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Maximal Clique Enumeration (MCE) is a fundamental graph mining problem, and is useful as a primitive
in identifying dense structures in a graph. Due to the high computational cost of MCE, parallel methods
are imperative for dealing with large graphs. We present shared-memory parallel algorithms for MCE, with
the following properties: (1) the parallel algorithms are provably work-efficient relative to a state-of-the-art
sequential algorithm (2) the algorithms have a provably small parallel depth, showing they can scale to a
large number of processors, and (3) our implementations on a multicore machine show good speedup and
scaling behavior with increasing number of cores, and are substantially faster than prior shared-memory parallel
algorithms for MCE; for instance, on certain input graphs, while prior works either ran out of memory or did not
complete in 5 hours, our implementation finished within a minute using 32 cores. We also present work-efficient
parallel algorithms for maintaining the set of all maximal cliques in a dynamic graph that is changing through
the addition of edges.
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1 INTRODUCTION
We study Maximal Clique Enumeration (MCE) from a graph, which requires to enumerate all cliques
(complete subgraphs) in the graph that are maximal. A clique C in a graph G = (V ,E) is a (dense)
subgraph such that every pair of vertices in C are directly connected by an edge. A clique C is said
to be maximal when there is no clique C ′ such that C is a proper subgraph of C ′ (see Figure 1).
Maximal cliques are perhaps the most fundamental dense subgraphs, and MCE has been widely used
in diverse research areas, e.g. the works of Palla et al. [44] on discovering protein groups by mining
cliques in a protein-protein network, of Koichi et al. [29] on discovering chemical structures using
MCE on a graph derived from large-scale chemical databases, various problems on mining biological
data [8, 21, 22, 24, 39, 46, 63], overlapping community detection [62], location-based services on
spatial databases [64], and inference in graphical models [30]. MCE is important in static as well as
dynamic networks, i.e. networks that change over time due to the addition and deletion of vertices and
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(a) Input Graph G (b) Non-Maximal Clique in G (c) Maximal Clique in G

Fig. 1. Maximal clique in a graph

edges. For example, Chateau et al. [7] use MCE in studying changes in the genetic rearrangements
of bacterial genomes, when new genomes are added to the existing genome population. Maximal
cliques are building blocks for computing approximate common intervals of multiple genomes. Duan
et al. [17] use MCE on a dynamic graph to track highly interconnected communities in a dynamic
social network.

MCE is a computationally hard problem since it is harder than the maximum clique problem,
a classical NP-complete combinatorial problem that asks to find a clique of the largest size in
a graph. Note that maximal clique and maximum clique are two related, but distinct notions. A
maximum clique is also a maximal clique, but a maximal clique need not be a maximum clique.
The computational cost of enumerating maximal cliques can be higher than the cost of finding the
maximum clique, since the output size (set of all maximal cliques) can itself be very large. Moon and
Moser [41] showed that a graph on n vertices can have as many as 3n/3 maximal cliques, which is
proved to be a tight bound. Real-world networks typically do not have cliques of such high complexity
and as a result, it is feasible to enumerate maximal cliques from large graphs. The literature is rich on
sequential algorithms for MCE. Bron and Kerbosch [5] introduced a backtracking search method to
enumerate maximal cliques. Tomita et. al [56] introduced the idea of “pivoting” in the backtracking
search, which led to a significant improvement in the runtime. This has been followed up by further
work such as due to Eppstein et al. [18], who used a degeneracy-based vertex ordering on top of the
pivot selection strategy.

Sequential approaches to MCE can lead to high runtimes on large graphs. Based on our experiments,
a real-world network Orkut with approximately 3 million vertices, 117 million edges requires
approximately 8 hours to enumerate all maximal cliques using an efficient sequential algorithm due
to Tomita et al. [56]. Graphs that are larger and/or more complex cannot be handled by sequential
algorithms with a reasonable turnaround time, and the high computational complexity of MCE calls
for parallel methods.

In this work, we consider shared-memory parallel methods for MCE. In the shared-memory model,
the input graph can reside within globally shared memory, and multiple threads can work in parallel
on enumerating maximal cliques. Shared-memory parallelism is of high interest today since machines
with tens to hundreds of cores and hundreds of Gigabytes of shared-memory are readily available.
The advantage of using shared-memory approach over a distributed memory approach are: (1) Unlike
distributed memory, it is not necessary to divide the graph into subgraphs and communicate the
subgraphs among processors. In shared-memory, different threads can work concurrently on a single
shared copy of the graph (2) Sub-problems generated during MCE are often highly imbalanced, and
it is hard to predict which sub-problems are small and which are large, while initially dividing the
problem into sub-problems. With a shared-memory method, it is possible to further subdivide sub-
problems and process them in parallel. With a distributed memory method, handling such imbalances
in sub-problem sizes requires greater coordination and is more complex.
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Fig. 2. Imbalanced in sizes of sub-problems for MCE, where each sub-problem corresponds to the
maximal cliques of a single vertex in the given graph. (a) As-Skitter: 0.3% of sub-problems form
90% of total number of maximal cliques. (b) Wiki-Talk: only 0.002% of sub-problems yield 90% of
all maximal cliques. (c) As-Skitter: 0.02% of sub-problems take 90% of total runtime of MCE. (d)
Wiki-Talk: only 0.004% of sub-problems take 90% of total runtime of MCE

To show how imbalanced the sub-problems can be, in Figure 2, we show data for two real-world
networks As-Skitter and Wiki-Talk. These two networks have millions of edges and tens of
millions of maximal cliques (for statistics on these networks, see Section 6). Consider a division of
the MCE problem into per-vertex sub-problems, where each sub-problem corresponds to the set of
all maximal cliques containing a single vertex in a network and suppose these sub-problems were
solved independently, while taking care to prune out search for the same maximal clique multiple
times. For As-Skitter, we observed that 90% of total runtime required for MCE is taken by only
0.022% of the sub-problems and less than 0.4% of all sub-problems yield 90% of all maximal cliques.
Even larger skew in sub-problem sizes is observed in the Wiki-Talk graph. This data demonstrates
that load balancing is a central issue for parallel MCE.

Prior works on parallel MCE have largely focused on distributed memory algorithms [37, 51,
55, 60]. There are a few works on shared-memory parallel algorithms [16, 34, 65]. However, these
algorithms do not scale to larger graphs due to memory or computational bottlenecks – either the
algorithms miss out significant pruning opportunities as in [16], or they need to generate a large
number of non-maximal cliques as in [34, 65].

1.1 Our Contributions
We make the following contributions towards enumerating all maximal cliques in a simple graph.

Theoretically Efficient Parallel Algorithm: We present a shared-memory parallel algorithm
ParTTT, which takes as input a graph G and enumerates all maximal cliques in G. ParTTT is an
efficient parallelization of the algorithm due to Tomita, Tanaka, and Takahashi [56]. Our analysis of
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Table 1. Summary of shared-memory parallel algorithms for MCE.

Algorithm Type Description
ParTTT Static A work-efficient parallel algorithm for MCE on a static graph
ParMCE Static A practical parallel algorithm for MCE on a static graph dealing with load imbalance

ParIMCE Dynamic
ParIMCENew: A work-efficient parallel algorithm for enumerating new
maximal cliques in a dynamic graph.
ParIMCESub: A work-efficient parallel algorithm for enumerating subsumed
maximal cliques in a dynamic graph.

ParTTT using a work-depth model of computation [53] shows that it is work-efficient when compared
with [56] and has a low parallel depth. To our knowledge, this is the first shared-memory parallel
algorithm for MCE with such provable properties.

Optimized Parallel Algorithm: We present a shared-memory parallel algorithm ParMCE that builds
on ParTTT and yields improved practical performance. Unlike ParTTT, which starts with a single
task at the top level that spawns recursive subtasks as it proceeds, leading to a lack of parallelism
at the top level of recursion, ParMCE spawns multiple parallel tasks at the top level. To achieve this,
ParMCE uses per-vertex parallelization, where a separate sub-problem is created for each vertex and
different sub-problems are processed in parallel. Each sub-problem is required to enumerate cliques
which contain the assigned vertex and care is taken to prevent overlap between sub-problems. Each
per-vertex sub-problem is further processed in parallel using ParTTT – this additional (recursive)
level of parallelism using ParTTT is important since different per-vertex sub-problems may have
significantly different computational costs, and having each run as a separate sequential task may
lead to uneven load balance. To further address load balance, we use a vertex ordering in assigning
cliques to different per-vertex sub-problems. For ordering the vertices, we use various metrics such
as degree, triangle count, and the degeneracy number of the vertices.

