
Subexponential Algorithms for Rectilinear Steiner
Tree and Arborescence Problems∗

Fedor Fomin1, Sudeshna Kolay2, Daniel Lokshtanov3,
Fahad Panolan4, and Saket Saurabh5

1 University of Bergen, Norway
fedor.fomin@ii.uib.no

2 Institute of Mathematical Sciences, India
skolay@imsc.res.in

3 University of Bergen, Norway
daniello@ii.uib.no

4 University of Bergen, Norway
fahad.panolan@ii.uib.no

5 University of Bergen, Norway; and
Institute of Mathematical Sciences, India
saket@imsc.res.in

Abstract
A rectilinear Steiner tree for a set T of points in the plane is a tree which connects T using
horizontal and vertical lines. In the Rectilinear Steiner Tree problem, input is a set T of
n points in the Euclidean plane (R2) and the goal is to find an rectilinear Steiner tree for T of
smallest possible total length. A rectilinear Steiner arborecence for a set T of points and root
r ∈ T is a rectilinear Steiner tree S for T such that the path in S from r to any point t ∈ T is
a shortest path. In the Rectilinear Steiner Arborescense problem the input is a set T of
n points in R2, and a root r ∈ T , the task is to find an rectilinear Steiner arborescence for T ,
rooted at r of smallest possible total length. In this paper, we give the first subexponential time
algorithms for both problems. Our algorithms are deterministic and run in 2O(

√
n log n) time.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity.

Keywords and phrases Rectilinear graphs, Steiner arborescence, parameterized algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2016.39

1 Introduction

In the Steiner Tree problem we are given as input a connected graph G, a non-negative
weight function w : E(G)→ {1, 2, . . . , W}, and a set of terminal vertices T ⊆ V (G). The
task is to find a minimum-weight connected subgraph of G, which is a tree, containing
all terminal nodes T . Steiner Tree is one of the central and best-studied problems in
Computer Science, we refer to the books of Hwang, Richards, and Winter [13] and Prömel
and Steger [19] for thorough introductions to the problem.

In this paper we give the first subexponential algorithm for an important geometric variant
of Steiner Tree, namely Rectilinear Steiner Tree. Here, for a given set of terminal
points T in the Euclidean plane with `1-norm, the goal is to construct a network of minimum

∗ This work was partially supported by the European Research Council (ERC) via grants Rigorous Theory
of Preprocessing, reference 267959 and PARAPPROX, reference 306992.

© Fedor Fomin, Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh;
licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).
Editors: Sándor Fekete and Anna Lubiw; Article No. 39; pp. 39:1–39:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems

length connecting all points in T . This variant of the problem is extremely well studied,
see Chapter 3 of the recent book of Brazil and Zachariasen [2] for an extensive overview of
various applications of Rectilinear Steiner Tree.

For the purposes of this paper, it is convenient to define Rectilinear Steiner Tree
as the Steiner Tree problem on a special class of graphs called Hanan grids. Recall that
for two points p1 = (x1, y1) and p2 = (x2, y2) in the Euclidean plane R2, the rectilinear (`1,
Manhattan or taxicab) distance between p1 and p2 is d1(p1, p2) = |x1 − x2|+ |y1 − y2|.

I Definition 1 (Hanan grid [11]). Given a set T of n terminal points in the Euclidean plane
R2, the Hanan grid G of T is defined as follows. The vertex set V (G) of G is the set of
intersection points obtained by drawing a horizontal line (line parallel to x-axis) and a
vertical line (line parallel to y-axis) through each point of T . For every u, v ∈ V (G), there
is an edge between u and v in G, if and only if u and v are adjacent along a horizontal or
vertical line; the weight of edge uv is the rectilinear distance between u and v. For a Hanan
grid G we define a weight function recdistG from the edge set E(G) to R such that for an
edge uv ∈ E(G), recdistG(uv) = d1(u, v). If the graph G is clear from the context we drop
the subscript from recdistG and only use recdist.

Let us note that when G is the Hanan grid of a set T of n points, then T ⊆ V (G),
|V (G)| ≤ n2, and for every u, v ∈ V (G), the weight of a shortest path between u and v is
equal to d1(u, v). For an edge uv ∈ E(G), we say that uv is a horizontal (vertical) edge if
both points u and v are on the same horizontal (vertical) line.

It was shown by Hanan [11] that the Rectilinear Steiner Tree problem can be
defined as the following variant of Steiner Tree.

Rectilinear Steiner Tree
Input: A set T of n terminal points, the Hanan grid G of T and recdistG.
Output: A minimum Steiner tree for T in G.

Previous work on Rectilinear Steiner Tree. Though the Rectilinear Steiner Tree
problem is a very special case of the Steiner Tree problem, the decision version of
the problem is known to be NP-complete [9]. A detailed account of various algorithmic
approaches applied to this problem can be found in books of Brazil and Zachariasen [2]
and Hwang, Richards, and Winter [13]. In particular, several exact algorithms for this
problem can be found in the literature. The classic algorithm of Dreyfus and Wagner [5]
from 1971 solves Steiner Tree on general graphs in time 3n · log W · |V (G)|O(1), where
W is the maximum edge weight in G. For Rectilinear Steiner Tree, an adaptation of
Dreyfus-Wagner algorithm provides an algorithm of running time O(n2 · 3n). The survey of
Ganley [7] summarizes the chain of improvements based on this approach concluding with
the O(n2 · 2.62n)-time algorithm of Ganley and Cohoon [8].

Thobmorson et al. [21] and Deneen et al. in [4] gave randomized algorithms with running
time 2O(

√
n log n) for the special case of Rectilinear Steiner Tree when the terminal

points T are drawn from a uniform distribution on a rectangle.
It is also worth mentioning relevant parameterized algorithms for Steiner Tree on gen-

eral graphs. Fuchs et al. [6] provide an algorithm with run time O((2+ε)n|V (G)|f(1/ε) log W).
Björklund et al. [1] and Nederlof [16] gave 2n|V (G)|O(1) ·W time algorithms for Steiner
Tree. Let us remark that, since the distances between adjacent vertices in Hanan grid can
be exponential in n, the algorithms of Björklund et al. and of Nederlof do not outperform the
Dreyfus-Wagner algorithm for the Rectilinear Steiner Tree problem. Interesting recent
developments also concern Steiner Tree on planar graphs, and more generally, on graphs

F. Fomin, S. Kolay, D. Lokshtanov, F. Panolan, and S. Saurabh 39:3

of bounded genus. While the existence of algorithms running in time subexponential in the
number of terminals on these graph classes is still open, Pilipczuk et al. [17, 18] showed that
Steiner Tree can be solved in time subexponential in the size of the Steiner tree on graphs
of bounded genus.

