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Doubly Balanced Connected Graph Partitioning

SALEH SOLTAN, MIHALIS YANNAKAKIS, and GIL ZUSSMAN, Columbia University

We introduce and study the doubly balanced connected graph partitioning problem: Let G = (V ,E) be a

connected graph with a weight (supply/demand) function p : V → {−1,+1} satisfying p (V ) =
∑

j ∈V p (j ) = 0.

The objective is to partition G into (V1,V2) such that G[V1] and G[V2] are connected, |p (V1) |, |p (V2) | ≤ cp ,

and max{ |V1 |
|V2 | ,

|V2 |
|V1 | } ≤ cs , for some constants cp and cs . When G is 2-connected, we show that a solution

with cp = 1 and cs = 2 always exists and can be found in randomized polynomial time. Moreover, when G
is 3-connected, we show that there is always a “perfect” solution (a partition with p (V1) = p (V2) = 0 and

|V1 | = |V2 |, if |V | ≡ 0(mod 4)), and it can be found in randomized polynomial time. Our techniques can be

extended, with similar results, to the case in which the weights are arbitrary (not necessarily ±1), and to the

case that p (V ) � 0 and the excess supply/demand should be split evenly. They also apply to the problem of

partitioning a graph with two types of nodes into two large connected subgraphs that preserve approximately

the proportion of the two types.
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1 INTRODUCTION

Power grid islanding is an effective method to mitigate cascading failures in power grids [20]. The
challenge is to partition the network into smaller connected components, called islands, such that
each island can operate independently for a while. For an island to operate, it is necessary that the
power supply and demand at that island are almost equal.1 Equality of supply and demand in an

1If the supply and demand are not exactly equal but still relatively close, load shedding/generation curtailing can be used

for the island to operate.

A preliminary version of this article was published in Soltan et al. [19].

This work was supported in part by DTRA grant HDTRA1-13-1-0021; DARPA RADICS under contract #FA-8750-16-C-0054;

funding from the U.S. DOE OE as part of the DOE Grid Modernization Initiative; and the NSF under grants CCF-1423100,

CCF-1703925, and CCF-1763970. The work of G. Zussman was also supported in part by the Blavatnik ICRC and the BSF.

Authors’ addresses: S. Soltan, 811 CEPSR, 530 West 120th Street, New York, NY, 10027; email: saleh@ee.columbia.edu;

M. Yannakakis, 455 Computer Science Building, 1214 Amsterdam Avenue, New York, NY, 10027; email: mihalis@cs.

columbia.edu; G. Zussman, 809 CEPSR, 530 West 120th Street, New York, NY, 10027; email: gil@ee.columbia.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1549-6325/2020/03-ART20 $15.00

https://doi.org/10.1145/3381419

ACM Transactions on Algorithms, Vol. 16, No. 2, Article 20. Publication date: March 2020.

https://doi.org/10.1145/3381419
mailto:permissions@acm.org
https://doi.org/10.1145/3381419
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3381419&domain=pdf&date_stamp=2020-03-09


20:2 S. Soltan et al.

island, however, may not be sufficient for its independent operation. It is also important that the
infrastructure in that island has the physical capacity to safely transfer the power from the supply
nodes to the demand nodes. When the island is large enough compared to the initial network, it
is more likely that it has enough capacity. This problem has been studied in the power systems
community, but almost all of the algorithms provided in the literature are heuristic methods that
have been shown to be effective only by simulations [8, 16, 18, 20].

Motivated by this application, we formally introduce and study the doubly balanced connected
graph partitioning (DBCP) problem: Let G = (V ,E) be a connected graph with a weight (sup-
ply/demand) function p : V → Z satisfying p (V ) =

∑
j ∈V p (j ) = 0. The objective is to partition V

into (V1,V2) such thatG[V1] andG[V2] are connected, |p (V1) |, |p (V2) | ≤ cp , and max{ |V1 |
|V2 | ,

|V2 |
|V1 | } ≤ cs ,

for some constants cp and cs . We also consider the case that p (V ) � 0, in which the excess sup-
ply/demand should be split roughly evenly.

The problem calls for a partition into two connected subgraphs that simultaneously balances
two objectives: (1) the supply/demand within each part and (2) the sizes of the parts. The con-
nected partitioning problem with only the size objective has been studied previously. In the most
well-known result, Gyori [9] and Lováz [14] independently proved, using different methods, that
every k-connected graph can be partitioned into k arbitrarily sized connected subgraphs. How-
ever, neither of the proofs is constructive, and there are no known polynomial-time algorithms to
find such a partition for k > 3. For k = 2, a linear time algorithm is provided in Suzuki et al. [21],
and for k = 3, an O ( |V |2) algorithm is provided in Wada and Kawaguchi [23].2 The complexity
of the problem with the size objective and related optimization problems have been studied in
Chataigner et al. [3], Chlebíková [5], and Dyer and Frieze [6], and there are various NP-hardness
and inapproximability results. Note that the size of the cut is not of any relevance here (so the
extensive literature on finding balanced partitions, not necessarily connected, that minimize the
cut is not relevant.)

The objective of balancing the supply/demand alone, when all p (i ) are ±1, can also be seen as an
extension for the objective of balancing the size (which corresponds to p (i ) = 1). Our bi-objective
problem of balancing both supply/demand and size can also be seen as an extension of the problem
of finding a partition that balances the size for two types of nodes simultaneously: Suppose the
nodes of a graph are partitioned into red and blue nodes. Find a partition of the graph into two
large connected subgraphs that splits approximately evenly both the red and the blue nodes.

We now summarize our results and techniques. Since the power grids are designed to withstand
a single failure (“N − 1” standard) [1], and therefore 2-connected, our focus is mainly on the graphs
that are at least 2-connected. We first, in Section 4, study the connected partitioning problem with
only the supply/demand balancing objective and show results that parallel the results for balancing
size alone, using similar techniques: The problem is NP-hard in general. For 2-connected graphs
and weights p (i ) = ±1, there is always a perfectly balanced partition, and we can find it easily
using an st-numbering. For 3-connected graphs and weightsp (i ) = ±1, there is a perfectly balanced
partition into three connected graphs, and we can find it using a nonseparating ear decomposition
of 3-connected graphs [4] and similar ideas as in Wada and Kawaguchi [23].

The problem is more challenging when we deal with both balancing objectives: supply/demand
and size. This is the main focus and occupies the bulk of this article. Our main results are existence
results and algorithms for 2- and 3-connected graphs. It is easy to observe that we cannot achieve
perfection in one objective (cp = 0 or cs = 1) without sacrificing completely the other objective.

2For k = 2, a much simpler approach than the one in Suzuki et al. [21] is to use the st -numbering [12] for 2-connected

graphs.
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We show that allowing the supply/demand of the parts to be off balance by at most the weight of
one node suffices to get a partition that is roughly balanced also with respect to size.

First, in Section 4.1, we study the case of 3-connected graphs since we use this later as the basis
of handling 2-connected graphs. We show that if ∀i, p (i ) = ±1, there is a partition that is perfectly
balanced with respect to both objectives, if |V | ≡ 0(mod 4) (otherwise, the sizes are slightly off for
parity reasons); for general p, the partition is perfect in both objectives up to the weight of a single
node. Furthermore, the partition can be constructed in randomized polynomial time. Our approach
uses the convex embedding characterization of k-connectivity studied by Linial et al. [13]. We need
to adapt it for our purposes so that the convex embedding also has certain desired geometric prop-
erties, and for this purpose we use the nonseparating ear decomposition of 3-connected graphs
of Cheriyan and Maheshwari [4] to obtain a suitable embedding.

Then, in Section 4.2, we analyze the case of 2-connected graphs. We reduce it to two subcases:
either (1) there is a separation pair that splits the graph into components that are not very large or
(2) we can perform a series of contractions to achieve a 3-connected graph whose edges represent
contracted subgraphs that are not too large. We provide a good partitioning algorithm for case (1),
and for case (2) we extend the algorithms for 3-connected graphs to handle also the complications
arising from edges representing contracted subgraphs. In Section 5, we briefly discuss the problem
of finding a connected partitioning of a graph with two types of nodes that splits roughly evenly
both types. We conclude in Section 6.

2 DEFINITIONS AND BACKGROUND

In this section, we provide a short overview of the definitions and tools used in our work. Most of
the graph-theoretical terms used in this article are relatively standard and borrowed from Bondy
and Murty [2] and West [24]. All the graphs in this work are loopless.

2.1 Terms from Graph Theory

Cutpoints and subgraphs. A cutpoint of a connected graphG is a node whose deletion results in a
disconnected graph. Let X and Y be subsets of the nodes of a graphG.G[X ] denotes the subgraph
of G induced by X . We denote by E[X ,Y ] the set of edges of G with one end in X and the other
end in Y . The neighborhood of a node v is denoted N (v ).

Connectivity. The connectivity of a graph G = (V ,E) is the minimum size of a set S ⊂ V such
that G[V \S] is not connected. A graph is k-connected if its connectivity is at least k .

2.2 st-Numbering of a Graph

Given any edge {s, t } in a 2-connected graphG, an st-numbering forG is a numbering for the nodes
in G defined as follows [12]: The nodes of G are numbered from 1 to n so that s receives number
1, node t receives number n, and every node except s and t is adjacent both to a lower-numbered
and to a higher-numbered node. It is shown in Even and Tarjan [7] that such numbering can be
found in O ( |V | + |E |).

2.3 Series-Parallel Graphs

A graph G is series parallel, with terminals s and t , if it can be produced by a sequence of the
following operations:

(1) Create a new graph, consisting of a single edge between s and t .
(2) Given two series-parallel graphs, X and Y with terminals sX , tX and sY , tY , respectively,

form a new graph G = P (X ,Y ) by identifying s = sX = sY and t = tX = tY . This is known
as the parallel composition of X and Y .

ACM Transactions on Algorithms, Vol. 16, No. 2, Article 20. Publication date: March 2020.
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(3) Given two series-parallel graphs, X and Y with terminals sX , tX and sY , tY , respectively,
form a new graphG = S (X ,Y ) by identifying s = sX , tX = sY and t = tY . This is known as
the series composition of X and Y .

It is easy to see that a series-parallel graph is 2-connected if and only if the last operation is a
parallel composition.

2.4 Nonseparating Induced Cycles and Ear Decomposition

LetH be a subgraph of a graphG. An ear ofH inG is a nontrivial path inG whose ends lie inH but
whose internal vertices do not. An ear decomposition of G is a decomposition G = P0 ∪ · · · ∪ Pk

of the edges of G such that P0 is a cycle and Pi for i ≥ 1 is an ear of P0 ∪ P1 ∪ · · · ∪ Pi−1 in G.
It is known that every 2-connected graph has an ear decomposition (and vice versa), and such a
decomposition can be found in linear time.

A cycleC is a nonseparating induced cycle ofG ifG\C is connected andC has no chords. We say
that a cycle C avoids a node u if u � C .

Theorem 2.1 (Tutte [22]). Given a 3-connected graphG (V ,E), let {t , r } be any edge ofG and let

u be any node of G, r � u � t . Then there is a nonseparating induced cycle of G through {t , r } and

avoiding u.

