
Preserving Reciprocal Consistency in Distributed
Graph Databases

Jack Waudby
j.waudby2@ncl.ac.uk
Newcastle University

Newcastle, UK

Paul Ezhilchelvan
paul.ezhilchelvan@ncl.ac.uk

Newcastle University
Newcastle, UK

Jim Webber
jim.webber@neo4j.com

Neo4j
London, UK

Isi Mitrani
isi.mitrani@ncl.ac.uk
Newcastle University

Newcastle, UK

Abstract
Our earlier work identifies reciprocal consistency as an im-
portant property that must be preserved in distributed graph
databases. It also demonstrates that a failure to do so seri-
ously undermines the integrity of the database itself in the
long term. Reciprocal consistency can bemaintained as a part
of enforcing any known isolation guarantee and such an en-
forcement is also known to lead to reduction in performance.
Therefore, in practice, distributed graph databases are of-
ten built atop BASE databases with no isolation guarantees,
benefiting from good performance but leaving them suscep-
tible to corruption due to violations of reciprocal consistency.
This paper designs and presents a lightweight, locking-free
protocol and then evaluates the protocol’s abilities to pre-
serve reciprocal consistency and also offer good throughput.
Our evaluations establish that the protocol can offer both
integrity guarantees and sound performance when the value
of its parameter is chosen appropriately.
CCSConcepts. • Information systems→Database trans-
action processing; Graph-based database models.
Keywords. Graph Databases, Concurrency Control, Recip-
rocal Consistency

1 Introduction
Recent years have seen a proliferation in the use of graph pro-
cessing technologies [9]. Application areas are wide reaching
from healthcare, to social networks and fraud detection [10].
Graph databases model data as a property graph [16], ver-
tices represent entities and edges represent the relationships
between entities. In addition, properties can be stored on
both vertices and edges. In the storage layer, edges are rep-
resented by two reciprocal pointers, one stored with each
vertex the edge connects. This allows for bi-directional tra-
versal and improved query performance [16]. An edge is
said to be reciprocally consistent, if its two end pointers are
mutually reciprocal of each other (details in Section 2).
In practice, graphs can be extremely large, sometimes in

themagnitude of 100 billion edges [17], exceeding the storage
capacity of a single-node graph database and motivating the

need for distributed graph databases. A common distributed
graph database design pattern is to first partition graph data
over several machines in a cluster; resulting in a number
of distributed edges, an edge’s reciprocal pointers reside in
different partitions. Recent work [12] and [11] highlighted
that violations of reciprocal consistency in distributed edges
introduce corruption into the database. Moreover, due to
the Scale-Free [3] property exhibited by many real world
graphs, this corruption can propagate through the database
at alarmingly rates.

When, for example, a BASE database [15] is adapted with
a graph processing layer, then violations of reciprocal consis-
tency will occur if that adaptation provides no concurrency
control for operations that span partitions in order to offer
higher performance. This paper proposes a simple concur-
rency control protocol, called the Delta protocol, that does
not impede performance adversely. That is because the proto-
col is exclusively designed for one purpose only: reciprocal
consistency in distributed edges. Its design leverages the
fact that the updating of end pointers of a distributed edge
must immediately follow each other and the small interval
between them is the sole raison d’être for reciprocal concur-
rency violations.

The paper is organized as follows: Section 2 describes how
edges in a graph database are stored and the notion of recip-
rocal consistency. This notion is examined in the context of
distributed graph databases in Section 3 and the root causes
of consistency violations are explained in the following sec-
tion. Section 5 presents the Delta protocol together with
correctness reasoning. Sections 6 and 7 are devoted to eval-
uating the protocol using two metrics that measuring the
protocol’s ability to avoid inconsistencies (ensuring safety)
and unnecessary aborts (enhancing throughput). Section 6
explains the strategies used for evaluating these metrics and
the latter presents the results for various values chosen for
the protocol parameter (∆). Section 8 concludes the paper.

2 Reciprocal Consistency
In the property graph data model, edges have direction and
each edge runs from a source vertex to a destination vertex.
In the storage layer, however, edge directionality does not
exist; both the source and the destination vertices store
information about each other. This allows edge traversal to
be bidirectional and speeds up query performance.

