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Our society is witnessing a rapid taxi electrification process. Compared to conventional gas taxis, a key drawback of

electric taxis is their prolonged charging time, which potentially reduces drivers’ daily operation time and income. In

addition, insufficient charging stations, intensive charging peaks, and heuristic-based charging station choice of drivers also

significantly decrease the charging efficiency of electric taxi charging networks. To improve the charging efficiency (e.g.,

reduce queuing time in stations) of electric taxi charging networks, in this paper, we design a fairness-aware Pareto efficient

charging recommendation system called FairCharge, which aims to minimize the total charging idle time (traveling time

+ queuing time) in a fleet-oriented fashion combined with fairness constraints. Different from existing works, FairCharge

considers fairness as a constraint to potentially achieve long-term social benefits. In addition, our FairCharge considers not

only current charging requests, but also possible charging requests of other nearby electric taxis in a near-future duration.

More importantly, we simulate and evaluate FairCharge with real-world streaming data from the Chinese city Shenzhen,

including GPS data and transaction data from more than 16,400 electric taxis, coupled with the data of 117 charging stations,

which constitute, to our knowledge, the largest electric taxi network in the world. The extensive experimental results show

that our fairness-aware FairCharge effectively reduces queuing time and idle time of the Shenzhen electric taxi fleet by 80.2%

and 67.7%, simultaneously.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing; • Information systems → Spatial-
temporal systems.

Additional KeyWords and Phrases: Electric taxi; fairness-aware; Pareto efficiency; charging recommendation; recommendation

system

ACM Reference Format:
Guang Wang, Yongfeng Zhang, Zhihan Fang, Shuai Wang, Fan Zhang, and Desheng Zhang. 2020. FairCharge: A Data-Driven

Fairness-Aware Charging Recommendation System for Large-Scale Electric Taxi Fleets. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 4, 1, Article 28 (March 2020), 25 pages. https://doi.org/10.1145/3381003

Authors’ addresses: Guang Wang, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ, 08854-8019, USA, guang.wang@rutgers.edu;

Yongfeng Zhang, Rutgers University, Piscataway, USA, yongfeng.zhang@rutgers.edu; Zhihan Fang, Rutgers University, Piscataway, USA,

zhihan.fang@cs.rutgers.edu; Shuai Wang, School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China,

shuaiwang@seu.edu.cn; Fan Zhang, SIAT, Chinese Academy of Sciences & Shenzhen Beidou Intelligent Technology Co., Ltd. Shenzhen,

Guangdong, China, zhangfan@siat.ac.cn; Desheng Zhang, Rutgers University, NJ, USA, desheng.zhang@cs.rutgers.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2020 Association for Computing Machinery.

2474-9567/2020/3-ART28 $15.00

https://doi.org/10.1145/3381003

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 28. Publication date: March 2020.

https://doi.org/10.1145/3381003
https://doi.org/10.1145/3381003
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3381003&domain=pdf&date_stamp=2020-03-18


28:2 • Wang et al.

1 INTRODUCTION
As an important urban transport mode, taxis are essential for people’s daily activities [46]. Nevertheless, taxis

typically have high gas consumption and emissions due to their long-time daily operations, e.g., around-the-

clock, which inevitably brings significant challenges to the sustainable development of cities [53]. Compared to

conventional gas taxis, electric taxis (ET) show considerable advantages in terms of energy consumption and

emissions, e.g., zero tailpipe emissions of ETs, which motivate many city governments (e.g., Beijing, Chinese city

Shenzhen, and New York City [32, 33]) to promote large-scale ET fleets. For example, it is expected that all gas

taxis in Shenzhen will be replaced by ETs by the end of 2019, leading to the largest all-ET network in the world

[24]. Similarly, New York City has the initiative to replace one-third of its gas taxis with ETs by 2020 [5].

However, despite their advantages of energy-saving and environmentally friendly nature, ETs currently have

not been adopted worldwide due to several reasons, e.g., low cruising range (e.g., less than 250 km), high prices

(e.g., over $45,000), and, most importantly, complicated charging problems. Among these issues, charging is the

key concern that hinders the ETs to release their full potential [16, 34, 37]. In particular, charging of large-scale ET

fleets is extremely challenging considering their unique characteristics. (i) High charging frequency. Due to
the limited battery capacity, ETs have a lower cruising range compared to gas taxis, which means that they need

to charge multiple times per day, given their long daily operation time and distance. For example, in Shenzhen,

it is very common for an ET to charge more than twice per day [3]. (ii) Long charging duration. A charging

activity of ETs typically lasts for half an hour to two hours, even using fast charging, which potentially reduces

their daily operation time and distance [34]. (iii) Intensive charging peaks. Besides, the intensive charging
activities in some periods (e.g., 3:00-5:00 and 12:00-13:00) also cause charging peaks and long queuing phenomena

in these periods [30]. Moreover, due to high costs, security concerns [31], and inaccessible land resources for extra
charging infrastructures, the numbers of charging stations and charging points in a city are generally limited and

insufficient compared to gas stations, which leads to charging resource competition and prolonged queuing time

in charging stations. A combination of the above charging demand (e.g., charging frequency, duration, and peaks)

and charging supply issues makes the current charging problem very challenging.

Many researchers have made efforts towards the challenging ET charging problem [3, 14, 16, 19, 30]. However,

most existing works [16, 42, 43] focus on how to build more charging stations to satisfy charging demand,

which is potentially costly and impractical in some cities. There are also some research efforts trying to design

charging recommendation systems [30, 35] to reduce charging overhead of ETs. Although these works achieved

good performance when the overall objective of recommendation is to maximize the profits of taxi companies,

the individual fairness between ET drivers was not considered. However, in this paper, we argue that a

recommendation not considering the fairness of individual drivers might not be practical in some real-world

settings where the profit model of taxi drivers is largely decided by their individual service performance instead

of the performance of the overall systems, e.g., Shenzhen and Beijing taxi networks [34, 53]. As a result, the

drivers may not have the incentive to follow the recommendation [35] if the recommendation decisions for

them are unfair, which will impair the system performance in the long run [39]. Thus, we aim to address the

key drawback of existing works with a fairness-aware charging recommendation. To achieve this goal, the key

technical challenge is how to consider the fairness for the ET charging scenario and find the fairness-aware

optimal solution recommendation for a large-scale fleet in real time.

In this paper, we advance the existing state-of-the-art works by asking a different question: can we recommend
a fleet of ETs to charge and achieve an optimal solution with fairness as a constraint? Which means that the overall
charging efficiency of all ETs with current or near-future charging requests is jointly optimized, and the extra
charging idle time is under a certain threshold for all ET drivers even though prolonged. To answer this question,
we perform a data-driven study to design a fairness-aware charging recommendation system called FairCharge

to improve the overall charging efficiency of large-scale ET networks based on fairness constrained Pareto
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optimization. The main advantage of FairCharge is that it considers fairness as a constraint when making Pareto

efficient recommendations, which is the key difference between our work and existing works. FairCharge makes

recommendation decisions considering not only the status of the current ET charging request but also the status

in a near-future duration of other relevant ETs in the fleet, which also has not been considered in previous

individual-based recommendations [30, 35].

To make our design more practical, we also consider some real-world factors for charging recommendations.

According to NYC Taxi & Limousine Commission [2], an ideal ET program should cause minimal disruption to

the taxi industry since the taxi industry has chosen its many current practices based on years of experiences

and learning about what works well and what does not work well in a real-world setting. If we change the time

when they send requests or when they go to charging stations, it may affect the entire taxi system and possibly

change drivers’ daily life, e.g., the arranged time conflicts with drivers’ daily schedule, resulting in not following

our recommendation. Therefore, in this paper, we only recommend ET drivers to the corresponding charging

stations when they send charging requests for practical considerations.

Specifically, the key contributions of this paper include:

• To our knowledge, we conduct the first fairness-aware ET charging recommendation research based on

large-scale real-world ET data, i.e., more than 16,400 ETs and 117 charging stations. Such a large-scale

and citywide study has the potential to advance our understanding of ET charging patterns in a practical

setting where fairness is a key concern, which is challenging to be discovered by simulated data-based

studies.

• We design a fairness-aware charging recommendation system called FairCharge, which aims to improve the

overall charging efficiency of ET networks (e.g., reducing the idle time) based on the Pareto optimality and

fairness constraints. We first formulate the ET charging recommendation problem as a fairness constrained

Pareto optimization problem, and then we leverage Pareto improvement to find the optimal solution.

