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Lower bounds for the parameterized complexity of Minimum Fill-In

and other completion problems

Ivan Bliznets∗ Marek Cygan† Pawe l Komosa‡ Lukáš Mach§ Micha l Pilipczuk¶

Abstract

In this work, we focus on several completion problems for subclasses of chordal graphs:
Minimum Fill-In, Interval Completion, Proper Interval Completion, Threshold
Completion, and Trivially Perfect Completion. In these problems, the task is to add at
most k edges to a given graph in order to obtain a chordal, interval, proper interval, threshold, or
trivially perfect graph, respectively. We prove the following lower bounds for all these problems,
as well as for the related Chain Completion problem:

• Assuming the Exponential Time Hypothesis, none of these problems can be solved in time

2O(n1/2/ logc n) or 2O(k1/4/ logc k) · nO(1), for some integer c.

• Assuming the non-existence of a subexponential-time approximation scheme forMin Bisection
on d-regular graphs, for some constant d, none of these problems can be solved in time

2o(n) or 2o(
√
k) · nO(1).

For all the aforementioned completion problems, apart from Proper Interval Completion,

FPT algorithms with running time of the form 2O(
√
k log k) · nO(1) are known. Thus, the second

result proves that a significant improvement of any of these algorithms would lead to a surprising
breakthrough in the design of approximation algorithms for Min Bisection.

To prove our results, we use a reduction methodology based on combining the classic
approach of starting with a sparse instance of 3-Sat, prepared using the Sparsification Lemma,
with the existence of almost linear-size Probabilistically Checkable Proofs (PCPs). Apart
from our main results, we also obtain lower bounds excluding the existence of subexponential
algorithms for the Optimum Linear Arrangement problem, as well as improved, yet still
not tight, lower bounds for Feedback Arc Set in Tournaments.
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1 Introduction

In theMinimum Fill-In problem, also known asChordal Completion, the input is an undirected
graph G and an integer k, and the question is whether at most k edges can be added to G in order
to turn it into a chordal graph, i.e., a graph without induced cycles of length at least 4 (also
known as holes). The interest in this problem originates in the study of strategies for Gaussian
elimination on sparse matrices, because the optimum number of additional entries of a matrix A
that become non-zero during the elimination is tightly connected to the minimum fill-in of the
graph GA obtained by taking A to be its adjacency matrix. See [15, 41] for more information on
applications ofMinimum Fill-In in the theory of sparse matrices. However, the problems of adding
as few edges as possible to obtain a chordal graph, or a graph belonging to some natural subclass of
chordal graphs, like interval, proper interval, trivially perfect, or threshold graphs, have numerous
other applications ranging from database management, bioinformatics, artificial intelligence, to
social networks. We refer to the introductory sections of [6, 7, 18, 19, 21, 25, 32, 43] for a broader
discussion and pointers to relevant literature.

Minimum Fill-In is NP-hard, as shown by Yannakakis [44], however the reduction showing
this is quite non-obvious; the complexity status of the problem was among the 12 open problems at
the end of the first edition of the Garey and Johnson’s book [26]. The study of Minimum Fill-In
from the point of view of the parameterized complexity, with k being the obvious parameter of
interest, started with the pioneering work of Kaplan et al. [32]. They proposed a fixed-parameter
(FPT) algorithm with running time O(16kk6 + k2mn) that is based on locating holes in the graph
and branching on possible ways of adding edges to get rid of them. A similar strategy worked also
for Proper Interval Completion [32], the problem of adding as few edges as possible to obtain
a proper interval graph, but not for Interval Completion. The fixed-parameter tractability of
the latter has been resolved by Villanger et al. [43] only several years thereafter.