Incremental Parallel Algorithm: Next, we present a parallel algorithm ParIMCE that can maintain
the set of maximal cliques in a dynamic graph, when the graph is updated due to the addition of new
edges. When a batch of edges are added to the graph, ParIMCE can (in parallel) enumerate the set of
all new maximal cliques that emerged and the set of all maximal cliques that are no longer maximal
(subsumed cliques). ParIMCE consists of two parts: ParIMCENew for enumerating new maximal
cliques, and ParIMCESub for enumerating subsumed maximal cliques. We analyze ParIMCE using
the work-depth model and show that it is work-efficient relative to an efficient sequential algorithm,
and has a low parallel depth. A summary of our algorithms is shown in Table 1.

Experimental Evaluation: We implemented all our algorithms, and our experiments show that
ParMCE yields a speedup of 15x-21x when compared with an efficient sequential algorithm (due to
Tomita et al. [56]) on a multicore machine with 32 physical cores and 1 TB RAM. For example, on the
Wikipedia network with around 1.8 million vertices, 36.5 million edges, and 131.6 million maximal
cliques, ParTTT achieves a 16.5x parallel speedup over the sequential algorithm, and the optimized
ParMCE achieves a 21.5x speedup, and completed in approximately two minutes. In contrast, prior
shared-memory parallel algorithms for MCE [16, 34, 65] failed to handle the input graphs that we
considered, and either ran out of memory ([34, 65]) or did not complete in 5 hours ([16]).

On dynamic graphs, we observe that ParIMCE gives a 3x-19x speedup over a state-of-the-art
sequential algorithm IMCE [13] on a multicore machine with 32 cores. Interestingly, the speedup of
the parallel algorithm increases with the magnitude of change in the set of maximal cliques – the
“harder” the dynamic enumeration task is, the larger is the speedup obtained. For example, on a dense
graph such as Ca-Cit-HepTh (with original graph density of 0.01), we get approximately a 19x
speedup over the sequential IMCE. More details are presented in Section 6.
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Techniques for Load Balancing: Our parallel methods can effectively balance the load in solving
parallel MCE. As shown in Figure 2, “natural” sub-problems of MCE are highly imbalanced, and,
therefore, load balancing is not trivial. In our algorithms, sub-problems of MCE are broken down
into smaller sub-problems, according to the search used by the sequential algorithm [56], and this
process continues recursively. As a result, the final sub-problem that is solved in a single task is not
so large as to create load imbalances. Our experiments in Section 6 demonstrate that the recursive
splitting of sub-problems in MCE is essential for achieving a high speedup over existing algorithms
[56]. In order to efficiently assign these (dynamically created) tasks to threads at runtime, we utilize
a work stealing scheduler [3, 4].

Roadmap. The rest of the paper is organized as follows. We discuss related works in Section 2,
we present preliminaries in Section 3, followed by a description of algorithms for a static graph in
Section 4, algorithms for a dynamic graph in Section 5, an experimental evaluation in Section 6, and
conclusions in Section 7.

2 RELATED WORK
Maximal Clique Enumeration (MCE) from a graph is a fundamental problem that has been
extensively studied for more than two decades, and there are multiple prior works on sequential and
parallel algorithms. We first discuss sequential algorithms for MCE, followed by parallel algorithms.

Sequential MCE: Bron and Kerbosch [5] presented an algorithm for MCE based on depth-first-
search. Following their work, a number of algorithms have been presented [6, 9, 18, 28, 38, 56, 57].
The algorithm of Tomita et al. [56] has a worst-case time complexity O(3 n

3 ) for an n vertex graph,
which is optimal in the worst-case, since the size of the output can be as large asO(3 n

3 ) [41]. Eppstein
et al. [18, 19] present an algorithm for sparse graphs whose complexity can be parameterized by the
degeneracy of the graph, a measure of graph sparsity.

Another approach to MCE is a class of “output-sensitive” algorithms whose time complexity
for enumerating maximal cliques is a function of the size of the output. There exist many such
output-sensitive algorithms for MCE, including [9, 11, 38, 57], which can be viewed as instances of
a general paradigm called “reverse-search” [1]. A recent algorithm [11] provides favorable tradeoffs
for delay (time between two enumerated maximal cliques), when compared with prior works. In
terms of practical performance, the best output-sensitive algorithms [9, 11, 38] are not as efficient
as the best depth-first-search based algorithms [18, 56]. Other sequential methods for MCE include
algorithms due to Kose et al. [31], Johnson et al. [23], Li et al. [35], on a special class of graphs
due to Fox et al. [20], on temporal graph due to Qin et al. [45]. Multiple works have considered
sequential algorithms for maintaining the set of maximal cliques [13, 43, 54] on a dynamic graph,
and, to our knowledge, the most efficient algorithm is the one due to Das et al. [13].

Parallel MCE: There are multiple prior works on parallel algorithms for MCE [15, 37, 51, 55, 60,
61, 65]. We first discuss shared-memory algorithms and then distributed memory algorithms. Zhang
et al. [65] present a shared-memory parallel algorithm based on the sequential algorithm due to Kose
et al. [31]. This algorithm computes maximal cliques in an iterative manner, and, in each iteration,
it maintains a set of cliques that are not necessarily maximal and, for each such clique, maintains
the set of vertices that can be added to form larger cliques. This algorithm does not provide a
theoretical guarantee on the runtime and suffers for large memory requirement. Du et al. [15] present
a output-sensitive shared-memory parallel algorithm for MCE, but their algorithm suffers from poor
load balancing as also pointed out by Schmidt et al. [51]. Lessley et al. [34] present a shared memory
parallel algorithm that generates maximal cliques using an iterative method, where in each iteration,
cliques of size (k − 1) are extended to cliques of size k. The algorithm of [34] is memory-intensive,
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since it needs to store a number of intermediate non-maximal cliques in each iteration. Note that
the number of non-maximal cliques may be far higher than the number of maximal cliques that are
finally emitted, and a number of distinct non-maximal cliques may finally lead to a single maximal
clique. In the extreme case, a complete graph on n vertices has (2n − 1) non-maximal cliques, and
only a single maximal clique. We present a comparison of our algorithm with [15, 34, 65] in later
sections.

Distributed memory parallel algorithms for MCE include works due to Wu et al. [60], designed
for the MapReduce framework, Lu et al. [37], which is based on the sequential algorithm due to
Tsukiyama et al. [57], Svendsen et al. [55], Wang et al. [59], and algorithm for sparse graph due to
Yu and Liu [61]. Other works on parallel and sequential algorithms for enumerating dense subgraphs
from a massive graph include sequential algorithms for enumerating quasi-cliques [36, 49, 58],
parallel algorithms for enumerating k-cores [14, 25, 40, 50], k-trusses [26, 27, 50], nuclei [50], and
distributed memory algorithms for enumerating k-plexes [10], bicliques [42].

3 PRELIMINARIES
We consider a simple undirected graph without self loops or multiple edges. For graph G, let V (G)
denote the set of vertices in G and E(G) denote the set of edges in G. Let n denote the size of V (G),
and m denote the size of E(G). For vertex u ∈ V (G), let ΓG (u) denote the set of vertices adjacent to u
in G. When the graph G is clear from the context, we use Γ(u) to mean ΓG (u). Let C(G) denote the
set of all maximal cliques in G.

Sequential Algorithm TTT: The algorithm due to Tomita, Tanaka, and Takahashi. [56], which we
call TTT, is a recursive backtracking-based algorithm for enumerating all maximal cliques in an
undirected graph, with a worst-case time complexity of O(3n/3) where n is the number of vertices in
the graph. In practice, this is one of the most efficient sequential algorithms for MCE. Since we use
TTT as a subroutine in our parallel algorithms, we present a short description here.

In any recursive call, TTT maintains three disjoint sets of vertices K , cand, and fini, where K is a
candidate clique to be extended, cand is the set of vertices that can be used to extend K , and fini is
the set of vertices that are adjacent to K , but need not be used to extend K (these are being explored
along other search paths). Each recursive call iterates over vertices from cand and in each iteration, a
vertex q ∈ cand is added to K and a new recursive call is made with parameters K ∪ {q}, candq , and
finiq for generating all maximal cliques of G that extend K ∪ {q} but do not contain any vertices
from finiq . The sets candq and finiq can only contain vertices that are adjacent to all vertices in
K ∪ {q}. The clique K is a maximal clique when both cand and fini are empty.

The ingredient that makes TTT different from the algorithm due to Bron and Kerbosch [5] is the
use of a “pivot” where a vertex u ∈ cand ∪ fini is selected that maximizes |cand ∩ Γ(u)|. Once the
pivot u is computed, it is sufficient to iterate over all the vertices of cand \ Γ(u), instead of iterating
over all vertices of cand. The pseudo code of TTT is presented in Algorithm 1. For the initial call, K
and fini are initialized to an empty set, cand is the set of all vertices of G.

