeatherStationID, Station Name, Latitude, Longitude, Region

Station
ZonelD, ZoneName, FieldID, SoilID, ZoneType, Area, AreaUnit, Lati-
tude, Longitude, GeometricPoints, YieldMap, SatellitePicture, Notes

22 Zone

real-time; (4) Veracity: The tendency of agronomic data is uncertain,
inconsistent, ambiguous and error prone because the data is gath-
ered from heterogeneous sources, sensors and manual processes.
So, agricultural Big Data integration is very challenging.

Data integration is a data combination and validation collected
from different sources. It provides a user with a unified view of the
whole data [11]. The process of integrating data uses a schema, sim-
ilar to databases (DB)s, in which data coming from different sources
can be extracted, assessed, validated, and organised following its
meta-data model. Unlike DB schema, a DW schema is a collection
of objects, including tables, views, indexes, and synonyms which
consists of some fact and dimension tables [14]. There are three
kind of DW schema models; namely star, snowflake and constel-
lation [10]. Agriculture DW is an enterprise data warehouse, and
requires a number of fact tables (or subjects or views). It is usually
represented as fact constellation schema.

We developed an agricultural fact constellation schema using
all the information collected the original data sources (operational
databases) and the requirements of farmers, companies, and agrono-
mists. Figure 1 gives an overview of the proposed DW schema. It
includes five fact tables being FieldFact, Sale, Order, Testing and
Management Action, and 22 dimension tables. The FieldFact fact
table, which has 12 dimensions and six measures, contains infor-
mation about fields, soil, fertiliser, nutrient, weather, treatment,
and pest. While, the Order and Sale fact tables contain data about
farmers’ trading operations which have the same four dimensions,
and have six and five measures, respectively. The Testing fact table
presents testing operation about crop, soil and nutrient through
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Figure 1: A part of our constellation schema for Precision Agriculture

TestingID and TestingType attributes. Finally, the Management Ac-
tion fact table describes management operations about nutrient,
fertiliser, treatment, inspection and spray through ActionID and
ActionType attributes.

Each dimension table contains details about instances of an ob-
jectinvolved in a crop yield and farm management. Table 1 describes
the main attributes of 22 dimension tables. For examples, the Field
table contains information about fields, such as name, area, longi-
tude, latitude and geometric information. A field often has many
zones. The Zone table contains specific information on every zone;
zone type, soil and yield map on zone. The Soil table describes soil
properties, such as pH value, nitrogen, phosphorus, texture and
organic matter.

4 CROP KNOWLEDGE DISCOVERY
4.1 Datasets

The datasets which are used to validate the proposed fact constella-
tion schema were obtained from a leading commercial agronomy
service company in the United Kingdom. The company collected
data from its operational systems, research results, and field trials.
Especially, they collected real agricultural data in iFarms, B2B sites,
technology centres and demonstration farms at Belgium, Brazil,
Ireland, Poland, Romania, Ukraine and United Kingdom [15]. They

have 800 sale forces, 112 distribution points, 34 input formula-
tion and processing facilities, 73 demonstration farms, 12 million
hectares of direct farm customer footprints and 50, 000 trial units.

There is a total of 29 datasets. On average, each dataset contains
18 tables stored in 1.4 GB storage size. Each dataset focuses on a
few information of farming operations. For example, crop dataset
almost contains information about crop, such as name, estimated
yield, harvest equipment, BBCH growth stage index, major stage,
diameter and crop coverage percent. While, the weather dataset
includes information on location of weather station, air and soil
temperature, rainfall, humidity and wind speed direction over time.
In pest dataset, there is information about name, type, density, stage,
coverage and detected date of pests.

4.2 Crop Yield Classification

In every field, we extract information related to crop yield from
the new schema; field identification, year, season, crop name, yield,
soil properties (i.e. soil pH, soil P, soil K, soil Mg), herbicides and
insecticides. Each record, based on crop type and yield, can be
classified into one of the five groups. Every group contains 20% of
the number of records of each crop type. Group 1 is the highest
20% yield group and Group 5 is the lowest with 20% yield group in
every crop type.



