
The University of Manchester Research

Optimising Dynamic Binary Modification across 64-bit Arm
Microarchitectures
DOI:
10.1145/3381052.3381322

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Callaghan, G., Gorgovan, C., & Luján, M. (2020). Optimising Dynamic Binary Modification across 64-bit Arm
Microarchitectures. In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE ’20) Association for Computing Machinery.
https://doi.org/10.1145/3381052.3381322
Published in:
Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE ’20)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:25. Apr. 2024

https://doi.org/10.1145/3381052.3381322
https://research.manchester.ac.uk/en/publications/f8e4680f-9410-46c0-960a-8d8a932b974d
https://doi.org/10.1145/3381052.3381322

Optimising Dynamic Binary Modification across
64-bit Arm Microarchitectures

Guillermo Callaghan
Department of Computer Science

University of Manchester
United Kingdom

guillermo.callaghan@manchester.ac.uk

Cosmin Gorgovan
Department of Computer Science

University of Manchester
United Kingdom

cosmin.gorgovan@manchester.ac.uk

Mikel Luján
Department of Computer Science

University of Manchester
United Kingdom

mikel.lujan@manchester.ac.uk

Abstract
A common optimisation used in most Dynamic Binary Mod-
ification (DBM) systems is trace generation as these traces
improve locality and code layout. We describe an optimised
code layout for traces as well as present how to adapt the
runtime algorithm to generate it. In this way, we manage
to reduce the overhead on all the Arm systems evaluated; 5
different microarchitectures.
A major source of overhead for DBMs comes from han-

dling indirect branches. Indirect Branch Inlining (IBI) is a
mechanism that attempts to avoid this overhead by using
predictions about the target of the indirect branch. We anal-
yse the behaviour of the indirect branch inlining and propose
a new predictor, Trace Restricted IBI (TRIBI), and how to opti-
mise IBI given the new trace generation algorithm.
Our evaluation shows a geometric mean overhead for

SPEC CPU2006 of 9% for a Cortex-A53 (in-order core), and
for out-of-order cores 11% on an X-Gene-2, 10% on a Cortex-
A57, 7% on a Cortex-A72 and 8% on a Cortex-A73, when com-
pared to native execution. This is a reduction of the overhead
between 30% to 50% compared to the publicly available DBM
systems MAMBO, and, even higher, against DynamoRIO.
Using PARSEC 3.0, we evaluate the scalability across threads
on the X-Gene-2 system (server machine with the highest
number of cores) and show a geomean overhead between
6-8%.

CCS Concepts • Software and its engineering → Just-
in-time compilers; Runtime environments.

Keywords Dynamic Binary Modification, Dynamic Binary
Instrumentation, Aarch64, 64-bit Arm

VEE ’20, March 17, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’20), March 17, 2020, Lausanne, Switzerland, https://doi.
org/10.1145/3381052.3381322.

ACM Reference Format:
Guillermo Callaghan, Cosmin Gorgovan, and Mikel Luján. 2020.
Optimising Dynamic Binary Modification across 64-bit Arm Mi-
croarchitectures. In 16th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE ’20), March 17,
2020, Lausanne, Switzerland. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3381052.3381322

1 Introduction
Dynamic Binary Modification (DBM) is a software technique
that allows the binary of an application to be modified at
runtime transparently. DBM systems are used in many ar-
eas such as virtualisation [26], binary instrumentation [17],
program analysis [22] and translation [23] [7] [10].

DBM systems have an associated execution time overhead
when compared with running the same application directly
on the processor. Most DBMs run in the same process as the
application they modify. A DBM scans and translates the ap-
plication binary code before its execution. In addition, Arm
systems present an extra challenge due to the variety of avail-
ablemicroarchitectures; from low-power in-order processors,
to more aggressive out-of-order processors. Optimisations
for DBM systems usually are reliant on specific aspects of
the microarchitecture on which they run. An optimisation
relying on extending the execution path by increasing the
number of instructions, such as trace unrolling will, in turn,
have a negative impact on a microarchitecture with a small
instruction cache. For example, in the evaluation, Section 4,
the Arm systems have the L1 instruction cache from 32KiB
to 64KiB. Providing optimisations that perform well, or at
least do not produce a negative impact, on a group of diverse
implementations is a non-trivial task.

A common optimisation used in most DBM systems (such
as Pin [21] and DynamoRIO [8]) is the creation of traces. In
general, a trace is a grouping of often executed basic blocks
(the application critical path) and tries to improve the code
locality and layout. We describe the code layout for traces,
as well as adapt the generation algorithm (based on Next
Executing Tail (NET) online profiling [14]) which manages
to reduce the overhead on all the Arm systems considered in
this paper. The code layout, referred to as Contiguous Traces,
avoids having interleaved exit branches in the critical path.
This reduces the critical path size and decreases the number
of branches observed by the fetch stage of a processor.

https://doi.org/10.1145/3381052.3381322
https://doi.org/10.1145/3381052.3381322
https://doi.org/10.1145/3381052.3381322

VEE ’20, March 17, 2020, Lausanne, Switzerland Guillermo Callaghan, Cosmin Gorgovan, and Mikel Luján

A major source of overhead for DBM systems comes from
handling indirect branches. Most DBM systems use an op-
timised hash table lookup to map application addresses to
translated addresses; where the code has been relocated. In-
direct Branch Inlining (IBI) is a mechanism that attempts to
avoid this overhead by using predictions about the target of
the indirect branch. As with previous studies targeting x86
[12] [18], we observe that many indirect branches have a low
number of targets. Constrained by the contiguous trace lay-
out generation, we implement an optimised indirect branch
inlining mechanism that only uses as prediction, those tar-
gets which are themselves part of a trace. In other words,
we restrict the prediction to indirect branches which are hot
and to targets which are also part of hot code. The predictor
is called Trace Restricted IBI (TRIBI). Previous approaches
have applied IBI either to all indirect branches, or have not
discriminated and used as predictions any target [16] [8].

The main contributions are summarised as:
• an optimised trace code layout generation algorithm
which reduces the critical path size and increases the
performance for MAMBO on a range of Arm microar-
chitectures;

• an efficient prediction mechanism, TRIBI, for indirect
branch inlining;

• a reduction of the geometric mean overhead on SPEC
CPU 2006 between 30% to 50% compared to baseline
MAMBO.

The next sections of the paper are organised as follows.
Section 2 provides an introduction to the baseline MAMBO
DBM system, on which we have implemented the two opti-
misations. Section 3 describes the trace layout, and new algo-
rithm to generate it, as well as TRIBI. Section 4 presents the
performance evaluation which includes results for MAMBO
and DynamoRIO. The Arm systems used in the evaluation
provide a comprehensive coverage of the evolution of differ-
ent Arm 64-bit microarchitectures. Section 5 compares the
two optimisations with the main related work and Section 6
summarises the conclusions.

2 System Overview
MAMBO takes an application binary as input, then scans
it and executes it. This is done in the same process as the
application it modifies. MAMBO executes the application in
the units of basic blocks — single-entry single-exit pieces of
code. MAMBO maintains control throughout the execution
by modifying basic block exits to branch to itself.