Parallel Cost Model: For analyzing our shared-memory parallel algorithms, we use the CRCW
PRAM model [2], which is a model of shared parallel computation that assumes concurrent reads and
concurrent writes. Our parallel algorithm can also work in other related models of shared-memory
such as EREW PRAM (exclusive reads and exclusive writes), with a logarithmic factor increase
in work as well as parallel depth. We measure the effectiveness of the parallel algorithm using the
work-depth model [53]. Here, the “work” of a parallel algorithm is equal to the total number of
operations of the parallel algorithm, and the “depth” (also called the “parallel time” or the “span”)
is the longest chain of dependent computations in the algorithm. A parallel algorithm is said to be
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Algorithm 1: TTT(G,K , cand, fini)
Input: G - the input graph

K - a clique to extend,
cand - a set of vertices that can be used extend K ,
fini - a set of vertices that have been used to extend K
Output: Set of all maximal cliques of G containing K and vertices from cand but not containing any vertex

from fini
1 if (cand = ∅) & (fini = ∅) then
2 Output K and return

3 pivot← (u ∈ cand ∪ fini) such that u maximizes the size of cand ∩ ΓG (u)
4 ext← cand − ΓG (pivot)
5 for q ∈ ext do
6 Kq ← K ∪ {q}
7 candq ← cand ∩ ΓG (q)
8 finiq ← fini ∩ ΓG (q)
9 cand← cand − {q}

10 fini← fini ∪ {q}
11 TTT(G,Kq , candq , finiq )

work-efficient if its total work is of the same order as the work due to the best sequential algorithm.1

We aim for work-efficient algorithms with a low depth, ideally poly-logarithmic in the size of the
input. Using Brent’s theorem [2], it can be seen that a parallel algorithm on input size n with a depth
of d can theoretically achieve Θ(p) speedup on p processors as long as p = O(n/d).

We next restate a result on concurrent hash tables [52] that we use in proving the work and depth
bounds of our parallel algorithms.

THEOREM 3.1 (THEOREM 3.15 [52]). There is an implementation of a hash table, which, given a
hash function with expected uniform distribution, performs n1 insert, n2 delete and n3 find operations
in parallel using O(n1 + n2 + n3) work and O(1) depth on average.

4 PARALLEL MCE ALGORITHMS ON A STATIC GRAPH
In this section, we present new shared-memory parallel algorithms for MCE. We first describe a
parallel algorithm ParTTT, a parallelization of the sequential TTT algorithm and an analysis of its
theoretical properties. Then, we discuss bottlenecks in ParTTT that arise in practice, leading us to
another algorithm ParMCE with a better practical performance. ParMCE uses ParTTT as a subroutine –
it creates appropriate sub-problems that can be solved in parallel and hands off the enumeration task
to ParTTT.

4.1 Algorithm ParTTT

Our first algorithm ParTTT is a work-efficient parallelization of the sequential TTT algorithm. The
two main components of TTT (Algorithm 1) are (1) Selection of the pivot element (Line 3) and
(2) Sequential backtracking for extending candidate cliques until all maximal cliques are explored
(Line 5 to Line 11). We discuss how to parallelize each of these steps.

Parallel Pivot Selection: Within a single recursive call of ParTTT, the pivot element is computed
in parallel using two steps, as described in ParPivot (Algorithm 2). In the first step, the size of the

1Note that work-efficiency in the CRCW PRAM model does not imply work-efficiency in the EREW PRAM model
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intersection cand ∩ Γ(u) is computed in parallel for each vertex u ∈ cand ∪ fini. In the second step,
the vertex with the maximum intersection size is selected. The parallel algorithm for selecting a
pivot is presented in Algorithm 2. The following lemma proves that the parallel pivot selection is
work-efficient with logarithmic depth:

LEMMA 1. The total work of ParPivot is O(∑w ∈cand∪fini(min{|cand|, |Γ(w)|})), which is O(n2),
and depth is O(logn).

PROOF. If sets cand and Γ(w) are stored as hashsets, then, for vertex w , the size tw =

|intersect(cand, Γ(w))| can be computed sequentially in time O(min{|cand|, |Γ(w)|}) – the in-
tersection of two sets S1 and S2 can be found by considering the smaller set among the two, say
S2, and searching for its elements within the larger set, say S1. It is possible to parallelize the
computation of intersect(S1, S2) by executing the search elements of S2 in parallel, followed by
counting the number of elements that lie in the intersection, which can also be done in parallel in
a work-efficient manner using O(1) depth using Theorem 3.1. Since computing the maximum of
a set of n numbers can be accomplished using work O(n) and depth O(logn), for vertex w , tw can
be computed using work O(min{|cand|, |Γ(w)|}) and depth O(logn). Once tw (i.e. |cand ∩ Γ(w)|)
is computed for every vertex w ∈ cand ∪ fini, arдmax({tw : w ∈ cand ∪ fini}) can be obtained
using additional work O(|cand ∪ fini|) and depth O(logn). Hence, the total work of ParPivot is
O(∑w ∈cand∪fini(min{|cand|, |Γ(w)|}). Since the size of cand, fini, and Γ(w) are bounded by n, this
is O(n2), but typically much smaller in practice. □

Algorithm 2: ParPivot(G,K , cand, fini)
Input: G - the input graph; K - a clique in G that may be further extended; cand - a set of vertices that

may extend K ; fini - a set of vertices that have been used to extend K .
Output: Pivot vertex v ∈ cand ∪ fini.

1 for w ∈ cand ∪ fini do in parallel
2 In parallel, compute tw ← |intersect(cand, ΓG (w))|
3 In parallel, find v ← arдmax({tw : w ∈ cand ∪ fini})
4 return v

Parallelization of Backtracking: We first note that there is a sequential dependency among the
different iterations within a recursive call of TTT. In particular, the contents of the sets cand and
fini in a given iteration are derived from the contents of cand and fini in the previous iteration.
Such sequential dependence of updates to cand and fini restricts us from calling the recursive TTT
for different vertices of ext in parallel. To remove this dependency, we adopt a different view of
TTT which enables us to make the recursive calls in parallel. The elements of ext, the vertices to be
considered for extending a maximal clique, are arranged in a predefined total order. Then, we unroll
the loop and explicitly compute the parameters cand and fini for recursive calls.

Suppose ⟨v1,v2, ...,vκ ⟩ is the order of vertices in ext. Each vertex vi ∈ ext, once added to K ,
should be removed from further consideration in cand. To ensure this, in ParTTT, we explicitly
remove vertices v1,v2, ...,vi−1 from cand and add them to fini, before making the recursive calls.
As a consequence, parameters of the ith iteration are computed independently of prior iterations.

Here, we prove the work efficiency and low depth of ParTTT in the following lemma:

LEMMA 2. Total work of ParTTT (Algorithm 3) is O(3n/3) and depth is O(M logn) where n is the
number of vertices in the graph, and M is the size of a maximum clique in G.
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Algorithm 3: ParTTT(G,K , cand, fini)
Input: G - the input graph
K - a non-maximal clique to extend
cand - set of vertices that may extend K
fini - vertices that have been used to extend K
Output: A set of all maximal cliques of G containing K and vertices from cand but not containing any

vertex from fini
1 if (cand = ∅) & (fini = ∅) then
2 Output K and return

3 pivot← ParPivot(G, cand, fini)
4 ext[1..κ] ← cand − ΓG (pivot) // in parallel

5 for i ∈ [1..κ] do in parallel
6 q ← ext[i]
7 Kq ← K ∪ {q}
8 candq ← intersect(cand \ ext[1..i − 1], ΓG (q))
9 finiq ← intersect(fini ∪ ext[1..i − 1], ΓG (q))

10 ParTTT(G,Kq , candq , finiq )

PROOF. First, we analyze the total work. Note that the computational tasks in ParTTT is dif-
ferent from TTT at Line 8 and Line 9 of ParTTT where at an iteration i, we remove all vertices
{v1,v2, ...,vi−1} from cand and add all these vertices to fini as opposed to the removal of a single
vertex vi−1 from cand and addition of that vertex to fini as in TTT (Line 8 and Line 9 of Algo-
rithm 1). Therefore, in ParTTT, additional O(n) work is required due to independent computations of
candq and finiq . The total work, excluding the call to ParPivot is O(n2). Adding up the work of
ParPivot, which requires O(n2) work and O(n2) total work for each single call of ParTTT excluding
further recursive calls (Algorithm 3, Line 10), which is the same as in original sequential algorithm
TTT (Section 4, [56]). Hence, using Lemma 2 and Theorem 3 of [56], we infer that the total work of
ParTTT is the same as the sequential algorithm TTT and is bounded by O(3n/3).