• We design a context-aware model to calculate the traveling time at road segment levels, which is used

to estimate the traveling time from charging request locations of each ET to any charging stations. We

also provide a fleet-oriented optimal queuing inference algorithm to calculate the queuing time in stations.

Finally, we integrate all obtained information into the fairness constrained Pareto efficient charging

recommendation system for a fairness-aware optimal solution by Pareto improvement.

• More importantly, we implement and extensively evaluate FairCharge based on real-world data from

Shenzhen, including GPS records and transaction records from more than 16,400 ETs. The simulation results

show our FairCharge reduces 80.2% of the queuing time and 67.7% of the idle time, simultaneously.

The rest of the paper is organized as follows. Section 2 introduces the information of existing taxi infrastructure

and generated data. Section 3 shows our design motivation. Section 4 describes the detailed FairCharge modeling

and system design. Section 5 evaluates FairCharge with real-world datasets and shows comparisons with state-

of-the-art recommendation methods. Some discussions and lesson learned are shown in Section 6, followed by

related work in Section 7. Finally, we conclude this paper in Section 8.

2 DATA DESCRIPTION
In this section, we first introduce the current ET infrastructure in Shenzhen, and then we show the multi-source

data generated from it. Finally, we visualize the ET activities and charging stations.

2.1 ET Infrastructure
The Chinese city Shenzhen has, to our knowledge, the largest ET fleet in the world, including 16,407 ETs in

October 2018, accounting for more than 80% of its all taxis. During this project, we are working with the Shenzhen
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Transportation Committee, and we aim to design a charging recommendation system for effective charging

management of the city.

Fig. 1. Current taxi infrastructure in Shenzhen.

There are two types of taxis in Shenzhen, i.e., conventional gas taxis (red and green color) and new electric taxis

(blue color). Except for the basic taximeters, all taxis in Shenzhen are equipped with GPS and communication

devices. The existing taxi infrastructure in Shenzhen can be described as Figure 1. Dispatching centers are built

by the transportation committee to monitor the operating status of all taxis, and all GPS data are uploaded

periodically to dispatching centers through cellular networks. Charging stations with fast charging points are

deployed to charge the Shenzhen ET fleet for their daily operation.

2.2 Multi-Source Heterogeneous Data
In this infrastructure, multi-source heterogeneous data were collected for monitoring, accounting, and manage-

ment purposes:

Fig. 2. GPS record granularity. Fig. 3. Transaction granularity.

(i) With GPS devices, both static attributes (e.g., vehicle IDs) and dynamic attributes (e.g., real-time longitudes

and latitudes, timestamps, speeds, and passenger load indicators) are recorded. The cumulative distribution

function (CDF) of GPS record uploading intervals is shown in Figure 2. We found that 70% of GPS records were

uploaded every 30 to 50 seconds, and 75% of GPS records were uploaded within every 50 seconds, leading to a

detailed physical status log.
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(ii) With taximeters, the following information of each trip was recorded for accounting: the vehicle ID, pickup

and drop-off timestamps, operating distances, cruising distances, and fares. The CDF of the transaction record

uploading gap of each taxi is shown in Figure 3. We found that 80% of ET transaction records were uploaded

shorter than every 40 minutes, leading to a detailed trip-level status log.

(iii) With sensing and communication devices, both static and dynamic attributes are uploaded periodically

to dispatching centers via cell towers, and then the massive GPS data is stored in cloud servers of dispatching

centers for management and analyses.

(iv) Each charging station metadata has a station ID, a station name, longitude, latitude, and the number of

charging points in it. There are 117 fast charging stations deployed in Shenzhen for ETs in 2018. The detailed

distribution of charging stations will be shown in Section 2.3.

(v) We also leverage the road segment data of Shenzhen for a fine-grained charging modeling. In total, there

are about 135 thousand road segments and 87 thousand road intersections in Shenzhen. Each road segment has a

road ID, road name, start longitude and latitude, end longitude and latitude, road length, etc.

Table 1. Examples of the datasets.

Taxi GPS

plateID longitude latitude time speed(km/h)

YBDXXXXX 113.928185 22.681187 2018-10-14 05:40:31 21

Taxi Transaction

plateID pickup time dropoff time cost(CNY) distance(m)

YBXXXXX 2015-06-20 07:02:29 2015-06-20 07:18:29 43.6 15398

Charging Station

stationID stationName longitude latitude # of charging points

53 LGS0012 114.0705118 22.65589517 52

Road Network

roadID startLongitude startLatitude endLongitude endLatitude

27813 114.426971 22.604326 114.4370363 22.5904528

In total, our dataset includes 5-year (2014-2018) ET data in Shenzhen, which includes over 2 TB GPS records

and 56 GB transaction records of more than 16,000 ETs, combined with data of 117 charging stations. An example

of the dataset is shown in Table 1.

Fig. 4. ET activities and charging stations.
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2.3 ET Activities and Charging Station Visualization
Figure 4 shows a visualization of charging station distribution and ET activity distribution in 2018. The yellow

(i.e., light) areas mean there are higher ET activities in these locations, and the red (i.e., dark) areas indicate lower

ET visiting frequencies. The blue triangles stand for charging stations, and the sizes of triangles stand for the

sizes of the charging stations, i.e., a large triangle means a large charging station with more charging points.

Considering both charging station distribution and ET activity distribution, we found that places with high ET

activities are also the locations with more charging stations and charging points, which indicates a correlation

between charging stations and ET activities. The upper right corner shows the CDF of the distance between each

charging station and its nearest charging station, which indicates whether there are other nearby choices when

there are no charging points available in the current station. We found about 90% of charging stations have at

least one neighbor within 3 km, which indicates most charging stations in Shenzhen are well-connected, so a

recommendation system can easily find another near station for an ET if there are no available charging points

in its dedicated charging station.

3 MOTIVATION
In this section, we first describe the charging process of ETs with three stages, followed by our data-driven

observations, e.g., charging spatial & temporal patterns. Finally, we show the key idea of our FairCharge.

3.1 Charging Process of ETs
Figure 5 shows a charging process of ETs.

Fig. 5. A charging process of ETs.

(i) At time t0, an ET has a charging request, and it travels to a charging station at t1, so we define the time

durationTt = t1−t0 as the traveling time. (Note that in the current situation, ET drivers make charging decisions

by themselves, which means they choose when and where to charge based on their experiences.)

(ii) When the ET arrives at a charging station at t1, all charging points may be occupied, so it queues for an

available charging point to t2, and we define Tq = t2 − t1 as the queuing time. Tq = 0 if there are available

charging points for the ET when it arrives to the charging station.

(iii) At time t2, the ET starts the charging service and finishes it by t3. Then, the time duration between t2 to t3
is defined as the service time, which is Ts = t3 − t2.

(iv) Due to different charging station choices would not have a large impact on the service time [30, 34, 35], so

our key concern is Tt +Tq , which is defined as the idle time Tt+q since the ET neither serves passengers nor

under charging services.

(v) The charging duration of a whole charging event is Tt+q+s = t3 − t0 = Tt +Tq +Ts .

3.2 Data-Driven Observations
Based on our data-driven charging pattern analysis, we provide the following observations:

(i) There is an unbalanced spatial and temporal charging pattern. For the unbalanced spatial pattern, 62% of

charging events happen in 23 (i.e., 20%) charging stations, as shown in Figure 6. For the unbalanced temporal
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pattern, there are three distinct charging peaks (e.g., 2:00-6:00, 12:00-13:00, and 16:00-18:00 as shown in Figure 7),

resulting in some charging stations are overcrowded during these time periods, which potentially prolong the

queuing time at charging stations. We also verify this long queuing phenomenon through a set of field studies.

More details will be shown in Section 5.1.

Fig. 6. Charging spatial dis-
tribution.

Fig. 7. Charging temporal
distribution.

Fig. 8. Queuing time in top 3
stations with most charges.

Fig. 9. Charging duration dis-
tribution.

(ii) Based on our data-driven analyses and field studies, we found that ET drivers tend to charge in downtown

areas, especially for large stations with more charging points in there. This heuristic charging station searching

strategy potentially prolongs their queuing time in these stations. For example, Figure 8 shows the queuing time

in three charging stations with the most charging events during 12:00-14:00. We found that most ETs need to

wait more than 10 minutes for available charging points, and some ETs need to wait more than an hour. Such a

long queuing time severely reduce the charging efficiency of the ET charging network.