In spite of the long history of research on Rectilinear Steiner Tree and Steiner
Tree, whether Rectilinear Steiner Tree can be solved in time subexponential in the
number of terminals remained open. In this paper we give the first such algorithm. The
running time of our algorithm is 2O(

√
n log n). Further, our techniques also yield the first

subexponential algorithm for the related Rectilinear Steiner Arborescence problem.

I Definition 2. Let G be a graph, T ⊆ V (G) a set of terminals, and r ∈ T be a root
vertex. A Steiner arborescence of T in G is a subtree H ⊆ G rooted at r with the following
properties:

H contains all vertices of T , and
For every vertex t ∈ T \ {r}, the unique path in H connecting r and t is also the shortest
r–t path in G.

Let us note that if H is a Steiner arborescence of T in G, then for every vertex v ∈ V (H), the
unique path connecting r and v in H is also a shortest r–v path in G. The Rectilinear
Steiner Arborescence problem is defined as follows.

Rectilinear Steiner Arborescence
Input: A set T of n terminal points, the Hanan grid G of T , a root r ∈ T and recdistG.
Output: A minimum length Steiner arborescence of T .

Rectilinear Steiner Arborescence was introduced by Nastansky, Selkow, and
Stewart [15] in 1974. Interestingly, the complexity of the problem was open until 2005, when
Shu and Su [20] proved that the decision version of Rectilinear Steiner Arborescence
is NP-complete. No subexponential algorithm for this problem was known prior to our work.

Our method. Most of the previous exact algorithms for Rectilinear Steiner Tree
exploit Hwang’s theorem [12], which describes the topology of so-called full rectilinear trees.
Our approach here is entirely different. The main idea behind our algorithms is inspired
by the work of Klein and Marx [14], who obtained a subexponential algorithm for Subset
Traveling Salesman Problem on planar graphs. The approach of Klein and Marx was
based on the following two steps: (1) find a locally optimal solution such that its union with
some optimal solution is of bounded treewidth, and (2) use the first step to guide a dynamic
program. While our algorithm follows this general scheme, the implementations of both steps
for our problems are entirely different from [14].

We give a high level description of the algorithm for Rectilinear Steiner Tree. The
algorithm for Rectilinear Steiner Arborescence is similar. In the first step we build
in polynomial time a (possibly non-optimal) solution. The constructed tree Ŝ can be seen as
a “shortest path” rectilinear Steiner tree. The property of Ŝ which is crucial for the algorithm
is that there is an optimal Steiner tree Sopt such that graph S = Ŝ ∪ Sopt is of treewidth
O(
√

n). For the second step we have Ŝ at hand and know that there exists a subgraph S of
G of treewidth O(

√
n), which contains an optimal Steiner tree Sopt and Ŝ. Note that we only

know that such a subgraph S exists, albeit with the extra information that Ŝ ∪ Sopt ⊆ S. It
turns out that this is sufficient in order to mimic the dynamic programming algorithm for
bounded treewidth, to solve Rectilinear Steiner Tree in time 2O(

√
n log n).

Recall the dynamic programming algorithm for Steiner Tree on a rooted tree decom-
position T = (T,X = {Xt}t∈V (T)) of the input graph, see e.g. [3, Theorem 7.8]. For each

SoCG 2016

39:4 Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems

node t ∈ V (T), let Vt be the union of vertices contained in all bags corresponding to nodes of
the subtree of T rooted at t and let St be the subgraph induced by Vt. Then, in the dynamic
programming algorithm, for each t we store a set of states, capturing the interaction between
a minimal Steiner tree and subgraph St; in particular the weight of a tree and the information
about its connected components in St. It is possible to ensure that all the information carried
out in each state is “locally” defined, i.e., the information can be encoded by the elements of
the bag Xt only. Therefore, at the root node, there is a state that corresponds to an optimal
Steiner tree.

In our algorithm, we define types, which are analogous to the states stored at a node of a
tree decomposition. A type stores all the information of its corresponding state. Since we
do not know the tree decomposition T , a type stores more “local” information, to take care
of the lack of definite information about S. We guess some structural information about
the virtual tree decomposition T of S. For example, we guess the height h of the rooted
tree T. In a rooted tree decomposition, the level of a node t is defined by the height of
the subtree rooted at t. In our algorithm, we generate types over h levels. The intuition
is that, for a node t ∈ T of level h′, for each state, of t, that was required for the dynamic
programming over T , there is an equivalent type generated in level h′ of our algorithm. This
implies that, at level h, there is a type equivalent to a state that corresponds to an optimal
Steiner tree in S. In fact, we show that any Steiner tree corresponds to exactly one type D̂.
During the iterative generation of types, the type D̂ may be generated many times. One such
generation corresponds to an optimal solution. So the final step of the algorithm involves
investigating all the occurrences of type D̂ in the iterative generation, and finding the weight
of a minimum Steiner tree. As in dynamic programming, a backtracking step will enable us
to retrieve a minimum Steiner tree of S and therefore of G. Due to paucity of space, many
proofs have been ommitted from this version.

2 Preliminaries

For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}. For point u in the Euclidean
plane R2, its position is denoted by the coordinates (ux, uy). For a set V , a partition P of V

is a family of subsets of V , such that the subsets are pairwise disjoint and the union of the
subsets is V . Each subset of a partition is called a block. Given two partitions P1 and P2,
the join operation results in the partition P, that is the most refined partition of V such
that each block of P1 and P2 is contained in a single block of P. The resultant partition P
is often denoted as P1 t P2. Given a block B of P, by P \B denotes removing the block B

from P.
Given a graph G, its vertex and edge sets are denoted by V (G) and E(G) respectively.

For a vertex v ∈ V (G), the degree of a vertex, denoted as degreeG(v), is the number of
edges of E(G) incident with v. Given a vertex subset V ′ ⊆ V (G), the induced subgraph
of V ′, denoted by G[V ′], is the subgraph of G, with V ′ as the vertex set and the edge
set defined by the set of edges that have both endpoints in V ′. An edge between two
vertices u, v is denoted as uv. A path, where vertices {u1, u2, . . . , u`} appear in sequence,
is denoted by u1u2 · · ·u`. Similarly, a path, where vertices u and v are the endpoints, is
called a u–v path. Given a path P its non endpoint vertices are referred to as internal
vertices. For an edge uv, an edge contraction in G results in a graph G′ defined as follows.
The vertex set V (G′) = V (G) \ {u, v} ∪ vnew, where vnew is a new vertex. The edge set
E(G′) = E(G[V (G) \ {u, v}]) ∪ {wvnew|wu ∈ E(G) ∨ wv ∈ E(G)}. By G′ ≤s G, we mean
that the graph G′ is a subgraph of G. Given a weight function w : E(G)→ R, for a subgraph

F. Fomin, S. Kolay, D. Lokshtanov, F. Panolan, and S. Saurabh 39:5

H of G, we use w(H) to denote the number
∑

e∈E(H) w(e). Furthermore, for two vertices s

and t in V (G), by the term shortest path between s and t we mean the shortest path with
respect to the weight function w. Given two subgraphs G1, G2 of G, a shortest path between
G1 and G2 is a path P between a vertex u ∈ V (G1) and a vertex v ∈ V (G2) such that, among
the shortest paths for each possible pair {u′ ∈ V (G1), v′ ∈ V (G2)}, P has minimum length.
Given two graphs G1 and G2, the union graph G1 ∪G2 has V (G1 ∪G2) = V (G1) ∪ V (G2),
while the edge set E(G1 ∪G2) = E(G1) ∪ E(G2).