The modified application code is likely to be executed nu-
merous times. To avoid multiple re-translations of the same
application code, the first time a code fragment is translated,
it is stored in a memory region owned by the DBM, called a
software code cache. The software code cache is a structure
in memory which holds the modified application code and
its metadata, including a hash table that holds the Source

Basic block 1

not taken

taken
to the DBM

(a)

Basic block 1

Basic block 2

not taken

taken
to the DBM

not taken

taken
to the DBM

(b)

Figure 1. Basic blocks — (a) a newly created basic block; (b)
the taken path directly linked to Basic Block 2.

Program Counters (SPC) and the corresponding Translated
Program Counters (TPC). Other metadata used by the DBM
system includes the location of the next free location to store
a basic block. The size of the software code cache in MAMBO
is configurable, however, it must be smaller than the max-
imum range of a direct branch (see Section 2.1.1) to avoid
extra trampolines. A trampoline is a location in memory
that holds a direct branch used to extend the range of direct
branches.
MAMBO uses thread-private code caches, which min-

imises synchronisation when modified applications use mul-
tiple threads. The baseline implementation and optimisation
of MAMBO were presented by Gorgovan et al. [15] [16].

2.1 Branches
There are two types of branches in the Arm 64-bit (A64)
instruction set [4]: direct branches and unconditional indi-
rect branches. The former jump to an offset relative to the
Program Counter (PC) that is included in the instruction
encoding and the latter jump to an address stored in a reg-
ister. Handling direct and indirect branches differ and are
presented separately.

2.1.1 Direct Branches
The offset of a direct branch is included in the instruction
encoding, which also means that it is known at compile
time and it does not change. There are two types of direct
branches: conditional direct branches and unconditional direct
branches. Conditional direct branches have two paths; the
taken path and the fall through path. The A64 ISA has three
conditional direct branches: tb(n)z (test bit and branch on
(non) zero), cb(n)z (conditional branch on (non) zero) and
b.cond (branch conditional). On the other hand, uncondi-
tional direct branches have only one path which is always
taken. The A64 has two unconditional direct branches: b
(branch) and bl (branch link). The path taken by a direct
branch from a basic block leads to the creation of a new basic
block starting from the address pointed by the branch.

Optimising DBM across 64-bit Arm Microarchitectures VEE ’20, March 17, 2020, Lausanne, Switzerland

Compute hash key

Save context

Compare hash table
entry with source target

equal
yes

Go to DBM

Branch to TPC

no

empty

yes

noincrement key

Figure 2. Inline hash lookup routine.

The first time a basic block is executed, the control is
transferred back to the DBM. The exit stubs of basic blocks
(one for each path of the branch) set the parameters needed
by the DBM, such as the application address of the executed
path and the basic block number to retrieve its metadata. This
results in a context switch, which is a costly operation, as the
complete state of the application needs to be stored. Once
the new basic block is created the state of the application
needs to be restored. To avoid context switches in future
executions of the basic blocks, an optimisation technique
called linking (sometimes referred as chaining) is applied.
This optimisation consist in modifying the executed branch
path to link directly to the newly created basic block. The
fall through path is linked only if a basic block for that path
is already present in the code cache. In case a basic block
for the specific address is absent in the code cache, the path
is left unmodified. Figure 1a shows a newly created basic
block with its translated branches transferring control to the
DBM. Figure 1b shows basic block 1 with one of its branches
directly linked to basic block 2.

Direct branches have a limited number of bits dedicated to
store the offset and it varies depending on the type of branch.
cb(n)z and and b.cond have a 19-bit offset allowing a range
of ± 1MB. tb(n)z have an offset of 14 bit with a range of
± 32KB. And b and bl have a 26-bit offset with a range
of ± 128MB. Basic blocks are executed and stored in the
code cache in the order in which they are executed and
sometimes their location in memory is beyond the reach
of a conditional direct branch. To handle this situation in
a coherent manner all conditional direct branches have a
trampoline direct branch to extend the range of the branch
and reach any address in the code cache.

2.1.2 Indirect Branches
Indirect branches in the A64 ISA only jump to an address
stored in a register. The linking optimisation cannot be ap-
plied to indirect branches. This is because the address in

the register is only known at runtime. Moreover the same
branch will potentially branch to many different targets. The
translation of the SPC to the TPC is carried out at runtime for
every execution of the translated indirect branch. Perform-
ing the translation means that its cost is never amortised
and is always paid on every execution. Handling indirect
branches is responsible for a significant percentage of the
overhead of dynamic modification/translation systems [18]
[20] [12] [9] [10].

Whenever a translated indirect branch is executed, control
is transferred to the DBM in order to find the translation
of the target address. A mapping of the SPC to the TPC is
stored in the hash table. This causes a context switch and, if
the target is not found, the corresponding basic block will be
created. This means that whenever an indirect branch is exe-
cuted, there is a context switch. To minimise the number of
context switches, most DBM systems use a highly optimised
hash table lookup routine. Figure 2 shows the inline hash
lookup routine which is appended in place of the original
indirect branch in MAMBO.
The first step saves the context. Then the hash key is

computed. This is done using an AND operation between
the SPC and a configurable hash mask:

key = (target >> 2) & HASH_MASK
The key is used to access the hash table entry correspond-

ing to the target address. If the address in the hash table is
equal to the target address it means there is a translation in
the code cache. The translation is loaded and the execution
branches to the translated address. If the address comparison
is not equal then it is checked if the value was zero. A zero
represents that a translation is not present in the code cache,
so execution is transferred to the DBM. If the value in the
hash table was not zero, the key is incremented and the next
location is probed. This means there is a collision. The loop
exits if there is no translation or a translation is found.

2.2 Traces
The layout of the basic blocks in the code cache introduces
a greater fragmentation compared to the source application.
This is because basic blocks are scanned and stored in the
code cache as they are executed, which potentially differs
from the original layout of the source application. Moreover,
as shown in Figure 1b, both paths of conditional branches
are stored as different basic blocks. This means that there is
an extra branch for each translated conditional branch. An
optimisation to overcome the fragmentation incurred by ba-
sic blocks in the code cache is to group basic blocks together
that are part of the critical path. This group of basic blocks
is called a trace, where each basic block is a trace fragment.
Traces are also known as superblocks in the literature [8]
[26]. Traces are single-entry multiple-exits pieces of code.