A complete turning point came four years ago, when Fomin and Villanger [25] presented an
algorithm for Minimum Fill-In with subexponential parameterized complexity, more precisely with

running time O(2O(
√
k log k)+k2nm). This was an immense surprise to the parameterized complexity

community, since subexponential parameterized algorithms, i.e., with running time 2o(k) · nO(1),
were known essentially only in two restricted settings: in topologically constrained graphs via the
technique of bidimensionality (see e.g. [16]), and in tournaments, with an important example of
Feedback Arc Set in Tournaments [3, 23,33]. For most natural parameterized problems, the
existence of such algorithms can be excluded under the Exponential Time Hypothesis, which (when
combined with the Sparsification Lemma [31]) essentially states that there is no algorithm for 3-Sat
with running time 2o(n+m); cf. [14, 24].

The work of Fomin and Villanger [25] presented a conceptual breakthrough in the approach
to completion problems for subclasses of chordal graphs. The main idea is not to focus on
breaking individual obstacles such as holes by single edge additions, as was proposed in the
previous works, but to build a structural decomposition of the completed graph by means of a
dynamic programming algorithm that minimizes the number of edges missing in the decomposition.
The crux is to show that this dynamic programming can be restricted to a space of states that

has size 2O(
√
k log k) · nO(1), and can be enumerated efficiently. In case of Minimum Fill-In,

the considered decomposition is the clique tree, but this generic approach can be in principle
applied to every subclass of chordal graphs whose graphs have a well-defined global structure. And
so, following [25], subexponential parameterized algorithms have been designed for Threshold
Completion [20], Trivially Perfect Completion [20], Proper Interval Completion [7],
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and even Interval Completion [6]. Apart from Proper Interval Completion, for all these

problems the algorithms have running time 2O(
√
k log k)·nO(1); for the former we are currently stuck at

exponent O(k2/3 log k), but this is conjectured to be an artifact of the technique [7]. Let us remark
that in each of these cases the idea of Fomin and Villanger only provides the basic outline of the
strategy, while the actual implementation is always class-specific and requires involved technical
insight.

Drange et al. [19,20] complemented their results with a number of lower bounds suggesting that
even a slight deviation from the setting of adding edges to a subclass of chordal graphs leads to the
non-existence of a subexponential parameterized algorithm under the assumption of ETH. Thus, the
aforementioned problems for which such algorithms exist are in fact intriguing “singularity points”
on the complexity landscape. It is interesting that these singularity points actually correspond to
problems that have important practical applications. Hence, the study of this phenomenon is an
important direction that naturally belongs to the optimality programme (cf. [35, 38]): a trend in
parameterized complexity that focuses on systematic study of parameterized problems by providing
possibly tight upper and lower bounds on their complexity.

From this point of view, the first natural question is exactly how “deep” are the aforementioned

singularity points. More precisely, is the running time of the form 2O(
√
k log k) · nO(1) optimal, say

under ETH? For subexponential algorithms derived using bidimensionality, the non-existence of

2o(
√
k) · nO(1)-time algorithms under ETH usually follows already from the known NP-hardness

reductions [14,24]. However, for the considered completion problems this is not the case: as Fomin
and Villanger already observed in [25], the classic NP-hardness reduction for Minimum Fill-In

gives only a 2o(k
1/6) · nO(1) lower bound. A similar situation holds for Feedback Arc Set in

Tournaments, for which the fastest known algorithms work in time 2O(
√
k) · nO(1) [23, 33].

For this reason, the question of establishing tight upper and lower bounds for Minimum Fill-In
was already asked explicitly by Fomin and Villanger [25], repeated by Marx in his survey on the
optimality programme [38], and then reiterated for respective subclasses in all the works [6, 7, 19].
The goal of this paper is to remedy this situation by providing complexity foundations for proving
that the square root in the exponent of the running time is hard to improve.

Our results. First, we investigate how strong lower bounds for completion problems can be
obtained when we assume only ETH.