Treewidth. Let G be a graph. A tree-decomposition of a graph G is a pair (T,X =
{Xt}t∈V (T)), where T is a tree whose every node t ∈ V (T) is assigned a subset Xt ⊆ V (G),
called a bag, such that the following conditions hold.⋃

t∈V (T) Xt = V (G),
for every edge xy ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt, and
for any v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt} is connected.

The width of a tree decomposition is maxt∈V (T) |Xt| − 1. The treewidth of G is the
minimum width over all tree decompositions of G and is denoted by tw(G).

A tree decomposition (T,X) is called a nice tree decomposition if T is a tree rooted at
some node r where Xr = ∅, each node of T has at most two children, and each node is of
one of the following kinds:

Introduce node: a node t that has only one child t′ where Xt ⊃ Xt′ and |Xt| = |Xt′ |+1.
Introduce edge node a node t labeled with an edge uv, with only one child t′ such
that {u, v} ⊆ Xt′ = Xt. This bag is said to introduce uv.

Forget vertex node: a node t that has only one child t′ where Xt ⊂ Xt′ and
|Xt| = |Xt′ | − 1.
Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .
Leaf node: a node t that is a leaf of T, and Xt = ∅.

We additionally require that every edge is introduced exactly once. One can show that a
tree decomposition of width t can be transformed into a nice tree decomposition of the same
width t and with O(t|V (G)|) nodes, see e.g. [3].

Planar Graph Embeddings and Minors. A graph is planar if can be embedded in the
plane. That is, it can be drawn on the plane in such a way that its edges intersect only
at their endpoints. Formally, a planar embedding Π of a graph G consists of an injective
mapping Π : V (G)→ R2 and a mapping Π of edges uv ∈ E(G) to simple curves in R2 that
join Π(u) and Π(v). Also, for e, f ∈ E(G), Π(e) ∩ Π(f) contains only the images of common
end vertices and for e ∈ E(G) and v ∈ V (G), Π(v) is not an internal point of Π(e). Now we
define the notion of a minor of a graph G.

I Definition 3. A graph H is a minor of a graph G, denoted as H ≤m G, if it can be
obtained from a subgraph of G by a sequence of edge contractions.

Notice that this implies that H can be obtained from G by a sequence of vertex deletions,
followed by a sequence of edge deletions and finally a sequence of edge contractions. We will
need the following folklore observation.

I Observation 4. Suppose G, H are connected graphs such that H is a minor of G. Then
H can be obtained from G only by edge deletions and contractions.

We also will be using the notion of a minor model.

SoCG 2016

39:6 Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems

Figure 1 The union of solid edges define a subgrid of a grid.

I Definition 5. Let G and H be two connected graphs, and H ≤m G. A minor model or
simply a model of a graph H is a collection of pairwise disjoint vertex subsets P(H) = {Cv ⊆
V (G) | v ∈ V (H)} such that,
(a) V (G) =

⊎
v∈V (H) Cv,

(b) for each v ∈ V (H), G[Cv] is connected, and
(c) for any uv ∈ E(H), there exists w ∈ Cu and w′ ∈ Cv such that ww′ ∈ E(G).

I Remark. It is important to point out that in general the definition of minor model does
not demand that the vertex sets in P(H) = {Cv ⊆ V (G) | v ∈ V (H)} form a partition of
V (G). However, when both G and H are connected one can easily show that even this extra
property can be assumed.

Grids and subgrids play an important role in this article. For a subset W ⊆ [n], by
max W (min W) we denote the maximum (minimum) element of W .

I Definition 6. Let n, m be two positive integers. An n ×m grid is a graph G such that
V (G) = {vi,j

∣∣ i ∈ [n], j ∈ [m]} and E(G) = {vijvi′j′
∣∣ |i − i′| + |j − j′| = 1}. For any

i ∈ [n], we call {vi1, . . . , vim} to be the i-th row of the grid G and for any j ∈ [m], we call
{v1j , . . . , vnj} to be the j-th a column of the grid G. The vertices in the first row, n-th row,
the first column and m-th columns are called the boundary vertices of the grid. The vertices
that are not boundary vertices are called internal vertices.

The graph H is called a subgrid of G, if there exist subsets R ⊆ [n], C ⊆ [m] such that
V (H) = {vij ∈ V (G) : (min R ≤ i ≤ max R) ∧ (min C ≤ j ≤ max C) ∧ (i ∈ R ∨ j ∈ C)}
and E(H) = {vijvi′j′ ∈ E(G) : vij , vi′j′ ∈ V (H) ∧ (i = i′ ∈ R ∨ j = j′ ∈ C)}. The set of
vertices {vij ∈ V (H) : i /∈ {min R, max R} ∨ j /∈ {min C, max C}} are called the internal
vertices of H. The set of vertices {vij ∈ V (H) : i ∈ R ∧ j ∈ C} are called cross vertices.
Finally, the set of vertices {vij ∈ V (H) : i /∈ R ∨ j /∈ C} are called subdivision vertices of
H. (See Figure 1).

Given a planar graph G with an embedding Π, we call the vertices of the outer face as
boundary vertices and all other vertices as internal vertices.

I Definition 7. Let G be a planar graph with a planar embedding Π, and C be a simple
cycle of G. Let p∞ be a point in the outer face of G in the embedding Π. Then removal of C

from R2 divides the plane into two regions. The region that does not contain the point p∞
is called the internal region of C, and the region containing p∞ is called the outer/external
region of C. A vertex in V (G) is called internal if it lies in the internal region of C, and
external if it lies in the external region of C. An edge in E(G) is called an external edge if
there is at least one point on its curve that lies in the external region. It is called an internal
edge if there is at least one point on its curve that lies in the internal region.

F. Fomin, S. Kolay, D. Lokshtanov, F. Panolan, and S. Saurabh 39:7

By definition of a planar embedding, an edge of V (G) can be exactly one of the three
kinds: an edge of C, and external edge or an internal edge. Similarly a vertex can be exactly
one of the three kinds: a vertex of C, an external vertex or an internal vertex.