Notice that since G is 3-connected in the previous theorem, every node in C has a neighbor
in G\C . Cheriyan and Maheshwari [4] showed that the cycle in Theorem 2.1 can be found in
O (E). Moreover, they showed that any 3-connected graph G has a nonseparating ear decompo-
sition G = P0 ∪ · · · ∪ Pk defined as follows: Let Vi = V (P0) ∪V (P1) · · · ∪V (Pi ), and let Gi = G[Vi ]

andGi = G[V \Vi ]. We say thatG = P0 ∪ P1 ∪ · · · ∪ Pk is an ear decomposition through edge {t , r }
and avoiding vertex u if the cycle P0 contains edge {t , r }, and the last ear of length greater than 1,
say Pm , hasu as its only internal vertex. An ear decomposition P0 ∪ P1 · · · ∪ Pk of graphG through
edge {t , r } and avoiding vertex u is a nonseparating ear decomposition if for all i , 0 ≤ i < m, graph

Gi is connected and each internal vertex of ear Pi has a neighbor in Gi .

Theorem 2.2 (Cheriyan and Maheshwari [4]). Given an edge {t , r } and a vertex u of a 3-

connected graph G, a nonseparating induced cycle of G through {t , r } and avoiding u, and a nonsep-

arating ear decomposition, can be found in time O ( |V | + |E |).

2.5 Partitioning of Graphs to Connected Subgraphs

The following theorem is the main existing result in partitioning of graphs into connected sub-
graphs and is proved independently by Gyori [9] and Lováz [14] by different methods.

Theorem 2.3 (Gyori [9] and Lováz [14]]). Let G = (V ,E) be a k-connected graph. Let n =
|V |, v1,v2, . . . ,vk ∈ V , and let n1,n2, . . . ,nk be positive integers satisfying n1 + n2 + · · · + nk = n.

Then there exists a partition of V into (V1,V2 . . . ,Vk ) satisfying vi ∈ Vi , |Vi | = ni , and G[Vi ] is con-

nected for i = 1, 2, . . . ,k .

Although the existence of such a partition has long been proved, there is no polynomial-time
algorithm to find such a partition for k > 3. For k = 2, it is easy to find such a partition using
st-numbering. For k = 3, Wada and Kawaguchi [23] provided an O (n2) algorithm using the non-
separating ear decomposition of a 3-connected graph.

2.6 Convex Embedding of Graphs

In this section, we provide an overview of the beautiful work by Linial et al. [13] on convex embed-
ding of the k-connected graphs. LetQ = {q1,q2, . . . ,qm } be a finite set of points in Rd . The convex
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hull conv(Q ) of Q is the set of all points
∑m

i=1 λiqi with
∑

i=1 λi = 1. The rank of Q is defined by
rank(Q ) = 1 + dim(conv(Q )). Q is in general position if rank(S ) = d + 1 for every (d + 1)-subset
S ⊆ Q . Let G be a graph and X ⊂ V . A convex X -embedding of G is any mapping f : V → R |X |−1

such that for each v ∈ V \X , f (v ) ∈ conv( f (N (v ))). We say that the convex embedding is in gen-
eral position if the set f (V ) of the points is in general position.

Theorem 2.4 (Linial et al. [13]). LetG be a graph onn vertices and 1 < k < n. Then the following

two conditions are equivalent:

(1) G is k-connected.

(2) For every X ⊂ V with |X | = k , G has a convex X -embedding in general position.

Notice that the special case of the theorem for k = 2 asserts the existence of an st-numbering
of a 2-connected graph. The proof of this theorem is inspired by physics. The embedding is found
by letting the edges of the graph behave like ideal springs and letting its vertices settle. A formal
summary of the proof (1→ 2) is as follows (for more details, see Linial et al. [13]). For eachvi ∈ X ,
define f (vi ) arbitrary in Rk−1 such that f (X ) is in general position. Assign to every edge (u,v ) ∈ E
a positive elasticity coefficient cuv , and let c ∈ R |E | be the vector of coefficients. It is proved in Linial
et al. [13] that for almost any coefficient vector c , an embedding f that minimizes the potential
function P =

∑
{u,v }∈E cuv ‖ f (u) − f (v )‖2 provides a convexX -embedding in general position (‖.‖

is the Euclidean norm). Moreover, the embedding that minimizes P can be computed as follows:

f (v ) =
1

cv

∑
u ∈N (v )

cuv f (u) for allv ∈ V \X ,

in which cv =
∑

u ∈N (v ) cuv . Hence, the embedding can be found by solving a set of linear equations

in at most O ( |V |3) time (or matrix multiplication time).

3 BALANCING THE SUPPLY/DEMAND ONLY

In this section, we study the single objective problem of finding a partition of the graph into con-
nected subgraphs that balances (approximately) the supply and demand in each part of the parti-
tion, without any regard to the sizes of the parts. We can state the optimization problem as follows
and will refer to it as the balanced connected partitioning with integer weights (BCPI) problem.

Definition 3.1. Given a graph G = (V ,E) with a weight (supply/demand) function p : V → Z
satisfying

∑
j ∈V p (j ) = 0. The BCPI problem is the problem of partitioning V into (V1,V2) such

that

(1) V1 ∩V2 = ∅ and V1 ∪V2 = V ,
(2) G[V1] and G[V2] are connected, and
(3) |p (V1) | + |p (V2) | is minimized, where p (Vi ) =

∑
j ∈Vi

p (j ).

Clearly, the minimum possible value for |p (V1) | + |p (V2) | that we can hope for is 0, which occurs
if and only if p (V1) = p (V2) = 0. It is easy to show that the problem of determining whether there
exists such a “perfect” partition (and hence the BCPI problem) is strongly NP-hard. The proof is
very similar to analogous results concerning the partition of a graph into two connected subgraphs
with equal sizes (or weights, when nodes have positive weights) [3, 6].

Proposition 3.2. (1) It is strongly NP-hard to determine whether there is a solution to the BCPI

problem with value 0, even when G is 2-connected.

(2) If G is not 2-connected, then this problem is NP-hard even when ∀i,p (i ) = ±1.

ACM Transactions on Algorithms, Vol. 16, No. 2, Article 20. Publication date: March 2020.
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Proof. We use the proof of Chataigner et al. [3, Theorem 2] with a modest change. The re-
duction is from the X3C problem [17], which is a variant of the exact cover by 3-sets and de-
fined as follows: Given a set X with |X | = 3q and a family C of 3-element subsets of X such that
|C | = 3q and each element of X appears in exactly three sets of C , decide whether C contains
an exact cover for X . Given an instance (X ,C ) of X3C , let G = (V ,E) be the graph with the ver-

tex set V = X ∪C ∪ {a,b} and edge set E =
⋃3q

j=1[{Cjxi |xi ∈ Cj } ∪ {Cja} ∪ {Cjb}]. Set p (a) = 2q,

p (b) = 9q2 + q, p (Cj ) = −1, and p (xi ) = −3q. It is easy to verify that C contains an exact cover for
X if and only if the BCPI problem has a solution such that p (V1) = p (V2) = 0. On the one hand,
if there is an exact cover C ′ ⊂ C , then we can let V1 = {a} ∪C \C ′ and V2 = {b} ∪C ′ ∪ X ; clearly,
both parts are connected, since C ′ covers X , and p (V1) = p (V2) = 0 since |C ′ | = q. On the other
hand, if there is a connected partition (V1,V2) with p (V1) = p (V2) = 0, then clearly a and b must
be in different parts, say a ∈ V1, b ∈ V2. Part V1 cannot contain any node in X , because then p (V1)
would be negative. Hence, V1 consists of a and a subset C ′′ of C with size |C ′′ | = 2q. Part V2 must
consist of the remaining nodes: b,C ′ = C \C ′′ and X . Since G[V2] is connected, C ′ covers X , and
since |C ′ | = |C \C ′′| = q, C ′ is an exact cover of X . This shows the first claim.

For the second claim, attach to nodes a, b, and the xi s, paths of length 2q, 9q2 + q, and 3q,
respectively, and set the supply/demand values of a, b, the xi ’s, and the new nodes equal to +1 (for
the paths for a and b) or −1 (for the xi ’s). �

Although it is NP-hard to tell whether there is a solution satisfyingp (V1) = p (V2) = 0, even when
∀i,p (i ) = ±1, in this case, if the graphG is 2-connected, there is always such a solution. For general
weights p, there is a solution such that |p (V1) |, |p (V2) | ≤ maxj ∈V |p (j ) |/2, and it can be found easily
in linear time using the st-numbering between two nodes.

Proposition 3.3. LetG be a 2-connected graph and u,v any two nodes inV such that p (u)p (v ) >
0:

(1) There is a solution such that u ∈ V1, v ∈ V2, and |p (V1) | = |p (V2) | ≤ maxj ∈V |p (j ) |/2.

(2) If ∀i,p (i ) = ±1, we can find a solution such that u ∈ V1, v ∈ V2, and p (V1) = p (V2) = 0.

In both cases, the solution can be found in O ( |E |) time.

Proof. Clearly, part (2) follows immediately from part (1) because in this case, p (V1),p (V2)
are integer and maxj ∈V |p (j ) |/2 = 1/2. To show part (1), pick two arbitrary nodes u,v ∈ V with
p (u)p (v ) > 0. Since we want to separate u and v , we can assume without loss of generality
that initially {u,v} ∈ G. Since G is 2-connected, an st-numbering between nodes u and v as

u = v1,v2, . . . ,vn = v can be found in O ( |V | + |E |) [7]. Define V (i )
1 := {v1,v2, . . . ,vi }. It is easy

to see that p (V (1)
1 ) = p (u) > 0 and p (V (n−1)

1 ) = −p (v ) < 0. Hence, there must exist an index 1 ≤
i∗ < n such that |p (V (i∗ )

1 ) | > 0 and |p (V (i∗+1)
1 ) | ≤ 0. Since |p (V (i )

1 ) − p (V (i+1)
1 ) | = |p (i∗ + 1) |, either

|p (V (i∗ )
1 ) | ≤ |p (i∗ + 1) |/2 or |p (V (i∗+1)

1 ) | ≤ |p (i∗ + 1) |/2; accordingly set V1 = V
(i∗ )

1 or V1 = V
(i∗+1)

1 .
LetV2 = V \V1. Hence, (V1,V2) is a solution with |p (V1) | = |p (V2) | ≤ |p (i∗ + 1)/2| ≤ maxj ∈V |p (j ) |/2.
It is easy to see that i∗ can be found in O ( |V |). �

Remark 3.4. The bound in Proposition 3.3 (1) is tight. A simple example is a cycle of length 4
like (v1,v2,v3,v4) with p (v1) = −p, p (v2) = −p/2, p (v3) = p, and p (v4) = p/2. It is easy to see that
in this example, |p (V1) | + |p (V2) | = maxj ∈V |p (j ) | = p is the best that one can do.

3.1 Connected Partitioning into Many Parts

The BCPI problem can be extended to partitioning a graph into k = 3 or more parts. LetG = (V ,E)
be a graph with a weight function p : V → Z satisfying

∑
j ∈V p (j ) = 0. The BCPIk problem is the

ACM Transactions on Algorithms, Vol. 16, No. 2, Article 20. Publication date: March 2020.
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problem of partitioning G into (V1,V2, . . . ,Vk ) such that for any 1 ≤ i ≤ k , G[Vi ] is connected and∑k
i=1 |p (Vi ) | is minimized.
In the following proposition, we show that for k = 3, ifG is 3-connected and p (i ) = ±1,∀i , then

there is always a perfect partition (i.e., with p (V1) = p (V2) = p (V3) = 0), and it can be found effi-
ciently. For generalp, we can find a partition such that |p (V1) | + |p (V2) | + |p (V3) | ≤ 2 maxj ∈V |p (j ) |.
The proof and the algorithm use a similar approach as the algorithm in Wada and Kawaguchi [23]
for partitioning a 3-connected graph to three connected parts with prescribed sizes, using the
nonseparating ear decomposition of 3-connected graphs as described in Section 2.4.