Consider, for example, the statement: “Tolkien wrote The
Hobbit”. It is expressed using vertex a for Tolkien and vertex
b for The Hobbit, and an edge wrote running from a (source)
to b (destination). Corresponding openCypher [2] code is
given below and Fig 1(a) shows the model level view.

MATCH (a:Person), (b:Book)
WHERE a.name = 'Tolkien' AND b.title = 'The Hobbit'
CREATE (a)-[w:WROTE]->(b)

Fig 1(b) depicts the internal representation of a graph
arising from JanusGraph [1] and TitanDB [4]. A vertex, such
as a, is represented by a record that contains one or more
properties of that vertex, followed by a sequence of edge
pointers pointing to all those vertices to which this vertex is
related either as a source or a destination. The sequence of
edge pointers is also called the adjacency list.
It can be seen in Fig 1(b) that a’s adjacency list has an

edge pointer entry that stores ‘a wrote b’ while b’s list has
a corresponding entry storing the reciprocal (or inverse)
information ‘b written by a’. When the adjacency list entries
for a given edge refer to each other in a complementary
manner like this, that edge is said to be reciprocally consistent.
Consider a query: ‘list all titles by the author who wrote

The Hobbit’. This query needs to start from b which rep-
resents the only entity specified explicitly in it. Thanks to
the reciprocal information in b, it can reach a from b, even
though edge ab is “directed” from a to b, and then compile
the necessary list from a. Note that reciprocal consistency is
assumed to be prevail when a query reads only the source
or destination vertex of an edge.

3 Distributed Graph Databases
A distributed graph database employs a shared-nothing ar-
chitecture, partitioning a graph among loosely cooperating
servers. Graph partitioning is non-trivial and a common ap-
proach is to use a k-balanced edge cut [14]. The objective of
such an approach is to minimize the proportion of edges that
span partitions and also to balance the distribution of ver-
tices to partitions. Fig 2 depicts a graph database partitioned
across 3 servers, Si , i = 1, 2 and 3.1
Intra-partition and inter-partition edges are respectively

referred to as local edges and distributed edges (shown using
dashed lines in Fig 2). The proportion of distributed edges is
not negligible and can range from 25-75% [14].

1Typically, each partition would be replicated for fault tolerance and avail-
ability, but these issues are beyond the scope of this paper.

a:Person b:Book

name:Tolkien title:The Hobbit

:WROTE

(a) Logical view.

a:Person name:Tolkien → wrote b edge edge

b:Book property title:The Hobbit ← written by a edge

vertex id property property edge edge

...
...

...
...

...

vertex id property edge edge edge

(b) Storage view.

Figure 1. Logical and storage views of a reciprocally consis-
tent edge ab.

S1

S2

S3

Figure 2. Local and distributed edges

Adjacency lists can now contain edge pointers to vertices
on remote servers. Guaranteeing reciprocal consistency for
distributed edges is challenging, especially when an existing
BASE database is used for storage and is then adapted with
a query language expressed in terms of edges and vertices
along with some gluecode to bind that interface to the un-
derlying database. Opting for this design appears to be a
good choice: it offers the application programmer the mod-
eling convenience of graphs together with the operational
characteristics of the underlying BASE database.
However, a major problem with this design option is the

lack of transactional semantics from the underlying BASE
databases. The latter seldom provide guarantees for multi-
operation, multi-object transactions that span partitions.
Without concurrency control across partitions, concurrent
updates of distributed edges can interleave and violate re-
ciprocal consistency.2 Our earlier work showed that under-
mining reciprocal consistency in distributed edges can lead
to irreversible corruption of the distributed database itself

2The concurrency control primitives provided by BASE databases are typi-
cally sufficient to ensure reciprocal consistency for local edges.

2

and the corruption rate can be worryingly high ([12], [18]).
Origins of reciprocal inconsistency in distributed edges are
explained in Section 4.

4 Reciprocally Inconsistent Distributed
Edges

Suppose that the edge (a)-[:WROTE]->(b) is a distributed
edge, with vertices a and b in servers Si and S j , j ̸= i , respec-
tively. When a transaction writes this edge ab,

1. two writes are performed: reciprocal entries in the
adjacency lists of both a and b are updated, and

2. write order is unconstrained: a transaction is equally
likely to write a then b as it is to write b then a.