VEE ’20, March 17, 2020, Lausanne, Switzerland Guillermo Callaghan, Cosmin Gorgovan, and Mikel Luján

A

B

C D

E

F G

H

I

J K

L

N M O

(a)

A

B

D

E

to C

F

H

to G

to O

Code Cache

Code Cache

Code Cache

(b)

A

B

D

E

to C

F

H

to G

to O

C

I

J

L

to K

N

to M

to E

Code Cache

Code Cache

Code Cache

Code Cache

Code Cache

Code Cache

(c)

C
od

e
C

ac
he

A

B

D

E

F

H

to C

to G

to O

(d)

C
od

e
C

ac
he

C
od

e
C

ac
he

A

B

D

E

F

H

to C

to G

to O

C

I

J

L

N

to E

to K

to M

(e)

C
od

e
C

ac
he

C
od

e
C

ac
he

A

B

D

E

F

H

to C

to G

to O

C

I

J

L

N

to E

to K

to M

(f)

Figure 3. (a) Example control of flow from an application. Basic block are represented by boxes. (b) Trace layout of the first
hot loop with the baseline scheme (interleaved). (c) Trace linking: once the second hot is identify and a trace is built, an exit
from the first trace is linked to the trace entry of the second loop. The replaced path of the branch after linking is shown with
a dotted line. (d) Contiguous Trace layout of the first hot loop. (e) Contiguous Trace linking scheme. The replaced path of the
branch after linking is shown with a dotted line. (f) Linking a trace when the target is outside the range of a conditional direct
branch.

2.2.1 Trace Selection
There are two challenges for trace creation. First, traces need
to be created only for the hot code of the application. Second,
the online profiling should be done with low overhead.
Creating traces for some cold code is acceptable, but this

needs to be kept to a minimum. This is because the overhead
of creating a trace would not be amortised due to the low
numbers of executions. Creating traces adds overhead as

execution is stopped and the code has to be re-scanned to
create the trace. It also increases the software code cache
size. At the same time the benefit of traces is maximised
the sooner they are created. However, these two aims are
incompatible. The sooner code is identified as hot code the
more cold code could potentially be promoted to a trace.
MAMBO uses a modified Next Executing Tail (NET) online
profiling [14]. NET produces a limited number of blocks to

Optimising DBM across 64-bit Arm Microarchitectures VEE ’20, March 17, 2020, Lausanne, Switzerland

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of targets

Pe
rc

en
ta

ge
 e

 o
f

d
yn

am
ic

al
ly

ex

ec
u

te
d

 in
d

ir
ec

t
b

ra
n

ch
es Return (RET) Branch Register (BR) Branch Link Register (BLR)

Figure 4. Percentage of dynamic indirect branches captured by inlining target predictions across SPEC CPU 2006.

be instrumented. Only basic blocks which are the target of
backwards branches and the target of trace exits are instru-
mented. The instrumented basic blocks are called path heads.
A path head is a basic block identified as a potential trace
head. Once the execution times of a path head reaches a set
threshold, the following path tail is predicted as the hot path.
A path tail is the next pieces of code executed after the path
head. The path tail is recorded until a backward branch is
encountered. The prediction is that the path head suggest
the application is executing hot code and the path tail is
also part of that hot code. In the implementation of NET in
Dynamo [6], some indirect branches are transformed into
direct branches where the target was predicted as being the
target first taken by the branch. Also NET records the path
of traces over indirect branches.
In MAMBO, the existing implemented profiling scheme

is a modified version of NET. A full description of the se-
lection algorithm is described by Gorgovan et al. [16]. This
comprises two main differences. The first is that most of the
basic blocks are profiled, except those terminating with an
indirect branch. The second change is that indirect branches
are a termination condition that stops path recording. In fact,
a basic block terminating in an indirect branch would, other-
wise, create a single fragment trace, unnecessarily incurring
the overhead of recreating this basic block as a trace with a
single basic block.

In other words, instead of adding a prediction to the target
seen by an indirect branch at translation time, as NET does,
the trace is terminated. The reason for this is that, especially
in the case of return instructions for functions that are called
from multiple locations, this prediction could be a source of
overhead when a high number of misspredictions occur.

3 Optimisations
This section describes the two optimisations introduced by
this paper and implemented in MAMBO. First, we explain
the change in the code layout of traces to avoid having in-
terleaved exit branches in the critical path. Then we explain

the implementation of Indirect Branch Inlining, a software
prediction mechanism to reduce the number of hash table
lookups at runtime.

3.1 Contiguous Trace Construction
Figure 3a shows a control flow graph from an example ap-
plication where boxes represent basic blocks, and arrows
between basic blocks represent a branch and its targets. A
single arrow below a basic block is an unconditional direct
branch, double arrows represent the two paths of a condi-
tional branch. Solid lines are branch targets which are part
of the hot-code. Dashed lines are targets which are part of
the cold-code. Figure 3b shows a trace constructed from
the control flow graph presented in Figure 3a, and starting
at fragment A, using the baseline trace generation part of
MAMBO. Following the execution of fragment A, B is ap-
pended to the trace. Since the branch from A to B is a direct
branch, the actual branch instruction is omitted. In the case
of conditional branches, the taken path target jumps one
instruction and continues the execution in the trace. The fall
through path is the exit to the translation of the cold path,
shown as to C in Figure 3b. If the basic block does not exist
it will be created. The process continues until the taken path
of fragment H points to A, which is a termination condition.
At this point, the trace ABDEFH has been formed.

3.1.1 Trace Code Layout
Figure 3d shows the layout of traces hereafter referred to as
Contiguous Traces. Exits are recorded during trace creation
and installed at trace termination as exit stubs. The new
layout reduces the number of branches and the size of the
critical path. A similar layout was described by Dynamo [6].

Figure 3a shows two pieces of hot code: ABDEFH (in red)
and CIJLN (in green). Figure 3b shows the first loop con-
structed into a trace and Figure 3c shows the layout when the
second loop becomes hot, both using the baseline MAMBO
(interleaved). The direct branch (dashed arrow) between B

VEE ’20, March 17, 2020, Lausanne, Switzerland Guillermo Callaghan, Cosmin Gorgovan, and Mikel Luján

and D is patched to point to the entry of the new trace (solid
line).

In the proposed layout, Figure 3e, the conditional branch
taken path (dashed arrow) is modified to target the new
target (solid line). Sometimes the new trace could be in an
unreachable position in the code cache for a conditional
direct branch. In this case the stub is modified and used as a
trampoline to reach the trace. This is shown in Figure 3f.

In NET, correctlymaintaining the exit points and including
extra counters for profiling adds expensive overhead and
complexity. Our adapted trace generation and layout do not
suffer from this.

3.1.2 Trace Exits
In the baseline scheme, trace exits are composed of direct
branches interleaved in the trace. In Arm, direct branches
have a range of ±128MB and they can reach any address in
the code cache. With Contiguous Traces, trace exits consist
of a conditional direct branch where the fall through path
leads to the next fragment in the trace and the taken path
branches to an exit stub at the end of the trace, as shown
in Figure 3d. This scheme elides branch instructions in the
critical path and decreases the hot path size. Fewer branches
in the critical path also helps the branch predictor [3] [2] [5].

Conditional direct branches have a limited range and they
might need trampolines. This is specially important because
trace exits at construction potentially target basic blocks,
which are stored in a location outside the range of conditional
direct branches.
To avoid having a conditional branch targeting an exit

stub with only a direct branch, exit stubs are composed of
the first two instructions of the target basic block and then
a direct branch.
Also, exit stubs are 16-byte aligned as recommended by

the Arm software optimisation guides [3] [2] [5], improving
the utilisation of the fetch stage bandwidth for the target of
branches. An exception to this rule is when the first or the
second instruction are not position-independent.