I Observation 8. Let G be a planar graph with a planar embedding Π in R2. Let p∞ be
a point in the outer face of Π. Let H be a minor of G, and P(H) = {Cv|v ∈ V (H)} be a
minor model of H. Then H is a planar graph. Furthermore, a planar embedding Π′ of H

can be obtained from Π that satisfies the following properties:
Every vertex v ∈ H is positioned in the place of a vertex in Cv.
The point p∞ is on the outer face of Π′.

We call such a planar embedding Π′ as the embedding derived from Π.

On the proof of the first step of the algorithm, we will use the following auxiliary lemma.

I Lemma 9. Let G and H be two connected planar graphs such that H ≤m G and let
P(H) = {Cv|v ∈ V (H)} be a minor model of H in G. Let also Π′ be an embedding of H

derived from a planar embedding Π of G. Suppose that H contains an induced subgraph H ′

isomorphic to a 3× 3 grid. Let C ′ be the cycle formed by boundary vertices of H ′ and let v

be the vertex of H ′ in the internal region of C ′. Then there is a simple cycle C in G, such
that:
1. V (C) ⊆

⋃
u∈V (H′);u6=v Cu.

2. For each vertex w ∈ G that is contained in the internal region of C in Π, there is a vertex
u ∈ H ′ with w ∈ Cu.

3. All vertices of Cv are completely contained in the internal region of C in Π.
4. There is a vertex w ∈ Cv such that degreeG(w) ≥ 3.

Our proof will also need the following Planar grid-minor theorem.

I Proposition 10 ([10]). Let t be a nonnegative integer. Then every planar graph G of
treewidth at least 9t/2 contains a t× t grid as a minor.

Properties of shortest paths in the Hanan grid. Let G be the Hanan grid of a set of n

points P . For a subgraph H of G and v ∈ V (H), we say that v is a bend vertex if there
exists at least one horizontal edge and at least one vertical edge from E(H) incident with
the vertex v. A path R = u1 · · ·u`, between u1 and u` in G, is called a monotone path if
there exists i ∈ [`] such that the points u1, . . . , ui belong to a horizontal line and ui, . . . , u`

belong to a vertical line or vice-versa. In other words, all the horizontal edges as well as all
the vertical edges in R are contiguous.

The following observation contains some simple facts about monotone paths.

I Observation 11. Let u and v be two vertices of a Hanan grid G. Then,
(a) There is at least one and at most 2 monotone u–v paths,
(b) If the x-coordinates of u and v are equal, then there is only one monotone u–v path and

all the edges in this path are vertical. Similarly, if the y-coordinates of u and v matches,
the unique monotone u–v path consists of horizontal edges only.

(c) If there are two monotone paths between u and v, then one path has a horizontal edge
incident with u and the other path has a vertical edge incident with u.

I Definition 12. Suppose we are given a Hanan grid G of a set of terminals T and two
vertices u, v ∈ V (G). Let x1 = min{ux, vx}, x2 = max{ux, vx}, y1 = min{uy, vy}, and
y2 = max{uy, vy}. Let V ′ = {w ∈ V (G)|wx ∈ [x1, x2], wy ∈ [y1, y2]}. Then G′ = G[V ′], the
subgraph of G induced by V ′, is called a grid defined by the two vertices u, v as its diagonal
points.

SoCG 2016

39:8 Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems

I Observation 13. Given a Hanan grid G, a shortest path between any two vertices u, v has
the property that the sequence of the x-coordinates of the vertices of the path is a monotone
sequence and the sequence of their y coordinates is also a monotone sequence.

I Observation 14. Given a grid G, all shortest paths between two vertices u, v are contained
in the grid G′ ≤s G that is defined by u, v as its diagonal points. In fact, any path, with the
property that the sequence of the x-coordinates of the vertices of the path is a monotone
sequence and the sequence of their y coordinates is also a monotone sequence, and which is
fully contained inside G′, is a shortest path between u and v.

3 Subexponential Algorithm for Rectilinear Steiner Tree

In this section we give a subexponential algorithm for Rectilinear Steiner Tree. Let
T be an input set of terminals (points in R2), |T | = n, and G be the Hanan grid of T .
Furthermore, let recdistG denote the weight function on the edge set E(G). For brevity
we will use recdist for recdistG. Our algorithm is based on a dynamic programming over
vertex subsets of size O(

√
n) of G. To reach the stage where we can apply the dynamic

programming algorithm we do as follows. First, we define a rectilinear Steiner tree, called
shortest path RST, and describe some of its properties. Next, we show that for a shortest
path RST Ŝ, there is an optimal Steiner tree Sopt such that Ŝ ∪ Sopt has bounded treewidth.
Finally, keeping a hypothetical tree decomposition of Ŝ ∪ Sopt in mind, we design a dynamic
programming algorithm to obtain the size of a minimum rectilinear Steiner tree of G.

3.1 Shortest Path RST and its properties
In this part, we define a shortest path RST for a set T = {t1, . . . , tn} of input terminals and
prove some useful properties of such a Steiner tree. We define a shortest path RST as follows.

Let G be the Hanan grid of T . We define a shortest path RST Ŝ through the following
constructive greedy process. Initially, we set S1 to the graph ({t1}, ∅), which is a rectilinear
Steiner tree of {t1}. In the ith step, we compute a rectilinear Steiner tree Si+1 of {t1, . . . ti+1}
from Si as follows. If ti+1 ∈ V (Si), then we set Si+1 = Si. Otherwise, let v be a vertex in
Si such that recdist(v, ti+1) = minu∈V (Si) recdist(u, ti+1). If there is only one monotone t–v

path, then let Q be this path. Otherwise there are two monotone t–v paths such that one
path has a horizontal edge incident with v and the other has a vertical edge incident with
v. If there is a horizontal edge in Si which is incident with v, then we choose Q to be the
monotone t–v path such that the edge in Q incident with v is a horizontal edge. Otherwise
we choose Q to be the monotone t–v path such that the edge in Q incident with v is a vertical
edge. Then we construct Si+1 by adding a monotone path Q to Si. After n− 1 iterations,
we construct a tree Ŝ = Sn of G, which is a Steiner tree of T . This is our shortest path RST.
It easy to see that one can construct a shortest path RST in polynomial time.

I Lemma 15. Given a set T of terminal points and the Hanan grid G of T , a shortest path
RST Ŝ of T can be constructed in polynomial time.

Next we give an upper bound on the number of bend vertices in a shortest path RST.

I Lemma 16. The number of bend vertices in Ŝ is at most n.

3.2 Supergraph of an optimal RST with bounded treewidth
In this section we view the Hanan grid G as a planar graph and use this viewpoint to obtain
the required upper bound on the treewidth of a subgraph of G. In particular, given a shortest

F. Fomin, S. Kolay, D. Lokshtanov, F. Panolan, and S. Saurabh 39:9

path RST Ŝ, we show the existence of an optimal Steiner tree Sopt such that the treewidth
of Ŝ ∪ Sopt is sublinear in the number of terminal points T . First, we show that there is an
optimal Steiner tree in G that has a bounded number of bends.