Concurrent transactions Tx and Ty can interleave in the
following three ways and each one is depicted in Fig 3:
(a) Tx starts beforeTy ; it writes a at Si first and then proceeds

to S j across the network;Ty operates the otherway round,
beginning with S j and proceeding to Si (see Fig 3(a)). The
net effect is: Tx → Ty at Si and at Ty → Tx at S j , where
T → T ′ at S denotes that T precedes T ′ at server S .

(b) Same as the previous case, except that Ty starts earlier
than Tx (see Fig 3(b)).

(c) Same net effect as in previous two cases, except that both
Tx and Ty start their first writes at Si , Tx → Ty , but Ty
overtakesTx in reaching S j whereTy → Tx (see Fig 3(c)).
We could envisage three more corresponding cases (a’) -

(c’) where the roles of Tx and Ty in cases (a) - (c) are simply
interchanged; e.g., in case (a’), Ty starts before Tx , writes
a at Si first and then proceeds to S j across the network;
Tx operates the other way round, beginning with S j and
proceeding to Si . Thus, there are only 6 ways concurrent
Tx and Ty can interleave. The arguments we make based on
cases (a) - (c) of Fig 3 equally apply, by symmetry, to cases
(a’) - (c’) and so, for brevity, we will not consider the latter.

At the end of each case in Fig 3, the last update on a is
by Ty and that on b is by Tx . Unless updates of Tx and Ty
are commutative, ab cannot be reciprocally consistent. As
an example, suppose that Tx deletes the wrote edge while Ty
concurrently appends a property year :

// Tx
MATCH (a:Person)-[w:WROTE]->(b:Book)
WHERE a.name = 'Tolkien' AND b.title = 'The Hobbit'
DELETE w

// Ty
MATCH (a:Person)-[w:WROTE]->(b:Book)
WHERE a.name = 'Tolkien' AND b.title = 'The Hobbit'
SET w.year = 1937

The interleaving patterns depicted in Fig 3 leave ab recipro-
cally inconsistent, as shown in Fig 4.
When Tx and Ty do not interleave, either Ty → Tx or

Tx → Ty holds at both servers Si and S j ; in that case, the
last update on both a and b would be by either Tx or Ty ,

respectively. That is, when transactions update at both ends
of ab in some arbitrarily chosen but identical order, ab is left
reciprocally consistent after each transaction’s update.

When interleaving updates leave ab reciprocally inconsis-
tent, ab can be said to have become half-corrupted because
if Ty → Tx is the chosen order between Ty and Tx , then the
edge pointer inb of ab is in error; otherwise, the edge pointer
in a is erroneous. Thus, a reciprocally inconsistent edge ab
certainly has a corrupt half but the question of which half is
corrupt has been left open.
Suppose that a future transaction Tw first reads the edge

pointer of reciprocally in consistent ab, say, at vertex a. (Note
that when Tw reads any edge, it does not check for recipro-
cally consistency). At that moment, Tw (implicitly) chooses
the order Tx → Ty and thereby invalidates the other order
Ty → Tx that prevails at vertex b. Thus, from that moment
onward, the b end of edge ab becomes the corrupt end.
If no transaction ever reads the edge pointer at vertex b,

then the order Tx → Ty effectively prevails and the half-
corruption of ab remains invisible to the rest of the database.
However, if Tz is to subsequently read the edge pointer at
b and write another edge based on what it read, i.e., The
Hobbit has unknown author, then it is introducing updates
not consistent with what Tw read earlier; it thus introduces
semantic corruption into the database. Further writes based
on reading semantically corrupt data also spread corruption.
A database is said to be operationally corrupt when a sig-

nificant proportion of its data records are in a semantically
corrupt state. As stated earlier, we had shown that 10% of a
distributed graph database can become semantically corrupt
well within the system lifetime itself ([12], [18]).

Twomore relevant remarks on past works: a half-corrupted
edge is due to a dirty write (ANSI P0 [8], Adya G0 [5]) in
the context of distributed graph databases. If the database
provides the ANSI isolation level Read Uncommitted, it will
identically order the writes of concurrent transactions and
this would prevent all interleaving patterns shown in Fig 3
and thus avert half-corruption altogether.