Proposition 3.5. Let G be a 3-connected graph and u,v,w three nodes in V such that

p (u),p (v ),p (w ) > 0 or p (u),p (v ),p (w ) < 0:

(1) There is a solution such that u ∈ V1, v ∈ V2, w ∈ V3, and |p (V1) | + |p (V2) | + |p (V3) | ≤
2 maxj ∈V |p (j ) |.

(2) If ∀i,p (i ) = ±1, then there is a solution such thatu ∈ V1,v ∈ V2,w ∈ V3, and |p (V1) | = |p (V2) | =
|p (V3) | = 0.

In both cases, the solution can be found in O ( |E |) time.

Proof. Consider the case of general function p, and let pmax = maxj ∈V |p (j ) |. We will show that
we can find a solution such thatu ∈ V1,v ∈ V2,w ∈ V3 with |p (V1) |, |p (V2) | ≤ pmax/2. Since |p (V3) | =
|p (V1) + p (V2) | (recall p (V ) = 0), this implies that |p (V3) | ≤ pmax, and hence |p (V1) | + |p (V2) | +
|p (V3) | ≤ 2pmax. Furthermore, if p (i ) = ±1 for all i ∈ V , hence pmax = 1, then |p (V1) |, |p (V2) | ≤
pmax/2 implies that p (V1) = p (V2) = 0, and therefore also p (V3) = 0. Thus, both claims will follow.

Assume that u,v,w ∈ V and p (u),p (v ),p (w ) > 0 (the case of negative p (u),p (v ),p (w ) is sym-
metric). Since we want to separate u from v , we can assume without loss of generality that
{u,v} ∈ E. Using Theorem 2.2, there is a nonseparating ear decomposition through the edge
{u,v} and avoiding node w . Ignore the ears that do not contain any internal nodes, and let
Q0 ∪Q1 ∪ · · · ∪Qr be the decomposition consisting of the ears with nodes; we have w ∈ Qr . Let

Vi = V (Q0) ∪V (Q1) · · · ∪V (Qi ), and let Gi = G[Vi ] and Gi = G[V \Vi ]. We distinguish two cases,
depending on whether p (V0) ≤ 0 or p (V0) > 0:

(i) If p (V0) ≤ 0, then consider an st-numbering between u and v inV0, say u = v1,v2, . . . ,vs =

v . DefineV (i )
0 = {v1,v2, . . . ,vi }. Since p (u),p (v ) > 0 and p (V0) ≤ 0, there must exist indices

1 ≤ i∗ ≤ j∗ < s such thatp (V (i∗ )
0 ) > 0, p (V (i∗+1)

0 ) ≤ 0 andp (V0\V (j∗+1)
0 ) > 0, p (V0\V (j∗ )

0 ) ≤ 0.

(a) If i∗ = j∗, since p (V (i∗ )
0 ) + p (vi∗+1) + p (V0\V (i∗+1)

0 ) = p (V0) < 0, we have p (V (i∗ )
0 ) +

p (V0\V (i∗+1)
0 ) ≤ |p (vi∗+1) |. Now, one of the following three cases happens:

—Ifp (V (i∗ )
0 ) ≤ |p (vi∗+1) |/2 andp (V0\V (i∗+1)

0 ) ≤ |p (vi∗+1) |/2, then it is easy to see thatV1 =

V (i∗ )
0 , V2 = V0\V (i∗+1)

0 , and V3 = V \(V1 ∪V2) is a good partition.

—If p (V (i∗ )
0 ) > |p (vi∗+1) |/2 and p (V0\V (i∗+1)

0 ) ≤ |p (vi∗+1) |/2, then p (V (i∗ )
0 ) + p (vi∗+1) =

p (V (i∗+1)
0 ) ≤ |p (vi∗+1) |/2. Hence, V1 = V

(i∗+1)
0 , V2 = V0\V (i∗+1)

0 , and V3 = V \V0 is a good
partition.

—If p (V (i∗ )
0 ) ≤ |p (vi∗+1) |/2 and p (V0\V (i∗+1)

0 ) > |p (vi∗+1) |/2, then p (V0\V (i∗+1)
0 ) +

p (vi∗+1) = p (V0\V (i∗ )
0 ) ≤ |p (vi∗+1) |/2. Hence, V1 = V

(i∗ )
0 , V2 = V0\V (i∗ )

0 , and V3 = V \V0

is a good partition.

(b) If i∗ < j∗, then either p (V (i∗ )
0 ) ≤ |p (vi∗+1) |/2 or |p (V (i∗+1)

0 ) | ≤ |p (vi∗+1) |/2; accordingly set

V1 = V
(i∗ )

0 or V1 = V
(i∗+1)

0 . Similarly, either p (V0\V (j∗+1)
0 ) ≤ |p (vj∗+1) |/2 or |p (V0\V (j∗ )

0 ) | ≤
|p (vj∗+1) |/2, so accordingly setV2 = V0\V (j∗+1)

0 orV2 = V0\V (j∗ )
0 . SetV3 = V \(V1 ∪V2). It is

easy to check that (V1,V2,V3) is a good partition.
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(ii) If p (V0) > 0, then since p (w ) > 0 and therefore p (Vr−1) < 0, there must exist an index 0 ≤
j < r − 1 such that p (Vj ) > 0 and p (Vj+1) ≤ 0. Consider an st-numbering between u and v

in G[Vj ] as u = v1,v2, . . . ,vs = v and define V (i )
j = {v1,v2, . . . ,vi }. The ear Q j+1 is a path

of new nodes q1,q2, . . . ,qt attached to two (distinct) nodes vx ,vy of G[Vj ] through edges
{vx ,q1}, {qt ,vy } ∈ E; assume without loss of generality that 1 ≤ x < y ≤ s . For simplicity,
we will use below Q j+1 to denote also the set {q1,q2, . . . ,qt } of internal (new) nodes of

the ear. Also define Q (i )
j+1 = {q1,q2, . . . ,qi } and Q (0)

j+1 = ∅. One of the following cases must

happen:

(a) Suppose that there is an index 1 ≤ i∗ < (y − 1) such that p (V (i∗ )
j ) > 0 and p (V (i∗+1)

j ) ≤ 0

or there is an index x + 1 < i∗ < s such that p (Vj\V (i∗−1)
j ) > 0 and p (Vj\V (i∗ )

j ) ≤ 0. Let us

assume that there is an index 1 ≤ i∗ < (y − 1) such that p (V (i∗ )
j ) > 0 and p (V (i∗+1)

j ) ≤ 0

(the other case is exactly similar). Then either p (V (i∗ )
j ) ≤ |p (vi∗+1) |/2 or |p (V (i∗+1)

j ) | ≤
|p (vi∗+1) |/2; accordingly set either V1 = V

(i∗ )
j or V1 = V

(i∗+1)
j . Set V ′2 = Vj\V1. One of the

following cases happens:

—If V1 = V
(i∗ )

j and p (V ′2 ) ≤ 0, then since p (V (i∗+1)
j ) ≤ 0, we have p (Vj\V (i∗+1)

j ) > 0.

Hence, p (V ′2 \{vi∗+1}) > 0. Thus, it is either |p (V ′2 ) | ≤ |p (vi∗+1) |/2 or p (V ′2 \{vi∗+1}) ≤
|p (vi∗+1) |/2. Now, if p (V ′2 \{vi∗+1}) ≤ |p (vi∗+1) |/2, since also p (V1) ≤ |p (vi∗+1) |/2,
p (Vj ) ≤ 0,which contradicts with the assumption. Therefore, |p (V ′2 ) | ≤ |p (vi∗+1) |/2. Set
V2 = V

′
2 and V3 = V \(V1 ∪V2). It is easy to check that (V1,V2,V3) is a good partition.

—If V1 = V
(i∗ )

j and p (V ′2 ) > 0, then since p (Vj ∪Q j+1) < 0, there is an index 0 < t∗ ≤
t such that p (V ′2 ∪ (Q j+1\Q (t ∗ )

j+1 )) > 0 and p (V ′2 ∪ (Q j+1\Q (t ∗−1)
j+1 )) ≤ 0. Hence, either

p (V ′2 ∪ (Q j+1\Q (t ∗ )
j+1 )) ≤ |p (qt ∗ ) |/2 or |p (V ′2 ∪ (Q j+1\Q (t ∗−1)

j+1 )) | ≤ |p (qt ∗ ) |/2; accordingly

set V2 = V
′

2 ∪ (Q j+1\Q (t ∗ )
j+1 ) or V2 = V

′
2 ∪ (Q j+1\Q (t ∗−1)

j+1 ). Set V3 = V \(V1 ∪V2). It is easy

to see that (V1,V2,V3) is a good partition.

—If V1 = V
(i∗+1)

j , then since p (V1) ≤ 0, we have p (V ′2 ) > 0. The rest is exactly like the

previous case when V1 = V
(i∗ )

j and p (V ′2 ) > 0.

(b) Suppose that for every 1 ≤ i < y, p (V (i )
j ) > 0 and for every x < i < s , p (Vj\V (i )

j ) > 0. Set

V ′1 = V
(y−1)

j and V ′2 = Vj\V ′1 . Based on the assumption p (V ′1 ),p (V ′2 ) > 0. Since p (Vj+1) ≤
0, there are indices 0 ≤ i∗ ≤ j∗ < t such that p (V ′1 ∪Q

(i∗ )
j+1 ) > 0, p (V ′1 ∪Q

(i∗+1)
j+1 ) ≤ 0 and

p (V ′2 ∪ (Q j+1\Q (j∗+1)
j+1 )) > 0, p (V ′2 ∪ (Q j+1\Q (j∗ )

j+1 )) ≤ 0. The rest of the proof is similar to

case (i) when p (V0) ≤ 0. �

4 BALANCING BOTH OBJECTIVES

In this section, we formally define and study the DBCP problem.

Definition 4.1. Given a graph G = (V ,E) with a weight (supply/demand) function p : V → Z
satisfying p (V ) =

∑
j ∈V p (j ) = 0 and constants cp ≥ 0, cs ≥ 1. The DBCP problem is the problem of

partitioning V into (V1,V2) such that

(1) V1 ∩V2 = ∅ and V1 ∪V2 = V ,
(2) G[V1] and G[V2] are connected, and

(3) |p (V1) |, |p (V2) | ≤ cp and max{ |V1 |
|V2 | ,

|V2 |
|V1 | } ≤ cs , where p (Vi ) =

∑
j ∈Vi

p (j ).
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Fig. 1. Series-parallel graphs with 2s + 1 paths of length 4t + 2 used in Observations 4.3 and 4.4.

Remark 4.2. Our techniques apply also to the case that p (V ) � 0. In this case, the requirement 3
on p (V1) and p (V2) is |p (V1) − p (V )/2|, |p (V2) − p (V )/2| ≤ cp—that is, the excess supply/demand is
split approximately evenly between the two parts.

We will concentrate on 2-connected and 3-connected graphs and show that we can construct
efficiently good partitions. For most of the section, we will focus on the case that p (i ) = ±1,∀i ∈ V .
This case contains all of the essential ideas. All techniques generalize to the case of arbitrary p,
and we will state the corresponding theorems.