I Lemma 17. Let T be a set of n points in R2 and G be the Hanan grid of T . Then there is
an optimal rectilinear Steiner tree of T such that the number of bend vertices in the rectilinear
Steiner tree is at most 3n.

With respect to a shortest path RST Ŝ, of G, we prove the next Lemma. In particular
we show that the treewidth of S = Ŝ ∪ Sopt is at most 41

√
n. Here, Sopt is a carefully chosen

optimal Steiner tree for T . In order to get the desired upper bound on the treewidth of S, we
show that it does not contain O(

√
n)×O(

√
n) grid as a minor. Towards this we prove that

if there is a large grid then we can find a “clean part of the grid” (subgrid not containing
vertices of T and bend vertices of either Ŝ or Sopt) and reroute some of the paths in either Ŝ

or Sopt, that contradicts either the way Ŝ is constructed or the optimality of Sopt.

I Lemma 18. Given a set T of n points and a shortest path RST Ŝ of T , there is an optimal
rectilinear Steiner tree Sopt of T with the property that the treewidth of Ŝ ∪ Sopt is bounded
by 41

√
n.

Proof. Among the optimal Steiner trees of T with the minimum number of bend vertices,
we select a tree Sopt which has maximum edge intersection with E(Ŝ). From Lemma 17, it
follows that the number of bend vertices in Sopt is at most 3n.

Let S = Ŝ ∪ Sopt. Let B̂ and Bopt be the set of bend vertices in Ŝ and Sopt respectively.
Let U = T ∪ B̂ ∪Bopt and N = V (G) \U . Since |T | = n, |B̂| ≤ n, and |Bopt| ≤ 3n, |U | ≤ 5n.
Let ΠS be a planar embedding of S, obtained by deleting all the edges and vertices not
in S from the planar embedding Π of G. We show that the treewidth of S is at most
41
√

n. We can assume that n ≥ 4, as otherwise we can greedily find out the best rectilinear
Steiner tree from the constant sized Hanan grid. For the sake of contradiction, assume that
tw(S) > 41

√
n. Then, by Proposition 10, there is a 9

√
n× 9

√
n grid H appearing as a minor

of S. Let P(H) = {Cv|v ∈ V (H)} be a minor model of H. Since H and G are connected
graphs, P(H) is a partition of the vertex set V (G). We identify a 3× 3 subgrid H ′ of H by
the following process. For any v ∈ V (H), we mark the vertex v if Cv∩U 6= ∅ (i.e, Cv contains
a terminal or a bend vertex from Ŝ or Sopt). Since |U | ≤ 5n, the number of marked vertices
in H is at most 5n. Since H is a 9

√
n× 9

√
n grid, there are at least 6n vertex disjoint 3× 3

subgrids in H. This implies that there is a 3× 3 subgrid H ′ in H such that each vertex of
H ′ is unmarked. The fact that for u ∈ V (H ′), Cu ∩ U = ∅ implies the following observation.

I Observation 19. Let u ∈ V (H ′) and w ∈ Cu.
(i) degree

Ŝ
(w), degreeSopt(w) ∈ {0, 2}. If for any Si ∈ {Ŝ, Sopt}, degreeSi

(w) = 2, then the
two edges in Si incident with w are of same kind (either horizontal or vertical).

(ii) If one horizontal (vertical) edge incident with w is present in S, then the other horizontal
(vertical) edge incident with w is also present in S. Hence degreeS(w) ∈ {2, 4}.

Note that H ′ is a connected graph and is a minor of a connected graph S. Let ΠH′ be a
planar embedding derived from ΠS . By Lemma 9, we know that there is a simple cycle C ′ in
S with the following properties.
(i) V (C ′) ⊆

⋃
u∈V (H′) Cu.

(ii) For each vertex w ∈ G that is contained in the internal region of C ′ in Π, there is a
vertex u ∈ H ′ with w ∈ Cu. In particular, all the vertices of V (S) \

⋃
v∈V (H′) Cv (which

includes U) are not in the internal region of C ′.

SoCG 2016

39:10 Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems

P147 P258 P369
u′2u′1
u2u1P123

l1 l2

p

P456

P789

Figure 2 The subgrid G′.

(iii) For the internal vertex v ∈ V (H ′), all the vertices in Cv are in the internal region of C ′.
(iv) Finally, there is a vertex w ∈ Cv, in the internal region of C ′, such that degreeS(w) ≥ 3.

By Observation 19, degreeS(w) = 4.
That is, there is a cycle C ′ in the Hanan grid G such that V (C ′) ⊆ V (S) \ U , every point
in the internal region of C ′ does not correspond to any vertex in U and there is a vertex
w of degree 4 in S, which is in the internal region of C ′. The following claim follows from
Observation 19.

I Claim 20. Let u, v ∈ V (G) such that the points u and v are on the same horizontal line
or on the same vertical line. If the line segment L connecting u and v does not intersect with
the outer region of C ′, and there is an edge v1v2 ∈ E(S) on the line L, then all the edges on
the line segment L belong to E(S).

Let C ′ be a minimum-weight cycle satisfying properties (i), (ii) and (iv) and w′ be a vertex
of degree 4 in the internal region of C ′. Let Ew′ be the set of edges of S not in the outer
region of C ′ and each edge either belongs to the horizontal line or vertical line containing w′.

I Claim 21. Graph G′ = C ′ ∪ Ew′ is a subgrid of G. Moreover, V (G′) ⊆ V (G) \ U ,
E(G′) ⊆ E(S), and all the subdivision vertices in G′ have degree exactly 2 in S.

The next claim provides us with the insight on how subpaths of Ŝ and Sopt behave in G′.

I Claim 22. Let Fh and Fv be the sets of horizontal and vertical edges in G′ = C ′ ∪ Ew′

respectively. Then exactly one of the following conditions is true.
1. Fh ⊆ E(Ŝ) and Fv ⊆ E(Sopt).
2. Fv ⊆ E(Ŝ) and Fh ⊆ E(Sopt).

Note that G′ is a 3×3 subgrid of G. Let G′ be formed by horizontal paths P123, P456, P789
and vertical paths P147, P258, P369. Let u1, . . . , u9 be the 9 vertices in G′ such that the path
Pijk, where i, j, k ∈ [9], contains the vertices ui, uj and uk. Due to Claim 22, without loss of
generality, we may assume that the horizontal paths belong to Sopt and the vertical paths
belong to Ŝ. For a path Pijk, we use Pij and Pjk to denote the sub-paths of Pijk connecting
ui and uj , and uj and uk respectively. Let the length of the sub-path P12 be l1 and the
length of the sub-path P23 be l2. By the definition of G′, the length of P45 is also l1, and the
length of P56 is l2. Let the length of P14 be p. The length of both P25 and P36 is p. (See
Figure 2).