Theorem 1.1. Unless ETH fails, there is an integer c ≥ 1 such that there are no 2O(
√
n/ logc n),

and consequently no 2O(k1/4/ logc k) ·nO(1) algorithms for the following problems: Minimum Fill-In,
Interval Completion, Proper Interval Completion, Trivially Perfect Completion,
Threshold Completion, Chain Completion.

Here, a graph G is a chain graph if it is a bipartite graph with a fixed bipartition A⊎B, where
the vertices of A can be ordered by a linear ordering � such that N(u) ⊆ N(v) whenever u � v,
for all u, v ∈ A. In the Chain Completion problem we are given a bipartite graph with a fixed
bipartition A ⊎B, and we want to add at most k edges between A and B to obtain a chain graph.

Chain Completion also admits an algorithm with running time O(2O(
√
k log k) + k2nm) [25].

Unfortunately, Theorem 1.1 does not provide a tight result for completion problems we are
interested in: we still have a gap between k1/4 and k1/2. We in fact prove a higher lower bound,
but we need to ground it on a stronger complexity assumption. More precisely, we consider the
approximability of the Min Bisection problem on d-regular graphs: given a d-regular graph G
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with an even number of vertices, find a partition of V (G) into equal-sized parts that minimizes the
number of edges between the parts. For 0 ≤ α < β ≤ 1, problem Gap Min Bisection(d)[α,β] is
defined as the gap problem of deciding whether the optimum solution is at most αm, or at least
βm.

Hypothesis 1.2. There exist 0 ≤ α < β ≤ 1, and an integer d > 4
β−α , such that there is no

2o(n)-time algorithm for Gap Min Bisection(d)[α,β].

Theorem 1.3. Unless Hypothesis 1.2 fails, there is no 2o(n+m)-time algorithm for Chain Completion,
and no 2o(n)-time algorithms for Minimum Fill-In, Interval Completion, Proper Interval
Completion, Trivially Perfect Completion, and Threshold Completion. Consequently,

none of these problems can be solved in time 2o(
√
k) · nO(1).

Thus, Theorem 1.3 asserts that the existence of a substantially faster algorithm for any of
the considered completion problems would lead to a breakthrough in the design of approximation
algorithms for Min Bisection. We do not intend to take a stance on whether Hypothesis 1.2
is true or false. However, the existence of an algorithm refuted by Theorem 1.2 is far from
the current knowledge: the best polynomial-time approximation algorithms for Min Bisection
achieve approximation factor O(logOPT ) [40], whereas to refute Hypothesis 1.2 one would need
to obtain approximation factor arbitrarily close to one. This could be, however, possible due
to the assumption of d-regularity, for a constant d, as well as the access to subexponential-time
computations. We are not aware of any approximation algorithms for Min Bisection that would
significantly use any of these assumptions. In fact, Berman and Karpinski [5] have shown that
approximating Min Bisection in graphs of maximum degree 3 is as hard as in general graphs
from the point of view of polynomial time approximation.

Finally, using the methodology of Theorem 1.1 we can give an improved lower bound for
Feedback Arc Set in Tournaments. For this problem, the first subexponential FPT algorithm

with running time 2O(
√
k log k) · nO(1) was given by Alon et al. [3], which was later improved to

2O(
√
k) · nO(1) independently by Feige [23] and by Karpinski and Schudy [33].

Theorem 1.4. 1 Unless ETH fails, there is an integer c ≥ 1 such that there is no 2O(
√
n/ logc n), and

consequently no 2O(k1/4/ logc k) · nO(1)-time algorithm for Feedback Arc Set in Tournaments.

A direct inspection of the classic NP-hardness proofs [1,2,13] gives only a 2O(n1/4), and consequently

also a 2O(k1/8) · nO(1) lower bound, but Theorem 1.4 is still not tight: we have a gap between k1/2

and k1/4, similarly as in Theorem 1.1. Unfortunately, despite efforts we are unable to close this
gap using Hypothesis 1.2, or a similar assumption.