We observed in Section 2 that if the graph is 2-connected and p (i ) = ±1,∀i ∈ V , then there is
always a connected partition that is perfect with respect to the weight objective, p (V1) = p (V2) =
0—that is, (3) is satisfied with cp = 0. We know also from Gyori [9] and Lovász [14] that there
is always a connected partition that is perfect with respect to the size objective, |V1 | = |V2 |—that
is, condition 3 is satisfied with cs = 1. The following observations show that combining the two
objectives makes the problem more challenging. If we insist on cp = 0, then cs cannot be bounded
in general (it will be Ω( |V |)), and if we insist on cs = 1, then cp cannot be bounded. The series-
parallel graphs of Figure 1 provide simple counterexamples.

Observation 4.3. If cp = 0, then for any cs < |V |/2 − 1, there exists a 2-connected graph G such

that the DBCP problem does not have a solution even when ∀i,p (i ) = ±1.

Proof. In the graph depicted in Figure 1, set t = 0. Since the parts should be connected and we
want cp = 0, the left −1 terminal node should be in the same part as the right +1 terminal node. It is
easy to see that the only way to partition the graph into two connected parts such that the left −1
node and the right +1 node end up in the same part is to have the two nodes and 2s paths between
them in one part and a single path (consisting of 4t + 2 = 2 nodes) in another part. Hence, the only
connected partition of this graph with cp = 0 results in cs = (4s + 2)/2 = 2s + 1 = |V |/2 − 1. �

Observation 4.4. If cs = 1, then for any cp < |V |/6, there exists a 2-connected graph G such that

the DBCP problem does not have a solution even when ∀i,p (i ) = ±1.

Proof. In the graph depicted in Figure 1, set s = 1; thus, there are only three parallel paths.
Since we want cs = 1, it is easy to see that the left −1 terminal node and the right +1 terminal
node cannot be in the same part; otherwise, to have two connected parts, one part should include
two paths and the two terminal nodes, which results in cs � 1. Now, if we want the two terminal
nodes to be in separate parts to have cs = 1, it is easy to verify that to minimize cp , exactly one of
the paths should be included in the part with the left terminal node and one of the paths should
be included in the part with the right terminal node. Moreover, the last remaining path should be
divided in half between the two parts. For such a partition cp = 2t + 2 > |V |/6. �
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Fig. 2. Proof of Lemma 4.5.

Thus, cp has to be at least 1 to have any hope for a bounded cs . We show in this section that
cp = 1 suffices for all 2-connected graphs. We first treat 3-connected graphs.

4.1 3-Connected Graphs

Let G = (V ,E) be a 3-connected graph. Assume for most of this section that ∀i,p (i ) = ±1 and
p (V ) = 0 (we will state the results for general p at the end). We show that G has a partition that is
essentially perfect with respect to both objectives (i.e., with cp = 0 and cs = 1). We say “essentially”
because p (V1) = p (V2) = 0 and |V1 | = |V2 | imply that |V1 | = |V2 | are even, and hence V must be a
multiple of 4. If this is the case, then indeed we can find such a perfect partition. If |V | ≡ 2(mod 4)
(|V | has to be even since p (V ) = 0), then we can find an “almost perfect” partition, one in which
|p (V1) | = |p (V2) | = 1 and |V1 | = |V2 | (or one in which p (V1) = p (V2) = 0 and |V1 | = |V2 | + 2).

We first treat the case thatG contains a triangle (i.e., cycle of length 3). In the following lemma,
we use the embedding for k-connected graphs introduced in Linial et al. [13] and as described in
Section 2.6 to show that if G is 3-connected with a triangle and all weights are ±1, then the DBCP
problem has a perfect solution.

Lemma 4.5. If G is 3-connected with a triangle, ∀i,p (i ) = ±1, and |V | ≡ 0(mod 4), then there ex-

ists a solution to the DBCP problem with p (V1) = p (V2) = 0 and |V1 | = |V2 |. If |V | ≡ 2(mod 4), then

there is a solution with p (V1) = p (V2) = 0 and |V1 | = |V2 | + 2. Moreover, this partition can be found

in randomized polynomial time.

Proof. Assume that |V | ≡ 0(mod 4); the proof for the case |V | ≡ 2(mod 4) is similar. Following
Theorem 2.4, if G is a k-connected graph, then for every X ⊂ V with |X | = k , G has a convex X -
embedding in general position. Moreover, this embedding can be found by solving a set of linear
equations of size |V |. Now, assume thatv,u,w ∈ V form a triangle inG. SetX = {v,u,w }. Using the
theorem,G has a convexX -embedding f : V → R2 in general position. Consider a circle C around
the triangle f (u), f (v ), f (w ) in R2 as shown in an example in Figure 2. Also consider a directed
line L that is tangent to the circle C at pointA and is not perpendicular to any line connecting any
two of the nodes. If we project the nodes of G onto the line L, since the embedding is convex and
also {u,v}, {u,w }, {w,v} ∈ E, the order of the nodes’ projection gives an st-numbering between the
first and the last node (notice that the first and last nodes are always from the set X ). In particular,
from the definition of convex embedding, since each node in V \{u,v,w } is in the convex hull of
its neighbors, when it is projected on line L, at least one of its neighbors should be projected
on its right and one of its neighbors should be projected on its left. Moreover, since {u,w,v} are
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pairwise connected, whichever of the three nodes ends up in the middle of the other two in the
projection has a neighbor on its right and a neighbor on its left. Hence, the order of the nodes’
projection gives an st-numbering between the first and the last node. For instance, in Figure 2, the
order of projections gives an st-numbering between the nodes u and v in G. Hence, if we set V1

to be the |V |/2 nodes whose projections come first and V2 are the |V |/2 nodes whose projections
come last, then G[V1] and G[V2] are both connected and |V1 | = |V2 | = |V |/2. The only thing that
may not match is p (V1) and p (V2).

Notice that for each directed line tangent to the circle C, we can similarly get a partition such
that |V1 | = |V2 | = |V |/2. Thus, all we need is a point D on the circle C such that if we partition
based on the directed line tangent to C at point D, then p (V1) = p (V2) = 0. To find such a point,
we move L from being tangent at point A to point B, where AB is a diameter of the circle C,
and consider the resulting partition. Notice that if at point A, p (V1) > 0, then at point B since V1

and V2 completely switch places compared to the partition at point A, p (V1) < 0. Hence, as we
move L from being tangent at point A to point B and keep it tangent to the circle, in the resulting
partitions, p (V1) goes from some positive value to a nonpositive value. Notice that as we rotate
the line L around the circle, the ordering of two nodes in the projection changes only when L
becomes perpendicular to the line that connects the embeddings of the two nodes on the plane.
The partition (V1,V2) changes only if the last node i ofV1 in the projected ordering switches places
with the first node j ofV2 in the ordering, and this happens if L becomes perpendicular to the line
that connects f (i ) to f (j ). Since the embedding is in general position, no other node is collinear
with f (i ) and f (j ), and hence no other node has the same projection on L as i and j. Therefore,
V1 changes at most by one node leaving V1 and one node entering V1 at each step as we move L.
Hence, p (V1) changes by either ±2 or 0 value at each change. Now, since |V | ≡ 0(mod 4), p (V1) has
an even value in all of the resulting partitions. Therefore, as we move L from being tangent at
point A to point B, there must be a point D such that in the resulting partition p (V1) = p (V2) = 0.

Note that the order of the projected points and V1 may change only when a line that passes
through two nodes of graph G is perpendicular to L. We can sort first the slopes of all lines con-
necting two nodes ofG (alternatively, we can use a priority queue) and then rotate the line L from
the initial position A until we find the point D that yields a partition with p (V1) = p (V2) = 0 in
O ( |V |2 log |V |) time. �

WhenG is a triangle-free 3-connected graph, however, the proof in Lemma 4.5 cannot be directly
used anymore. The reason is if, for example, {u,v} � E and we project the nodes ofG onto the line
L, this time the order of the nodes projection may not give necessarily an st-numbering between
the first and the last node. For example, if u and w are the first and last nodes, then since v is
not connected to u, it does not necessarily have a neighbor on its left in the projection. To prove
a similar result for triangle-free 3-connected case, we first provide the following two lemmas.
The main purpose of the following two lemmas is to compensate for the triangle-freeness of G
in the proof of Lemma 4.5. The idea is to show that in every 3-connected graph, there is a triple
{u,w,v} ∈ V such that {u,w }, {w,v} ∈ E and in every partition that we get by the approach used
in the proof of Lemma 4.5, if u and v are in Vi , so is a path between u and v .

Lemma 4.6. If G is 3-connected, then there exists a set {u,v,w } ∈ V and a partition of V into

(V ′1 ,V
′

2 ) such that

(1) V ′1 ∩V ′2 = ∅ and V ′1 ∪V ′2 = V ,

(2) G[V ′1 ] and G[V ′2 ] are connected,

(3) {u,w }, {v,w } ∈ E,
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(4) w ∈ V ′1 , u,v ∈ V ′2 , and u,v are not cutpoints of G[V ′2 ],
(5) |V ′2 | ≤ |V |/2.

Moreover, such a partition and {u,v,w } can be found in O ( |E |) time.

Proof. Using the algorithm presented in Cheriyan and Maheshwari [4], we can find a nonsep-
arating cycle C0 in G such that every node in C0 has a neighbor in G\C0 in O ( |E |) time. Now, we
consider two cases:

(i) If |C0 | ≤ |V |/2 + 1, then select any three consecutive nodes (u,w,v ) of C0 and set V ′2 =
C0\{w } and V ′1 = V \V ′2 .

(ii) If |C0 | > |V |/2 + 1, since every node in C0 has a neighbor in G\C0, there exists a node w ∈
V \C0 such that |N (w ) ∩C0 | ≥ 2. We can select such a node w , two adjacent nodes u,v ∈
N (w ) ∩C0, and the shorter path P in C0 from u to v such that |P | ≤ |V |/2. Set V ′2 = P and
V ′1 = V \V ′2 . �

Lemma 4.7. Given a partition (V ′1 ,V
′

2 ) of a 3-connected graph G with following properties:

(1) V ′1 ∩V ′2 = ∅ and V ′1 ∪V ′2 = V ,

(2) G[V ′1 ] and G[V ′2 ] are connected,

(3) w ∈ V ′1 , u,v ∈ V ′2 , and u,v are not cutpoints of G[V ′2 ].

G has a convex X -embedding in general position with mapping f : V → R2 such that

(1) X = {u,w,v}, f (u) = (0, 0), f (v ) = (1, 0), and f (w ) = (0, 1).
(2) Every node i in V ′1 is mapped to a point ( f1 (i ), f2 (i )) with f2 (i ) ≥ 1/2.

(3) Every node i inV ′2 is mapped to a point ( f1 (i ), f2 (i )) with f1 (i ) ≥ f2 (i ) and f1 (i ) + 2f2 (i ) ≤ 1.

Moreover, such an embedding can be found in randomized polynomial time.