Suppose l1 + l2 > 2p. Then we consider the graph S∗ formed by deleting in Sopt the path
P123 and adding the two paths P14 and P36. Since all the subdivision vertices of G′ are of
degree 2 in S, we have that S∗ is a Steiner tree of weight strictly less than the weight of Sopt.
This contradicts the choice of Sopt. Hence, this is not possible.

F. Fomin, S. Kolay, D. Lokshtanov, F. Panolan, and S. Saurabh 39:11

Suppose l1 + l2 ≤ 2p. Without loss of generality, let l1 ≤ l2. Thus, l1 ≤ p. Consider the
two paths P147 and P258. They are vertical paths of Ŝ, such that all the vertices in these
paths belong to V (G)\U (that is, non-terminals and non-bend vertices) and have degree 2 in
Ŝ (by Observation 19). This implies that all the edges in any path R ∈ {P147, P258} are added
in a single step while constructing Ŝ. Since both the paths are parallel, by Observation 13,
if a path R1 in Ŝ has both P147 and P258 as sub-paths, then R cannot be a shortest path
between its endpoints. Thus, by construction of Ŝ, both P147 and P258 could not have been
added to Ŝ in a single step of the construction. Also by construction, one of them is added
to Ŝ before the other. Without loss of generality, let P147 be added before P258. Again by
construction, a path, containing P258 as a sub-path, was added in the ith step, to connect a
terminal t to the already constructed Ŝi−1. Let R∗ be the path added to Si−1. By definition
of G′, this terminal t must lie outside the region formed by the subgrid G′. Since P258 was
part of a shortest path between Ŝi−1 and t, by Observation 13, t must lie on a row strictly
higher than or strictly lower than the rows in G′. Suppose that this terminal lies above P123.
By Observation 19, both the vertical edges incident on u1 belong to Ŝ. Since u1 and u2 are
of degree 2 in Ŝ, both the vertical edges incident with u1 as well as u2 are added, when the
path containing P147 or P258 is added to construct Ŝ. This implies that both the vertical
edges incident with u1 are present in Si−1. Let u1u′1 be the vertical edge present in Si−1
and not in E(P147). Let u2u′2 be the vertical edge not present in P258. Now, consider the
path R2, between u′2 and t, obtained by concatenating the horizontal path between u′1 and
u′2, and the sub-path of R∗ connecting u′2 and t. The length of the path R2 is strictly less
than that of R∗ and u′1 ∈ Si−1. This is a contradiction. The case when t lies below any row
in G′ is identical to the other case. Thus, there is no such subgrid G′ of G, such that G′

is a subgraph of S. This implies that there is no 9
√

n× 9
√

n grid as a minor in S. Due to
Proposition 10, the treewidth of S must be at most 9

2 · 9
√

n = 41
√

n. J

3.3 Dynamic Programming Algorithm for Rectilinear Steiner Tree
In this section we utilize all the results proved in the previous sections and design our
algorithm for Rectilinear Steiner Tree. By Lemma 18, we known that given a shortest
path RST Ŝ, there exists an optimum Steiner tree Sopt such that the treewidth of S = Ŝ∪Sopt
is bounded by 41

√
n. The idea of the algorithm is to implicitly do a dynamic programming

over a tree decomposition of S, even though we do not know what S is, to compute an
optimum Steiner tree for T .

To give a proper intuition to our algorithm, we first recall the important step of the
dynamic programming algorithm for Steiner tree over the tree decomposition of the
graph S (see [3, Theorem 7.8] for more details). Let (T,X = {Xt}t∈V (T)) be a nice
tree decomposition of S where T is a rooted tree. For a node t, let Vt be the union of
all the bags present in the subtree of T rooted at t. For a node t, we define a graph
St = (Vt, Et = {e ∈ E(S) : e is introduced in the subtree rooted at t}). The important
step in the algorithm for Steiner Tree is to compute the following information: for each
bag Xt, X ⊆ Xt and a partition P = (P1, . . . , Pq) of X, the value c[t, X,P] is the minimum
weight of a subgraph F of St with the following properties:
1. F has exactly q connected components C1, . . . , Cq such that ∅ 6= Pi = Xt ∩ V (Ci) for all

i ∈ [q]. That is, P corresponds to connected components of F .
2. Xt ∩ V (F) = X. That is, the vertices of Xt \X are untouched by F .
3. T ∩ Vt ⊆ V (F). That is, all the terminal vertices in St belong to F .
For our purposes the second step is redundant but we still carry it out to give a proper
analogy with the known algorithm for Steiner Tree over graph of bounded treewidth we

SoCG 2016

39:12 Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems

are referring to. Note that the number of blocks in the partition P is q. Throughout this
section, q will denote the number of blocks of the partition in question.

It is known that computing the values c[t, X,P] for each tuple (t, X,P), where t ∈
V (T), X ⊆ Xt and P is a partition of X, is enough to compute the value of an optimum
Steiner tree of T in S and this can be computed in time twO(tw)|V (S)|O(1) (See chapter 7 in
the book [3]). In our case, we do not know the graph S = Ŝ ∪ Sopt and a tree decomposition
of S, but we know that the treewidth of S is at most 41

√
n. This implies that the number of

choices for bags in a tree decomposition of S is bounded by nO(
√

n). Consider the properties
1 and 2 mentioned above. They are local properties of the witness subgraph F with respect
to the bag Xt. But the property 3 says that all the terminals in the subgraph St should be
present in F . In fact we can bound the potential sets T ∩ V (St) using the rectilinear Steiner
tree Ŝ. Observe that any bag Xt is a separator of size O(

√
n) for S and thus for Ŝ, which

implies that for every connected component C of Ŝ −Xt, either T ∩ V (C) is fully in Vt or
no vertex in T ∩ V (C) belongs to Vt. Since each vertex in G has degree at most 4 and Xt is
a bag in a tree decomposition, the number of connected components in Ŝ −Xt is at most
4|Xt| ≤ 164(

√
n + 1). As observed before, for any connected component C of Ŝ −Xt, either

T ∩V (C) is fully in Vt or no vertex in T ∩V (C) belongs to Vt. This implies that the potential
sets T ′ ⊆ T such that T ′ = (Vt \Xt) ∩ T is bounded by 2164(

√
n+1) and we can enumerate

them in sub-exponential time. Using this observation we could keep track of property 3 as
well, even though we do not know the graph S and its tree decomposition. Now, we move
towards the formal explanation of our algorithm. Towards that we define a notion of type
which is the analogue of a tuple (t, X,P) in the dynamic programming we explained above.