(iii) The charging duration of 97% of charging events would last for half an hour to two hours, as shown in

Figure 9, which potentially results in operation time and operation distance reduction of ETs. However, for ET

drivers, what they care about is their profits, and a long time for charging activities will make them unsatisfactory,

so they wish their idle time can be reduced if current battery technologies cannot be improved shortly.

From our data-driven observations, we argue it is necessary for us to develop a better charging station

deployment strategy or design an effective charging recommendation system to address these inefficient charging

issues. However, it is challenging to deploy abundant charging stations for ETs due to some real-world constraints,

e.g., unavailable and costly land resources [34]. In addition, even though with enough charging resources, the

heuristic charging behaviors of ET drivers and intensive charging peaks in some periods will also decrease the

charging efficiency of the whole ET fleet. As a result, in this paper, we aim to design a charging recommendation

system to improve the charging efficiency of the whole ET charging network with the fairness constraint for the

long-term benefit, which is more economically efficient and feasible compared to deploy additional charging

stations and unfair recommendation strategies.

3.3 Key Idea of FairCharge
The key idea of our FairCharge recommendation is that we try to minimize the maximum prolonged idle time for

all drivers that send charging requests in a period compared to their utopia recommendation decisions, which

intuitively means that the worst case for each driver is not too bad. We consider all potential charging requests in

a short near future period τ , and then we recommend all of these ETs to achieve the fairness constrained Pareto

efficiency. Even though the key idea seems not too complicated, it is nontrivial to have a suitable fairness definition

for the ET charging scenario, and it is also not easy to formulate this problem into an existing optimization

framework, especially for a large-scale citywide number of ETs, which is also challenging to find an effective

charging management approach in real-world scenarios.
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Fig. 10. Charging sce-
narios of ETs.

As shown in Figure 10, there are two charging stations (i.e., S1 and S2) and there are

two ETs (i.e., ET1 and ET2). The letters labeled near each line stand for the time (minutes)

that each ET needs to spend for obtaining an available charging point in each station, i.e.,

travelinд time +queuinд time . We give an example to explain the key idea of FairCharge.

Suppose τ1 = 10, τ2 = 10, τ3 = 10, and τ4 = 20, and there is an available charging point

in each charging station. For an individual-oriented recommendation system, it adopts

a first request first served policy [30]. If ET1 sends a charging request first, it will be

recommended to S1 by the system. At this time, if ET2 requests a recommendation, the

system will recommend it to S2, resulting in 30 minutes of the total idle time for the two
ETs. But if we consider the status of all ETs in the fleet and consider requests in the near future, we predict the

request from ET2, so we can recommend ET1 to S2 and ET2 to S1 to obtain a global optimum with 20 minutes’

idle time. In this case, the fleet information (e.g., the future charging requests and status of other ETs) has not

been considered in the individual-oriented recommendation, and we can save about 33.3% (10 minutes) of the

total idle time since we consider it from a fleet-oriented perspective. In this example, (ET1(τ1), ET2(τ4)) is an
allocation Q1

and (ET1(τ2), ET2(τ3)) is another allocation Q2
. The process from Q1

to Q2
is a Pareto improvement

since Q2
reduces the overall charging time of the two ETs without hurting any other ETs. We found the Pareto

improvement is a common case in our FairCharge charging recommendation scenario.

In another case, if τ1 = 6, τ2 = 16, τ3 = 7, and τ4 = 18, then both allocation Q1
(i.e., ET1(τ1), ET2(τ4)) and

allocation Q2
(i.e, ET1(τ2), ET2(τ3)) are Pareto efficient. Given our fairness constraint, our recommendation system

selects Q2
since ET2(τ4) - ET2(τ3)=11 is larger than ET1(τ2) - ET1(τ1)=10, so we try to make our recommendation

decisions fairer and more acceptable by all drivers.

Fig. 11. CDF of charging
events in one minute.

To make the FairCharge efficient, we need to have enough charging events

happening in the time duration τ (e.g., one minute), so we made a data-driven

observation. As shown in Figure 11, we found that there were more than 10 charging

events per minute in 75% of the time of a day, which indicates that it has the

potential for us to leverage the Pareto efficiency to achieve the optimal charging

recommendation even making recommendation decisions in a short duration (e.g.,

one minute). Hence, with this solid established economic theory, combined with

our data-driven charging pattern investigation of ETs, we design a data-driven

fairness-aware charging recommendation system based on Pareto efficiency to

achieve the optimal charging efficiency for the whole ET charging network.

Summary: To our knowledge, existing charging recommendation research rarely consider if their decisions

are Pareto efficient or not, and also they seldom consider charging recommendation from the fairness perspective,

where the benefits of different ET drivers may be mutually correlated, and we need to make sure the worst

possible decisions for some drivers are still acceptable (e.g., idle time is under a certain threshold). To make the

charging recommendation fairer and attract more drivers to follow it, we consider fairness as a constraint when

making recommendation decisions in this paper. Even though the definition of fairness in different scenarios

is different [1], we carefully define the fairness definition in the ET charging scenario based on their charging

patterns, which will be shown in Section 4.1.

4 SYSTEM MODELING AND DESIGN
In this section, we show the detailed modeling and design processes of our FairCharge recommendation system.

(i) We introduce the Pareto efficient charging recommendation, which includes the real-time charging problem

formulation and Pareto improvement. (ii) A context-aware traveling time model at the road segment level is

presented to calculate the traveling time, and a fleet-oriented queuing algorithm is proposed to infer queuing time
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of each charging event based on the status of all relevant ETs in the fleet. (iii) All previously-obtained information

is fed to Pareto improvements for the charging recommendation.

4.1 Real-Time Charging Problem Formulation
In this paper, we formulate the real-time charging recommendation problem as an online Dynamic Resource

Allocation (DRA) problem [15], which allocates ETs that have charging requests to charging stations to achieve

the Pareto efficiency. Pareto efficiency (optimality) [50] means that no one can gain further benefits without

making at least one individual worse off, named after one of the pioneers of Microeconomics Vilfredo Pareto [22].

Pareto efficiency is a formally defined concept for determining if an allocation is optimal or not.

Suppose there is an ET fleet with N ETs {ET1, ET2, · · · , ETN } in a city, and the ET fleet sporadically generates

m charging events {e1, e2, · · · , em} in a short duration τ . To keep the daily operation of the ET fleet, there are n
charging stations {s1, s2, · · · , sn} deployed across the city, and the number of charging points in each charging

station constitute a vector p = [p1,p2, · · · ,pn]⊺ . In the following part, we will utilize 1 ≤ i ≤ m and 1 ≤ j ≤ n to

index the charging events and charging stations, respectively.

The Real-Time Charging Recommendation (RTCR) [30] problem aims to find a time-varying online allocation
matrix Q = [Qi j ]m×n to optimize the charging efficiency of the ET fleet in real time, whereQi j ≥ 0 means whether

the charging event ei is recommended to sj or not, e.g., Qi j = 1 if ei is recommended to sj , otherwise Qi j = 0. A

Pareto efficient charging recommendation attempts to provide recommendations according to the Pareto efficient

allocation of the charging points regarding each ET driver’s benefits (e.g., idle time). Let Qi be the allocation

vector for event ei , so we have Q = [Q1,Q2, · · · ,Qm]
⊺
for all charging events. Since one charging event can be

only recommended to one charging station, the allocation Qi should be a unit vector ui , which means that it

only includes a single 1. We take Ti (Qi ) as the idle time that charging event ei spends for its allocated charging

station, which is the sum of the traveling time and queuing time. Therefore, the charging recommendation form
charging events in a short duration can be formulated as the following Pareto optimization problem,

minimize

Q=[Qi j ]m×n
T(Q) = [T1(Q1),T2(Q2), · · · ,Tm(Qm)]

⊺

s .t . Qi = ui , ∥Qi ∥ = 1, ∀i = 1, 2, · · · ,m
(1)

which minimizes the idle time of all charging events in a short duration (e.g., 1 minute) jointly. This model

produces Pareto efficient allocations on idle time of all charging events, which are then taken for recommendation

decisions to achieve the optimal recommendation. After a round of recommendation, the FairCharge system

will update the information of all ETs and stations (e.g., current locations, charging station status, number of

queuing ETs in each station, etc). Then based on the newly updated data and newly received charging requests,

FairCharge dynamically makes new recommendation decisions in an online manner, i.e., continuously update

the allocation matrix Q.