Proof. Set X = {v,u,w }. Using Linial et al. [13],G has a convex X -embedding in R2 in general
position with mapping f : V → R2 such that f (u) = (0, 0), f (v ) = (1, 0), and f (w ) = (0, 1). In the
X -embedding of the nodes, we have a freedom to set the elasticity coefficient vector �c to anything
that we want (except a measure zero set of vectors). Thus, for any edge {i, j} ∈ G[V ′1 ] ∪G[V ′2 ], set
ci j = д, and for any {i, j} ∈ E[V ′1 ,V

′
2 ], set ci j = 1. Assume that L1 is the line y = 0.5, L2 is the line

x + 2y = 1, and L3 is the line x = y.
First, we show that there exists a д for which all nodes in V ′1 will be embedded above the line
L1. To show this, from Linial et al. [13], we know the embedding is such that it minimizes the
total potential P ( f ,�c ) =

∑
{i, j }∈E ci j ‖ f (i ) − f (j )‖2. Notice that we can independently minimize P

on x-axis values and y-axis values as shown next:

min
f

P = min
f1

Px +min
f2

Py

= min
f1

∑
{i, j }∈E

ci j ( f1 (i ) − f1 (j ))2 +min
f2

∑
{i, j }∈E

ci j ( f2 (i ) − f2 (j ))2.

Now, notice that if we place all nodes inV ′1 at point (0,1) and all nodes inV ′2 on the line uv , then

Py ≤ |E |. Hence, if f2 minimizes Py , then Py ( f2, c ) ≤ |E |. Set д ≥ 4|V |2 |E |. We show that if f2 min-

imizes Py , then for all edges {i, j} ∈ G[V ′1 ] ∪G[V ′2 ], ( f2 (i ) − f2 (j ))2 ≤ 1/(4|V |2). By contradiction,

assume that there is an edge {i, j} ∈ G[V ′1 ] ∪G[V ′2 ] such that ( f2 (i ) − f2 (j ))2 > 1/(4|V |2). Then,

ci j ( f2 (i ) − f2 (j ))2 = д( f2 (i ) − f2 (j ))2 > |E |. Hence, Py ( f2, c ) > |E |, which contradicts with the fact

the f2 minimizes Py . Therefore, if д ≥ 4|V |2 |E |, then for all {i, j} ∈ G[V ′1 ] ∪G[V ′2 ], | f2 (i ) − f2 (j ) | ≤
1/(2|V |). Now, since G[V ′1 ] is connected, all nodes in V ′1 are connected to w with a path of length
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Fig. 3. Proof of Lemma 4.7 and Theorem 4.8.

(in number of hops) less than |V | − 1. Hence, using the triangle inequality, for all i ∈ V ′1 :

| f2 (w ) − f2 (i ) | ≤ ( |V | − 1)/(2|V |) < 1/2⇒ |1 − f2 (i ) | < 1/2,

which means that all nodes in V ′1 are above L1.

With the very same argument, if д ≥ t2 |V |2 |E |, then for all i ∈ V ′2 , f2 (i ) < 1/t .
Now, we want to prove that there is a д such that all nodes in V ′2 will be embedded below the

lines L2 and L3. Define n1 (i ) := |N (i ) ∩V ′1 | and n2 (i ) := |N (i ) ∩V ′2 |. From Linial et al. [13], we
know the embedding is such that for all i ∈ V \{u,v,w }, f (i ) = 1/ci

∑
j ∈N (i ) ci j f (j ), where c j =∑

j ∈N (i ) ci j f (j ). Since G[V ′2 ] is connected and u is not a cutpoint of G[V ′2 ], for every i ∈ V ′2 \ {u,v}
there is a path i = v1,v2, . . . ,vr = v in V ′2 not containing node u. Using this ordering:{

f1 (vj ) ≥ 1
n2 (vj )д+n1 (vj )дf1 (vj+1) ≥ (1/|V |) f1 (vj+1), ∀j ∈ {1, . . . , r − 1}

f1 (vr ) = f1 (v ) = 1

⇒ ∀i ∈ V ′2 \{u,v} : f1 (i ) ≥ (1/|V |)r ≥ (1/|V |) |V | .
However, from the previous part, if we set д ≥ |V |2 |V |+2 |E |, then for all i ∈ V ′2 , f2 (i ) ≤ (1/|V |) |V | .
Hence, for all i ∈ V ′2 , f2 (i ) ≤ f1 (i ), which means that all nodes in V ′2 will be placed below the line
L3.

With the very same idea, we show that there exists a д for which all nodes in V ′2 will be placed
below the lineL2. SinceG[V ′2 ] is connected andv is not a cutpoint ofG[V ′2 ], for every i ∈ V ′2 \ {u,v}
there is a pathu = u1,u2, . . . ,ut = i inV ′2 not containing nodev . Notice that for all i ∈ V \{u,v,w },
1 − f1 (i ) = 1/ci

∑
j ∈N (i ) ci j (1 − f1 (j )). Hence, since ∀j ∈ V : f1 (j ) ≤ 1, we have{

1 − f1 (uj ) ≥ 1
n2 (uj )д+n1 (uj )д(1 − f1 (ui−1)) ≥ (1/|V |) (1 − f1 (ui−1)), ∀j ∈ {2, . . . , t }

1 − f1 (u) = 1 − f1 (u1) = 1

⇒ ∀i ∈ V ′2 \{u,v} : 1 − f1 (i ) ≥ (1/|V |)t ≥ (1/|V |) |V | .
From the previous part, if we set д ≥ 4|V |2 |V |+2 |E |, then for all i ∈ V ′2 , f2 (i ) ≤ 1/2(1/|V |) |V | . Hence,
for i ∈ V ′2 , f1 (i ) + 2f2 (i ) ≤ 1, which means that all nodes in V ′2 will be placed below the line L3.

Therefore, if we set д ≥ 4|V |2 |V |+2 |E |, then we will get an embedding as depicted in Figure 3. Note
that a polynomial number of bits suffices for д.

Notice that if �c is a “good” vector, then so is �c + �ϵ in which �ϵ is a vector with very small Eu-
clidean norm. Hence, we can always find a “good” vector�c that results in aX -embedding in general
position. �
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Using Lemmas 4.6 and 4.7, we are now able to prove that for any 3-connected graphG such that
all of the weights are ±1, the DBCP problem has a solution for cp = 0 and cs = 1. The idea of the
proof is similar to the proof of Lemma 4.5; however, we need to use Lemma 4.6 to find a desirable
partition (V ′1 ,V

′
2 ) and then use this partition to find an embedding with properties as described in

Lemma 4.7. By using this embedding, we can show that in every partition that we obtain by the
approach in the proof of Lemma 4.5, if u andv are inVi , so is a path between u andv . This implies
then that G[V1] and G[V2] are connected. Thus, we can use similar arguments as in the proof of
Lemma 4.5 to prove the following theorem.

Theorem 4.8. If G is 3-connected, ∀i,p (i ) = ±1, and |V | ≡ 0(mod 4), then there exists a solution

to the DBCP problem with p (V1) = p (V2) = 0 and |V1 | = |V2 |. If |V | ≡ 2(mod 4), then there is a solu-

tion with p (V1) = p (V2) = 0 and |V1 | = |V2 | + 2. Moreover, this partition can be found in randomized

polynomial time.

Proof. Assume that |V | ≡ 0(mod 4); the proof for the case |V | ≡ 2(mod 4) is similar. Using
Lemma 4.6, we can find {u,v,w } ∈ V and a partition (V ′1 ,V

′
2 ) of V with properties described in

the lemma. SetX = {u,v,w }. Using Lemma 4.7, we can find a convexX -embedding ofG in general
position with properties described in the lemma as depicted in Figure 3. The rest of the proof is
very similar to the proof of Lemma 4.5. We consider again a circle C around f (u), f (v ), f (w ) in R2

as shown in Figure 3. Also consider a directed lineL tangent to the circleC at pointA. If we project
the nodes of G onto the line L, this time the order of the nodes projection gives an st-numbering
between the first and the last node only ifu andv are the first and last nodes. However, if we setV1

to be the |V |/2 nodes whose projections come first and V2 are the |V |/2 nodes whose projections
come last, then G[V1] and G[V2] are both connected even when u and v are not the first and last
nodes. The reason lies on the special embedding that we considered here. Assume, for example,
that w and v are the first and the last projected nodes, and V1 and V2 are set of the |V |/2 nodes
which projections come first and last, respectively. Two cases might happen:

(i) If u,w ∈ V1 and v ∈ V2, then since {u,w } ∈ E, both G[V1] and G[V2] are connected because
of the properties of the embedding.

(ii) Ifw ∈ V1 and u,v ∈ V2, since |V ′2 | ≤ |V |/2 and |V2 | = |V |/2, then eitherV2 = V
′

2 orV2 ∩V ′1 �
∅. If V2 = V

′
2 , and hence V1 = V

′
1 , then there is nothing to prove. So assume that there is a

node z ∈ V2 ∩V ′1 . From the properties of the embedding, the triangle {z,u,v} contains all
nodes of V ′2 . Since {z,u,v} ∈ V2, and V2 contains all of the nodes that are on a same side of
a halfplane, we should also have V ′2 ⊂ V2. Now, from the properties of the embedding, it is
easy to see that every node in V2 has a path either to u or v . Since V ′2 ⊂ V2, there is also
a path between u and v . Thus, G[V2] is connected. From the properties of the embedding,
G[V1] is connected as before.

The rest of the proof is exactly the same as the proof of Lemma 4.5. We move L from being
tangent at pointA to point B (AB is a diameter of the circle C) and consider the resulting partition.
Notice that if at point A, p (V1) > 0, then at point B since V1 and V2 completely switch places com-
pared to the partition at point A, p (V1) < 0. Hence, as we move L from being tangent at point A to
point B and keep it tangent to the circle, in the resulted partitions, p (V1) goes from some positive
value to a negative value. Notice that the partition (V1,V2) changes only if L passes a point D on
the circle such that at D, L is perpendicular to a line that connects f (i ) to f (j ) for i, j ∈ V . Now,
since the embedding is in general position, there are exactly two points on every line that connects
two points f (i ) and f (j ), soV1 changes at most by one node leavingV1 and one node enteringV1.
Hence, p (V1) changes by either ±2 or 0 value at each change. Now, since |V | ≡ 0(mod 4), p (V1) has
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an even value in all resulting partitions. Therefore, as we move L from being tangent at point A
to point B, there should be a point D such that in the resulted partition p (V1) = p (V2) = 0. �

It is easy to check for a 3-connected graph G, by using the same approach as in the proof of
Lemma 4.5 and Theorem 4.8, that even when the weights are arbitrary (not necessarily±1) and also
p (V ) � 0, we can still find a solution (a connected partition) (V1,V2) for G with cp = maxi ∈V |p (i ) |
and cs = 1.

Corollary 4.9. IfG is 3-connected, then the DBCP problem (with arbitrary p, and not necessarily

satisfying p (V ) = 0) has a solution (V1,V2) with |p (V1) − p (V )/2|, |p (V2) − p (V )/2| ≤ maxi ∈V |p (i ) |
and |V1 | = |V2 | if |V | is even (|V1 | = |V2 | + 1 if |V | is odd). Moreover, this solution can be found in

randomized polynomial time.