5 Delta Protocol
A straightforward solution to preventing dirty writes is for
transactions to take long duration write locks [8], releasing
them only after the acquiring transaction has committed
or aborted. To prevent deadlock, a policy such as NO_WAIT
deadlock avoidance is used, which was shown to be the
optimal policy in a distributed, partitioned database [13].
Our Delta protocol employs principles behind all these

well-tested strategies but has two crucial differences:

• No locks are used.
• A write operation need not await until the preceding
write commits but can proceed if at least ∆ duration
(measured in local clock) has elapsed.

3

Si S j

Ty

Tx

(a)

Si S j

Ty
Tx

(b)

Si S j

Tx
Ty

(c)

Figure 3. Interleavings of concurrent writes to a distributed edge by transactions Tx and Ty .

a:Person b:Book

name:Tolkien title:The Hobbit

:WROTE
year:1937

(a) Logical view.

a:Person name:Tolkien → wrote b edge edge

b:Book year:1937 title:The Hobbit edge

vertex id property property edge edge

...
...

...
...

...

vertex id property edge edge edge

(b) Storage view.

Figure 4. Logical and storage views of a reciprocally incon-
sistent edge ab.

These differences lead to several advantages in the context
of graph databases which are characterized by the follow-
ing two aspects. First, a subset of edges are traversed and
modified with a very high frequency e.g. critical sections of
motorway in a road network, leading to high contention. Sec-
ondly, graph transactions tend to be longer-lived than those
in other databases. So, having to wait for earlier writes to ter-
minate while transactions are long lived, will severely limit
the scope for concurrent processing and reduce throughput
in a highly contentious environment.

With these concerns in mind we developed the Delta pro-
tocol, which aims at preventing edges from becoming half-
corrupted and hence quashing the seed of corruption whilst
keeping performance at an acceptable level.3

5.1 Protocol Description
The Delta Protocol has five rules:

3TheDelta protocol is a concurrency control mechanism only for distributed
edge updates; it does not concern itself with updates on vertices.

1. A transaction’s write on an end pointer of an edge
is initially tentative which would become permanent
only if that transaction is permitted to commit.

2. A tentative write is possible only if the end pointer
is either in a committed state or the immediately pre-
ceding tentative write was done at least ∆ time before
(where time is measured as per local clock).

3. If a transaction performs all its tentative writes, then
it is permitted to commit; otherwise, it must abort.

4. A transaction commits, when all its tentative writes
are made permanent, e.g., by using an atomic commit
protocol.

5. Tentative writes of an aborting transactions are ig-
nored. An ignored tentative write can make a new
transaction abort unnecessarily for up to ∆ time after
it was created; it is harmless thereafter and can be
garbage collected at any time.

5.2 Correctness Reasoning
Let us define δ as the bound estimate on the interval that
may elapse between a transaction completing its update at
one end of a distributed edge at one server and starting its
update at the other end of the same edge at another server.

Let ∆ be chosen such that ∆ > δ . Now consider the inter-
leaving in Fig 3(b) and let tx be the (global) time when Tx
starts at server Si ; similarly ty be the time Ty starts at server
S j . SinceTx starts afterTy in Fig 3(b), tx > ty , i.e. (tx −ty) > 0.

Say,Ty reaches Si at time ty+dy , wheredy is the actual time
elapsed between Ty completing a tentative write at one end
and starting at another end, let us assume that dy ≤ δ . When
Ty arrives at Si it will find a tentative write already done at
time tx . In this case, ty +dy −tx = dy − (tx −ty) < dy ≤ δ < ∆;
so, Ty will abort, preventing writes from interleaving and
half-corrupting the edge. Similar arguments can be made for
the scenario in Fig 3(a), if dx ≤ δ where dx is the actual time
elapsed between Tx completing a tentative write at one end
and starting at another end. Note that ty > tx and Tx will
abort because it will find out, on reaching server S j for its
next tentative write, that tx +dx − ty = dx − (ty − tx) < dx ≤

4

δ < ∆. Finally, for the interleaving in Fig 3(c), if ty − tx > ∆,
then Ty cannot overtake Tx at S j , if dx ≤ δ holds.