Table 2: Descriptions of mean crop yield (ton/ha)
in every yield group

Group | Crop M. Yield % | Crop M. Yield %
1 Barley S. 893  +36.9 | Barley W. 13.04  +78.7
2 Barley S. 732 +12.2 | Barley W. 829  +13.7
3 Barley S. 6.52 0 | Barley W. 7.30 0
4 Barley S. 5.81 -10.9 | Barley W. 6.40 -12.2
5 Barley S. 4.26  -34.8 | Barley W. 5.16 -29.3
1 Beans S. 521  +37.3 | Beans W. 6.15  +23.6
2 Beans S. 4.32 +13.9 Beans W. 5.51 +10.8
3 Beans S. 3.79 0 | Beans W. 4.97 0
4 Beans S. 1.92 -49.3 | Beans W. 4.52 -9.2
D) Beans S. 1.08 -71.4 Beans W. 3.40 =S
1 Grass 23.80  +67.7 | LinseedS. 228  +755
2 Grass 21.73  +53.1 | LinseedS. 1.57  +20.9
3 Grass 14.19 0 Linseed S. 1.30 0
4 Grass 9.01 -36.5 Linseed S. 0.84 -35.7
5 Grass 7.62 -46.3 | Linseed S. 0.43 -67.1
1 Maize F. 47.00 +16.7 Oats W. 8.06 +15.1
2 Maize F. 44.67 +10.9 Oats W. 7.50 +7.1
3 Maize F. 40.27 0 Oats W. 7.00 0
4 Maize F. 32.63 -19 Oats W. 6.93 =il
5 Maize F. 21.62 -46.3 Oats W. 5.64 -19.4
1 Rape W. 459  +27.7 Rye W. 39.90  +41.4
2 Rape W. 4.00  +11.4 Rye W. 3239 +14.7
3 Rape W. 3.59 0 | RyeW. 28.23 0
4 Rape W. 3.15 -12.5 Rye W. 23.19 -17.8
5 Rape W. 2.36 -343 | Rye W. 17.77 -37
1 Wheat S. 7.20  +27.9 | Wheat W. 11.74  +25.9
2 Wheat S. 6.52  +15.8 | Wheat W. 10.22 +9.6
3 Wheat S. 5.63 0 | Wheat W. 9.32 0
4 Wheat S. 4.73 -16 Wheat W. 8.55 -8.3
5 Wheat S. 1.94 -65.6 Wheat W. 6.83 -26.7

The Table 2 describes the 12 most popular crops in the EU coun-

tries. These are Spring Barley (Barley S.), Winter Barley (Barley
W.), Spring Dried Beans (Beans S.), Winter Dried Beans (Beans W.),
Grass, Spring Linseed (Linseed S.), Forage Maize (Maize F.), Winter
Oats (Oats W.), Winter Rape (Rape W.), Winter Rye (Rye W.), Spring
Wheat (Wheat S.) and Winter Wheat (Wheat W.). For each crop
type, the mean yield of each group and different percentages be-
tween groups are also presented in this table. For examples, Spring
Barley belonging to group 1 has mean yield of 8.93 ton/ha and
higher than corresponding medium group (group 3) about 36.9%.
While, the mean yield of Spring Barley group 5 has only 4.26 ton/ha
and lower than its corresponding medium group which is about
34.8%.

4.3 Crop and Soil Correlation
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Figure 2: Soil pH values

Soil acidity (pH) holds an important role in soil fertility. Maintaining
the soil pH at a suitable level will certainly increase the microbio-
logical activity and nutrient of the soil. Some crops often grow best
in a pH range [6.0 to 7.0], others grow well under slightly acidic
conditions. The mean soil pH values for six crops classified by yield
groups are shown in Figure 2. From this figure, we can detect the
desirable soil pH value for optimum growth to make the best yield
for certain crops.
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There are clearly differences between soil pH values among yield
groups in Grass, Forage Maize and Winter Rye. While, Spring Wheat
has small difference, Winter Oats and Winter Rape do not show
any difference among yield groups. So, we did not find optimal soil
pH values for Winter Oats and Winter Rape. The optimal soil pH
values for Grass, Forage Maize, Winter Rye and Spring Wheat are
6.0,7.8,6.9 and 7.2, respectively.