Proof. The proof is similar to the preceding proof for the case of ±1 weights. We give first the
proof for even |V |. Fix a convex embedding of the graph satisfying the properties of Lemma 4.7.
Consider a circle C as earlier, a tangent line L that is not perpendicular to any line connecting
two nodes, and consider the corresponding partition (V1,V2) of the nodes into two equal halves.
As we showed previously, G[V1],G[V2] are connected. Assume without of loss of generality that
the partition for the tangent at the starting point A has p (V1) ≥ p (V )/2. If p (V1) = p (V )/2, then we
are done, so assume that p (V1) > p (V )/2, and hence p (V2) < p (V )/2. At the antidiametric point B,
the roles of V1 and V2 are switched, and therefore at B, we have p (V1) < p (V )/2. As we move the
tangent line fromA to B, the value ofp (V1) starts abovep (V )/2 and ends belowp (V )/2. In each step
where V1 changes, the change consists of replacing one node by another node, and hence p (V1)
changes at most by 2pmax, where pmax = maxi ∈V |p (i ) |. Look at the step in which p (V1) changes
from a value greater than p (V )/2 to a value ≤ p (V )/2. If before this step p (V1) > p (V )/2 + pmax,
then after this step p (V1) > p (V )/2 + pmax − 2pmax = p (V )/2 − pmax. Thus, either before or after
this step, the partition satisfies |p (V1) − p (V )/2| ≤ pmax, and hence also |p (V2) − p (V )/2| ≤ pmax.

The proof for odd |V | is similar. For a tangent line L that is not perpendicular to any line
connecting two nodes, we let V1 be the set of the first �V /2� nodes in the projected ordering
and V2 the remaining set of the last �V /2� nodes. Let m be the middle node in the ordering, let
V ′1 = V1 \ {m} and V ′2 = V2 ∪ {m}. As earlier, G[V1] and G[V2] are connected (and so are G[V ′1 ]
and G[V ′2 ]). Assume without loss of generality that the tangent at point A yields a partition with
p (V1) ≥ p (V )/2. If p (V1) ≤ p (V )/2 + pmax, then we are done: (V1,V2) is a good partition. So assume
that p (V1) > p (V )/2 + pmax. This implies that p (V ′1 ) > p/2, and hence p (V ′2 ) < p (V )/2. At the an-
tidiametric point B, the role of V1 (i.e., the set of the first �V /2� nodes in the ordering) is played
by the set V ′2 of the partition at A, which has value smaller than p (V )/2. The rest of the argu-
ment now is the same: As we rotate the tangent from point A to point B, the value p (V1) starts
greater than p (V )/2 + pmax, it ends smaller than p (V )/2, and it changes in each step at most by
2pmax. Therefore, at some points, it satisfies |p (V1) − p (V )/2| ≤ pmax, and hence at that point also
|p (V2) − p (V )/2| ≤ pmax. �

4.2 2-Connected Graphs

We first define a pseudo-path between two nodes in a graph as follows. The definition is inspired
by the definition of the st-numbering.

Definition 4.10. A pseudo-path between nodes u and v in G = (V ,E) is a sequence of nodes
v1, . . . ,vt such that if v0 = u and vt+1 = v , then for any 1 ≤ i ≤ t , vi has neighbors vj and vk

such that j < i < k . Note that the pseudo-path does not include the ending points u and v . If P =
v1, . . . ,vt is a pseudo-path between nodes u and v , then |P | = t denotes the number of nodes in
the pseudo-path.
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Using the pseudo-path notion, in the following lemma we show that if G is 2-connected and
has a separation pair such that none of the resulting components are too large, then the DBCP
problem always has a solution for some cp = cs = O (1). The idea used in the proof of this lemma
is one of the building blocks of the proof for the general 2-connected graph case.

Lemma 4.11. Given a 2-connected graphG, if∀i : p (i ) = ±1 andG has a separation pair {u,v} ⊂ V
such that for every connected component Hi = (VHi

,EHi
) of G[V \{u,v}], |VHi

| < �2|V |/3�, then the

DBCP problem has a solution for cp = 1, cs = 2, and it can be found in O ( |E |) time.

Proof. There is a separation pair {u,v} ∈ V such that if H1, . . . ,Hk are the connected com-
ponents of G\{u,v}, for every i , |VHi

| < �2|V |/3�. Since G is 2-connected, H1, . . . ,Hk can be rep-
resented by pseudo-paths P1, . . . , Pk between u and v (just consider an st-numbering between u
and v and use that numbering to form the pseudo-paths). Assume that P1, . . . , Pk are in increas-
ing order based on their lengths. We can partition the pseudo-paths into two subsets S1 and S2

such that S1 ∩ S2 = ∅, S1 ∪ S2 = {P1, . . . , Pk } and
∑

Pj ∈Si
|Pj | ≥ �|V |/3� − 1 for i = 1, 2. The proof

is very simple. Add greedily pseudo-paths to S1 until
∑

Pj ∈S1
|Pj | becomes at least �|V |/3� − 1.

Let S1 = {P1, . . . , Pi }, and S2 = {Pi+1, . . . , Pk }. Since |Pk | < �2|V |/3�, we have i < k and S2 � ∅. We
have to show that

∑
Pj ∈S2

|Pj | ≥ �|V |/3� − 1. If |Pk | ≥ �|V |/3� − 1, then the claim really holds. If
|Pk | < �|V |/3� − 1, then |Pi | ≤ |Pk | < �|V |/3� − 1, and |P1 | + · · · + |Pi−1 | < �|V |/3� − 1 implies that
|Pi+1 | + · · · + |Pk | ≥ �|V |/3� − 1.

Now, if we put all the pseudo-paths in S1 back to back, they will form a longer pseudo-path
Q1 between u and v . Similarly, we can form another pseudo-path Q2 from the pseudo-paths in S2

(Figure 4(a)). Without loss of generality, we can assume that |Q1 | ≥ |Q2 |. Fromu, includingu itself,
we count �|V |/3� of the nodes in Q1 toward v and put them in a setV ′. Without loss of generality,
we can assume that p (V ′) ≥ 0. If p (V ′) = 0, then (V ′,V \V ′) is a good partition and we are done.
Hence, assume that p (V ′) > 0. We keepV ′ fixed and make a new setV ′′ by adding nodes from Q1

to V ′ one by one before we get to v . If p (V ′′) hits 0 as we add nodes one by one, we stop and let
V1 = V

′′ and V2 = V \V ′′, then (V1,V2) is a good partition and we are done (Figure 4(b)).
Thus, assume that V ′′ = Q1 ∪ {u} and p (V ′′) > 0. Since |Q2 ∪ {v}| ≥ �|V |/3�, |V ′′ | ≤ �2|V |/3�.

If |V ′′ | < �2|V |/3�, we add nodes from Q2 ∪ {v} one by one toward u until either p (V ′′) = 0 or
|V ′′ | = �2|V |/3�. If we hit 0 first, or at the same time (i.e., p (V ′′) = 0 and |V ′′ | ≤ �2|V |/3�)), define
V1 = V

′′\{u}; then (V1,V \V1) is a good partition (Figure 4(c)). Thus, assume that |V ′′ | = �2|V |/3�
and p (V ′′) > 0. Define V ′′′ = V \V ′′. Since p (V ′′) > 0 and |V ′′ | = �2|V |/3�, then p (V ′′′) < 0 and
|V ′′′ | = �|V |/3�. Also notice that V ′′′ ⊆ Q2. We consider two cases. Either |p (V ′) | ≥ |p (V ′′′) | or
|p (V ′) | < |p (V ′′′) |.

If |p (V ′) | ≥ |p (V ′′′) |, we start from u and pick nodes one by one from Q1 in order until we get a
subset V ′1 � ∅ of V ′ such that p (V ′1 ) = |p (V ′′′) | (i.e., p (V ′1 ∪V ′′′) = 0). Define V1 = V

′
1 ∪V ′′′. Then

p (V1) = 0, |V1 | ≥ |V ′′′ | + 1 ≥ �|V |/3� and |V1 | ≤ 2�|V |/3� (note that |V1 | is even since p (V1) = 0 and
|V1 | ≤ |V ′ ∪V ′′′ | = �|V |/3� + �|V |/3�). Hence, (V1,V \V1) is a good partition (Figure 4(d)).

If |p (V ′) | < |p (V ′′′) |, the argument is similar. We can build a new set V1 by adding nodes one
by one from V ′′′ to V ′ until p (V1) = 0; then |V1 | ≤ �2|V |/3�. Hence, (V1,V \V1) is a good partition
(Figure 4(e)). �

Corollary 4.12. If G is a 2-connected series-parallel graph and ∀i : p (i ) = ±1, then the DBCP

problem has a solution for cp = 1, cs = 2, and the solution can be found in O ( |E |) time.

Proof. Every series-parallel graph G has a separation pair {u,v} such that every connected
component of G[V \{u,v}] has less than �2|V |/3� nodes, and furthermore, such a separation pair
can be found in linear time. To see this, consider the derivation tree T of the construction of G.
The root of T corresponds to G, the leaves correspond to the edges, and every internal node i
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Fig. 4. Proof of Lemma 4.11.

corresponds to a subgraphGi = (Vi ,Ei ) that is the series or parallel composition of the subgraphs
corresponding to its children. Starting at the root of T , walk down the tree following always the
edge to the child corresponding to a subgraph with the maximum number of nodes until the num-
ber of nodes becomes ≤ �2|V |/3�. Thus, we arrive at a node i of the tree such that |Vi | > �2|V |/3�
and |Vj | ≤ �2|V |/3� for all children j of i . Let ui ,vi be the terminals ofGi . Note that ui ,vi separate
all nodes of Gi from all nodes that are not in Gi . Since |Vi | > �2|V |/3�, we have |V \Vi | < |V |/3. If
Gi is the parallel composition of the graphs corresponding to the children of i , then the separa-
tion pair {ui ,vi } has the desired property—that is, all components of G[V \{u,v}] have less than
�2|V |/3� nodes.

Suppose thatGi is the series composition of the graphsG j ,Gk corresponding to the children j,k
of i , and letw be the common terminal ofG j ,Gk ; thus,Gi has terminalsui ,w , andGk has terminals
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Fig. 5. Lemma 4.15.

w,vi . Assume without loss of generality that |Vj | ≥ |Vk |. Then �|V |/3� < |Vj | ≤ �2|V |/3�. The pair
{ui ,w } of terminals of G j separates all nodes of Vj\{ui ,w } from all nodes of V \Vj , and both these
sets have less than �2|V |/3� nodes. Thus, {ui ,w } has the required property. �

The graph in Figure 1 with s = 1 shows that these parameters are the best possible for series
parallel graphs: if cp = O (1), then cs must be at least 2.

To generalize Lemma 4.11 to all 2-connected graphs, we need to define the contractible subgraph
and the contraction of a given graph as follows.

Definition 4.13. We say that an induced subgraph H of a 2-connected graph G is contractible

if there is a separating pair {u,v} ⊂ V such that H = (VH ,EH ) is a connected component of
G[V \{u,v}]. Moreover, if we replace H by a weighted edge e ′ with weight w(e ′) = |VH | between
the nodes u and v in G to obtain a smaller graph G ′, we say that G is contracted to G ′.

Remark 4.14. Notice that every contractible subgraph of a 2-connected graph G can also be
represented by a pseudo-path between its associated separating pair. We use this property in the
proof of Theorem 4.18.

Using the notion of the graph contraction, in the following lemma we show that to partition a
2-connected graph, we can reduce it to one of two cases: either G can be considered as a graph
with a set of short pseudo-paths between two nodes or it can be contracted into a 3-connected
graph as illustrated in Figure 5.

Lemma 4.15. In every 2-connected graph G = (V ,E), one of the following cases holds, and we can

determine which in O ( |E |) time:

(1) There is a separation pair {u,v} ⊂ V such that if H1, . . . ,Hk are the connected components

of G[V \{u,v}], for all i , |VHi
| < �2|V |/3�.

ACM Transactions on Algorithms, Vol. 16, No. 2, Article 20. Publication date: March 2020.