Assume that dx > δ or dy > δ is possible, i.e., the estimate
δ can fail to hold. In Fig 3(b), interleaving writes are avoided
only if ty + dy − tx = dy − (tx − ty) < dy < ∆; otherwise,
reciprocal inconsistency can occur. Similarly, interleaving
writes of Fig 3(a) are avoided only if tx +dx − ty = dx − (ty −
tx) < dx < ∆; otherwise, reciprocal inconsistency can occur.
Thus, in the extreme case tx = ty and reciprocal consistency
is not guaranteed if ∆ ≤ max {dx ,dy }.
For Fig 3(c), interleaving writes are avoided only if (tx +

dx)−(ty+dy) < ∆; given that (ty−tx) < ∆, whendx exceeds δ ,
the interleaving writes of Fig 3(c) are avoided only ifdx ≤ 2∆;
otherwise, reciprocal inconsistency can occur.
In summary, the Delta protocol eliminates interleaving

of transactions during edge writes, so long as ∆ remains
larger than the interval d that elapses between a transaction
completing its write at one end of a distributed edge and
starting at the other end. Since the exact value of d taken
by a transaction cannot be known in advance, its bound δ is
estimated with the best effort and ∆ is chosen to be ∆ > δ .
The larger the value of ∆ used, the more likely is that

∆ > d holds and half-corruption and thereby operational
corruption are averted; also, on the downside, the more likely
is that non-interleaving transactions will find their tentative
writes within ∆ time of each other and the later ones choose
to abort unnecessarily. In the extreme case, choosing a very
large ∆ (∆ ≈ ∞) totally eliminates any risk of reciprocal
inconsistency but does not allow any tentative write until
the preceding one is made permanent. It is equivalent to
enforcing NO_WAIT policy, wherein a requesting transaction
that finds the requested record being locked, must abort.
Our performance evaluation will therefore measure the

following two metrics for various values of ∆:

• Time taken for 10% of a large database to be corrupt,
• Number of transactions aborted per second.

If d is exponentially distributed with mean 1/µ, the proba-
bility of d exceeding ∆ is e (−µ∆). The values of ∆ chosen will
explore a range of probabilities of ∆ being exceeded.

6 Performance Evaluation Strategies
To assess the time to operational corruption, we reused the
model that we developed in [12] and adapted it for the Delta
protocol. For completeness, the model is briefly explained
first before we discuss the adaptation. We note that an em-
pirical evaluation of the time to operational corruption using
a real system would be impractical due to the sheer length of
time and the cost it would take to run the experiment. (For
certain values of ∆, the model predicts anywhere between
1-75 years for operational corruption! Details are to follow.)

The model of [12] assumes that transactions arrive in a
Poisson stream with rate λ transactions per second (TPS, for

short). Each transaction performs a random number (K) of
read operations and then updates a single edge.

To model a scale-free graph, edges in the distributed data-
base are divided into T types, i = 1, 2, . . . ,T . Type-1 edges
represent the most popular edges to be accessed by transac-
tions and type-T edges are the least popular. Popular edges
are smaller in number compared to the less popular ones. N
denotes the total number of edges in the database. For all
edge types, a fraction f are distributed.
At time 0, all edges are assumed to be clean (free from

corruption); thereafter, an edge can be in one of four states:
1. Local and clean.
2. Distributed and clean.
3. Distributed and half-corrupted.
4. Local or distributed and semantically corrupted.
The delay d is the time interval that elapses between a

transaction completing its tentative write at one end of a
distributed edge and starting at another end. It constitutes
the window for concurrent transactions to interleave as por-
trayed in Fig 3. It is assumed to be exponentially distributed
with mean 1/µ (i.e., at rate µ).

The model parameters now enable us to compute the
probability qi that a transaction updating a clean type-i dis-
tributed edge, leaves it half-corrupted, in the absence of
any concurrency control mechanism. (Our earlier work in
[12] assumes no concurrency control). These probabilities,
qi , 1 ≤ i ≤ T , are then used to compute transition rates aj ,k
between state j to k , 1 ≤ j,k ≤ 4. (Since local and distributed
edges are fixed, a1,2 = a2,1 = 0.)
The rates aj ,k are in turn used to simulate the spread of

corruption within the database to estimate the first passage
time Uγ for a fraction γ of N edges to enter the state 4.
(When γN edges become semantically corrupt, the database
becomes operationally corrupt.) The reader is directed to
[12] and [18] for a granular discussion of the initial model.