3.2 Indirect Branch Inlining
The hash table lookup (shown in Figure 2), is used for

translating SPCs to TPCs at runtime. The size of the inline
hash table lookup routine is around 52 bytes (13 instructions).
The hash lookup routine is composed of an indirect branch
(br), data memory instructions, conditional branches, arith-
metic instructions and in the case of a collision in the hash
table a loop.
A mechanism developed in an attempt to avoid the exe-

cution of the hash table lookup is Indirect Branch Inlining
(IBI) [11] [6]. The IBI is usually composed of a number of
comparisons between the target of the translated indirect
branch and a number of predicted targets. The predictions
are selected from previous taken targets observed at runtime
by the same branch. On a hit, the execution jumps directly to

save context
...
adr x0, spc_0
sub x1, x0, target_reg
cbnz x0, next_or_fallback
restore context
b tpc_0

next_or_fallback:

Code 1. Branch Inlining target prediction. The predicted
SPC (spc_0) is loaded into x0 and compared with the current
target. In a match, the context is restored and execution is
transferred to the predicted translation of the target (tpc_0).

the translation without going through the hash table lookup.
If a prediction fails, the next prediction is tested. If all the
predicted targets fail, the execution falls back to the hash
table lookup. If the hash table lookup find the translation,
execution jumps to the TPC. If a translation is not found
control goes back to the DBM system.

Previously, the implementations of the prediction mecha-
nism have been done in two ways: using instruction imme-
diate values to create the predicted targets [6]; or storing the
predicted and the translated targets in memory [16] [12]. The
first option avoids data memory access instructions, however
it adds conditional branches and changing a prediction must
flush the instruction cache, which is an expensive operation.
On Arm systems the instruction cache and the data cache
are not coherent and flushing the instruction cache has to
be done explicitly [4]. On the other hand, for Intel systems
the instruction and data cache are coherent [19]. Storing the
predicted and translated value in memory makes it easy to
change a prediction without flushing the instruction cache,

Compute hash key

Compare hash table
entry with source target

equal
yes

Go to DBM

Branch to TPC

no

empty

yes

no
increment key

trace?
no

yes

Figure 5. Fall back mechanism. The inline Hash Table
Lookup is modified to go back to the DBM in the case where
the translated target is a trace. The added steps are shown
with black borders.

Optimising DBM across 64-bit Arm Microarchitectures VEE ’20, March 17, 2020, Lausanne, Switzerland

but at the expense of polluting the data cache and adding
memory operations. There are other factors that need to be
taken into account [18]: the number of targets to be inlined;
whether the number of targets is decided statically or using
runtime information; the range of target per type of indirect
branch; and how to handle mispredictions (fall back).

Figure 4 shows the percentage of all dynamic executed in-
direct branches in the SPEC CPU 2006 benchmark suite [27]
that would be predicted by IBI from 1 to 23 predictions. From
6 up to 23 predictions the additional number of branches
predicted decreases to less than 5%. Capturing more than
80% of indirect branches would required a very high number
of prediction. In relation to the total number of dynamic
executed indirect branches, branch register and branch link
register represent a small percentage. Gathering information
at runtime to decide the number of targets to be inlined adds
performance and memory overhead for each indirect branch.
We have implemented IBI only on indirect branches in

traces which are also branching to a trace. The optimisation
is called Trace Restricted IBI (TRIBI). Code in traces have
been determined to be hot code. Using IBI predictions only
in traces targeting traces raises the possibilities of making a
prediction that will be reused. Moreover, IBI applied only on
traces avoids the overhead of keeping track of inline targets
to basic blocks as they may potentially be promoted to a
trace and its code becomes stale.
In case the prediction fails, there are two outcomes: a)

there are empty slots for new predictions; or b) the number
of inline predictions is exhausted. In the former case, the
DBM adds the new prediction and execution continues. In
the latter, all the predictions are cancelled and only the hash
table lookup is used.
When an indirect branch is first encountered in a trace,

the stub transfers the execution to the fall back mechanism.
We have implemented the fall back mechanism (Figure 5) as
a modified version of the inline hash table lookup.
In the case when a translation is found for an SPC, the

TCP is checked to see if the translation had been promoted
to a trace. If the translated target is a basic block, execution
is transferred to the basic block. If the translated target is a
trace, execution is transferred to the DBM and a prediction
is inserted. Code 1 shows an example of a prediction.

4 Evaluation
4.1 Setup
The performance is evaluated using five 64-bit Arm plat-
forms with different microarchitectures. Table 1 shows the
microarchitecture for all the systems. All the systems are
running GNU/Linux with the manufacturer supported ker-
nel. SPEC CPU2006 has been compiled with GCC 4.8 using
the -O2 optimisation level and the -static flag. Dynamic
Voltage and Frequency Scaling (DVFS) has been disabled in
all platforms. The Rock 960 (Cortex-A53/Cortex-A72) and

the Hikey 960 (Cortex-A53/Cortex-A73) systems feature a
big.LITTLE [1] architecture, however only the big cores are
used for the evaluation. The LITTLE cores on both systems
are a cluster of 4x Cortex-A53, which are already evaluated
as part of the PineA64+ system.
The reported results are run three times each and the

average of the three runs is presented. The workloads used
are the ref input for SPEC CPU2006 and the native input
for PARSEC 3.0. The benchmarks have run using multiple
configurations of MAMBO. A configuration is a concrete
set of optimisations enabled when compiling MAMBO. The
baseline MAMBO used is git commit d3856aa1.
The optimisation configuration evaluated are:
• Contiguous Traces generation MAMBO with the modi-
fied traces layout;

• RAIBI, a modified scheme of the state-of-the-art IBI for
Arm, AIBI, proposed by Gorgovan et al. [16]; and

• TRIBI X, where X represents the number of targets
inlined.

AIBI, Adaptive Indirect Branch Inlining, works by always
predicting the last taken target of a branch. This target could
be in any location of the code cache, basic blocks included.
RAIBI, Restricted AIBI, is only applied to indirect branches
which target traces, i.e., the prediction is only updated if this
target is a trace. Note that TRIBI and the RAIBI optimisations
are implemented on top of the Contiguous Traces layout;
TRIBI is not compatible with the baseline trace layout used
by MAMBO.

For completeness, DynamoRIO [8] is also part of the eval-
uation. DynamoRIO is a publicly available DBM system for
Intel and Arm, covering both 32- and 64-bit Arm. Beyond
MAMBO, DynamoRIO is the main DBM with support for
64-bit Arm and has received code contributions from Arm.
The DynamoRIO version used is the git commit d71feb52,
but it does not contain support for traces. We also tried the
development branch which is implementing the trace sup-
port for Arm, but this cannot run SPEC CPU2006. In other
words, the results using DynamoRIO provide an independent
reference point to understand the low overhead achieved
by the Baseline MAMBO, which is the start point for the
optimisations introduced in this paper.