Doubly Balanced Connected Graph Partitioning 20:19

(2) After a set of contractions, G can be transformed into a 3-connected graph G∗ = (V ∗,E∗)
with weighted edges representing contracted subgraphs such that for every e∗ ∈ E∗, w(e∗) ≤
�|V |/3� − 2.

Proof. If there is no separation pairs in G, then G is 3-connected and there is nothing left to
prove. So assume that {u,v} ⊂ V is a separation pair andH1, . . . ,Hk are the connected components
ofG[V \{u,v}]. If ∀i, |VHi

| < �2|V |/3�, we are done. So let us assume that there is a connected com-
ponentHj such that |VHj

| ≥ �2|V |/3�. Then all of the other componentsHi , i � j, can be contracted
and represented by an edge of weight at most �|V |/3� − 2 betweenu andv . Now, we repeat the pro-
cess by considering the weight of the edges in the size of each connected component (a weighted
edge can be contracted again as part of a new connected component and its weight will be added
to the total number of nodes in that connected component). An example for each case is shown
in Figure 5 for q = 3. We can find either a suitable separation pair as in case 1 or a suitable con-
tracted graph G∗ as in case 2 in linear time using the Hopcroft-Tarjan algorithm for finding the
3-connected components [10]. �

Definition 4.16. In a graph G∗ with weighted edges representing contracted subgraphs, define
the weight for a subset of nodes U ∗ ⊂ V ∗ as w(U ∗) = w(G∗[U ∗]) := |U ∗ | +∑e ∈G∗[U ∗] w(e ).

The following lemma strengthens and extends Lemma 4.6 to weighted graphs.

Lemma 4.17. IfG∗ = (V ∗,E∗) is a 3-connected graph obtained after a set of contractions onG such

that for every e∗ ∈ E∗, w(e∗) ≤ �|V |/3� − 2, then there exists a set {u,v,w } ∈ V ∗ and a partition of

V ∗ into (V ∗1 ,V
∗

2 ) such that

(1) V ∗1 ∩V ∗2 = ∅ and V ∗1 ∪V ∗2 = V ∗,
(2) G∗[V ∗1 ] and G∗[V ∗2 ] are connected,

(3) {u,w }, {v,w } ∈ E∗,
(4) w ∈ V ∗1 , u,v ∈ V ∗2 , and u,v are not cutpoints of G∗[V ∗2 ],
(5) w(V ∗2 ) ≤ �|V |/3� + 1.

Moreover, such a partition and {u,v,w } can be found in O ( |E |) time.

Proof. If G∗ has a triangle {u,v,w }, then since G∗ is 3-connected, V ∗2 = {u,v} and V ∗1 = V
∗\V ∗2

is a good partition. So assume that G∗ is a triangle-free graph, and therefore |V ∗ | > 3.
Assume that there exists a (triangle-free) counterexample graphG∗ that does not have a partition

with the desired properties. We will derive a contradiction. Following Theorem 2.2, we can find a
nonseparating ear decomposition G∗ = P∗0 ∪ P∗1 · · · ∪ P∗k . A property of their construction that we
will use is that if |P∗i | > 3, then each internal node of P∗i has degree 2 inG∗i (as defined in Section 2).
We will show a series of properties for the graph G∗ and its nonseparating ear decomposition,
leading eventually to a contradiction. �

Claim 1. For any 0 ≤ i < k , if G∗i has two adjacent degree-2 nodes, then w(G∗i ) ≤ �2|V |/3�. In

particular, w(P∗0 ) ≤ �2|V |/3�, and if |P∗i | > 3, then w(G∗i ) ≤ �2|V |/3�.

Proof. Suppose that w(G∗i ) ≥ �2|V |/3� + 1 and that G∗i has two adjacent degree-2 nodes w,v .

SinceG∗ is 3-connected,w andv are adjacent respectively to some nodesu, z ofG∗i . Note thatu � z

because G∗ does not have a triangle. If u is not a cutpoint of G∗i , setV ∗1 = G
∗
i \{v} andV ∗2 = V

∗\V ∗1 .
From the properties of the nonseparating ear decomposition, it is easy to see that (V ∗1 ,V

∗
2 ) is a good

partition: G[V ∗1 ] is connected since G∗i is biconnected, G[V ∗2 ] is connected since G∗i is connected,
u,v are not cutpoints of G[V ∗2 ], and |V ∗2 | ≤ |V | − �2|V |/3� = �|V |/3�. Otherwise, if u is a cutpoint

of G∗i , let H ∗ be the connected component of G∗i \{u} that contains node z. Set V ∗2 = H ∗ ∪ {u,v}
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and V ∗1 = V
∗\V ∗2 . It is easy to see again that this is a good partition. Notice that since G∗\{u,v} is

connected, therefore G∗[V ∗1 ] is also connected.
The nodes of P∗0 have degree 2 in G∗0, and hence the claim holds for P∗0 , and more generally for

any i such that |P∗i | > 3, since the internal nodes of P∗i have degree 2 in G∗i . �

We consider now the first ear P∗1 and the corresponding graph G∗1.

Claim 2. G∗1 consists of three parallel disjoint paths of length at least 3 between two nodes, and

w(G∗1 ) ≤ �2|V |/3�.
Proof. Suppose first that |P∗1 | = 3, and let P∗1 = u,w,v . At least one of the two u −v paths of

the cycle P∗0 has weight at most w(P∗0 )/2 + 1. Let V ∗2 be this path and V ∗1 = V
∗\V ∗2 . Since w(P∗0 ) ≤

�2|V |/3�, it follows that w(V ∗2 ) ≤ �|V |/3� + 1. Clearly, G[V ∗1 ] and G[V ∗2 ] are connected, and all of
the desired properties are satisfied, so this is a good partition.

Therefore, |P∗1 | > 3. All of the internal nodes of P∗1 have degree 2. By Claim 1, w(G∗1 ) ≤ �2|V |/3�,
and G∗1 consists of three disjoint paths between two nodes x ,y, the endpoints of the ear P∗1 . If one
of the paths is an edge (x ,y), then let Q be the lighter of the other two paths. Set w = x , u = y, let
v be the node of Q adjacent to x ,V ∗2 = Q \ {x }, andV ∗1 = V

∗\V ∗2 ; it is easy to see that this is a good
partition. If one of the paths has length 2, then let Q again be the lighter of the other two paths.
Setting u = x , v = y, w the internal node of Q , V ∗2 = Q , V ∗1 = V

∗\V ∗2 gives a good partition. Note
that w(Q ) ≤ (w(G∗1 ) + 1)/2 ≤ (�2|V |/3� + 1)/2, and hence w(Q ) ≤ �|V |/3�.

We conclude that G∗1 satisfies the claim. �

Thus, G∗1 consists of three paths of length at least 3 between two nodes x ,y, and w(G∗1 ) ≤
�2|V |/3�. We consider now the next ear P∗2 .

Claim 3. |P∗2 | > 3 and w(G∗2 ) ≤ �2|V |/3�.
Proof. Suppose that |P∗2 | = 3, and let P∗2 = u,w,v . Let R1,R2 be two disjoint paths in G∗1 con-

necting u and v , and assume without loss of generality that w(R2) ≤ w(R1). Set V ∗2 = R2 and

V ∗1 = V
∗\V ∗2 . Note that every degree-2 node of G∗1 − R2 has an edge to G∗1, and if x or y is not

in R2, then it is adjacent to at least one degree-2 node of G∗1 − R2. Hence, G[V ∗2 ] is connected. In
addition, w(R2) ≤ w(G∗1 )/2 ≤ |V |/3.

We conclude that |P∗2 | > 3, and hence by Claim 1, w(G∗2 ) ≤ �2|V |/3�. �

By Claim 2,G∗1 consists of three paths of length at least 3 between two nodes x ,y. Since |P∗2 | > 3
(by Claim 3), all internal nodes of P∗2 have degree 2 in G∗2. The endpoints of the path P∗2 are either
internal nodes of different paths of G∗1 (in which case G∗2 is homeomorphic to K4, the complete
graph on four nodes) or they both lie on one of the three paths of G∗1 (either or both endpoints
may coincide with the degree-3 nodes x ,y of G∗1). The graph G∗2 is a planar graph in either case.
Consider a planar embedding of G∗2. It has four faces. The sum of the weights of the four faces is
2w(G∗2 ) + 4 (every edge is counted twice, and every node is counted as many times as its degree).
Therefore, at least one of the faces has weight at most w(G∗2 )/2 + 1 ≤ ( |V |/3) + 1. Let C be the
bounding cycle of such a face. If the cycle C has a chord (the chord of course must be embedded
outside the face), then let (w,u) be a chord such that one of the paths of C connecting w to u is
chordless, let R be this path, and let v be its node adjacent tow . SetV ∗2 = R \ {w } andV ∗1 = V

∗\V ∗2 .
Then w(V ∗2 ) ≤ �|V |/3�, and it also is easy to check that G[V ∗1 ] is connected. IfC is chordless, then
let u,w,v be three consecutive nodes of C . Set V ∗2 = C\{w } and V ∗1 = V

∗\V ∗2 . Again, it is easy to
check that the partition satisfies the required properties of the lemma.

This concludes the proof of the lemma. �

Using Lemma 4.15, then Lemma 4.11, and the idea of the proof for Theorem 4.8, we can prove
that when G is 2-connected and all p (i ) = ±1, the DBCP problem has a solution for cp = 1 and
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cs = 2. We find a suitable convex embedding of the 3-connected graph G∗ using Lemma 4.17 and
Lemma 4.7, and then embed the nodes of the contracted pseudo-paths appropriately along the
segments corresponding to the weighted edges. Some care is needed to carry out the argument
as in the proof for Theorem 4.8, because as the line tangent to the circle rotates, the order of the
projections of many nodes may change at once, namely the nodes on an edge perpendicular to the
rotating line.

Theorem 4.18. IfG is 2-connected, ∀i,p (i ) = ±1, then the DBCP problem has a solution for cp = 1
and cs = 2. Moreover, this solution can be found in randomized polynomial time.

Proof. Using Lemma 4.15, we consider two cases:

(i) There is a separation pair {u,v} ∈ V such that if H1, . . . ,Hk are the connected components
of G\{u,v}, for all i , |VHi

| < �2|V |/3�. In this case, Lemma 4.11 proves the theorem.
(ii) After a set of contractions, G can be transformed into a 3-connected graph G∗ = (V ∗,E∗)

with weighted edges such that for any edge e∗ ∈ E∗, w(e∗) ≤ �|V |/3� − 2. In this case, the
proof is similar to the proof of Theorem 4.8. Notice that if G∗ contains a triangle, then the
proof is much simpler as in the proof of Lemma 4.5, but here to avoid repetition, we use
the approach in the proof of Theorem 4.8 and prove the theorem once for all cases of G∗.

Using Lemma 4.17, we can find {u,v,w } ∈ V ∗ and a partition (V ∗1 ,V
∗

2 ) of V ∗ with prop-
erties described in the lemma. Set X = {u,v,w }. Using Lemma 4.7, G∗ has a convex X -
embedding in general position, f ∗ : V ∗ → R2, as described in the lemma and depicted in
Figure 3. Now, from this embedding, we get a convex X -embedding f : V → R2 for G as
follows. For any i ∈ V ∩V ∗, f (i ) = f ∗ (i ). For any edge {i, j} ∈ E∗ such that {i, j} represents
an induced subgraph ofG, we represent it by a pseudo-path P ofG between i and j, and place
the nodes of P in order on random places on the line segment that connects f (i ) to f (j ). If
the edge {i, j} ∈ E∗ is between a node in V ∗1 and a node in V ∗2 and represents a pseudo-path
P in G, we place the nodes in P in order on random places on the segment that connects
f (i ) to f (j ) but above the line L1. Hence, by this process, we get a convexX -embedding for
G that is in general position (almost surely) except for the nodes that are part of a pseudo-
path. From Lemma 4.7, the embedding has the following property. Consider any line on the
plane, and the subset of nodes whose points lie on the same side of the line. If the subset
has size at least �|V |/3� + 1, then it induces a connected subgraph of G.