Our techniques. The main idea of this work is to carefully combine the standard approach
of starting with a sparse instance of 3-Sat, prepared using the Sparsification Lemma [31], with
the existence of almost linear PCPs. More precisely, an application of the Sparsification Lemma
reduces solving an instance ϕ of 3-Sat to solving a number of instances φ1, φ2, . . . , φℓ of 3-Sat
on the same variable sets, but in each φi we have that the number of clauses m is linear in the
number of variables n. Then, to each φi we apply the result of Dinur [17] on the existence of
almost linear-size PCPs. This transforms each φi into an instance φ′i of 3-Sat where the number

1As the reduction in the proof of Theorem 1.4 is randomized, here we assume the randomized version of the ETH.
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of variables and clauses is O(n logc n), but the instance is either satisfiable, or at most a ρ-fraction
of clauses can be satisfied, for some ρ < 1.

Having such an instance at hand, we can proceed with the chain of reductions proposed by Garey
et al. [27] and Yannakakis [44]. Namely, we first use simple manipulations to obtain an equivalent
instance of Max Cut with a gap, and then reduce it to the Optimum Linear Arrangement
(OLA) problem: Given a graph G on n vertices, find a linear ordering π : V (G) → {1, 2, . . . , n}
that minimizes the cost defined as

∑

uv∈E(G) |π(u) − π(v)|; value |π(u) − π(v)| is also called the
cost of uv. This is precisely the moment where we exploit that we are working with an instance
of Max Cut with a gap. Namely, the construction introduces a huge clique to the complement of
the Max Cut instance; this clique is supposed to separate in the ordering the sides of an optimum
max-cut solution. In Garey et al. [27], its size must be large enough so that the cost of any edge
jumping over the clique dwarfs the “noise” contribution that is given by internal ordering of parts
on the left and on the right. Hence, the clique is chosen to be of size Θ(n4), which explodes the
size of the instance. However, we observe that by starting with an instance with a gap, we can
accommodate the noise in the gap, and therefore we only need the clique to be of linear size. Thus,
we obtain the following theorem that can be of independent interest.

Theorem 1.5. Unless ETH fails, for some c > 1 there is no algorithm solving Optimum Linear
Arrangement in time 2O(n/ logc n).

Note that OLA can be solved by a simple Held-Karp dynamic programming on subsets in time
2n · nO(1), so Theorem 1.5 gives an almost tight result.

To obtain Theorem 1.1 one just applies slightly modified elegant reduction from (the decision
variant of) OLA to Minimum Fill-In, proposed by Yannakakis [44]. The reduction firstly reduce
OLA to Chain Completion. Because of this fact later we get a very specific Minimum Fill-In
output instance. And this immediately gives us a reduction to Proper Interval Completion and
Interval Completion problems. With slight changes similar result is obtained for Threshold
Completion and Trivially Perfect Completion. Theorem 1.4 is derived by applying the
same methodology to the randomized hardness reduction for FeedbackArc Set in Tournaments
of Ailon et al. [1].

The moment when we lose tightness in our chain of reductions is precisely the last reduction
from OLA to Minimum Fill-In. This is because in the construction we introduce a new vertex
for every edge of the original graph, which blows up the vertex set quadratically. Therefore, the
reduction would give a tight lower bound if we started with a sparse instance of Optimum Linear
Arrangement. This is precisely our idea behind the proof of Theorem 1.3.

Namely, we observe that by starting from the hardness of Gap Min Bisection(d)[α,β], instead
of Max Cut, we can give an alternative hardness reduction to Optimum Linear Arrangement
in graphs of bounded degree by a constant d (OLA≤(d) for short). This reduction is much more
intricate. Essentially, we replace the usage of a huge clique (which would blow up the degree) by a
careful construction using several layers of expander graphs that mimics the same behaviour. This
proves the following result.