4.2 Performance evaluation
Table 2 shows a summarised geometric mean overhead per-
formance when running SPEC CPU2006 on all the config-
urations: baseline MAMBO, MAMBO with the Contiguous
Traces, MAMBO RAIBI, MAMBO TRIBI 1, MAMBO TRIBI 6
and DynamoRIO for each system. The table presents the
geometric mean overhead execution for each system com-
pared to native execution for the group of integer bench-
marks (SPECint), floating point benchmarks (SPECfp) and
1https://github.com/beehive-lab/mambo/commit/d3856aa
2https://github.com/DynamoRIO/dynamorio/commit/d71feb5

https://github.com/beehive-lab/mambo/commit/d3856aa
https://github.com/DynamoRIO/dynamorio/commit/d71feb5

VEE ’20, March 17, 2020, Lausanne, Switzerland Guillermo Callaghan, Cosmin Gorgovan, and Mikel Luján

Table 1. Systems used for evaluation

System PineA64+ Applied Micro X-Gene 2 Jetson TX1 Rock 960a HiKey 960b
SoC Allwinner A64 APM883408-X2 NVIDIA T210 Rockchip RK3399 Kirin 960
Core 4x Cortex-A53 8x X-Gene 2c 4x Cortex-A57 2x Cortex-A72 4x Cortex-A73
Frequency 1.2GHz 2.4 GHz 1.73GHz 1.8GHz 2.36GHz
L1d cache size 32KiB 32 KiB 32KiB 32KiB 64KiB
L1i cache size 32 KiB 32 KiB 48KiB 48KiB 64KiB
L2 cache size 512 KiB 256 KiB 2MiB 1MiB 2MiB
L3 cache size N/A 8 MiB N/A N/A N/A
Out Of Order N Y Y Y Y
Pipeline length 8 Not Disclosed 15+ 14-16 11-12+
Linux distribution Debian 8.11 Debian 9.8 Ubuntu 18.04 Ubuntu 18.04 Debian 9.8
Linux kerneld 3.10 4.9 4.4 4.4 4.14

ab The Rock 960 and the Hikey 960 systems feature a big.LITTLE architecture, with 4x Cortex-A53 as the little cores. However, the LITTLE cores were not used
for this evaluation. The Cortex-A53 core was evaluated using the PINE A64+ system. c The X-Gene 2 cores are a custom implementation of Armv8 cores

developed by Applied Micro. d The kernel versions used are the ones provided by the manufacturers.

the whole SPEC CPU2006 (CPU). The new MAMBO optimi-
sation is labelled as TRIBI 1 and TRIBI 6. TRIBI 1 allows a
direct comparison with RAIBI which also only remembers
one indirect branch as a prediction.

Figure 6 shows detailed results for each benchmark on the
Rock 960 system, for all the optimisation and DynamoRIO for
comparison. Figure 7 shows detailed results for each bench-
mark on the PineA64+ system, for all the optimisation and
DynamoRIO for comparison. Detailed graphs for the other
systems are not shown due to space restrictions. Figure 8
shows the overhead of MAMBO (baseline) when running
the multi-threaded benchmark suite PARSEC 3.0, while Fig-
ure 9 presents the overhead of Contiguous Traces and the
TRIBI 6 optimisation on MAMBO. The MAMBO (baseline)
implementation has a geometric mean overhead of 122% on
1 thread, 124% on 2 threads, 127% on 4 threads, and 133%
on 8 threads. The geometric mean overhead for Contiguous
Traces and the TRIBI 6 on 1 thread is 6%, for 2 threads is 6%,
4 threads is 6% and 8 threads is 8%.

Table 2 shows a clear difference in the overhead of integer
and floating point benchmarks. Using the set of optimisations
with the lower overheads, integer benchmarks range from
21% on the Applied Micro X-Gene 2 down to 14% on the
Rock 960. On the other hand, floating point benchmarks are
in the range 4-3%. This difference between the integer and
floating benchmarks is directly correlated with the number
of indirect branches executed by the benchmarks.

4.2.1 Contiguous Traces Generation
The Contiguous Traces generation manages to reduce the
overhead in all systems. The biggest impact is on the Applied
Micro X-Gene system, reducing the geometric mean over-
head from 20% to 12%. The highest overheads per benchmark
for each system are: Pine A64+ 42% (400.perlbench); Applied
Micro 55% (400.perlbench); Jetson TX1 42% (453.povray); Rock
960 46% (453.povray); and Hikey 960 35% (464.h264ref). The

Table 2. Performance overhead of all optimisations in
MAMBO, and DynamoRIO running SPEC CPU2006 on all
the systems compared to native execution.

SPEC CPU2006
System DBM configuration SPECint SPECfp CPU

DynamoRIO 48.8% 14.4% 27.5%
Pine A64+ MAMBO 23.8% 6.4% 13.3%

Contiguous Traces 17.5% 4.7% 9.8%
MAMBO RAIBI 20.2% 5.3% 11.2%
MAMBO TRIBI 1 16.2% 4.4% 9.3%
MAMBO TRIBI 6 16.2% 4.0% 8.9%
DynamoRIO 60.4% 15.7% 32.4%

Applied MAMBO 36.5% 10.2% 20.4%
Micro Contiguous Trace 22.3% 5.4% 12.1%
X-Gene 2 MAMBO RAIBI 22.7% 4.7% 11.8%

MAMBO TRIBI 1 21.4% 5.0% 11.5%
MAMBO TRIBI 6 20.6% 4.2% 10.7%
DynamoRIO 58.7% 15.0% 31.4%

Jetson TX1 MAMBO 34.6% 9.6% 19.3%
Contiguous Trace 20.2% 5.3% 11.2%
MAMBO RAIBI 23.3% 4.8% 12.1%
MAMBO TRIBI 1 20.0% 4.4% 10.6%
MAMBO TRIBI 6 18.7% 3.6% 9.6%
DynamoRIO 62.7% 18.5% 35.1%

Rock 960 MAMBO 25.3% 7.2% 14.4%
Contiguous Trace 17.2% 4.1% 9.3%
MAMBO RAIBI 16.7% 3.5% 8.8%
MAMBO TRIBI 1 14.9% 2.7% 7.6%
MAMBO TRIBI 6 14.3% 2.5% 7.2%
DynamoRIO 47.0% 12.2% 25.5%

Hikey 960 MAMBO 23.3% 4.8% 12.1%
Contiguous Trace 19.1% 4.0% 10.0%
MAMBO RAIBI 23.4% 4.1% 11.7%
MAMBO TRIBI 1 16.1% 2.2% 7.7%
MAMBO TRIBI 6 16.4% 2.6% 8.1%

The lowest overhead for each benchmark appears in bold.

benchmark with the lowest overhead is 481.wrf on the Jetson
TX1, with a 14% speedup.