Moreover, the supplied soil nutrients are also critical for crop
growth. The largest amounts of soil nutrients required by crops
are phosphorus (P), potassium (K) and magnesium (Mg). They are
often considered as the most important nutrients. The mean soil P,
K and Mg quantities for crops classified by yield groups are shown
in Figures 3, 4 and 5, respectively.
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Figure 3: Mean soil P quantities

In Figure 3, the mean soil P quantities are clearly different among
yield groups in Spring Linseed, Winter Rape, Spring Wheat and
Winter Wheat. While, in Winter Dried Beans and Forage Maize,
the differences are not very clear, but they are enough to determine
suitable P quantities. The optimal P quantities are 21 (mg/l) for
Winter Bean, 27 (mg/l) for Spring Linseed, 32 (mg/l) for Forage
Maize, 33 (mg/l) for Winter Rape, 11 (mg/l) for Spring Wheat and
22 (mg/1) for Winter Wheat.
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Figure 4: Mean soil K quantities

In Figure 4, the differences among yield groups in Spring Linseed,
Winter Oats and Winter Rap are not significant. So, we did not find
optimal K quantities for these crops. Meanwhile, for the other crops
the difference is significant and we can find optimal soil K quantities;
which are 72 (mg/1) for Winter Dried Beans, 237 (mg/1) for Forage

Maize, and 116 (mg/l) for Spring Wheat.
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Figure 5: Mean soil Mg quantities
In Figure 5, there is significant differences among yield groups,

the mined optimal Mg quantities for Spring Barley, Spring Dried
Beans, Forage Maize and Winter Wheat are 61 (mg/1) , 60 (mg/1),



55 (mg/1), and 85 (mg/1), respectively. However, for Winter Barley
there is no significant difference between group 1 and group 5, and
for Spring Linseed, there is no significant difference between group
1 and group 4. So, we could not find optimal Mg quantities.

4.4 Crop and Herbicides Correlation
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Figure 6: Mean herbicide quantities

Weed control is generally considered to be essential for crop growth
and it is often dealt with herbicides. However, the use of herbicides
must be reduced because they have negative effects on the envi-
ronment and create very bad and health issues. The key question
then is to see whether herbicide increments will lead to an increase
in crop yield or not. Figure 6 presents mean herbicide quantities
used in every yield group of some crops. In almost all crops; Spring
Barley, Spring Linseed, Forage Maize, Winter Rape and Winter Rye,
herbicide increments do not increase crop yield, in some cases, they
even reduce the yield. With an exception to the rule, for Winter
Bean, the highest yield group used the highest herbicide quantity,
which is about 33.8 (kg/ha).

4.5 Crop and Insecticides Correlation

The use of insecticides to keep away bugs and pests does not only
cause economic and health issues, but also it directly affects other
insects and animals, such as bee, beetles, frogs, etc. So, for every
crop, one needs to determine suitable insecticide quantities.

The optimal insecticide quantities in yield groups of Spring Bar-
ley, Winter Barley, Spring Dried Beans, Spring Linseed, Winter
Rape and Winter Rye are shown in Figure 7. There are significant
differences among yield groups, so the optimal insecticide quanti-
ties that have been mined are 736 (g/ha) for Spring Dried Beans, 693
(g/ha) for Winter Rape and only 79 (g/ha) for Winter Rye. While,
the Spring Barley, Winter Barley and Spring Linseed did not show
significant differences between high yield groups and low yield
groups. So, we could not mine optimal insecticide quantities for
these crops.
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Figure 7: Mean insecticide quantities

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a fact constellation schema as an overall
framework for integrating various agricultural datasets. The schema
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is flexible and extensible to other agricultural datasets and quality
criteria of Big Data analytics. Based on this schema, we extracted,
transferred and loaded information from various datasets into a
unified representation of agricultural dataset. We also presented a
data analytics study about the effect of certain agriculture factors
on crop yields using classification techniques. We even find optimal
quantities of soil properties, herbicides and insecticides for certain
crops under the study.

As a future work, we will apply more sophisticated machine
learning algorithms on our unified dataset to discover global re-
lations between soil properties together and other factors, such
as nutrients and fertilisers. This future study will be supported by
an intelligent visualisation interface for accessing data access and
showing the results of the data analysis.
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