Delta Protocol Adaptation. Our concurrency protocol
reduces the probabilities qi , 1 ≤ i ≤ T and we compute qnewi
as shown in Appendix A. The new probabilities qnewi are
used in the model and simulations of [12] to estimateUγ .

Number of aborts per second. To evaluate this metric
for various values of ∆, a second simulation that focuses
specifically on the subset of most frequently accessed dis-
tributed edges was performed.
Note that both metrics that we set out to evaluate will

be influenced by several parameters that characterize the
database and other aspects:

• Database Size. Size is expressed by the total number of
edges N , and the fraction f of distributed edges.

• Workload. Measured as transactions per second (TPS).
Significant for measuringUγ are: the fraction of this
load that writes after reads and the number of reads
that precede a write.

5

• Distributed Write Delays and Choosing ∆. The smaller
the delays the less likely the bound ∆ is violated. Con-
versely, smaller ∆ is the more likely the bound ∆ is
violated.

7 Evaluation
The following parameter choices are inline in with industry
experiences. The graph analyzed consisted of seven edge
types, n1 = 104,n2 = 105,n3 = 106,n4 = 107,n5 = 108,n6 =
109,n7 = 1010, totaling 11 billion edges, with access probabil-
ities p1 = 0.5,p2 = 0.25,p3 = 0.13,p4 = 0.06,p5 = 0.03,p6 =
0.02 and p7 = 0.01; a graph of this size would have approx-
imately 1 billion vertices. The number of read operations
before a write per query is geometrically distributed starting
at 2, with an average of 15. In all edge types, f = 0.3 are
distributed, the remainder are local; in proportion with a
good graph partitioning algorithm.
The delay d between a transaction completing a tenta-

tive write at one end and starting at another end is expo-
nential distributed with a mean of 5ms . The database is ini-
tially clean and considered to be operationally corrupted
when 10% (γ = 0.1) of all edges are semantically corrupted.
The time taken until operational corruption, U , is measured
in days. We consider a range of transaction arrival rates,
λ = (1000, ..., 10000); a typical graph workload comprises
of 90% read-only transactions and 10% read-write transac-
tions [6], hence the chosen range reflects a total workload
(10000, ..., 100000). The following ∆ values were considered
∆ = 50, 75, 100ms . For each ∆ the probability that d exceeds
∆ is P (d > ∆) = 4.5−5, 3.1 × 10−7, 2.1 × 10−9 respectively.

The results for measuring the impact of ∆ on the time until
operational corruption are given in Fig 5 (where they-axis in
log scale). With no concurrency control,U ranges between
50-500 days. For ∆ = 50ms , U increases to 1-75 years. For
∆ = 75, 100ms the time to corruption is significantly large as
shown Fig 5.
To evaluate the number α of aborts occurred per second,

simulations were run for 10 seconds for each arrival rate,
λ = (1000, ..., 10000). Fig 6 reports the fraction α

λ for vari-
ous values of λ. This fraction is also the probability that an
incoming transaction is aborted due to the Delta protocol.
For ∆ = 50 ms, the abort probability is between 1 − 5%, this
increases to between 1−7% and 1−9% for ∆ = 75 and ∆ = 100
respectively.

8 Conclusions
Database concurrency control has been a long researched
area, however to the best of our knowledge this is first at-
tempt at developing a protocol specific for distributed graph
databases. We presented a lightweight protocol for providing
reciprocal consistency and mitigating the problem of high
contention in a distributed graph database.

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
TPS (λ)

T
im

e
to

 1
0%

 s
em

an
tic

 c
or

ru
pt

io
n

lo
g(

U
)

∆ (ms):

NA

50

75

100

Figure 5. Time until operational corruption.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
TPS (λ)

F
ra

ct
io

n
of

 a
bo

rt
s

(α
)

∆ (ms):

50

75

100

Figure 6. Fraction of aborts.