4.2 Pareto Efficiency and Fairness
Different from single-objective optimization, there are typically a set of feasible solutions for a Pareto optimization

problem. In addition, the objective functionsTi (Qi ) in the above Pareto optimization problem are usually mutually

correlated, which means that decreasing the idle time of one ET driver may increase the idle time of other ET

drivers. As a result, given a Pareto optimization problem, we are usually interested in its Pareto efficient solutions

(i.e., Pareto efficiency), with which we can achieve the optimal charging recommendation.

Definition 4.1. Pareto Efficient: A feasible recommendation Q∗ is Pareto efficient iff there does not exist another

feasible recommendation Q, such that T(Q) ≤ T(Q∗) with at least one Ti (Q) < Ti (Q∗). Otherwise, Q∗ is Pareto
inefficient.
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Definition 4.2. Pareto Frontier: The set of all Pareto efficient solutions is called the Pareto frontier.

Definition 4.3. Pareto Improvement: Pareto improvement is the approach to achieve the Pareto efficiency. A

change from status Q1
to Q2

is called a Pareto improvement iff T(Q2) ≤ T(Q1) with at least one Ti (Q2)<Ti (Q1).

Definition 4.4. Utopia Recommendation: A recommendation Q◦ ∈ Rn is a utopia recommendation iff Ti (Q◦) =
min

Q
Ti (Q) for each i = 1, 2, · · · ,m. A corresponding decision variable Q◦i ∈ R

n
is a utopia decision variable.

Intuitively, a Pareto improvement is an action conducted in the recommendation system that harms no ET

drivers and reduces the idle time of at least one ET driver. The Pareto improvements can be increasingly made one

by one until the system achieves a Pareto efficiency, at which status no more Pareto improvement can be made

[20]. A utopia recommendation (or ideal recommendation) is an ideal solution to the charging Pareto optimization

problem, but usually, it is impossible to find a solution that includes utopia recommendations for all ETs.

In this paper, we try to balance the “selfish” charging behaviors of drivers and myopic optimization of operators.

For ET drivers, they expect their idle time as short as possible so that they can have a longer time for the operation.

While for taxi operators, they usually try to minimize the cumulative idle time across the entire fleet to obtain

temporary global benefits, which may severely damage some drivers’ benefits, e.g., prolonging the idle time a lot

for some drivers. This short-term optimization may result in low participation rates of drivers from a long-term

perspective, which, in turn, makes the system inefficient. Hence, if a recommendation system needs to operate

in the long-run, it should be fair, which means it needs to attract more ET drivers to participate it stably, so

it is necessary for drivers to feel they are fairly treated, e.g., the idle time is acceptable even though they are

recommended to suboptimal charging stations.

Definition 4.5. Fairness Recommendation: A recommendation Qf ∈ Rn is a fairness recommendation if Qf =

argmin

Q
{max

i
{Ti (Qi) −Ti (Qi

◦)}} for each i = 1, 2, · · · ,m, which means that the maximum prolonged time for all

drivers that send charging requests in a period should be minimized compared to their utopia decisions, which

intuitively means that the worst case for each driver is not too bad. This fairness definition potentially makes the

recommendation decisions acceptable to drivers even though some ETs’ idle time may be prolonged.

It should be noted that the definition of fairness is not unique, and it even subjectively depends on the system

designers. In this work, we take the “least misery” [39] definition of fairness as our design guideline after exploring

many existing fairness related works [1, 12, 39, 50], which we believe best matches the driver incentives, to show

how this fairness consideration effectively helps real-time charging recommendation.

By integrating fairness constraints into the Pareto optimization problem in equation (1), we obtain a fairness-

aware constrained optimization, which guarantees both the Pareto efficiency and fairness among drivers. The

fairness-aware recommendation is formulated as equation (2), where the last constraint guarantees recommenda-

tions for all charging events are fair, and Qi
◦
is the utopia recommendation for the charging event ei .

minimize

Q=[Qi j ]m×n
T(Q) = [T1(Q1),T2(Q2), · · · ,Tm(Qm)]

⊺

s .t . Qi = ui , ∥Qi ∥ = 1, ∀i = 1, 2, · · · ,m

Qf = argmin

Q
{max

i
{Ti (Qi) −Ti (Qi

◦)}}

(2)

In classical economics, three are three conditions for Pareto Optimality [22], i.e., (i) efficiency in exchange, (ii)

efficiency in production, and (iii) efficiency in exchange and production (product mix). Our solution satisfies the

three conditions. For the first one, since our solution is obtained based on the “least misery” constraint, which

means that the worst recommendation for all ET drivers is still good enough for them to accept, as a result, there

is no incentive for them to reject our recommendation and switch to other stations, which result in efficiency in
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exchange. For the second condition, since all ET drivers who send charging requests in each recommendation

round are recommended to charging stations, it means that all production resources are employed. For the

last condition, since the charging points in different charging stations have the same charging rates, and all

charging points in the same charging station are also equivalent, it means that all charging points have the same

marginal rate of substitution. As a result, the third condition is also satisfied. Hence, our problem can reach

Pareto efficiency.

In following parts, we introduce how to calculate idle timeTi (Qi ) of each charging event ei , which is the sum of

traveling time Tt and queuing time Tq . Then all obtained information is leveraged for charging recommendation.

4.3 Context-Aware Traveling Time Calculation
The location when an ET driver sends a charging request could potentially be any place in the city, which results

in the routes to charging stations of ETs may not appear before, so it is necessary to estimate the speed on each

road and then estimate the time from any place to each charging station. Hence, in this subsection, we present

a context-aware traveling time model at road segment levels to calculate the traveling time of each ET to each

charging station.

A road network can be seen as a graph consisting of road segments and intersections. The road segments

are edges of the graph. The intersections and endpoints of the road segments are the vertices of the graph. The

traveling speed on each road segment can be seen as the weight of the edge. According to existing research

[9, 25, 40], the traffic conditions of road segments on the same day of different weeks typically are similar, which

can be predicted using historical data. Hence, we estimate the average speed of each road segment in different

time slots of different days. According to previous research [6, 26, 47], traffic conditions in 5 minutes are typically

similar, and the 5-minute partition has been adopted by many previous research [48], so we also select 5 minutes

as our time slot length to update the estimation value of traveling time (not for the recommendation). Suppose

there are m intersections and n road segments in a city, and the road network of the city can be represented by a

directed graph G = (V , E), where V = {V1,V2, · · · ,Vm} and E = {E1, E2, · · · , En}. We denote the average speed

on road segment Ei during time slot τ as v (τ , Ei ), where Ei denotes the road segment from intersection Vi to
intersectionVi+1. Thus, a speed matrix for time slot τ is obtained, which includes the speed on each road segment

of a city during this time slot.

After obtaining the average speed of each road segment, we estimate the traveling time between any charging

request location (lonr , latr ) and charging station location (lonsj , latsj ) using the following formula:

Tt
(
Dw , lonr , latr , lonsj , latsj

)
=

k∑
i=0

L
(
lonVi , latVi , lonVi+1, lonVi+1

)
v (Dw , τ , Ei )

(3)

Where k is the number of road segments between an original location (i.e., the location when a driver sent

a charging request (lonr , latr )) and a destination location (i.e., the location of a charging station (lonsj , latsj ));
Dw is the day of week, e.g., Monday; L(lonVi , latVi , lonVi+1, lonVi+1 ) is the length of the road segment between

intersectionVi andVi+1, and we set the first intersection as the location where a driver sends a charging request, i.e.,
lonr = lonV0 and latr = latV0

. We set the last intersection as the location of charging station sj , i.e., lonsj = lonVk+1
and latsj = latVk+1 ; v (Dw , τ , Ei ) is the average speed of the corresponding road segment Ei during time slot τ of

a particular day of week Dw . Thus, the traveling time Tt from the current location to each charging station can be

obtained for each specific day of a week.

4.4 Fleet-Oriented Queuing Time Calculation
If many ETs arrive at the same charging station nearly the same time, they will compete for limited charging

points and then cause long queuing lines in some specific time durations, e.g., 3:00-5:00 and 12:00-13:00 as Figure 7
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shows. Hence, reducing the queuing time of ETs for available charging points is a key factor in reducing the idle

time of them, and it is also one of our objectives.