Next, we analyze the depth of the algorithm. The depth of ParTTT consists of the (sum of the)
following components: (1) Depth of ParPivot, (2) Depth of computation of ext, (3) Maximum
depth of an iteration in the for loop from Line 5 to Line 10. According to Lemma 1, the depth
of ParPivot is O(logn). The depth of computing ext is O(logn) since it takes O(1) time to check
whether an element in cand is in the neighborhood of pivot. Similarly, the depth of computing
candq and finiq at Line 8 and Line 9 are O(logn). The remaining is the depth of the call of ParTTT
at Line 10. Notice that the recursive call of ParTTT continues until there is no further vertex to add
for expanding K , and this depth can be at most the size of the maximum clique which is M because,
at each recursive call of ParTTT, the size of K increases by 1. Thus, the overall depth of ParTTT is
O(M logn). □

COROLLARY 1. Using P parallel processors, which are shared-memory, ParTTT (Algorithm 3) is
a parallel algorithm for MCE and can achieve a worst case parallel time of O

(
3n/3

M logn + P
)

using P

parallel processors. This is work-optimal and work-efficient as long as P = O( 3n/3
M logn ).

PROOF. The parallel time follows Brent’s theorem [2], which states that the parallel time us-
ing P processors is O(w/d + P), where w and d are the work and the depth of the algorithm
respectively. If the number of processors P = O

(
3n/3

M logn

)
, then using Lemma 2, the parallel time
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is O
(
max{ 3n/3P ,M logn}

)
= O

(
3n/3
P

)
. The total work across all processors is O(3n/3), which is

worst-case optimal, since the size of the output can be as large as 3n/3 maximal cliques (Moon and
Moser [41]). □

4.2 Algorithm ParMCE

While ParTTT is a theoretically work-efficient parallel algorithm, we note that its runtime can be
further improved. While the worst case work complexity of ParPivot matches that of the pivoting
routine in TTT, in practice, the work in ParTTT can be higher, since computation of candq and finiq
has additional and growing overhead as the sizes of the candq and finiq increase. This can result in
a lower speedup than the theoretically expected one.

We set out to improve on this to derive a more efficient parallel implementation through a more
selective use of ParPivot. In this way, the cost of pivoting can be reduced by carefully choosing many
pivots in parallel instead of a single pivot element as in ParTTT at the beginning of the algorithm. We
first note that the cost of ParPivot is the highest during the iteration when set K (the clique in the
search space) is empty. During this iteration, the number of vertices in cand ∪ fini can be high, as
large as the number of vertices in the graph. To improve upon this, we can perform the first few steps
of pivoting, when K is empty, using a sequential algorithm. Once set K contains at least one element,
the number of the vertices in cand∪ fini is decremented to no more than the size of the intersection
of neighborhoods of all vertices in K , which is typically a number much smaller than the number
of vertices in the graph (this number is smaller than the smallest degree of a vertex in K). Problem
instances with K , assigned to a single vertex, can be seen as sub-problems, and, on each of these
sub-problems, the overhead of ParPivot computation is much smaller since the number of vertices
that have to be dealt with is also much smaller.

Based on this observation, we present a parallel algorithm ParMCE which works as follows. The
algorithm can be viewed as considering, for each vertex v ∈ V (G), a subgraph Gv that is induced
by the vertex v and its neighborhood ΓG (v). It enumerates all maximal cliques from each subgraph
Gv in parallel using ParTTT. While processing sub-problem Gv , it is important to not enumerate
maximal cliques that are being enumerated elsewhere, in other sub-problems. To handle this, the
algorithm considers a specific ordering of all vertices in V such that v is the least ranked vertex in
each maximal clique enumerated from Gv . Subgraph Gv for each vertex v is handled in parallel –
these subgraphs need not be processed in any particular order. However, the ordering allows us to
populate the cand and fini sets accordingly such that each maximal clique is enumerated in exactly
one sub-problem. The order in which the vertices are considered is defined by a “rank” function
rank, which indicates the position of a vertex in the total order. This global ordering on vertices has
impact on the total work of the algorithm, as well as the load balance of the distribution of workloads
across sub-problems.

Load Balancing: Notice that the sizes of the subgraphs Gv may vary widely because of two
reasons: (1) The subgraphs themselves may be of different sizes, depending on the vertex degrees.
(2) The number of maximal cliques and the sizes of the maximal cliques containingv can vary widely
from one vertex to another. Clearly, the sub-problems that deal with a large number of maximal
cliques or maximal cliques of a large size are more computationally expensive than others.

In order to maintain the size of the sub-problems approximately balanced, we use an idea from
PECO [55], where we choose the rank function on the vertices in such a way that for any two vertices
v and w , rank(v) > rank(w) if the complexity of enumerating maximal cliques from Gv is higher
than the complexity of enumerating maximal cliques from Gw . Indeed, by giving a higher rank to v
thanw , we are decreasing the complexity of the sub-problemGv since the sub-problem atGv need not
enumerate maximal cliques that involve any vertex whose rank is less than v. Therefore, the higher
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the rank of vertex v, the lower is its “share” (of maximal cliques it belongs to) of maximal cliques in
Gv . We use this idea for approximately balancing the workload across sub-problems. The additional
enhancements in ParMCE when compared with the idea from PECO are as follows: (1) In PECO, the
algorithm is designed for distributed memory such that the subgraphs and sub-problems have to be
explicitly copied across the network. (2) In ParMCE, the vertex specific sub-problem, dealing with Gv
is itself handled through a parallel algorithm, ParTTT, while, in PECO, the sub-problem for each
vertex was handled through a sequential algorithm.

Note that it is computationally expensive to accurately count the number of maximal cliques
within Gv , and, hence, it is not possible to compute the rank of each vertex exactly according to the
complexity of handlingGv . Instead, we estimate the cost of handlingGv using some easy-to-evaluate
metrics on the subgraphs. In particular, we consider the following:
• Degree Based Ranking: For vertex v, define rank(v) = (d(v), id(v)) where d(v) and id(v)

are degree and identifier of v, respectively. For two vertices v and w , rank(v) > rank(w) if
d(v) > d(w) or d(v) = d(w) and id(v) > id(w), rank(v) < rank(w) otherwise.
• Triangle Count Based Ranking: For vertex v, define rank(v) = (t(v), id(v)) where t(v) is

the number of triangles, which vertex v is a part of. Note that ranking based on triangle count
is more expensive to compute than degree based ranking but may yield a better estimate of the
complexity of maximal cliques within Gv .2

• Degeneracy Based Ranking [18]: For a vertex v, define rank(v) = (deдen(v), id(v)) where
deдen(v) is the degeneracy of a vertex v. A vertex v has degeneracy number k when it belongs
to a k-core but no (k + 1)-core, where a k-core is a maximal induced subgraph such that the
minimum degree of each vertex in the subgraph is k. A computational overhead of using this
ranking is due to computing the degeneracy of vertices which takes O(n +m) time, where n is
the number of vertices andm is the number of edges.

The different implementations of ParMCE using degree, triangle, and degeneracy based rankings
are called as ParMCEDegree, ParMCETri, ParMCEDegen respectively.

Algorithm 4: ParMCE(G)
Input: G - the input graph.
Output: C(G) - a set of all maximal cliques of G.

1 for v ∈ V (G) do in parallel
2 Create Gv , the subgraph of G induced by ΓG (v) ∪ {v}
3 K ← {v}, cand← ϕ, fini← ϕ

4 for w ∈ ΓG (v) do in parallel
5 if rank(w) > rank(v) then cand← cand ∪ {w}
6 else fini← fini ∪ {w}
7 ParTTT(Gv ,K , cand, fini)

5 PARALLEL MCE ALGORITHM ON A DYNAMIC GRAPH
When the graph changes over time due to addition of edges, the maximal cliques of the updated
graph also change. The update in the set of maximal cliques consists of (1) The set of new maximal
cliques – the maximal cliques that are newly formed (2) The set of subsumed cliques – maximal
cliques of the original graph that are subsumed by the new maximal cliques. The combined set of

2A triangle is a cycle of length three.
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Fig. 3. Maximal cliques change upon addition of new edges. (a) Two subgraphs {a,b, e} and {b, c,d}
are maximal cliques in the original graph G. (b) A new maximal clique (i.e. {b,d, e}) is created when
edge (e,d) is added to G. (c) When three more edges (a, c), (a,d), and (c, e) are added, the entire graph
turns into a maximal clique, which subsumes all maximal cliques in prior steps.

new and subsumed maximal cliques is called the set of changes, and the size of this set refers to the
size of change in the set of maximal cliques (see Figure 3).

Algorithm 5: ParIMCENew(G,H )
Input: G - the input graph
H - a set of ρ edges being added to G
Output: Cliques in Λnew = C(G + H ) \ C(G)

1 G ′ ← G + H

2 Consider edges of H in an arbitrary order e1, e2, . . . , eρ
3 for i ← 1, 2, . . . , ρ do in parallel
4 e ← ei = (u,v)
5 Ve ← {u,v} ∪ {ΓG′(u) ∩ ΓG′(v)}
6 G ′′ ← Graph induced by Ve on G ′

7 K ← {u,v}
8 cand← Ve \ {u,v} ; fini← ∅
9 S ← ParTTTExcludeEdges(G ′′,K , cand, fini, {e1, e2, ..., ei−1})

10 Λnew ← Λnew ∪ S

Note that the size of change can be as small as O(1) or as large as exponential in the size of the
graph upon addition of a new single edge. For example, consider a graph of size n which is missing a
single edge from being a clique. The size of change is only 3 when that missing edge is added to the
graph because there will be only one new maximal clique of size n and two subsumed cliques, each
of size (n − 1). On the other hand, consider a Moon-Moser graph [41] of size n. Addition of a single
edge to this graph makes the size of the changes in the order of O(3n/3).