Themicroarchitecture plays a significant role in the perfor-
mance of the benchmarks. The Contiguous Traces generation
manages to shorten the critical path and reduces the number

Optimising DBM across 64-bit Arm Microarchitectures VEE ’20, March 17, 2020, Lausanne, Switzerland

267%

80%

100%

120%

140%

160%

180%

200%

220%

240%

260%

R
e

la
ti

ve
 t

im
e

 c
o

m
p

ar
e

d
 t

o

n
at

iv
e

 e
xe

cu
ti

o
n

SPECfp
DynamoRIO Baseline MAMBO

Contiguous Traces RAIBI

TRIBI 1 TRIBI 6

80%

100%

120%

140%

160%

180%

200%

220%

240%

R
e

la
ti

ve
 t

im
e

 c
o

m
p

ar
e

d
 t

o

n
at

iv
e

 e
xe

cu
ti

o
n

SPECint
DynamoRIO Baseline MAMBO

Contiguous Traces RAIBI

TRIBI 1 TRIBI 6

Figure 6. Relative execution time for SPEC CPU2006 on Rock 960 (Cortex-A72) system.

of branches with respect to the baseline implementation. A
compact critical path and also a lower number of branches
in the critical path even when they are not architecturally
executed are crucial for improving the performance.

4.2.2 TRIBI
Table 3 shows an overall of the geometric mean overhead for
TRIBI for 1 to 6 targets. TheMAMBOTRIBI optimisation also
manages to reduce overhead on all systems. The performance
improvement ranges from 10% to 30% for the configuration
with the lowest overhead compared to MAMBO Contiguous
Traces. The improvement in performance highlights the high
cost paid for SPC to TPC translations at runtime for indirect
branches.

Inlining 1 target has the biggest impact and asmore targets
are inlined the gains become smaller. The reason for this is
that inlining 1 target does not mean the first target seen by
the branch. Because the prediction is only inserted when
the translated target has been promoted to a trace. Basic
blocks are promoted to a trace when they execute above a
threshold. The default threshold in MAMBO is 256 times,
and how to select it was explored in [16]. In case a branch has

Table 3. Performance overhead of RAIBI and TRIBI with 1
to 6 indirect branch inlining targets running SPEC CPU2006
on all the systems.

TRIBI Targets
System Benchmark RAIBI 1 2 3 4 5 6

SPECint 20.2% 16.2% 16.4% 16.3% 16.2% 16.3% 16.2%
Pine A64+ SPECfp 5.3% 4.4% 4.4% 4.3% 5.3% 4.0% 4.1%

CPU 11.2% 9.3% 9.2% 9.1% 9.6% 9.0% 9.0%
Applied SPECint 22.7% 21.4% 21.2% 20.9% 20.7% 20.7% 20.6%
Micro SPECfp 4.7% 5.0% 4.6% 4.5% 4.3% 4.4% 4.2%
X-Gene 2 CPU 11.8% 11.5% 11.2% 11.0% 10.8% 10.8% 10.7%

SPECint 23.3% 20.0% 19.0% 19.7% 20.0% 19.0% 18.7%
Jetson TX1 SPECfp 4.8% 4.4% 4.1% 4.3% 3.8% 3.8% 3.6%

CPU 12.1% 10.6% 10.0% 10.4% 10.2% 9.9% 9.6%
SPECint 16.7% 14.9% 14.7% 15.0% 14.9% 15.0% 14.3%

Rock 960 SPECfp 3.5% 2.7% 3.0% 2.4% 2.5% 2.3% 2.5%
CPU 8.8% 7.6% 7.7% 7.4% 7.4% 7.4% 7.2%
SPECint 23.4% 16.1% 17.0% 16.0% 15.5% 16.8% 16.4%

Hikey 960 SPECfp 4.1% 2.2% 2.2% 2.5% 2.7% 2.2% 2.6%
CPU 11.7% 7.7% 8.1% 7.9% 7.8% 8.0% 8.1%

The lowest overhead of each benchmark appears in bold.

a relative high number of targets, but only one is dominating
the execution, only the dominating target would be inserted.
Moreover, the difference between the TRIBI 6 and the

RAIBI, is that TRIBI 6 inserts predictions using only direct

VEE ’20, March 17, 2020, Lausanne, Switzerland Guillermo Callaghan, Cosmin Gorgovan, and Mikel Luján

199%

80%

100%

120%

140%

160%

180%

200%

R
e

la
ti

ve
 t

im
e

 c
o

m
p

ar
e

d
 t

o

n
at

iv
e

 e
xe

cu
ti

o
n

SPECfpDynamoRIO Baseline MAMBO

Contiguous Traces RAIBI

TRIBI 1 TRIBI 6

80%

100%

120%

140%

160%

180%

200%

220%

240%

R
e

la
ti

ve
 t

im
e

 c
o

m
p

ar
e

d
 t

o

n
at

iv
e

 e
xe

cu
ti

o
n SPECintDynamoRIO Baseline MAMBO

Contiguous Traces RAIBI

TRIBI 1 TRIBI 6

Figure 7. Relative execution time for SPEC CPU2006 on PineA64+ (Cortex-A53) system.

90%

110%

130%

150%

170%

190%

210%

R
e

la
ti

ve
 e

xe
cu

ti
o

n
 f

ro
m

 n
at

iv
e 1 Thread 2 Threads 4 Threads 8 Threads

Figure 8. Scalability results — Relative execution time for PARSEC 3.0 on the Applied Micro X-Gene 2 system with baseline
MAMBO.

branches and RAIBI uses a single prediction that relies on
one indirect branch. This means that, while the former can
rely on a branch history pattern-based prediction scheme
using a Global History Buffer (GHB) [13], the latter is lim-
ited to a prediction mechanism based solely on the last taken
branch, for which a Branch Target Address Cache is usu-
ally used [25]. For example, if the execution follows a short
pattern (equals or shorter than the number of predictions
inserted), the branch predictor, after a brief training period
can successfully predict the branches in the predictions. This

could be the main factor behind the reduced branch mis-
predictions observed on TRIBI 6. Increasing the number of
target predictions have minor improvements up to 6 targets.
Adding more than 6 targets prediction produces higher over-
head on most of the systems except for the Cortex-A72 and
A73 where it stays the same up to 9 target predictions.

Table 4 presents the relative performance counters for a
group of benchmarks from SPEC CPU2006 against MAMBO
(baseline) on the PineA64+. The 7 benchmarks have been
selected as they have the more than 30% overhead with base-
line MAMBO (see Figure 7). (400.perlbench: 52%, 445.gobmk:

Optimising DBM across 64-bit Arm Microarchitectures VEE ’20, March 17, 2020, Lausanne, Switzerland

90%

100%

110%

120%

R
e

la
ti

ve
 e

xe
cu

ti
o

n
 f

ro
m

 n
at

iv
e

1 Thread 2 Threads 4 Threads 8 Threads

Figure 9. Scalability results — Relative execution time for PARSEC 3.0 on Applied Micro X-Gene 2 system with Contiguous
Traces and the TRIBI 6 optimisation enabled for MAMBO.

Table 4. For a subset of SPEC CPU 2006 benchmarks the performance counters recorded for optimised MAMBO (TRIBI 6)
relative to MAMBO baseline on the PineA64+ system.