The Delta protocol leverages the fact that writes to dis-
tributed edges always consist of two sequential writes to
entries in the adjacency lists of vertices the edge connects.
Since it is concerned only with edges (and not vertices) in a
graph, it provides guarantees weaker than Read Uncommit-
ted isolation (the weakest ANSI isolation level).

The protocol that is presented and performance-evaluated
here, we believe, valuable in practice given the popularity
of BASE distributed graph databases and the rate at which
semantic corruption can spread if reciprocal consistency
is left unchecked. Simulations indicate that when ∆ values
are chosen to be reasonably large, the protocol rules out
corruption resulting from half-corrupted distributed edges
while keeping the abort rate considerably small.

For future work, we intend on implementing the protocol
to assess the validity of the simulations and to enable compar-
isons with traditional lock-based approaches. Moreover, we
plan on investigating the suitability of higher isolation levels

6

in a distributed graph database, Read Atomic isolation [7]
seems particularly well suited.

References
[1] 2020. JanusGraph Documentation. http://janusgraph.org/.
[2] 2020. openCypher Documentation. https://www.opencypher.org.
[3] 2020. Scale-Free Networks. https://en.wikipedia.org/wiki/Scale-free_

network.
[4] 2020. TitanDB Documentation. https://titan.thinkaurelius.com.
[5] Atul Adya, Barbara Liskov, and Patrick O’Neil. 2000. Generalized iso-

lation level definitions. In Proceedings of 16th International Conference
on Data Engineering (Cat. No. 00CB37073). IEEE, 67–78.

[6] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter A. Boncz,
Orri Erling, Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep-
Lluís Larriba-Pey, Norbert Martínez-Bazan, József Marton, Marcus
Paradies, Minh-Duc Pham, Arnau Prat-Pérez, Mirko Spasic, Ben-
jamin A. Steer, Gábor Szárnyas, and Jack Waudby. 2020. The
LDBC Social Network Benchmark. CoRR abs/2001.02299 (2020).
arXiv:2001.02299 http://arxiv.org/abs/2001.02299

[7] Peter Bailis, Alan Fekete, Joseph M. Hellerstein, Ali Ghodsi, and Ion
Stoica. 2014. Scalable atomic visibility with RAMP transactions. In In-
ternational Conference onManagement of Data, SIGMOD 2014, Snowbird,
UT, USA, June 22-27, 2014, Curtis E. Dyreson, Feifei Li, and M. Tamer
Özsu (Eds.). ACM, 27–38. https://doi.org/10.1145/2588555.2588562

[8] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.
O’Neil, and Patrick E. O’Neil. 1995. A Critique of ANSI SQL Isolation
Levels. In Proceedings of the 1995 ACM SIGMOD International Confer-
ence on Management of Data, San Jose, California, USA, May 22-25,
1995, Michael J. Carey and Donovan A. Schneider (Eds.). ACM Press,
1–10. https://doi.org/10.1145/223784.223785

[9] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer,
Michał Podstawski, Claude Barthels, Gustavo Alonso, and Torsten
Hoefler. 2019. Demystifying Graph Databases: Analysis and Taxon-
omy of Data Organization, System Designs, and Graph Queries. (2019).
arXiv:cs.DB/http://arxiv.org/abs/1910.09017v1

[10] Emil Eifrem. 2016. Graph databases: The key to foolproof fraud
detection? Computer Fraud & Security 2016 (03 2016), 5–8. https:
//doi.org/10.1016/S1361-3723(16)30024-0

[11] P Ezhilchelvan, I Mitrani, J Waudby, and J Webber. 2019. Design and
Evaluation of an Edge Concurrency Control Protocol for Distributed
Graph Databases. In 16th European Performance Engineering Workshop
(EPEW 2019). Newcastle University.