In a previous work, we presented a sequential algorithm IMCE [13], which efficiently tackles the
problem of updating the set of maximal cliques of a dynamic graph in an incremental model when
new edges are added at a time. IMCE consists of FastIMCENewClq for computing new maximal
cliques and IMCESubClq for computing subsumed cliques. However, IMCE is still unable to update
the set of maximal cliques when the size of change is large. For instance, it takes IMCE around 9.4
hours to update the set of maximal cliques, when the first 90K edges of graph Ca-Cit-HepTh are
added incrementally (with the original graph density 0.01). The high computational cost of IMCE
calls for parallel methods.
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Fig. 4. Our shared-memory set up for processing a dynamic graph.

In this section, we present parallel algorithms for enumerating the set of new and subsumed cliques
when an edge set H = {e1, e2, ..., eρ } is added to a graph G. Our parallel algorithms are based on
IMCE [13]. In this work, we focus on (1) processing new edges in parallel, (2) enumerating new
maximal cliques using ParTTT, and (3) Parallelizing IMCESubClq [13]. First, we describe an efficient
parallel algorithm for generating new maximal cliques, i.e. the maximal cliques in G + H , which are
not present in G and then an efficient parallel algorithm for generating subsumed maximal cliques,
i.e. the cliques which are maximal in G but not maximal in G + H . We present a shared-memory
parallel algorithm ParIMCE for the incremental maintenance of maximal cliques. ParIMCE consists of
(1) algorithm ParIMCENew for enumerating new maximal cliques and (2) algorithm ParIMCESub for
enumerating subsumed cliques. A brief description of the algorithms is discussed in Table 2. Figure 4
also sketches the parallel shared-memory setup for enumerating maximal cliques in a dynamic graph
upon addition of new batches.

5.1 Parallel Enumeration of New Maximal Cliques
Here, we present a parallel algorithm ParIMCENew for enumerating the set of new maximal cliques
when a set of edges is added to the graph. The idea is that we iterate over new edges in parallel and at
each (parallel) iteration we construct a subgraph of the original graph and enumerate the set of all max-
imal cliques within the subgraph. We present an efficient parallel algorithm ParTTTExcludeEdges
(Algorithm 6) for this enumeration. The description of ParIMCENew is presented in Algorithm 5.

Note that ParIMCENew is based upon an existing sequential algorithm FastIMCENewClq [13] for
enumerating new maximal cliques using TTTExcludeEdges (Algorithm 8) [13], which lists all new
maximal cliques without any duplication. ParTTTExcludeEdges avoids the duplication in maximal
clique enumeration similar to the technique used in TTTExcludeEdges and uses a parallelization
approach similar to of ParTTT. More specifically, ParTTTExcludeEdges follows a global ordering

Table 2. Brief description of the incremental algorithms in this work.

Objective Sequential
Algorithm [13]

Parallel Algorithm
(this work) Overview of Parallel Algorithms

Enumerating new
maximal cliques FastIMCENewClq ParIMCENew

(1) Process new edges in parallel.
(2) Enumerate maximal cliques using ParTTTExcludeEdges.

Enumerating
subsumed cliques IMCESubClq ParIMCESub

(1) Generate candidates in parallel
(executing inner for loop of IMCESubClq in parallel).
(2) Process each candidate in parallel
(executing candidate processing step of IMCESubClq in parallel).
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Algorithm 6: ParTTTExcludeEdges(G,K , cand, fini, E)
Input: G - the input graph
K - Set of vertices forming a clique
cand - a set of vertices that may extend K
fini - vertices that are not used to extend K , but are connected to all vertices of K
E - a set of edges to ignore

1 if (cand = ∅) & (fini = ∅) then
2 Output K // K is a maximal clique

3 return

4 pivot← ParPivot(G, cand, fini)
5 ext[1..κ] ← cand − ΓG (pivot) // in parallel

6 for i ∈ [1..κ] do in parallel
7 q ← ext[i]
8 Kq ← K ∪ {q}
9 if Kq ∩ E , ∅ then

10 return

11 candq ← intersect(cand \ ext[1..i − 1], ΓG (q))
12 finiq ← intersect(fini ∪ ext[1..i − 1], ΓG (q))
13 ParTTTExcludeEdges(G,Kq , candq , finiq , E)

of the new edges to avoid redundancy in the enumeration process. Note that the correctness of
ParIMCENew is followed by the correctness of the sequential algorithm FastIMCENewClq. Following
lemma shows the work efficiency and depth of ParIMCENew.

LEMMA 3. Given a graph G and a new edge set H , ParIMCENew is work-efficient, i.e, the total
work is of the same order of the time complexity of FastIMCENewClq. The depth of ParIMCENew is
O(∆2 +M log∆), where ∆ is the maximum degree and M is the size of a maximum clique in G + H .

We prove this lemma in Appendix A by showing the equivalence of the operations of
FastIMCENewClq and ParIMCENew.

5.2 Parallel Enumeration of Subsumed Cliques
In this section, we present a parallel algorithm ParIMCESub based on the sequential algorithm
IMCESubClq [13] for enumerating subsumed cliques. In ParIMCESub, we perform parallelization
in the following order: (1) Removing a single new edges from all the candidates in parallel and
(2) Checking for the candidacy of the subsumed cliques in parallel. We present ParIMCESub in
Algorithm 7. In the following lemma, we show the work efficiency and depth of ParIMCESub:

LEMMA 4. Given a graphG and a new edge set H , ParIMCESub is work-efficient; the total work is
of the same order of the time complexity of IMCESubClq. The depth of ParIMCENew is O(min{M2, ρ})
for processing each new maximal clique, where M is the size of a maximum clique in G +H and ρ is
the size of H .

PROOF. First, note that the procedure of ParIMCESub is exactly the same as the procedure of
IMCESubClq except for the parallel loops at Line 6 and Line 13 of ParIMCESub whereas these loops
are sequential in IMCESubClq. Since all the computations in ParIMCESub is exactly the same as the
computations in IMCESubClq, except for the loop parallelization, ParIMCESub is work-efficient.
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Algorithm 7: ParIMCESub(G,H ,C,Λnew )
Input: G - the input Graph

H - an edge set being added to G
C - a set of maximal cliques in G
Λnew - a set of new maximal cliques in G + H

Output: All cliques in Λdel = C(G) \ C(G + H )
1 Λdel ← ∅
2 for c ∈ Λnew do in parallel
3 S ← {c}
4 for e = (u,v) ∈ E(c) ∩ H do
5 S ′ ← ϕ

6 for c ′ ∈ S do in parallel
7 if e ∈ E(c ′) then
8 c1 = c ′ \ {u} ; c2 = c ′ \ {v}
9 S ′ ← S ′ ∪ c1 ; S ′ ← S ′ ∪ c2

10 else
11 S ′ ← S ′ ∪ c ′

12 S ← S ′

13 for c ′ ∈ S do in parallel
14 if c ′ ∈ C then
15 Λdel ← Λdel ∪ c ′
16 C ← C \ c ′

For proving the parallel depth of ParIMCESub, first note that all the elements of S at Line 6 of
ParIMCESub are processed in parallel, and the total cost of executing Lines 7 to 11 is O(1). In
addition, the depth of the operation at Line 12 of ParIMCESub is O(1) using the concurrent hashtable.
Therefore, the overall depth of the procedures from Line 4 to Line 12 is the number of new edges in a
new maximal clique c, processed at Line 2 of ParIMCESub which is O(min{M2, ρ}). Next, the depth
of Lines 14 to 16 is O(1) because it only takes O(1) to execute Lines 15 and 16 using Theorem 3.1.
As a result, for each new maximal clique, the depth of the procedure for enumerating all subsumed
cliques within the new maximal clique is O(min{M2, ρ}). □

5.3 Decremental Case
We have so far discussed incremental maintenance of new and subsumed maximal cliques when
the stream only contains new edges. We note that our algorithm can also support the deletion of
edges through a reduction to the incremental case, this is similar to the methods used for sequential
algorithms. Please see Sections 4.4 and 4.5 of [13] for further details.

6 EVALUATION
In this section, we experimentally evaluate the performance of our shared-memory parallel static
(ParTTT and ParMCE) and dynamic (ParIMCE) algorithms for MCE on static and dynamic (real world
and synthetic) graphs to show the parallel speedup and scalability of our algorithms over efficient
sequential algorithms TTT and IMCE respectively. We also compare our algorithms with state-of-the-
art parallel algorithms for MCE to show that the performance of our algorithm has substantially
improved over the prior works. We run the experiments on a computer configured with Intel Xeon
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(R) CPU E5-4620 running at 2.20GHz , with 32 physical cores (4 NUMA nodes each with 8 cores)
and 1TB RAM.