If an electric taxi ETx arrives at a charging station at time t1, the queuing time Tq is decided by the number of

ETs being served in the station and the number of ETs arrived at this station prior to ETx . In certain circumstances,

when ETx is going to a charging station, there may be other ETs submitting charging requests at the same time or

near future (e.g., as Figure 11 shows), so we can coordinate them for a batch-based solution to avoid long queuing
time compared to the streaming one-by-one fashion [30, 35].

In summary, if there are available points when ETx arrives at a station, the queuing time would be 0. Otherwise,
there exists a queuing time, which can be formulated as:

Tq = t2 − t1 =

{
0 no queuinд

min

i ∈I
{t i

3
− t1} queuinд (4)

Where t1 and t2 are the time when ETx arrives a charging station and starts charging service as we defined

in Section 3.1; I is the set of ETs served and queuing in the station, and t i
3

stands for the time when ith ET

is fully charged and leave, leading to an unoccupied point for ETx . The time when an ET fully charged and

leave is estimated by utilizing a widely used charging model [10, 35]. Based on all the fleet information, we

then design the fleet-oriented optimal queuing inference algorithm, which is shown as Algorithm 1. When the

(ns + ne − pj + 1)
th

ETs leave this station, there will be an available charging point for ETx , so we can obtain the

queuing time of ETx in charging station sj by this fleet-oriented queuing model.

Algorithm 1: Fleet-OrientedQueuing Inference

Input: A charging station sj , the number of charging points in it pj , an ET needed to charge ETx , and the time it

arrives at the station t1, the number of ETs being served or queuing ahead of ETx in the station ns , the number

of ETs sending request during the same time slot and arriving early than ETx is ne
Output: Queuing time Tq

1 if pj − ns − ne > 0 then
2 Tq ← 0

3 elseif pj − ns − ne ≤ 0 then
4 Tq ← min{t

ns+ne−pj+1
3

− t1}

5 return Tq ;

4.5 Charging Recommendation
Given traveling time Tt and queuing time Tq we computed in Section 4.3 and 4.4 for each charging event ei ,
we obtain the idle time Ti (Qi ) for each allocation Qi . The Pareto optimization with the fairness constraint for

charging recommendation is shown as Equation 5, and then we leverage effective methods to solve this problem.

minimize

Q=[Qi j ]m×n
T(Q) = [T1(Q1),T2(Q2), · · · ,Tm(Qm)]

⊺

s .t . Qi = ui
∥Qi ∥ = 1

Ti (Qi ) ≤ T̂i (Qi ), i = 1, 2, · · · ,m

Qf = argmin

Q
{max

i
{Ti (Qi) −Ti (Qi

◦)}}

(5)
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In Equation 5,m is the number of charging events; n is the number of charging stations; ui is an unit vector

with values 0 or 1; 1 ≤ i ≤ m and 1 ≤ j ≤ n are indexes of the charging events and charging stations; Qi
◦
is the

utopia recommendation for the charging event ei . The first and second constraint guarantees an event can be

recommended to only one charging station. The third constraint guarantees the Pareto improvement for a faster

solution since it can help to avoid back and forth in the optimization procedure and keeps the solution directly

optimized towards the optimal solution.

We adopt the scalarization with greedy algorithm in [39] to address this optimization problem, which is proven

to have high efficiency in solving the Pareto efficient optimization problem in the literature [39, 50]. An important

advantage of scalarization with greedy algorithm is computational efficiency. Notice that solving an optimization

problem can be very time-consuming, especially for some non-convex optimization problems. The basic idea of

the scalarization greedy algorithm is that it scalarizes the objectives into a single objective function, and then

gradually deals with one request in each iteration and achieves the highest fairness when it is added to the

current allocation matrix. The algorithm runsm iterations to generate a final recommendation, so it is more

time-efficient.

It should be noted that the solution may fall into local optimum solutions since we utilize the scalarization-

based greedy algorithm. However, since we utilize the “least misery” as a constraint (i.e., the last constraint in

Equation 5) to find the final solution, as a result, even if the algorithm converges into a local minimum, it will still

guarantee that the obtained solution (i.e., recommendation) is good enough for each driver, and all decisions for

drivers are acceptable for them, so we believe the obtained local optimal solution does not have a great impact on

the effectiveness of the algorithm.

During the Pareto improvement process, we first construct an initial allocation matrix Q̂ based on an individual-

based recommendation to obtain the utopia solution for each charging request. Then we construct an initial idle

time T̂i (Qi ) of charging event ei . In addition, we leverage the third constraint in Equation 5 to guarantee the

Pareto improvements, which means the charging time of a later allocation Q must be shorter or equal to the

counterpart of the previous allocation Q̂, so it can help to avoid back and forth in the optimization procedure and

keeps the solution directly optimized towards the optimal solution. In this case, we reduce the computational

complexity of this problem, which effectively helps us to address the real-world large-scale requests from ET

drivers. The last constraint is a fairness guarantee, which means that we try to make sure all recommendation

decisions are fair for ET drivers. The idea is that the maximum prolonged time for all drivers should be minimized

compared to their utopia decisions. Finally, we obtain the fairness constrained Pareto efficient solution for the

large-scale ET charging recommendation problem in limited time, which satisfies the real-time requirement.

5 EVALUATION
In this section, we conduct extensive experiments to evaluate the performance of our FairCharge by comparing it

with the Ground Truth and some state-of-the-art baselines, in terms of (i) traveling time, (ii) queuing time, (iii)
idle time (i.e., traveling time + queuing time), and (iv) charging station occupation rate. Finally, we also investigate

the system performance under different ET drivers’ participation rates.

5.1 Evaluation Dataset
Evaluation Data.We utilize a 6-month ET dataset fromMay 2018 to October 2018 as we introduced in Section 2.2

to conduct the following experiments, which includes GPS and transaction records from over 16,000 ETs, combined

with data of 117 charging stations.

Field Study and App Prototype. To investigate the practical charging problems in Shenzhen, we have

conducted a series of real-world field studies in this city. Figure 12 (a) and (b) show the service and queuing

phenomena in the Shenzhen Baishizhou charging station between 11:30-13:00, where we saw a severe queuing
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phenomenon in this station. We found ETs queued up at the entrance of the station and then extended to outer of

the station, which can effectively avoid the traffic congestion in the charging station, and drivers can also find an

available charging point easily if an ET was fully charged and prepared to leave. Most drivers charging in this

station said they normally need to wait for more than half an hour to have access to an available charging point

during lunchtime, so they were eager to have the issue addressed by an effective charging station recommendation

from taxi companies or the transportation committee.

Fig. 12. Real-world charging and queuing of ETs in Shenzhen and our App prototype.

We are currently designing an App, and the prototype is shown as Figure 12 (c). To convince ET drivers to

participate in our recommendation, we have fairness in mind for a transparent recommendation. In addition to the

navigation route to the recommended charging station, our App also informs real-time fairness scores in terms

of idle time for all participating drivers. Since our design is for city-scale electric taxi drivers and considering

city-scale charging infrastructure, we need to ensure all drivers have opportunities to utilize our system, and

a small-scale pilot study may not reflect the fairness between drivers. The first edition of the App is almost

completed. It is expected the App will be on the market after approval, and we will then conduct a pilot study to

verify the proposed method in practice and find some potential pitfalls.

5.2 Experimental Setup
Simulation Setting. One major issue in charging recommendation scenarios is that recommending a charging

event will impact future charging events. Hence, we adopt a rolling horizon manner to make the recommendation

decisions, which is widely successfully utilized for online ride-sharing order dispatching (e.g., Uber, Lyft, and DiDi)

[17, 41, 49] and charging recommendation [30, 35]. The key idea of rolling horizon based methods is to update

the status of all ETs and charging stations in an online fashion, e.g., updating the system status after making

recommendation decisions in a short duration τ (e.g., one minute in our work). Then the next recommendation

decisions will be made based on the updated status. The reasons why we select one minute are threefold. (i)

The first one is that the charging requests in a short time are more predictable because of small accumulative

errors. (ii) The second reason is that the number of charging requests in a short time is limited, which is easy

for the system to find the optimal recommendation and operate in an online fashion. If we consider a longer

duration, there would be more charging requests, which requires the recommendation system to have a higher

computational capability to handle it. (iii) The third reason is that waiting one minute is acceptable for drivers

even we make a batch-based recommendation without predicting future charging requests, which makes our

system more flexible. Under this setting, we found the average recommendation time is about 6.3s for each round

of recommendation, which may satisfy the requirements of real-time scenarios.