Theorem 1.6. Unless Hypothesis 1.2 fails, there exists an integer d ∈ N such that there is no
2o(n)-time algorithm solving OLA≤(d) in multigraphs.

From this, Theorem 1.3 follows similarly as Theorem 1.1 followed from Theorem 1.5.
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Related work. The combination of ETH, Sparsification Lemma, and PCP tools was already
used in the recent line of work on developing the theory of hardness of FPT approximation; see
e.g. [8–11,28,34]. There, the main goal is to provide lower bounds on how the access to FPT-time
computations can help in the design of approximation algorithms for fundamental inapproximable
problems, like Clique or Set Cover.

The existence of almost linear PCPs combined with ETH was also used by Marx [37] to
give almost tight lower bounds for the running times of polynomial time approximation schemes
(PTASes) for several fundamental problems on planar graphs and in the Euclidean plane. The
basic principle behind the approach of Marx [37] is very similar to ours. Namely, it is observed
that using ETH and PCP tools one can prepare a sparse instance of the maximization variant of
3-Sat where it is hard to distinguish between a fully satisfiable instance and an instance where
only a (1 − ǫ)-fraction of the clauses can be satisfied in time 2O(n/ logc n), for some constant c (see
also Theorem 3.1 in this work). This observation is used as a base for further reductions refuting
the existence of certain approximation algorithms for geometric and planar problems.

Thus, this work provides another example where the said combination appears to be useful.
This time we use it to prove improved lower bounds on the complexity of FPT algorithms solving
certain graph modification problems exactly. The new idea in this work is that the gap property of
the considered instances can be used not only to exclude the existence of approximation algorithms,
but also to limit the instance size explosion in a chain of NP-hardness reductions by using more
thrifty constructions.

Hypothesis 1.2 can possibly have links with the hypothesis put forward by Feige [22]. Essentially,
Feige conjectures the hardness of distinguishing a “typical” 3-Sat instance from a satisfiable one in
polynomial time. From this, he derives as a corollary a variant of Hypothesis 1.2, but without the
assumption of d-regularity, for a constant d, and with subexponential time replaced by polynomial.
It is conceivable that Hypothesis 1.2 can be also implied by some stronger variant of Feige’s
conjecture, but we refrain from formalizing this link due to many technical problems that arise
when attempting to do this.

Outline of the paper. In Section 2, we give all the needed definitions and list the tools used
in our reductions, such as the Exponential Time Hypothesis and the PCP theorem. Next, in
Section 3, we prove Theorem 1.5. The main technical contribution of the paper, that is the proof
of Theorem 1.6, is contained in Section 4. Theorem 1.6 is the main ingredient in the proof of
Theorem 1.3, that is presented in Section 5. Section 6 is devoted to the proof of Theorem 1.4.

2 Preliminaries

2.1 Parameterized complexity

A parameterized problem Q is a subset of Σ∗ × N, for a fixed finite alphabet Σ. An instance
of the problem Q is an element (x, k) ∈ Σ∗ × N with the integer k called the parameter. A
parameterized problem is fixed parameter tractable if there exists an algorithm deciding whether
(x, k) ∈ Q, and working in time f(k) · poly(|x|) for every instance (x, k), where f is a computable
function. For denoting the time of an algorithm we will use the O∗ notation that suppresses factors
polynomial in the size of the input, e.g. O∗(f(k)).

We denote a polynomial deterministic linear reduction from a problem X to Y by X ≤lin
P Y , i.e.,

X ≤lin
P Y means that there is a polynomial time deterministic algorithm, which given an instance
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I of the problem X produces an instance I ′ of the problem Y of size O(|I|), such that I is a
yes-instance if and only if I ′ is a yes-instance.