6.1 Datasets
We use eight different real-world static and dynamic networks from publicly available repositories
KONECT [32], SNAP [33], and Network Repository [47] for doing the experiments. Dataset statistics
are summarized in Table 3. For our experiments, we convert these networks to simple undirected
graphs by removing self-loops, edge weights, parallel edges, and edge directions.

We consider networks DBLP-Coauthor, As-Skitter, Wikipedia, Wiki-Talk, and Orkut
for the evaluation of the algorithms on static graphs and networks DBLP-Coauthor, Flickr,
Wikipedia, LiveJournal, and Ca-Cit-HepTh for the evaluation of the algorithms on dynamic
graphs.
DBLP-Coauthor shows the collaboration of authors of papers from DBLP computer science

bibliography. In this graph, vertices represent authors, and there is an edge between two authors
if they have published a paper [47]. As-Skitter is an Internet topology graph which represents
the autonomous systems, connected to each other on the Internet [32]. Wikipedia is a network
of English Wikipedia in 2013, where vertices represent pages in English Wikipedia, and there is
an edge between two pages p and q if there is a hyperlink in page p to page q [33]. Wiki-Talk
contains users of Wikipedia as vertices where each edge between two users in this graph indicates
that one of the users has edited the "page talk" of the other user on Wikipedia [33]. Orkut is a
social network where each vertex represents a user in the network, and there is an edge if there is a
friendship relation between two users [32]. Similar to Orkut, Flickr and LiveJournal are also
social networks where a vertex represents a user and an edge represents the friendship between two
users. Ca-Cit-HepTh is a citation network of high energy physics theory where a vertex represents
a paper and there is an edge between paper u and paper v if u cites v.

For the evaluation of ParTTT and ParMCE, we give the entire graph as input to the algorithm in
the form of an edge list and for the evaluation of the algorithms on dynamic graphs, we start with
an empty graph that contains all vertices but no edges, and, at a time, we add a set of edges in an
increasing order of timestamps for computing the changes in the set of maximal cliques. For ParIMCE,
we use real dynamic graphs, where each edge has a timestamp. In addition, we evaluate ParIMCE on
LiveJournal, which is a static graph. We convert this graph to a dynamic graph through randomly
permuting the edges and processing edges in that ordering.

To understand the datasets better, we illustrated the frequency distribution of sizes of maximal
cliques in Figure 5. The size of maximal cliques in DBLP-Coauthor can be as large as 100 vertices.
Although the number of such large maximal cliques are small, the depth of the search space might
increase exponentially for discovering such large maximal cliques. As shown in Figure 5, most of the
graphs contain more than tens of millions of maximal cliques. For example, Orkut contains more
than two billion maximal cliques. That being said, the depth and breadth of the search space makes
MCE a challenging problem to solve.

6.2 Implementation of the Algorithms
In our parallel implementations of ParTTT, ParMCE, and ParIMCE, we utilize parallel_for
and parallel_for_each, developed by the Intel TBB parallel library [4]. We also utilize
concurrent_hash_map for atomic operations on hashtable. We use C++11 standard for the imple-
mentation of the algorithms and compile all the sources using Intel ICC compiler version 18.0.3 with
optimization level ‘-O3’. We use the command ‘numactl -i all’ for balancing the memory in a NUMA
machine. System level load balancing is performed using a dynamic work stealing scheduler [4] in
TBB.
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Fig. 5. Frequency distribution of sizes of maximal cliques across different input graphs.

To compare with prior works on MCE, we implement some of them such as [16, 18, 55, 56, 65]
in C++, and we use the executable of the C++ implementations for the rest of the algorithms
(GreedyBB [48], Hashing [34], and GP [59]), provided by the respective authors. See Subsection 6.4
for more details.

We compute the degeneracy number and triangle count for each vertex using sequential procedures.
While the computation of per-vertex triangle counts and the degeneracy ordering could be potentially
parallelized, implementing a parallel method to rank vertices based on their degeneracy number
or triangle count is itself a non-trivial task. We decided not to parallelize these routines since
the degeneracy- and triangle-based ordering did not yield significant benefits when compared with
degree-based ordering, whereas the degree-based ordering is trivially available, without any additional
computation.

We assume that the entire graph is available in a shared global memory. The Total Runtime (TR)
of ParMCE consists of (1) Ranking Time (RT): the time required to rank vertices of the graph based
on the ranking metric used in the algorithm, i.e. degree, degeneracy number, or triangle count of

Table 3. Static and Dynamic Networks, used for evaluation, and their properties. For some of the
graphs (e.g. Flickr and Ca-Cit-HepTh) used for evaluating the incremental algorithms, we could
not report the information about maximal cliques as they did not finish within 10 days, even using
parallel algorithms.

Dataset #Vertices #Edges #Maximal Cliques Average Size of
Maximal Cliques

Size of
Largest Clique

DBLP-Coauthor 1,282,468 5,179,996 1,219,320 3 119
Orkut 3,072,441 117,184,899 2,270,456,447 20 51
As-Skitter 1,696,415 11,095,298 37,322,355 19 67
Wiki-Talk 2,394,385 4,659,565 86,333,306 13 26
Wikipedia 1,870,709 36,532,531 131,652,971 6 31
LiveJournal 4,033,137 27,933,062 38,413,665 29 214
Flickr 2,302,925 22,838,276 > 400 billion - -
Ca-Cit-HepTh 22,908 2,444,798 > 400 billion - -
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vertices and (2) Enumeration Time (ET): the time required to enumerate all maximal cliques. For
ParMCEDegen and ParMCETri algorithms, the runtime of ranking is also reported. Figures 6 and 7
show the parallel speedup (with respect to the runtime of TTT) and the enumeration time of ParMCE
using different vertex ordering strategies. Table 5 shows the breakdown of the Total Runtime (TR)
into Ranking Time (RT) and Enumeration Time (ET).

The runtime of ParIMCE consists of (1) the computation time of ParIMCENew and (2) the compu-
tation time of ParIMCESub. In the implementation of ParIMCENew, we follow the design of ParMCE
and instead of executing ParTTTExcludeEdges on the entire (sub)graph for an edge as in Line 9
of ParIMCENew, we run ParTTTExcludeEdges on per-vertex sub-problems in parallel. For dealing
with load balance, we use degree based ordering of the vertices of G ′′ in creating the sub-problems.
We decided to implement ParIMCENew in this way as we observed a significant improvement in the
performance of ParMCE over ParTTT when we used a degree-based vertex ordering. For experiment
on dynamic graphs, we use the batch size of 1000 edges for all the graphs except for an extremely
dense graph Ca-Cit-HepTh (with original graph density 0.01) where we use batch size of 10.

6.3 Discussion of the Results
Here, we empirically evaluate our parallel algorithms and prior methods. First, we show the parallel
speedup (with respect to the sequential algorithms) and scalability (with respect to the number of
cores) of our algorithms. Next, we compare our works with the state-of-the-art sequential and parallel
algorithms for MCE. The results demonstrate that our solutions are faster than prior methods with
significant margins.

6.3.1 Parallel MCE on Static Graphs. The total runtime of the parallel algorithms with 32
threads are shown in Table 4. We observe that ParTTT achieves a speedup of 5x-14x over the sequen-
tial algorithm TTT. The three versions of ParMCE, i.e. ParMCEDegree, ParMCEDegen, ParMCETri,
achieve a speedup of 15x-21x with 32 threads, when we consider the runtime of enumeration task
alone. The speedup ratio decreases in ParMCEDegen and ParMCETri if we include the time taken by
ranking strategies (See Figure 6).

The runtime of ParTTT is higher than the runtime of ParMCE, due to a heavier cumulative
overhead of pivot computation and of processing sets cand and fini in ParTTT. For example, in
DBLP-Coauthor graph, when we run ParTTT, the cumulative overhead of computing pivot is 248
seconds, and the cumulative overhead of updating cand and fini is 38 seconds while, in ParMCE,
these runtimes are 156 and 21 seconds, respectively. This helps ParMCE accelerate the entire process,
which achieves 2x speedup over ParTTT.

Impact of vertex ordering on overall performance of ParMCE. Here, we study the impact
of different vertex ordering strategies, i.e. degree, degeneracy, and triangle count, on the overall
performance of ParMCE. Table 5 presents the total computation time when we use different orderings.

Table 4. Runtime (in sec.) of TTT, ParTTT, and ParMCE with different vertex orderings on 32 cores. The
numbers exclude the time taken for vertex ordering. Note that the best algorithm, which uses degree
based vertex ordering, has zero additional cost for computing the vertex ordering.