I Definition 23. A type is a tuple (Y, Y ′ ⊆ Y,P, T ′) such that the following holds.
(i) Y is a subset of V (G) of size at most 41

√
n + 2.

(ii) P is a partition of Y ′.
(iii) There exists a set of components C1, . . . , Cq in Ŝ−Y such that T ′ = T∩(Y ′ ∪

⋃q
i=1 V (Ci)).

Informally, in a type (Y, Y ′,P, T ′), Y represents a potential bag Y of a node (say t) in a tree
decomposition of S. The set Y ′ and partition P have the same meaning as that of (t, Y ′,P)
in the normal dynamic programming algorithm for Steiner Tree. The set T ′ is the set of
terminals in the graph St. The next lemma gives an upper bound on the number of types.

I Lemma 24. There is a 2O(
√

n log n)nO(1) time algorithm B enumerating all the types.

Our algorithm is a dynamic programming algorithm over the types of S. As motivated
earlier, this algorithm essentially describes the ideas of the dynamic programming algorithm
for Steiner Tree over a tree decomposition of an input graph. Let N = 3(|V (G)|+ |E(G)|).
Our algorithm computes values A[i, D], where i ∈ [N] and D is a type. We want the table A[,]
to contain all the information that is necessary for the correctness of the dynamic programming
algorithm for Steiner Tree over a tree decomposition of S. To motivate the definition of
A[,] we assume a hypothetical tree decomposition T = (T,X = {Xt}t∈V (T)) of S. For ease of
understanding, let it be a nice tree decomposition and let the tree be rooted at a node r ∈ T.
The level of a vertex t ∈ T is the height of the subtree of T rooted at t. The height of a node
t is the number of vertices in the longest downward path to a leaf from that node. Note that
the level of any node of T is at most N . Suppose t ∈ T is a node at level i, and corresponds to
the bag Xt. Let Vt be the union of bags present in the subtree rooted at t. Let the graph St

be defined as (Vt, {e | e is introduced in a the subtree rooted at t}). Let T ′ = Vt ∩ T . Then,
for any X ⊆ Xt, and a partition P of X having q blocks, A[i, (Xt, X,P, T ′)] = c[t, X,P]. As
mentioned before, c[t, X,P] is the minimum weight of the subgraph F of St such that the

F. Fomin, S. Kolay, D. Lokshtanov, F. Panolan, and S. Saurabh 39:13

following hold: (i) F has q connected components C1, . . . , Cq such that ∅ 6= Pi = Xt ∩ V (Ci),
(ii) Xt ∩ V (F) = X, and (iii) T ∩ Vt ⊆ V (F). For other pairs (i, D), we do not guarantee
that the value of A[i, D] is meaningful. However, it is enough to maintain reasonable values
for only the above subset of pairs (i, D). Of course we do not know S and thus we do not
know the tree decomposition T , so we store values in the table A[,] in such a way that
given any nice tree decomposition of S, we have information pertaining to it. Thus, given
a pair (i, D) where D = (Y, Y ′ ⊆ Y,P, T ′), we view Y as a bag of some hypothetical nice
tree decomposition, T , of S and assume that the level of the bag corresponding to Y in T is
i. At a level i of this hypothetical nice tree decomposition, any bag is one of at most five
kinds. We guess the relationship between a bag at level i and its children, which must be
at level i− 1. For example, if our hypothetical node t corresponds to an introduce vertex
bag Xt, then we pretend that we know Xt, the child node t′, the bag Xt′ , and the vertex v

that is being introduced at node t. Thereafter, for a subset X ⊆ Xt, and a partition P of X,
we try to compute A[i, (Xt, X,P, T ′)] using that values of A calculated at step i− 1 of the
algorithm. The calculation ensures that A[i, (Xt, X,P, T ′)] = c[t, X,P]. In what follows we
give a formal definition of A[,]. We write a recurrence relation for A[i, D], where i ∈ [N]
and D is a type. We fix a terminal t∗ in T

A[1, D] =
{

0 if D = ({t∗}, {t∗}, {{t∗}}, {t∗})
∞ otherwise (1)

To define A[i, D] for i ∈ [N] \ {1} and a type D = (Y, Y ′,P, T ′), we first define many
intermediate values and take the minimum over all such values.
We first try to view Y as an introduce node in some nice tree decomposition of S and having
level i. This viewpoint results in the following recurrence. For all v ∈ Y ,

Iv[i, D] =


∞ if v /∈ Y ′ and v ∈ T

A[i− 1, (Y \ {v}, Y ′,P, T ′)] if v /∈ Y ′ and v /∈ T

A[i− 1, (Y \ {v}, Y ′ \ {v},P \ {{v}}, T ′ \ {v})] if v ∈ Y ′
(2)

Intuitively, if Y is a bag corresponding to a node t in a tree decomposition of S and T ′ is the
set of terminals in St, then Equation 2 corresponds to the computation of c[t, Y ′,P] in the
dynamic programming algorithm of Steiner Tree. See [3, Theorem 7.8] for more detailed
explanation.
For all u, v ∈ Y and uv ∈ E(G),

Iuv[i, D] = min
{

min
P′
{A[i− 1, (Y, Y ′,P ′, T ′)] + recdist(uv)} ,A[i− 1, D]

}
, (3)

where P ′ varies over partitions of Y ′ such that u and v are in different blocks of P ′ and by
merging these two blocks we get the partition P. Note that if {u, v} * Y ′ or u and v are in
same block of P, then Equation 3 gives Iuv[i, D] = A[i− 1, D]. Equation 3 corresponds to
the computation of values in the introduce edge node where the edge uv is introduced.
For all w ∈ V (G),

Fw[i, D] = min{min
P′
{A[i− 1, (Y ∪ {w}, Y ′ ∪ {w},P ′, T ′)]},A[i− 1, (Y ∪ {w}, Y ′,P, T ′)]},

(4)

where P ′ in the inner minimum varies over all the partitions obtained by adding w to one
of the existing blocks. Equation 4 corresponds to computation in a forget node where w is
forgotten.

J [i, D] = min
P=P1tP2
T ′=T ′

1∪T ′
2

{A[i− 1, (Y, Y ′,P1, T ′1)] +A[i− 1, (Y, Y ′,P2, T ′2)]} (5)

SoCG 2016

39:14 Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems

Equation 5 corresponds to a computation in a join node. We define A[i, D] for i ∈ [N] \ {1}
and type D = (Y, Y ′,P, T ′) as,

A[i, D] = min



minv∈Y Iv[i, D]
min

uv∈E(G)
u,v∈Y

Iuv[i, D]

minw∈V (G) Fw[i, D]
J [i, D]

(6)

For each i ∈ [N] and each type D, we associate with A[i, D] a subgraph of S. We say that a
subgraph F is of type (Y, Y ′,P, T ′), where P = {P1, . . . Pq} if the following holds.
(a) The number of connected components in F is equal to |P| = q. We can order the

connected components C1, . . . , Cq of F such that V (Ci) ∩ Y = Pi.
(b) V (F) ∩ T = T ′.