The rest of the proof is similar to the proof of Theorem 4.8. We consider again a circle C
around f (u), f (v ), f (w ) in R2 as shown in Figure 3. Also consider a directed line L tangent
to the circleC at pointA and project the nodes ofG onto the line L (we consider a line such
that the projections are distinct). We label nodes based on their projection order on the line

L from left to right from 1(L) to |V | (L) . For each t = 1, . . . , |V |, letV (L) (t ) = {1(L), . . . , t (L) }
denote the set of the first t nodes in this ordering. Since the embedding f has the prop-
erties described in Lemma 4.17 and Lemma 4.7, for all �|V |/3� + 1 ≤ t ≤ �2|V |/3� − 1, if
we set V1 = V

(L) (t ) and V2 = V \V1, then G[V1] and G[V2] are both connected. Define V ′1 =

V (L) (�|V |/3�) andV ′2 = V \V (L) (�2|V |/3�)—that is,V ′1 contains the first �|V |/3� nodes and
V ′2 the last �|V |/3� nodes in the ordering. If p (V ′1 )p (V ′2 ) ≥ 0, then there must exist an index j

with �|V |/3� ≤ j ≤ �2|V |/3� such that p (V (L) (j )) =
∑j

i=1 p (i (L) ) = 0. Consequently, there is

an index t such that �|V |/3� + 1 ≤ t ≤ �2|V |/3� − 1 and |p (V (L) (t )) | ≤ 1: If j = �|V |/3�, then

let t = j + 1; if j = �2|V |/3�, then t = j − 1; and otherwise, let t = j. Hence, V1 = V
(L) (t ) =

{1(L), . . . , t (L) } andV2 = V \V1 is a good partition. Therefore, if p (V ′1 )p (V ′2 ) ≥ 0, then we can
obtain a good partition. We will show that there is a line such that p (V ′1 )p (V ′2 ) ≥ 0.
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Assume without loss of generality that in the initial position of the line, p (V ′1 ) > 0 and
p (V ′2 ) < 0. As we move L from being tangent at point A to point B, where AB is a diameter
of the circle C, and consider the resulting partition at point B, since V ′1 and V ′2 completely
switch places compared to the partition at pointA, at point B we havep (V ′1 ) < 0 andp (V ′2 ) >
0. Hence, as we move L from being tangent at point A to point B and keep it tangent to
the circle, in the resulting partitions, p (V ′1 ) goes at some point from some positive value to
a nonpositive value. Notice that the ordering of the projections on the line changes only if
L passes a point D on the circle such that at D, L is perpendicular to a line that connects
f (i ) to f (j ) for i, j ∈ V ∗; then the order of i and j is switched, and if (i, j ) is an edge of G∗,
then also the ordering of the nodes in the corresponding pseudopath is reversed. Note that
all of these affected nodes are consecutive in the ordering. If p (V ′1 ) changes, then V ′1 must
contain at least one of the affected nodes, and similarly for p (V ′2 ).

So assume thatp (V ′1 ) > 0 in a projection on a lineLb slightly before a perpendicular point
and p (V ′1 ) ≤ 0 in a resulting projection on a line La slightly after a perpendicular point.

Define V ′
1b

:= {1(Lb ), . . . , �|V |/3� (Lb ) }, V ′
2b

:= {( |V | − �|V |/3� + 1) (Lb ), . . . , |V | (Lb ) }, V ′1a :=

{1(La ), . . . , �|V |/3� (La ) }, and V ′2a := {( |V | − �|V |/3� + 1) (La ), . . . , |V | (La ) }. So p (V ′
1b

) > 0
and p (V ′1a ) ≤ 0.

If p (V ′
1b

)p (V ′
2b

) ≥ 0, as we argued previously, we can find a good partition (V1,V2) such
that V ′

1b
⊆ V1 and V ′

2b
⊆ V2, and we are done. So assume that p (V ′

1b
) > 0 and p (V ′

2b
) < 0.

Since for any e∗ ∈ E∗, w(e∗) ≤ �|V |/3� − 2, the ordering of the nodes based on the projec-
tions on lines Lb and La is different for at most �|V |/3� consecutive nodes (the ordering
of at most �|V |/3� consecutive nodes reverses as we move from Lb to La ). SinceV ′

1b
� V ′1a

(recall that p (V ′
1b

) > 0 and p (V ′1a ) ≤ 0), the set of reversed nodes includes one of the first
�|V |/3� nodes in the ordering, and hence it cannot extend to include also one of the last
�|V |/3� nodes; therefore, p (V ′2a ) = p (V ′

2b
) < 0. Thus, p (V ′1a )p (V ′2a ) ≥ 0, and hence, as we ar-

gued before, there is a good partition (V1,V2) such that V ′1a ⊆ V1 and V ′2a ⊆ V2.
Regarding the computation of a good partition, after we compute the contracted graph

G∗ and its convex embedding, the rest of the computation can be easily carried out in
O ( |V |2 log |V |) time. �

Similar to Corollary 4.9, the approach used in the proof of Theorem 4.18 can also be used for the
case when the weights are arbitrary (not necessarily ±1) and p (V ) � 0. It is easy to verify using
similar arguments that in this case, ifG is 2-connected, the DBCP problem has a connected partition
(V1,V2) such that |p (V1) − p (V )/2|, |p (V2) − p (V )/2| ≤ maxj ∈V |p (j ) | and |V1 |, |V2 | ≥ �|V |/3�.

Corollary 4.19. If G is 2-connected, then the DBCP problem (with general p and not necessarily

satisfying p (V ) = 0) has a solution for cp = maxj ∈V |p (j ) | and cs = 2. Moreover, this solution can be

found in randomized polynomial time.

5 GRAPHS WITH TWO TYPES OF NODES

Assume thatG is a connected graph with nodes colored either red (R ⊆ V ) or blue (B ⊆ V ). Let |V | =
n, |R | = nr , and |B | = nb . IfG is 3-connected, setp (i ) = 1 if i ∈ R andp (i ) = −1 if i ∈ B. Corollary 4.9
implies then that there is always a connected partition (V1,V2) ofV that splits both the blue and the
red nodes evenly (assuming that nr and nb are both even)—that is, such that |V1 | = |V2 |, |R ∩V1 | =
|R ∩V2 |, and |B ∩V1 | = |B ∩V2 |. (If nr and/or nb are not even, then one side will contain one more
red or blue node.)

Corollary 5.1. Given a 3-connected graph G with nodes colored either red (R ⊆ V ) or blue (B ⊆
V ). There is always a partition (V1,V2) of V such that G[V1] and G[V2] are connected, |V1 | = |V2 |,
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|R ∩V1 | = |R ∩V2 |, and |B ∩V1 | = |B ∩V2 | (assuming that |R | and |B | are both even). Such a partition

can be computed in randomized polynomial time.

Proof. Suppose without loss of generality that nr ≥ nb , and let nr − nb = 2t and nr + nb = n =
2m. Set p (i ) = 1 for i ∈ R and p (i ) = −1 for i ∈ B. Then p (V ) = 2t . From the equations, we have
nr =m + t and nb =m − t .

From Corollary 4.9 we can find a partition (V1,V2) such that |V1 | = |V2 | and |p (V1) −
p (V )/2|, |p (V1) − p (V )/2| ≤ 1. Let r1 = |R ∩V1 | and b1 = |B ∩V1 |. We have r1 + b1 = n/2 =m and
t − 1 ≤ r1 − b1 ≤ t + 1. Therefore, (m + t )/2 − (1/2) ≤ r1 ≤ (m + t )/2 + (1/2). Since r1 is an inte-
ger and nr =m + t is even, it follows that r1 = (m + t )/2 = nr /2. Hence, b1 = (m − t )/2 = nb/2.
Therefore, V2 also contains nr /2 red nodes and nb/2 blue nodes. �

If G is only 2-connected, we may not always get a perfect partition. Assume without loss
of generality that nr ≤ nb . If for every v ∈ R and u ∈ B we set p (v ) = 1 and p (u) = −nr /nb ,
Corollary 4.19 implies that there is always a connected partition (V1,V2) of V such that both

|( |R ∩V1 | − nr /nb |B ∩V1 |) | ≤ 1 and |( |R ∩V2 | − nr /nb |B ∩V2 |) | ≤ 1, and also max{ |V1 |
|V2 | ,

|V2 |
|V1 | } ≤ 2.

Thus, the ratio of red to blue nodes in each sideVi differs from the ratio nr /nb in the whole graph
byO (1/n). Hence, if the numbers of red and blue nodes are ω (1), then the two types are presented
in both sides of the partition in approximately the same proportion as in the whole graph.

Corollary 5.2. Given a 2-connected graph G with nodes colored either red (R ⊆ V ) or blue

(B ⊆ V ), and assume without loss of generality that |R | ≤ |B |. We can always find in randomized poly-

nomial time a partition (V1,V2) of V such that G[V1] and G[V2] are connected, |V1 |, |V2 | ≥ �|V |/3�,
and the ratio of red to blue nodes in each side Vi differs from the ratio |R |/|B | in the whole graph by

O (1/n).

A similar result as Corollary 5.1 has been provided by Nagamochi et al. [15]. However, Corol-
lary 5.2 extends that result to 2-connected graphs.

6 CONCLUSION

In this article, we introduced and studied the problem of partitioning a graph into two connected
subgraphs that simultaneously satisfy two objectives: (1) They balance the supply and demand
within each side of the partition (or more generally, for the case of p (V ) � 0, they split approxi-
mately equally the excess supply/demand between the two sides), and (2) the two sides are large
and have roughly comparable size (they are both Ω( |V |)). We showed that for 2-connected graphs,
it is always possible to achieve both objectives at the same time, and for 3-connected graphs, there
is a partition that is essentially perfectly balanced in both objectives. Furthermore, these partitions
can be computed in polynomial time. This is a paradigmatic bi-objective balancing problem. We
observed how it can be easily used to find a connected partition of a graph with two types of nodes
that is balanced with respect to the sizes of both types. Overall, we believe that the novel techniques
used in this article can be applied to partitioning heterogeneous networks in various contexts.

There are several interesting further directions as well. First, extend the theory and algorithms
to find doubly balanced connected partitions to more than two parts. Second, even considering
only the supply/demand objective, does the analogue of the results of Gyori [9] and Lováz [14] for
the connected k-way partitioning of k-connected graphs with respect to size (which corresponds
to p (i ) = 1) extend to the supply/demand case (p (i ) = ±1) for k > 3? And is there a polynomial
algorithm that constructs such a partition? Finally, extend the results of Section 5 to graphs with
more than two types of nodes—that is, can we partition (under suitable conditions) a graph with
several types of nodes to two (or more) large connected subgraphs that preserve approximately the
diversity (the proportions of the types) of the whole population? (Bisecting 4-connected graphs
with three types of nodes has already been studied by Ishii et al. [11].)
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