Benchmark Overhead Cycles Instructions L1I Access L1I Miss L1D Access L1D Miss Branches Branch Miss
400.perlbench 52% to 42% 0.91 0.95 0.84 0.93 0.98| 0.93| 0.39 0.84
445.gobmk 46% to 35% 0.93 0.96 0.81 1.11 0.99 0.93 0.45 0.90
458.sjeng 49% to 36% 0.89 0.95 0.83 1.40 0.95 0.81 0.48 0.92
464.h264ref 37% to 31% 0.95 0.97 0.91 0.95 0.99 0.95 0.58 0.97
471.omnetpp 17% to 14% 0.96 0.92 0.78 1.13 0.95 0.91 0.43 1.09
483.xalancbmk 46% to 31% 0.88 0.95 0.83 1.10 0.95 0.93 0.37 0.91
453.povray 42% to 37% 0.92 0.93 0.88 1.26 0.94 0.91 0.56 1.06

For the performance counter columns, a value of 1 means no improvement. A value below 1 shows an improvement for optimised MAMBO. The Overhead
column shows the overhead with MAMBO baseline and the overhead with MAMBO TRIBI 6 and contiguous traces.

46%, 458.sjeng: 49%, 464.h264ref: 37%, 471.omnetpp: 17%,
483.xalancbmk: 46% and 453.povray: 42%.) The Overhead
∆ field in Table 4 shows the reduction in overhead from base-
line MAMBO. The performance counters show a reduction
on the majority of the reported counters. The layout of the
Contiguous Traces reduces the number of branches in the
hot path, which is reflected in the reduction on the number
of branches reported. TRIBI 6 transforms indirect branches
into direct branches, which are easier to predict for a branch
predictor resulting in a lower number of branch misses. Also,
the fewer executions of the Indirect Branch Table Lookup
means a reduction on the number of instructions and fewer
access to data memory, reducing the accesses and misses on
the level 1 data cache.

5 Related Work
Traces are a common optimisation introduced in Dynamo [6]
by the NET scheme [14]. The baseline MAMBO uses a mod-
ified version of NET, in which traces are terminated on in-
direct branches. The baseline MAMBO uses an interleaved
trace layout with trace exits within the instruction stream.
We have optimised the trace code layout by having a con-
tiguous stream of instructions with exits located outside the
critical path. The code layout is similar to that described in

Dynamo [6], but we have adapted the runtime algorithm
for the trace generation. In NET, correctly maintaining the
exit points and including extra counters for profiling adds
expensive overhead and complexity. Our adapted trace gen-
eration and layout do not suffer from this. In addition, NET
constructs traces across indirect branches and optimistically
transforms them into conditional indirect branches [6]. In
MAMBO, an indirect branch is a termination condition when
building traces, thus, avoiding the optimistic assumption of
NET. In other words, indirect branches are addressed by the
TRIBI optimisation, rather than being compounded into the
trace construction.

IBI is an optimisation for predicting the targets of indirect
branches used by many Dynamic Binary Modification/Trans-
lation systems [6] [8] [21]. However, if not implemented
efficiently, mispredictions and the high cost of updating the
predicted targets can overcome the performance improve-
ment and hurt performance.
DynamoRIO [8] evolved from Dynamo keeping the NET

scheme for traces, and is a well-established DBM system
supporting Linux, Windows and Android as well as the x86,
x86_64 and Arm-32 and -64 bit architectures. The effort of
supporting the Arm architecture started in 2014, but for
Arm-64 it does include traces. The results using DynamoRIO
provide a reference point to understand the performance of

VEE ’20, March 17, 2020, Lausanne, Switzerland Guillermo Callaghan, Cosmin Gorgovan, and Mikel Luján

MAMBO. The evaluation has shown that DynamoRIO has
an overhead of 25.5%-35.1% geometric mean overhead for
SPEC CPU2006, always more than three times the overhead
of the new optimisations in MAMBO. Considering the worst
case overheads, between 50% and 267%, we have observed
them in 10 of the SPEC CPU 2006 benchmarks. The worst
observed overheads for MAMBO are below 55%.

Hiser et al. [18] evaluates an IBI approach using different
strategies for different types of indirect branches, including
online profiling and dynamically setting the number of pre-
dictions at runtime. They used the Strata dynamic translation
infrastructure [24] on Intel, AMD and SPARC architectures.
Our implementation uses a fixed number of predictions set at
compile time. The actual predictions (based on the execution
history) are dynamically inserted only for targets which are
hot; already promoted to a trace. Hise et al. [18] did not con-
sider this restriction for the targets. Furthermore, whereas
Hise et al. consider 3 architectures (not including Arm), we
evaluate the performance of TRIBI on the Arm architecture
by using different microarchitecture implementations, from
in-order to more aggressive out-of-order cores.

Dhanasekaran et al. [12] proposed the Most Recently Used
algorithm (MRU) with inline prediction checks done at the
start of traces, producing a chain of predictions set to a
configurable threshold, but using this they did not managed
to gain any performance. In MRU the source target and a
prediction are stored in a memory location which is checked
on branch execution. On a hit, execution branches to the
predicted translation. On a miss, the execution is transferred
to a chain of checks stored at the top of a trace. The fallback
mechanism uses a private per branch hash table. Our fallback
mechanism is different as we use a modified implementation
of the inline hash table lookup. Once the maximum number
of targets is reached the prediction mechanism is replaced
with an unmodified inline hash table lookup.

In [16], Gorgovan et al. evaluated IBI on 32-bit Arm sys-
tems and introduced the Adaptive Indirect Branch Inlining
(AIBI); the state-of-the art IBI on Arm. However, AIBI for 64-
bit MAMBO produces a performance improvement in a small
group of benchmarks and a slowdown in others, only slightly
reducing the overall geometric mean overhead for SPEC CPU
2006. We modified the AIBI implementation to only store
a SPC-TPC prediction if the TPC has been promoted to a
trace. We called this implementation RAIBI (Restricted AIBI).
TRIBI has been evaluated directly against RAIBI showing a
measurable lower execution overhead.

6 Conclusions
We have presented two optimisations which have been de-
signed for Arm 64-bit and implemented in MAMBO. The
first optimisation is a trace generation algorithm to create
a Contiguous Traces code layout which reduces the critical
path size and decreases the number of branches seen by the

fetch stage of the processor pipeline. This optimisation man-
ages to reduce the overhead on all the evaluated systems
relative to baseline MAMBO running SPEC CPU 2006 by 21%
to 72% depending on the system. Also we have presented
a new predictor and efficient implementation of IBI. TRIBI
manages to reduce the overhead relative to the Contiguous
Traces optimisation in all the systems running SPEC CPU
2006 by 10% to 29% when compared with RAIBI, a modified
version of the the state-of-the-art AIBI.

The Arm systems used in the evaluation provides a com-
prehensive coverage of the evolution of different Arm 64-bit
microarchitectures (e.g. Arm Cortex-A53, A57, A72, A73).
The evaluation has showed that the behaviour of the optimi-
sations vary significantly depending on the characteristics of
the processor implementation. This is noticeable by observ-
ing the performance of some of the benchmarks. An example
of different behaviour is 481.wrf benchmark, which has the
lowest overhead on the Jetson TX1 system (Cortex-A57).
Another example is 462.libquantum which has the lowest
overhead on the Rock 960 system (Cortex-A72).
Our evaluation has showed a geometric mean overhead

for SPEC CPU2006 of 9% for a Cortex-A53 (in-order microar-
chitecture, first generation 64-bit Arm), 11% for an X-Gene-2
(server) and 10% for a Cortex-A57 (mobile processor) — both
first generation out-of order 64-bit Arm microarchitectures
— 7% for a Cortex-A72, and 8% for a Cortex-A73 (recent out-
of-order processors for mobile devices) when compared to
native execution. This is a reduction of the overhead of be-
tween 30% to 50% compared to the publicly available version
of MAMBO which already included traces (interleaved) and
optimisations for indirect branches. Using PARSEC 3.0, we
have also evaluated the parallel scalability on the X-Gene-2
(the system with the highest number of cores) and show
a geometric mean overhead between 6-8%. These results
show the lowest overhead for a DBM system on the Arm
architecture.