In the following lemma, we show the connection between A[i, D] and a graph of type D.

I Lemma 25. Let i ∈ [N] and D be a type. Furthermore, let A[i, D] be computed by the
Equation 6, and have a finite value `. Then there is a subgraph F , of type D, such that
recdist(F) ≤ `.

The next lemma relates an optimal rectilinear Steiner tree to the values computed for
the table A[,]. Using induction on the level of nodes in T we prove the following.

I Lemma 26. Let T = (T, {Xt}t∈V (T)) be a nice tree decomposition of S. For a node t, let
Xt be the corresponding bag, X ⊆ Xt, P be a partition of X, Vt be the union of bags in the
subtree rooted at t, and T ′ = T ∩ Vt. Then A[i, (Xt, X,P, T ′)] ≤ c[t, X,P].

Finally, we describe the subexponential algorithm for Rectilinear Steiner Tree.

I Theorem 27. Rectilinear Steiner Tree can be solved in time 2O(
√

n log n)nO(1).

Description of the Algorithm. We take as input a set T of n terminal points, the Hanan
grid G of T and the weight function recdist. Then using Lemma 15 we compute a shortest
path RST Ŝ. By Lemma 18, we know that there is an optimal Steiner tree Sopt with
tw(Ŝ ∪Sopt) ≤ 41

√
n. Based on the shortest path RST Ŝ, we apply Lemma 24, to enumerate

all possible types D of G. We fix an integer N = 3(|V (G)|+ |E(G)|) and a terminal t∗ in
T . For each i ∈ [N] and each type D, the algorithm computes values A[i, D], according
to Equations 1 and 6. The values in A[,] are filled in the increasing order of i. Finally,
the algorithm outputs mini∈[N]A[i, ({t∗}, {t∗}, {{t∗}}, T)]. The size of the table A[,] is
N · 2O(

√
n log n) and each entry can be filled in time 2O(

√
n log n)nO(1). Thus, the running time

of the algorithm is 2O(
√

n log n)nO(1). Using standard back-tracking tricks we can also output
an optimal RST. J

References
1 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets

Möbius: fast subset convolution. In Proceedings of the 39th Annual ACM Symposium on
Theory of Computing (STOC), pages 67–74, New York, 2007. ACM.

2 Marcus Brazil and Martin Zachariasen. Optimal Interconnection Trees in the Plane: The-
ory, Algorithms and Applications. Springer, 2015.

3 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer-
Verlag, Berlin, 2015.

F. Fomin, S. Kolay, D. Lokshtanov, F. Panolan, and S. Saurabh 39:15

4 Linda L. Deneen, Gary M. Shute, and Clark D. Thomborson. A probably fast, provably
optimal algorithm for rectilinear Steiner trees. Random Structures Algorithms, 5(4):535–
557, 1994.

5 Stuart E. Dreyfus and Robert A. Wagner. The Steiner problem in graphs. Networks,
1(3):195–207, 1971. doi:10.1002/net.3230010302.

6 Bernhard Fuchs, Walter Kern, Daniel Mölle, Stefan Richter, Peter Rossmanith, and Xinhui
Wang. Dynamic programming for minimum Steiner trees. Theory of Computing Systems,
41(3):493–500, 2007. doi:10.1007/s00224-007-1324-4.

7 Joseph L. Ganley. Computing optimal rectilinear Steiner trees: a survey and experimental
evaluation. Discrete Appl. Math., 90(1-3):161–171, 1999.

8 Joseph L. Ganley and James P. Cohoon. Improved computation of optimal rectilinear
Steiner minimal trees. Internat. J. Comput. Geom. Appl., 7(5):457–472, 1997. doi:10.
1142/S0218195997000272.

9 M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math., 32(4):826–834, 1977.

10 Qian-Ping Gu and Hisao Tamaki. Improved bounds on the planar branchwidth with re-
spect to the largest grid minor size. Algorithmica, 64(3):416–453, 2012. doi:10.1007/
s00453-012-9627-5.

11 M. Hanan. On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math., 14:255–
265, 1966.

12 Frank K Hwang. On Steiner minimal trees with rectilinear distance. SIAM J. Appl. Math.,
30(1):104–114, 1976.

13 Frank K. Hwang, Dana S. Richards, and Pawel Winter. The Steiner tree problem, volume 53
of Annals of Discrete Mathematics. North-Holland Publishing Co., Amsterdam, 1992.

14 Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for Subset
TSP on planar graphs. In Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1812–1830. SIAM, 2014.

15 L. Nastansky, S. M. Selkow, and N. F. Stewart. Cost-minimal trees in directed acyclic
graphs. Z. Operations Res. Ser. A-B, 18:A59–A67, 1974.

16 Jesper Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica,
65(4):868–884, 2013. doi:10.1007/s00453-012-9630-x.

17 Marcin Pilipczuk, Michał Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen.
Subexponential-time parameterized algorithm for Steiner tree on planar graphs. In Proc.
of the 30th International Symp. on Theoretical Aspects of Computer Science (STACS),
volume 20 of Leibniz International Proceedings in Informatics (LIPIcs), pages 353–364.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013.

18 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network
sparsification for Steiner problems on planar and bounded-genus graphs. In Proc. 55th
Annual Symp. on Foundations of Computer Science (FOCS), pages 276–285. IEEE, 2014.

19 Hans Jürgen Prömel and Angelika Steger. The Steiner Tree Problem. Advanced Lectures
in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 2002.

20 Weiping Shi and Chen Su. The Rectilinear Steiner Arborescence Problem Is NP-Complete.
SIAM J. Comput., 35(3):729–740, 2005. doi:10.1137/S0097539704371353.

21 Clark D Thomborson, Linda L Deneen, and Gary M Shute. Computing a rectilinear steiner
minimal tree in nO(

√
n) time. In Parallel Algorithms and Architectures, pages 176–183.

Springer, 1987.

SoCG 2016

http://dx.doi.org/10.1002/net.3230010302
http://dx.doi.org/10.1007/s00224-007-1324-4
http://dx.doi.org/10.1142/S0218195997000272
http://dx.doi.org/10.1142/S0218195997000272
http://dx.doi.org/10.1007/s00453-012-9627-5
http://dx.doi.org/10.1007/s00453-012-9627-5
http://dx.doi.org/10.1007/s00453-012-9630-x
http://dx.doi.org/10.1137/S0097539704371353

	Introduction
	Preliminaries
	Subexponential Algorithm for Rectilinear Steiner Tree
	Shortest Path RST and its properties
	Supergraph of an optimal RST with bounded treewidth
	Dynamic Programming Algorithm for Rectilinear Steiner Tree