Start Point and End Point of Traveling Time to Charging Stations. According to the previous research

[30, 34, 35], ET drivers usually send charging requests after dropping off passengers, and they have also traveled
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a certain distance since the last charge, which leads them to a low battery level. Hence, the start point of the

traveling stage is the time when the last passenger gets off the ET before charging. We merge the transaction

data collected from the onboard vehicle equipment and GPS data to obtain the start points t0 based on the fact

that the last drop-offs and the followed queuing in charging stations are adjacent and disjoint. The endpoint t1 of
the traveling stage is the time when an ET arrives at a charging station and starts queuing for charging. The time

interval between the two points is set to the traveling time Tt to a charging station for simulation.

Baselines: To evaluate the performance of our system, we compare our FairCharge with (i) the baseline

(Ground Truth) and three other state-of-the-art charging recommendation strategies, i.e., (ii) OCSD in [16], which

recommends ETs to the nearest charging stations; (iii) Recommender in [30], which is the optimal one-by-one

charging recommendation. In addition, we also compare FairCharge with (iv) the unfair instantaneously optimal

Fleet-Oriented (i.e., batch-based) Charging Recommendation UnFair-FOCR, which do not consider fairness

impacts on long-term performance; and (v) the Fleet-Oriented Charging Recommendation considering Long-
term performance loss caused by unfairness UnFair-FOCRL, which assumes that the unfairly treated drivers

will not follow UnFair-FOCR in the future. For the recommendation strategies OCSD and Recommender, they do

not consider future possible charging requests. UnFair-FOCR does not consider the fairness of recommendation

decisions, and UnFair-FOCRL is its long-term performance considering the impact of fairness. However, in our

FairCharge, we consider both potential future charging requests and fairness constraints.

Evaluation Metrics: The objective of our FairCharge is to improve the charging efficiency of ET networks,

which includes two aspects: (i) spatially balancing the uneven charging supply and demand, and (ii) reducing

idle time for ET fleets. Hence, we utilize the following metrics to measure the system performance, including

(i) reduction of traveling time, (ii) reduction of queuing time, (iii) reduction of idle time, and (iv) charging station
occupation rates.

Definition 5.1. We define the Percentage Reduction of Traveling Time (PRTT), Percentage Reduction of Queuing
Time (PRQT), and Percentage Reduction of Idle Time (PRIT) to quantify the system performance on time reduction

for ET fleets, which are formulated as:

PRTT (R) =
Tt (G) −Tt (R)

Tt (G)
× 100% (6)

PRQT (R) =
Qt (G) −Qt (R)

Qt (G)
× 100% (7)

PRIT (R) =
It (G) − It (R)

It (G)
× 100% (8)

WhereTt (R) is the traveling time of recommendation strategy R, which can beOCSD, Recommender, UnFair-FOCRL,
UnFair-FOCR, or FairCharge; Tt (G) is the traveling time of the Ground Truth; Qt (R) is queuing time based on

recommendation strategy R; Qt (G) is the queuing time of the Ground Truth; It (R) is idle time of recommendation

strategy R; It (G) is the idle time of the Ground Truth.

Definition 5.2. We define the daily Charging Station Occupation Rate (CSOR) of a station sj to quantify the

average occupation time of each charging point in the station, which is formulated as:

CSOR(sj ) =

nj∑
i=1

Ts (ei j )

pj
(9)
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WhereTs (ei j ) is the service time of ith charging event ei in the station sj ; nj is the daily number of charging events

in the station sj ; pj is the number of charging points in station sj . To balance the charging station utilization, we

need to reduce the number of charging stations with very low or very high CSORs since a very low CSOR means

a charging resource waste and a very high CSOR means potential longer queuing time in those charging stations.

5.3 Recommendation Results
5.3.1 Comparison of Traveling Time. As shown in Figure 13, the OCSD has smaller PRTT than Recommender,
but FairCharge achieves higher traveling time reduction than OCSD. The reason why OCSD achieves better

performance of PRTT than Recommender may be that Recommender will recommend the stations with more

queuing time reduction and sacrifice the traveling time. The figure shows that the least PRTT is around 4:00 in the

morning and the traveling time is long in the early morning. The reason may be that the charging demand in the

urban area is too high during these non-rush hours, so ETs need to go to suburban areas to charge for reducing

the queuing time. The distance from urban business areas to suburban is very far, resulting in the traveling time is
long. Another change shift time is around 17:00, so the traveling time to stations is also longer in this duration.

Fig. 13. Traveling time reduction. Fig. 14. Queuing time reduction. Fig. 15. Idle time reduction.

Even though we found that UnFair-FOCR has the best immediate performance if we do not consider fairness,

which is slightly better than our FairCharge, we found about 11% recommendations in UnFair-FOCR are not fair,

which potentially makes these ET drivers not to follow recommendations from UnFair-FOCR, so the performance

of UnFair-FOCRL is worse than our FairCharge after considering fairness on the long-term perform.

Table 2 shows the average PRTT for each charging event. Combining the immediate performance and the

potential following rates, we found that our FairCharge has better long-term performance, which reduces the

traveling time by 58.7% compared to the Ground Truth, decreasing from 11.3 minutes to 4.65 minutes. However,

some drivers will not follow UnFair-FOCR because of unfair recommendations, which causes a 55% deduction of

UnFair-FOCRL compared to the Ground Truth. Recommender and OCSD also reduces traveling time by 16.7% and

47.7%, respectively.

Table 2. Average percentage reduction of traveling time.

Methods OCSD Recommender UnFair-FOCRL FairCharge UnFair-FOCR

PRTT 47.7% 16.7% 55% 58.7% 61.8%
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5.3.2 Comparison of Queuing Time. Figure 14 shows the PRQT of different recommendation methods. We found

that OCSD has the worst performance regarding PRQT, and it will have negative PRQT during most hours, which

means that the average queuing time of OCSD is longer than the Ground Truth. The reason is that there will be

heavy charging peaks under OCSD since too many ETs operating in urban business areas will be recommended to

the same charging stations by OCSD, leading to an increase of the queuing time. Especially during some charging

peak hours in one day, e.g., 5:00-6:00, 12:00-13:00, OCSD causes extremely long queuing time, so it might not be a

good recommendation for ET fleets. However, our FairCharge achieves more than 80% of PRQT on average, and

it is also better than Recommender and UnFair-FOCRL.
Table 3 shows the average PRQT for each charging event, and we found that our FairCharge reduces the

queuing time by 80.2% compared to the Ground Truth, decreasing from 8.01 minutes to 1.59 minutes. While

for UnFair-FOCR, with the potential user loss, the performance of UnFair-FOCRL is about 7% worse than our

FairCharge from a long-term perspective.

Table 3. Average percentage reduction of queuing time.

Methods OCSD Recommender UnFair-FOCRL FairCharge UnFair-FOCR

PRQT -193.1% 35.8% 73.1% 80.2% 82.1%

5.3.3 Comparison of Idle Time. As shown in Figure 15, with fairness consideration, we found that our FairCharge

achieves the largest PRIT. More specifically, FairCharge achieves over 50% PRIT for charging requests almost in

all hours of a day. Recommender also achieves a good performance in terms of the PRIT, but it is not as good as

FairCharge. Compared to the Ground Truth, OCSD shows a worse performance on PRIT because of its prolonged

queuing time.
Table 4 shows the average PRIT for each charging event, and we found that our FairCharge reduces the idle

time by 67.7%, i.e., decreasing from 19.31 minutes to 6.24 minutes, which is about 5% better than the optimal

unfair batch-based recommendation UnFair-FOCRL considering the long-term performance.

Table 4. Average percentage reduction of idle time.