Acknowledgments
This work is partially supported by an Arm/EPSRC iCASE
PhD scholarship (Guillermo Callaghan), and EPSRC Rain
Hub EP/R026084/1, and LAMBDA EP/N035127/1 projects.
Mikel Luján is supported by an Arm/RAEng Research Chair
award and is a Royal Society Wolfson Fellow.

References
[1] ARM. 2013. big.LITTLE Technology: The Future of Mo-

bile. https://www.arm.com/files/pdf/big_LITTLE_Technology_the_
Futue_of_Mobile.pdf. [Online; accessed 7-April-2019].

[2] ARM. 2015. Cortex®-A72 Software Optimization Guide.
[3] ARM. 2016. Cortex-A57 Software Optimization Guide.
[4] ARM. 2017. Architecture Reference Manual: ARMv8 for ARMv8-A

architecture profile.
[5] ARM. 2018. ARM® Cortex®-A75 Software Optimization Guide.
[6] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dy-

namo: A Transparent Dynamic Optimization System. In Proceedings of

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

Optimising DBM across 64-bit Arm Microarchitectures VEE ’20, March 17, 2020, Lausanne, Switzerland

the ACM SIGPLAN 2000 Conference on Programming Language Design
and Implementation. 1–12. https://doi.org/10.1145/349299.349303

[7] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.
In Proceedings of the FREENIX Track: 2005 USENIX Annual Technical
Conference, April 10-15, 2005, Anaheim, CA, USA. USENIX, 41–46. http:
//www.usenix.org/events/usenix05/tech/freenix/bellard.html

[8] Bruening, Derek L. 2004. Efficient, Transparent, and Comprehensive
Runtime Code Manipulation. Ph.D. Dissertation. Cambridge, MA, USA.

[9] Amanieu d’Antras, Cosmin Gorgovan, Jim Garside, and Mikel Luján.
2016. Optimizing Indirect Branches in Dynamic Binary Translators.
TACO 13, 1 (2016), 7:1–7:25. https://doi.org/10.1145/2866573

[10] Amanieu d’Antras, Cosmin Gorgovan, Jim Garside, and Mikel Luján.
2017. Low overhead dynamic binary translation on ARM. In Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM, 333–346. https://doi.org/10.1145/
3062341.3062371

[11] Deutsch, L Peter and Schiffman, Allan M. 1984. Efficient implemen-
tation of the Smalltalk-80 system. In Proceedings of the 11th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages.
ACM, 297–302.

[12] Dhanasekaran, Balaji and Hazelwood, Kim. 2011. Improving Indirect
Branch Translation in Dynamic Binary Translators. In Proceedings of
the ASPLOS Workshop on Runtime Environments, Systems, Layering,
and Virtualized Environments. 11–18.

[13] Driesen, Karel and Holzle, Urs. 1998. Accurate indirect branch predic-
tion. In Proceedings. 25th Annual International Symposium on Computer
Architecture (Cat. No. 98CB36235). IEEE, 167–178.

[14] Duesterwald, Evelyn and Bala, Vasanth. 2000. Software profiling for
hot path prediction: Less is more. ACM SIGOPS Operating Systems
Review 34, 5 (2000), 202–211.

[15] Gorgovan, Cosmin and d’Antras, Amanieu and Luján, Mikel. 2016.
MAMBO: a low-overhead dynamic binary modification tool for ARM.
ACM Transactions on Architecture and Code Optimization (TACO) 13, 1
(2016), 14.

[16] Gorgovan, Cosmin and d’Antras, Amanieu and Luján, Mikel. 2018.
Optimising Dynamic Binary Modification Across ARM Microarchitec-
tures. In Proceedings of the 2018 ACM/SPEC International Conference
on Performance Engineering. ACM, 28–39.

[17] Hazelwood, Kim and Klauser, Artur. 2006. A dynamic binary instru-
mentation engine for the ARM architecture. In Proceedings of the 2006
international conference on Compilers, architecture and synthesis for
embedded systems. ACM, 261–270.

[18] Hiser, Jason D andWilliams, Daniel W and Hu,Wei and Davidson, Jack
W and Mars, Jason and Childers, Bruce R. 2011. Evaluating indirect
branch handling mechanisms in software dynamic translation systems.
ACM Transactions on Architecture and Code Optimization (TACO) 8, 2
(2011), 9.

[19] Intel Corporation. 2016. Intel® 64 and IA-32 architectures software
developer’s manual. Volume 3 (3A, 3B, 3C & 3D): System programming
Guide (2016).

[20] Kim, Ho-Seop and Smith, James E. 2003. Hardware support for control
transfers in code caches. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society,
253.

[21] Luk, Chi-Keung and Cohn, Robert and Muth, Robert and Patil, Harish
and Klauser, Artur and Lowney, Geoff and Wallace, Steven and Reddi,
Vijay Janapa and Hazelwood, Kim. 2005. Pin: building customized
program analysis tools with dynamic instrumentation. In Acm sigplan
notices, Vol. 40. ACM, 190–200.

[22] Nethercote, Nicholas. 2004. Dynamic Binary Analysis and Instrumen-
tation. Ph.D. Dissertation. PhD thesis, University of Cambridge.

[23] Probst, Mark. 2002. Dynamic Binary Translation. In UKUUG Linux
Developer’s Conference, Vol. 2002.

[24] Scott, Kevin and Davidson, Jack. 2001. Strata: A software dynamic
translation infrastructure. In IEEE Workshop on Binary Translation.

[25] Jurij Šilc, Theo Ungerer, and Borut Robic. 2007. Dynamic branch predic-
tion and control speculation. International Journal High Performance
Systems Architecture 1, 1 (2007), 12–13.

[26] Jim Smith and Ravi Nair. 2005. Virtual Machines: versatile platforms
for systems and processes. Elsevier.

[27] Spradling, Cloyce D. 2007. SPEC CPU2006 benchmark tools. ACM
SIGARCH Computer Architecture News 35, 1 (2007), 130–134.

https://doi.org/10.1145/349299.349303
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
https://doi.org/10.1145/2866573
https://doi.org/10.1145/3062341.3062371
https://doi.org/10.1145/3062341.3062371

	Abstract
	1 Introduction
	2 System Overview
	2.1 Branches
	2.2 Traces

	3 Optimisations
	3.1 Contiguous Trace Construction
	3.2 Indirect Branch Inlining

	4 Evaluation
	4.1 Setup
	4.2 Performance evaluation

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