Dataset TTT ParTTT ParMCEDegree ParMCEDegen ParMCETri
DBLP-Coauthor 42 4 2 3 3
Orkut 28923 3472 1676 2350 1959
As-Skitter 660 68 39 43 48
Wiki-Talk 961 109 52 78 58
Wikipedia 2646 160 123 155 179
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Fig. 6. Parallel speedup when compared with TTT (sequential algo. due to Tomita et al. [56]) as a
function of the number of threads.
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Fig. 7. The total runtime of parallel algorithms ParMCEDegree, ParMCETri, ParMCEDegen, and ParTTT in
milliseconds as a function of the number of threads.

We observe that degree-based ordering (ParMCEDegree) in most cases is the fastest strategy for
clique enumeration, even when we do not consider the computation time for generating degeneracy-
and triangle-based orderings. If we add up the runtime for the ordering step, degree-based ordering
is obviously better than degeneracy- or triangle-based orderings since degree-based ordering is
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Fig. 8. Parallel speedup of ParIMCE over IMCE as a function of the size of the change in the set of
maximal cliques. The size of the change is measured by the total number of new maximal cliques and
subsumed maximal cliques when a batch of edges is added to the graph.
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Fig. 9. Parallel speedup of ParIMCE over IMCE as a function of number of threads, using the cumulative
time of ParIMCE and of IMCE for processing all batches of edges.
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available for free when the input graph is read, while the degeneracy- and triangle-based orderings
require additional computations.

Scaling up with the degree of parallelism. As the number of threads (and the degree of
parallelism) increases, the runtime of ParMCE and of ParTTT decreases. Figure 6 presents the
speedup factor of ParMCE over the state-of-the-art sequential algorithm, i.e. TTT, as a function of the
number of threads, and Figure 7 presents the runtime of ParMCE. ParMCEDegree achieves a speedup
of more than 15x on all graphs, when 32 threads are used.

6.3.2 Parallel MCE on Dynamic Graphs. The cumulative runtime of IMCE and ParIMCE are
presented in Table 6 which shows that the speedup achieved by ParIMCE is 3.6x-19.1x over IMCE.
This wide spectrum of speedups is mainly due to the variations in the size of the changes in the set of
maximal cliques (number of new maximal cliques + number of subsumed maximal cliques) in the
course of the incremental computation which can be observed in Figure 8. From this plot, we can see
that the speedup increases with the increase in the size of the changes in the set of maximal cliques.
This trend is as expected because the effect of parallelism will be prominent whenever the number of
parallel tasks will become sufficiently large. This happens when the number of new and subsumed
maximal cliques are large.

Scalability. The degree of parallelism increase with the increase in the number of threads.
From Figure 9 we can see that the speedup increases linearly with the number of threads. This
behavior shows the scalability of our parallel algorithm ParIMCE. When the size of the changes will
become large, scalability will become prominent because otherwise, most of the processors will
remain idle when there will not be large amount of parallel tasks to fully utilize all the available
processors. This is observed in Wikipedia (Figure 9) where the cumulative size of change is
relatively small. Additionally, the speedup observed on different input graphs vary with the similar
size of change. For example, as we can see in Figure 8, LiveJournal gives more speedup than
Wikipedia with the size of change around 105. To explain this, we first note that higher parallel
speedup is observed when the cost of maintenance (which is proportional to the size of change in the

Table 5. Total Runtime (in sec.) of ParMCE with different vertex orderings (using 32 threads). Total
Runtime (TR) = Ranking Time (RT) + Enumeration Time (ET).

Dataset ParMCEDegree
ParMCEDegen ParMCETri

RT ET TR RT ET TR
DBLP-Coauthor 3 25 3 28 42 3 45
Orkut 1676 928 2350 3278 2166 1959 4125
As-Skitter 39 41 43 84 122 48 170
Wiki-Talk 52 23 78 101 74 58 132
Wikipedia 123 244 155 399 950 179 1129

Table 6. Cumulative runtime (in sec.) over the incremental computation across all edges, with IMCE
and ParIMCE using 32 threads. The total number of edges that are processed is also presented.

Dataset #Edges Processed IMCE ParIMCE Parallel Speedup
DBLP-Coauthor 5.1M 6608 933 7x
Flickr 4.1M 35238 2416 14.6x
Wikipedia 36.5M 9402 2614 3.6x
LiveJournal 19.2M 30810 2497 12.3x
Ca-Cit-HepTh 93.8K 33804 1767 19.1x
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set of maximal cliques) on a single batch is high. Following this, we see that in adding around 19K
batches of new edges (with batch size of 1000 edges) starting from the empty graph, LiveJournal
has more frequent (around 2000) size of change in the order of 105 compared to Wikipedia (around
100 size of changes in the order of 105).

6.4 Comparison with prior work
We compare the performance of ParMCE with prior sequential and parallel algorithms for MCE.
We consider the following sequential algorithms: GreedyBB due to Segundo et al. [48], TTT due to
Tomita et al. [56], and BKDegeneracy due to Eppstein et al. [18]. For the comparison with parallel
algorithm, we consider algorithm CliqueEnumerator due to Zhang et al. [65], Peamc due to Du et
al. [16], PECO due to Svendsen et al. [55], and the most recent parallel algorithm Hashing due to
Lessley et al. [34]. The parallel algorithms CliqueEnumerator, Peamc, and Hashing are designed
for the shared-memory model, while PECO is designed for distributed memory. We modified PECO
to work with shared-memory, by reusing the method for sub-problem construction and eliminating
the need to communicate subgraphs by storing a single copy of the graph in shared-memory. We
consider three different ordering strategies for PECO, which we call PECODegree, PECODegen, and
PECOTri. The comparison of performance of ParMCE with PECO is presented in Table 7. We note that
ParMCE is significantly better than that of PECO, no matter which ordering strategy was considered.
We also compare the performance of ParMCE with a recent shared-nothing parallel algorithm GP to
show that ParMCE outperforms GP with resources equivalent to our shared memory setting.

The comparison of ParMCE with other shared-memory algorithms Peamc, CliqueEnumerator,
and Hashing is shown in Table 8. The performance of ParMCE is seen to be much better than that of
any of these prior shared-memory parallel algorithms. For the graph DBLP-Coauthor, Peamc did
not finish within 5 hours whereas ParMCE takes at most around 50 secs for enumerating 1.2 million
maximal cliques. The poor running time of Peamc is due to two following reasons: (1) The algorithm
does not apply efficient pruning techniques such as pivoting, used in TTT, and (2) The method to
determine the maximality of a clique in the search space is not efficient. The CliqueEnumerator
algorithm runs out of memory after a few minutes. The reason is that CliqueEnumerator maintains
a bit vector for each vertex that is as large as the size of the input graph and, additionally, needs
to store intermediate non-maximal cliques. For each such non-maximal clique, it is required to
maintain a bit vector of length equal to the size of the vertex set of the original graph. Therefore, in
CliqueEnumerator, a memory issue is inevitable for a graph with millions of vertices.

A recent parallel algorithm in the literature, Hashing, also has a significant memory overhead
and ran out of memory on the input graphs that we considered. The reason for its high memory
requirement is that Hashing enumerates intermediate non-maximal cliques before finally outputting
maximal cliques. The number of such intermediate non-maximal cliques may be very large, even for
graphs with few number of maximal cliques. For example, a maximal clique of size c contains 2c − 1
non-maximal cliques.

Table 7. Comparison of parallel runtime (in sec.) of ParMCE, excluding the time for computing vertex
ranking, with a version of PECO that is modified to use shared-memory with 32 threads. Three different
variants are considered for each algorithm based on the vertex ordering strategy.

Dataset PECODegree ParMCEDegree PECODegen ParMCEDegen PECOTri ParMCETri
DBLP-Coauthor 6.4 2.6 6.9 3.1 6.8 2.9
Orkut 2050.7 1676.4 2183.4 2350 2361.9 1959.3
As-Skitter 261.5 39.2 331.8 42.8 260.9 48.2
Wiki-Talk 1729.7 51.6 1728.2 77.8 1720 57.6
Wikipedia 8982.5 123.3 9110.4 155.3 8938 178.8
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Table 8. Comparison of runtimes (in sec.) of ParMCE with prior works on shared-memory algorithms
for MCE (with 32 threads).

Dataset ParMCEDegree Hashing CliqueEnumerator Peamc
DBLP-Coauthor 2.6 Out of memory in 3 min. Out of memory in 10 min. Not complete in 5 hours.
Orkut 1676.4 Out of memory in 7 min. Out of memory in 20 min. Not complete in 5 hours.
As-Skitter 39.2 Out of memory in 5 min. Out of memory in 10 min. Not complete in 5 hours.
Wiki-Talk 51.6 Out of memory in 10 min. Out of memory in 20 min. Not complete in 5 hours.
Wikipedia 123.3 Out of memory in 10 min. Out of memory in 20 min. Not complete in 5 hours.