Methods OCSD Recommender UnFair-FOCRL FairCharge UnFair-FOCR

PRIT -61.0% 41.3% 62.5% 67.7% 70.2%

To show the individual performance under different methods, we show the idle time distribution of each

charging event in the box-plot Figure 16. We found that under our fairness-aware FairCharge, the maximum

idle times of all charging events have significantly decreased, i.e., from 160 minutes to 24 minutes, while some

drivers need to spend 55 minutes under the optimal unfair batch-based recommendation UnFair-FOCR, which

will potentially cause these drivers do not follow their recommendations later. With our fairness consideration,

the recommendations will become more acceptable for all ET drivers, which means that the maximum prolonged

time for all drivers is minimized compared to their utopia decisions, i.e., the worst case for each driver is not

too bad. Hence, compared to other state-of-the-art charging recommendation, our FairCharge achieves the best

performance, considering the long-term idle time reduction.

Potential Benefits. In summary, we found that our FairCharge achieves the highest idle time reduction in the

long-run with the fairness consideration. Specifically, the average idle time of our FairCharge is about 6.24 minutes

for each charging event, while the Ground Truth is 19.31 minutes and Recommender is 11.33 minutes. Compared

with Recommender, especially for the Ground Truth, FairCharge saves over 13 minutes for each charging event.
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Fig. 16. Idle time distribution comparison of
different recommendations.

Fig. 17. Charging station occupation rate com-
parison.

In fact, even one-minute saving for each charging event (i.e., 5% of improvement) can be significant, given a large

number of ETs and their frequent charging activities. In particular, each ET usually charges about three times

a day. Hence, our FairCharge potentially reduces about 627,360 minutes idle time compared with the optimal

individual recommendation Recommender for the ET fleet per day. These 627,360 minutes can help the ET fleet

to potentially pick up more than 35,855 passengers (if additional demand was given) in one day, which can

potentially improve passengers’ traveling satisfaction (e.g., reducing passengers’ waiting time) and enhance the

mobility of the city.

5.3.4 Charging Station Occupation Rate (CSOR). Figure 17 shows the CSOR of different recommendation methods.

We found that the CSOR under FairCharge can be more balanced, e.g., more charging stations have medium

occupation rates from 4 to 9, and fewer charging stations have very high or very low occupation rates. The

percentage of charging stations with CSOR between 4 and 9 has increased from 46.8% to 69.8% by the FairCharge

recommendation, which indicates our recommendation has the potential to balance the uneven spatial charging

demand phenomenon. Our FairCharge also achieves a better charging station utilization than UnFair-FOCR,
which potentially makes our recommendation also fair to charging station utilization.

Fig. 18. Performance under different par-
ticipation rates.

5.3.5 Impact of Driver Participation Rate. For this project, we are working
with the Shenzhen Transportation Committee to design a centralized

charging recommendation system for effective charging management.

Shenzhen Transportation Committee monitors the operating status of

all ETs in Shenzhen and provides data access for us. When replacing

conventional gas taxis into ETs, the Shenzhen government provides a

large number of subsidies for taxi operators to incentivize taxi drivers to

adopt ETs and follow its initiatives, so we envision that ET drivers will

follow our charging recommendation decisions to obtain their subsidies

and social benefits. However, even in this case, some drivers may still not

follow our recommendation strategy. Hence, we further investigate the

system performance when some ET drivers do not follow our recommendation decisions and show how they

may affect the system as a whole.

As shown in Figure 18, we compare our FairCharge with the three methods of best performance regarding

the idle time reduction. Even though UnFair-FOCR has slightly better performance than FairCharge under the
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same participation rate, but it should be noted that more drivers will not follow UnFair-FOCR due to its unfair

recommendations. Hence, combined with the ideal performance and fairness consideration, our FairCharge has

better performance than its long-term performance UnFair-FOCRL. We also found that the system performances of

all recommendation systems decrease with fewer drivers participating in the recommendation, but our FairCharge

achieves a better performance than Recommender. Especially when the participation rate drops to below 50%, the

PRTT of all systems decreases a lot.

6 DISCUSSIONS
In this section, we first report some lessons learned about the fairness-aware recommendation and real-world

insights from field studies. Then we discuss some possible factors that will impact our system, followed by some

potential implications, e.g., implementation in different cities and the data release.

6.1 Lessons Learned
• Fairness-Aware Charging Recommendation. Although there is no unique definition of fairness, it is

undeniable that fairness plays a critical role in the recommendation systems [50]. In this paper, we take

the “least misery” [39] definition of fairness as our design guideline after exploring many existing fairness

related works [1, 12, 39, 50, 51], which we believe best matches the driver incentives, to show how this

fairness consideration effectively helps real-time charging recommendation.

Even though the optimal unfair recommendation UnFair-FOCR can achieve better short-term performance

than our FairCharge, we found that about 11% of the charging events under UnFair-FOCR recommendation

are not fair for some drivers, which may result in these drivers not following the recommendations from

UnFair-FOCR, so our FairCharge can achieve better performance than unfair UnFair-FOCR in the long run

(i.e., UnFair-FOCRL). Hence, we argue that fairness is an important consideration that guides us to design

better recommendation systems [1].

• Real-World Insights. During our project, we have been conducting a series of field studies in Shenzhen,

and we talked to 12 ET drivers. Even though some drivers mention there is an increasing number of

charging stations and charging points in the city, the queuing phenomenon in some charging stations

during some durations is still serious. The possible reason is that lacking coordination among ET drivers,

so they will go to the same charging stations that they are familiar or these locations are convenient for

them to rest. Some drivers said they hope there will be a good App that guides them to the best choices.

Although there are some existing Apps provide charging recommendation for them, ET drivers find them

ineffective due to limited coverage of charging stations (e.g., only provides charging station information of

a specific operator) and biased recommendation, so they think our work could be valuable if we include all

ET charging stations and make fair recommendations. They also mention it would be better if there are

some spaces for them to have some rest. We report all insights from our project to the city government,

and all of them are well received and under implementation.

6.2 Possible Impact Factors
Participation and Incentives. Our system is under the assumption that all ETs in this fleet will follow our

recommendation. Still, it is possible that some drivers may not follow the recommendation despite the fact that

they know the recommended decisions can reduce idle time for them. Even though our fairness consideration

can potentially offer an incentive for drivers to accept our recommendation, we can still design some incentive

mechanisms like “virtual electricity” [52] to further encourage participation in real-world operation.

Time for Serving Passengers. Even though we do not explicitly consider the time for serving passengers

in our modeling, it is implicitly included in our system since we make recommendation decisions for drivers
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after they send charging requests. Based on our data-driven observations in Section 3.2, drivers usually charge

during non-rush hours (e.g., 0:00-6:00), which is formed after operating ETs for several years. We believe reducing

their charging time can potentially increase their operating time and increase their profits. As a result, our

optimization objective is minimizing the charging time instead of the time for seeking passengers, which is

usually the objective of conventional gas taxis [8, 27, 45].

Income-Fairness of Drivers. Income-fairness could be more important for drivers than waiting-time fair-

ness. In this paper, to make our design more practical, we also consider some real-world factors (e.g., drivers’

charging intentions) for charging recommendations. For our FairCharge recommendation system, it only makes

recommendation decisions for drivers after they send charging requests, which means our FairCharge implicitly

considers drivers’ charging intentions, so we will not recommend them to charge during rush hours if they do

not send charging requests in these periods, which potentially reduces their income loss. In future work, we will

further consider the income-fairness of drivers to enhance our system, e.g., proactively sending recommendation

suggestions to drivers during the non-rush hours and balance their income.

Remaining Battery Level Constraint: As we mentioned in the Introduction part, to make our design more

practical, we only recommend ET drivers to the corresponding charging stations when they send charging

requests instead of deciding when they need to go to charge. In real-world scenarios, due to the “range anxiety”

of ET drivers, they will typically go to charging stations to charge their ETs when the battery capacity decreases

to about 20%, which is enough for traveling more than 50 km. As shown in Figure 4, the distance between two

charging stations is typically shorter than 3km, and the size of Shenzhen is about 50km * 25km, so ETs can always

reach a charging station when they send charging requests. In addition, since we add a “least misery” constraint

to guarantee the fairness between different ET drivers, so recommendation decisions for all ET drivers are not

too bad for them, and our solution always guarantees that all ETs can reach a charging station from their current

locations. Hence, the remaining battery level would not impact our system.