[12] Paul D. Ezhilchelvan, Isi Mitrani, and Jim Webber. 2018. On the Degra-
dation of Distributed Graph Databases with Eventual Consistency. In
Computer Performance Engineering - 15th European Workshop, EPEW
2018, Paris, France, October 29-30, 2018, Proceedings (Lecture Notes
in Computer Science), Rena Bakhshi, Paolo Ballarini, Benoît Barbot,
Hind Castel-Taleb, and Anne Remke (Eds.), Vol. 11178. Springer, 1–13.
https://doi.org/10.1007/978-3-030-02227-3_1

[13] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stone-
braker. 2017. An Evaluation of Distributed Concurrency Control.
PVLDB 10, 5 (2017), 553–564. https://doi.org/10.14778/3055540.3055548

[14] Jiewen Huang and Daniel Abadi. 2016. LEOPARD: Lightweight Edge-
Oriented Partitioning and Replication for Dynamic Graphs. PVLDB 9,
7 (2016), 540–551. https://doi.org/10.14778/2904483.2904486

[15] Dan Pritchett. 2008. BASE: An Acid Alternative. ACM Queue 6, 3
(2008), 48–55. https://doi.org/10.1145/1394127.1394128

[16] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases:
new opportunities for connected data. " O’Reilly Media, Inc.".

[17] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and
M Tamer Özsu. 2017. The ubiquity of large graphs and surprising
challenges of graph processing. Proceedings of the VLDB Endowment
11, 4 (2017), 420–431.

[18] Jim Webber, Paul Ezhilchelvan, and Isi Mitrani. 2. Model-
ing Corruption in Eventually-Consistent Graph Databases. (2).
arXiv:cs.DB/http://arxiv.org/abs/1904.04702v1

A Derivation of Conflict Probability
Edges are divided into T types, i = 1, 2, ...,T . The number of
edges of type i is represented by ni . The probability an edge
of type i is accessed by a given operation is represented by
pi . (Exact values taken by ni and pi are given in Section 7.)

The arrival time, a, of a transaction, T , is assumed ex-
ponentially distributed with rate ρ. Where ρ = λpi

2ni is the
probability a given operation accesses the incorrect record
of a half-corrupted edge of type i .
The time interval, d , that elapses between transaction T

completing its tentative write at one end of a distributed
edge and starting at another end, is assumed exponentially
distributed with rate µ.

Consider the interleaving in Fig 3(a) and assumeTx arrives
at Si at time 0. Then, Tx arrives at S j after dx . Assume Ty
arrives at S j at some time a. Then, Ty arrives at Si at time
a+dy . Half-corruption occurs under the following conditions:
(i) At S j , dx > a + ∆
(ii) At Si , a + dy > ∆

The conflict probability, qnewi , for edge type i is given by,
qnewi = P

[
(dx > a + ∆) ∩ (dy > ∆ − a)

]
=
∫∆

0

λpi
2ni

e
−
λpi
2ni

a
e−µ (∆+a)e−µ (∆−a)da

+
∫∞

∆

λpi
2ni

e
−
λpi
2ni

a
e−µ (∆+a)da

= e−2aµ −
©« µ
λpi
2ni + µ

ª®¬ e−(λpi2ni
+2µ)a

From the perspective of computing qnewi , Fig 3(b) is equiv-
alent to Fig 3(a) and the above expression holds. Fig 3(c)
is ignored as it can be avoided by having all first tentative
updates on a given edge at a given server (e.g., at Si) be num-
bered sequentially and having the second tentative attempts
processed (at S j) as per this sequence number.

7

http://janusgraph.org/
https://www.opencypher.org
https://en.wikipedia.org/wiki/Scale-free_network
https://en.wikipedia.org/wiki/Scale-free_network
https://titan.thinkaurelius.com
http://arxiv.org/abs/2001.02299
http://arxiv.org/abs/2001.02299
https://doi.org/10.1145/2588555.2588562
https://doi.org/10.1145/223784.223785
https://doi.org/10.1016/S1361-3723(16)30024-0
https://doi.org/10.1016/S1361-3723(16)30024-0
https://doi.org/10.1007/978-3-030-02227-3_1
https://doi.org/10.14778/3055540.3055548
https://doi.org/10.14778/2904483.2904486
https://doi.org/10.1145/1394127.1394128

	Abstract
	1 Introduction
	2 Reciprocal Consistency
	3 Distributed Graph Databases
	4 Reciprocally Inconsistent Distributed Edges
	5 Delta Protocol
	5.1 Protocol Description
	5.2 Correctness Reasoning

	6 Performance Evaluation Strategies
	7 Evaluation
	8 Conclusions
	References
	A Derivation of Conflict Probability