Table 9. Speedup factor of ParMCEDegree over GP and PECODegree. A speedup factor greater than 1
indicates that our algorithm ParMCEDegree is faster than the prior methods. 8★ indicates that 8 threads
for ParMCEDegree and 8 MPI nodes for GP are used (★ next to other numbers is interpreted similarly).
✘ indicates that GP runs out of memory.

Speedup factor of ParMCEDegree over GP Speedup factor of ParMCEDegree over PECODegree
Dataset 2★ 4★ 8★ 16★ 32★ 2 threads 4 threads 8 threads 16 threads 32 threads
DBLP-Coauthor 0.83 1.21 1.76 2.9 4.1 2.5 2.85 2.4 2.33 2.5
Orkut 1.92 1.68 1.73 ✘ ✘ 1.2 1.11 1.04 0.85 1.48
As-Skitter 1.66 1.64 1.56 1.71 1.35 4.47 4.33 3.92 4.1 3.26
Wiki-Talk 1.38 1.32 1.15 1.3 0.84 2.48 2.37 4.65 9.07 10.9
Wikipedia 1.5 1.45 1.44 1.86 1.69 9.6 9.74 14.07 25.34 29.6

Next, we compare the performance of ParMCE with that of sequential algorithms BKDegeneracy
and a recent sequential algorithm GreedyBB – results are in Table 10. For large graphs, the perfor-
mance of BKDegeneracy is almost similar to TTT whereas GreedyBB performs much worse than TTT.
Since our ParMCE algorithm outperforms TTT, we can conclude that ParMCE is significantly faster
than other sequential algorithms.

Next, we compare with GP [59], a recent distributed algorithm for MCE based on MPI. This
method first assigns each vertex v to an MPI worker, and then the worker constructs subproblems
of vertex v by constructing the sets cand and fini for enumerating the maximal cliques which
vertex v is part of. Through an iterative computation, each sub-problem is broken down into smaller
sub-problems, till a maximal clique is obtained. Subproblems within an MPI worker might be sent
to another worker, where the receiver MPI process is chosen randomly. We compare the runtime
performance of our work ParMCEDegree with of GP. Note that ParMCEDegree is a shared-memory
method while GP is implemented in a distributed memory model.

We ran GP and ParMCEDegree on a machine configured with two 18-core Intel Skylake 6140 Xeon
processors. In every experiment, we use 192GB as the total memory. For a fair comparison, we use
the same number of threads for ParMCEDegree as the number of MPI processes for GP. In Table 9,
we report the speedup of ParMCEDegree over GP. In most cases ParMCEDegree outperforms GP. In
DBLP-Coauthor, we observed that GP cannot achieve a better runtime while the number of MPI
workers increases. For a better understanding of this case, we measured the runtime performance of
exchanged sub-problems among MPI nodes and the runtime of clique enumeration. We observed that
the enumeration takes at most one second while the overhead for exchanging sub-problems among

Table 10. Total runtime (sec.) of parallel algorithm ParMCE (with different vertex ranking, with 32
threads) and sequential algorithms BKDegeneracy and GreedyBB.

Dataset BKDegeneracy GreedyBB ParMCEDegree ParMCEDegen ParMCETri
DBLP-Coauthor 53.6 Not finish in 30 min. 2.6 28.1 44.3
Orkut 29812.3 Out of memory in 5 min. 1676.4 3278 4125.3
As-Skitter 641.7 Out of memory in 10 min. 39.2 83.8 170.2
Wiki-Talk 1003.2 Out of memory in 10 min. 51.6 100.8 131.2
Wikipedia 2243.6 Out of memory in 10 min. 123.3 399 1128
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workers is huge and skewed towards a few MPI nodes, which leads to an unbalanced workload. As
shown in Table 9, there are two cases that GP performs faster than ParMCEDegree – in both cases, the
difference in runtimes is small, about 8 seconds.

6.5 Summary of Experimental Results
We found that both ParTTT and ParMCE yield significant speedups over the sequential algorithm
TTTnearly linear in the number of cores available. ParMCE using the degree-based vertex ranking
always performs better than ParTTT. The runtime of ParMCE using degeneracy/triangle count based
vertex ranking is sometimes worse than ParTTT due to the overhead of sequential computation of
vertex ranking – note that this overhead is not needed in ParTTT. The parallel speedup of ParMCE
is better when the input graph has many large sized maximal cliques. Overall, ParMCE consistently
outperforms prior sequential and parallel algorithms for MCE. For a dynamic graph we found
that ParIMCE consistently yields a substantial speedup over the efficient sequential algorithm IMCE.
Further, the speedup of ParIMCE improves as the size of the change (to be enumerated) becomes
larger.

7 CONCLUSION
We presented shared-memory parallel algorithms for enumerating maximal cliques from a graph.
ParTTT is a work-efficient parallelization of a sequential algorithm due to Tomita et al. [56], and
ParMCE is an adaptation of ParTTT that has more opportunities for parallelization and better load
balancing. Our algorithms obtain significant improvements compared with the current state-of-the-art
on MCE. Our experiments show that ParMCE has a speedup of up to 21x (on a 32 core machine) when
compared with an efficient sequential baseline. In contrast, prior shared-memory parallel methods
for MCE were either unable to process the same graphs in a reasonable time or ran out of memory.
We also presented a shared-memory parallel algorithm ParIMCE that can enumerate the change in
the set of maximal cliques when new edges are added to the graph.

Many questions remain open: (1) Can these methods scale to even larger graphs and to machines
with larger numbers of cores (2) How can one adapt these methods to other parallel systems such as
a cluster of computers with a combination of shared and distributed memory or GPUs?
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A PROOF OF WORK EFFICIENCY OF PARALLEL MCE ON DYNAMIC GRAPH
Here, we show the work efficiency of ParIMCE by proving Lemma 3.

Algorithm 8: TTTExcludeEdges(G,K , cand, fini, E)
Input: G - The input graph
K - a non-maximal clique to extend
cand - Set of vertices that may extend K
fini - vertices that have been used to extend K
E - set of edges to ignore

1 if (cand = ∅) & (fini = ∅) then
2 Output K and return

3 pivot← (u ∈ cand ∪ fini) such that u maximizes the size of the intersection of cand ∩ ΓG (u)
4 ext← cand − ΓG (pivot)
5 for q ∈ ext do
6 Kq ← K ∪ {q}
7 if Kq ∩ E , ∅ then
8 cand← cand − {q}
9 fini← fini ∪ {q}

10 continue

11 candq ← cand ∩ ΓG (q)
12 finiq ← fini ∩ ΓG (q)
13 TTTExcludeEdges(G,Kq , candq , finiq , E)
14 cand← cand − {q}
15 fini← fini ∪ {q}

Lemma 3: Given a graph G and a new edge set H , ParIMCENew is work-efficient, i.e, the total
work is of the same order of the time complexity of FastIMCENewClq. The depth of ParIMCENew is
O(∆2 +M log∆) where ∆ is the maximum degree and M is the size of a maximum clique in G + H .

PROOF. First, we prove the work efficiency of ParIMCENew followed by the depth of the algorithm.
Note that, for proving the work-efficiency we will show that procedure at each line from Line 4
to Line 10 of ParIMCENew is work-efficient. Lines 4, 6, 7, and 8 are work-efficient because, all
these procedures are sequential in ParIMCENew. The parallel set operations at Line 5 and Line 10 are
work-efficient using Theorem 3.1. Now we will show the work efficiency of ParTTTExcludeEdges as
follows. If we disregard Lines 7-10 of TTTExcludeEdges and Lines 9-10 of ParTTTExcludeEdges
then the total work of ParTTTExcludeEdges is the same as the time complexity of ParTTT fol-
lowing the work efficiency of ParTTT. Next, we say that the time complexity of Lines 7-10 of
TTTExcludeEdges is the same as the time complexity of Lines 9-10 of ParTTTExcludeEdges be-
cause in TTTExcludeEdges we use two global hashtables - one for maintaining the adjacent vertices
of the currently processing vertex in the set of new edges and another for maintaining the indexes
of the new edges that we define before the beginning of the enumeration of new maximal cliques.
With these two hashtables, we can check the if condition at Line 9 of ParTTTExcludeEdges in
parallel with total work O(n) using Theorem 3.1 which is of the same order of the time complexity
of performing if condition check at Line 7 of TTTExcludeEdges. This completes the proof of work
efficiency of ParTTTExcludeEdges. For proving the depth of ParIMCENew, note that the depth is
the sum of the depths of procedures at Line 5, 6, 9, 10 of ParIMCENew because the cost of all
operations in other lines are O(1) each. The depth of executing intersection in parallel at Line 5 is
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O(1) using Theorem 3.1, the depth of the procedure for constructing the graph at Line 6 is O(∆2)
as we construct the graph sequentially, the depth ParTTTExcludeEdges is O(M log∆) following the
depth of TTTExcludeEdges, and the depth of Line 10 is O(1) because we can do this operation in
parallel using Theorem 3.1. Thus, the overall depth of ParIMCENew follows. □
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