Impact of Private EVs. Even though some charging stations may be shared by private vehicles with taxis,

few private EVs in Shenzhen prefer to utilize fast charging stations of ETs for the following reason: Private EVs

used for daily commuting have no needs to leverage fast charging like commercial EVs, which rely on the fast

charging stations to keep the normal business activities, so private EV drivers prefer to charge their cars at home

in the evening when the electricity price is also lower than the daytime price. We also verify this during the field

studies in Shenzhen, as Figure 12 indicates. Based on this, we envision that other EVs have little impact on the ET

recommendation, which is also adopted by some other related research [16, 30, 32, 35].

Possible Charging Requests. In this work, we design a batch-based recommendation, which means some

drivers may need to wait one minute for a recommendation. In the future, we can still improve this in some other

ways. (i) Integrating a charging reservation mechanism in our recommendation system, which means ET drivers

can send their charging requests to us in advance to avoid waiting. (ii) Predicting the charging requests. Due to

the time sequence nature of our GPS data and the relatively stable charging time of each driver, it is easier for us

to leverage some advanced deep learning algorithms, e.g., Long Short Term Memory networks (LSTMs) [7, 11] to

predict the charging requests in a near-future duration. Even though considering charging requests in a longer

future may bring about better performance, it also requires more computational resources, which are currently

not possessed by our local partners in Shenzhen. Since our key contribution of this paper is fairness-aware

charging recommendation instead of charging request prediction, we do not emphasize detailed prediction issues.

6.3 Potential Implications
Generalization. Although we only study the fairness-aware charging recommendation problem of ETs in this

paper, we believe our system is also applicable for other types of electric vehicles (e.g., electric for-hire vehicles,

electric private vehicles, etc) since we make recommendation decisions based on their requests and fairness
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considerations. In the next step, we are trying to utilize data from electric for-hire vehicles to verify our system. In

addition, our fairness-aware model also has the potential to be generalized to other research, e.g., fairness-aware

for-hire vehicle order dispatching.

Implementation in Different Cities: In this paper, even though we only leverage the data from the Chinese

city Shenzhen to verify our FairCharge, we are in the process of obtaining ET data from other cities to investigate

if our recommendation system is applicable to other cities. However, since only Shenzhen has such a large-scale

ET fleet, it is challenging to find other large-scale ET fleet for a parallel study currently. One possible direction

we are exploring is to design transfer learning models to transfer the knowledge (e.g., operating pattern, charging

pattern) from the Shenzhen ET network to other cities for a “what if” investigation. For example, what if all

conventional gas taxis in New York City or Beijing were replaced by ETs, how many charging stations are enough

by adopting our fairness-aware charging recommendation. It opens some very interesting research directions.

Data Management and Privacy Protections. In this project, we establish a secure and reliable transmission

mechanism with a wired connection, which feeds our servers the filtered ET data wirelessly collected by Shenzhen

transportation committee via a cellular network. For daily management and processing, we utilize the MapReduce

based Pig and Hive, which is built on a cluster with 34 TB Hadoop Distributed File System (HDFS). The cluster

consists of 11 nodes, each of which is equipped with 32 cores and a 32 GB RAM. Since our recommendation

system needs detailed driver location and behavior data, our collaborators in Shenzhen has a contract with ET

drivers, and the drivers consent that their data while working as ET drivers can be used by the company to

improve the system performance. Also, since our system considers fairness for drivers, we expect no protest

from them. Nevertheless, we carefully replace each ID with a unique serial number.

Data Uniqueness. ETs have essential differences from conventional gas taxis due to their long charging time,

so most existing works related to gas taxis are not suitable for ET research given distinct charging time and

refueling time. Even though many cities worldwide have initiatives for promoting ETs, the ET scales are still

limited. Fortunately, as a pioneer of promoting ETs, ETs in Shenzhen have experienced encouraging growth

during the last few years, and the number of ETs has reached a scale of 16,000. Our dataset from Shenzhen

Transportation Committee, to our knowledge, has the potential to provide valuable insights for future ET fleets.

7 RELATED WORK
As a key challenge to promote ETs, the charging issue is the focus of the academic community on ET studies. In this

section, we organize the electric vehicle (EV) charging related work into three categories, i.e., (i) charging station

planning and deployment, (ii) charging load balancing on the power grid, and (iii) charging recommendation.

7.1 Charging Station Deployment
Most existing EV research is focused on charging station deployment [4, 16, 18, 28, 42, 43], and their objective is

to find the optimal locations to deploy charging stations and optimally assign charging points to each station.

With the rapid promotion of EVs, deploying more new charging stations becomes the most direct approach to

facilitate the charging of EVs for reducing their queuing time, so there are lots of EV-related research in this

direction. Li et al. [16] developed a charging station deployment and charging point placement framework to

minimize the charging time. They mentioned the potential recommendation method, but they did not consider

the charging station utilization rates and fairness between drivers, which may cause a more unbalanced charging

resource utilization and low driver penetration. Even though charging station deployment sometimes has the

same objective as our charging recommendation, i.e., reducing the overall charging overhead for longer operation

time, the approaches are different. i.e., adding new resources vs. utilizing existing resources. In addition, more

charging stations mean more costs, e.g., a fast charging station with only 10 charging points costs over $358,000,

not considering the cost of the land resources [29]. Moreover, for large cities like New York City, Hong Kong, and
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Beijing, the land resources are scarce and hardly available for large charging stations. Further, enough charging

stations cannot guarantee there is an available charging point in a specific station for an ET, e.g., too many ETs

going to the same station (i.e., spatial clustering) will lead to the long queuing phenomena in this station, the same

with the temporal clustering, which means most ETs go to charge in the same time. Hence, our recommendation

is more efficient in practical applications.

7.2 Charging Load Balancing
Charging load balancing is also an important direction of EV research [13, 14, 21], which analyzes the energy

consumption of EVs and the impacts of charging behaviors on the grid. Although it also considers the charging

time, the objective of charging load balancing is to reduce the influence of charging on the smart grid, which is

different from our work. Kong et al. [13] designed an effective charging rate control algorithm to maximize the

social welfare of EVs. However, each ET has its own charging pattern and duration, and they have influences

on each other, e.g., an ET needs to charge longer if the battery level is low, which leads to a nondeterministic

charging activity.

7.3 Charging Station Recommendation
Charging recommendation [23, 30, 35, 36, 38, 44] aims to recommend each EV to a charging station for some

benefits, e.g., shortest time spent, lowest money cost based on existing charging infrastructure, but almost

all of the existing research focuses on the individual recommendation. Tian et al. [30] designed a charging

recommendation model considering only one request from an individual ET, but they do not consider potential

charging requests, which will cause a suboptimal recommendation. The individual-based recommendation is

based on greedy algorithms, which may provide a single step optimal charging station recommendation for each

request, but it cannot guarantee the global optimum for the entire ET fleet. Since the taxi fleet is controlled by

the same dispatching center, leveraging the abundant fleet information may make a better decision and obtain an

optimal recommendation. Park et al. Park et al. [23] developed a reservation recommendation algorithm for EVs,

which considered the shortest distance to charging stations, and then recommended the vehicles to the stations

with the shortest queuing time, while possible traffic congestion and potential requests from other EVs have

not been considered. More importantly, all these works did not consider the potential unfair charging station

allocations.

Technically, the key advantage of our method is that we fully leverage the rich fleet information combined

with a suitable fairness definition to achieve a fairness-aware Pareto efficient recommendation, which makes our

work very different from existing works. Moreover, we minimize the idle time for charging without building

extra charging infrastructures. Hence, our Pareto efficient fairness-aware recommendation is more economically

effective compared to existing methods.

8 CONCLUSION
In this paper, we design the first fairness-aware charging recommendation system called FairCharge based on

multi-source data, which aims to achieve the Pareto efficient fairness-aware charging recommendation for the

entire ET fleet in a city. We formulate the charging recommendation problem as fairness constrained Pareto

optimization. To feed the recommendation system, a context-aware traveling time model at the road segment

level is designed based on the distances and the traffic conditions, which is then leveraged to infer the traveling

time, and a fleet-oriented queuing time calculation model is developed by considering the status of all relevant

ETs in the fleet. We then leverage the scalarization with greedy algorithm, coupled with Pareto improvement to

find the optimal fair solution. Finally, we implement and extensively evaluate FairCharge with real-world ET data

from the Chinese city Shenzhen, including GPS records and transaction data of more than 16,000 ETs, combined
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with data of 117 charging stations. The evaluation results show that our FairCharge reduces 80.2% of the queuing

time and 67.7% of the idle time, simultaneously.
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