2.2 Graph notations

A standard graph theoretical notation is used throughout the paper. A graph G is a tuple
(V (G), E(G)), where V (G) is the set of vertices and E(G) ⊆

(

V (G)
2

)

is the set of edges. When
it is clear from the context what graph we refer to, we will denote by V and E the set of vertices
and edges of G. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A graph H is

an induced subgraph of G if V (H) ⊆ V (G) and E(H) = E(G) ∩
(V (H)

2

)

. An induced subgraph of
G with vertex set X is denoted by G[X]. A complement of G is the graph with the vertices V and
the edge

(

V
2

)

− E and we denote it by G. For X ⊆ V , we denote by δG(X) the set of edges with
exactly one endpoint in X. We define a cut, as the set of edges EG(A,B), for a partition (A,B) of
V . We denote the size of the cut by |EG(A,B)|.

We often use n, and m to denote the size of V and E, respectively. For a vertex v, degG(v)
denotes the degree (the number of incident edges) of the vertex v. We say that a graph is
d-regular if the degree of each vertex is equal to d. We denote by ∆G the maximum degree of
G. The set NG(v) = {w : (v,w) ∈ E(G)} is the neighbourhood of v. We extend this notation
to subsets of vertices X, i.e. NG(X) =

⋃

v∈X NG(v) \ X. We will also omit subscripts, i.e.
deg(v),∆, N(X), δ(X), E(U, V ), when it is clear from the context, which graph we refer to.

If X,Y ⊆ V are disjoint, then EG(X,Y ) is the set of edges between X and Y . We use G[X,Y ]
to denote the induced bipartite subgraph of G with parts X and Y . That is, G[X,Y ] is the graph
with vertex set X ∪ Y that contains precisely the edges EG(X,Y ).

For X ⊆ V , we denote by δG(X) the set of edges with exactly one endpoint in X. We define
a cut, as the set of edges EG(A,B), for a partition (A,B) of V . We denote the size of the cut by
|EG(A,B)|.

2.3 Expanders

The Cheeger number h(G) of a graph G is defined as

h(G) := min

{ |δ(X)|
|X| : X ⊆ V (G), |X| ≤ |V (G)|

2

}

,

We say that a graph G is a (d, e)-expander if it is d-regular and has Cheeger number of at least e.
When discussing expanders, it is convenient to allow parallel edges and self-loops, which naturally
appear in most of the expanders constructions. It is important to note that a self-loop contributes
1 to the degree of a vertex.

There are many efficient constructions of expanders available in the literature. The following
theorem produces graphs with provably optimal Cheeger numbers:

Theorem 2.1. [36,39] Let d = pk+1, where p is a prime and k ∈ N, and let q be a prime congruent
to 1 mod 4. Assume p 6= q. There exists a (d, d2 −

√
d− 1)-expander on q+1 vertices. Furthermore,

such an expander can be constructed in polynomial time.

Throughout this paper, we use expanders of various sizes, hence the following theorem appears
to be useful in our setting, despite providing weaker bound on the Cheeger number.
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Theorem 2.2. [Theorem 21.19 of [4]] Let p > 0 be a real. Then there exists a positive integer d,
such that for every positive integer n there exists a d-regular multigraph Gn,d on n vertices with
h(Gn,d) ≥ p. Moreover, graph Gn,d can be constructed in time polynomial in n.

2.4 Linear arrangements

A linear arrangement of a graph G = (V,E) is a function (a vertex ordering) π : V → {1, . . . , n}.
The cost of a linear arrangement π is defined by

∑

uv∈E |π(u) − π(v)|. We call π the optimum
linear arrangement if its cost is minimized over all vertex orderings of G and we denote this cost
by OLA(G).

2.5 Satisfiability

We employ a standard notation related to Sat problems. We use symbols x1, . . . , xn for the variables
of an instance, and C1, . . . , Cm for the clauses. An l-CNF formula is El-CNF, if it has exactly l
literals. We say that an assignment of x1, ..., xn NAE-satisfies an l-CNF formula if every clause
contains a satisfied and an unsatisfied literal. An l-AND is a conjunction of clauses, where each
clause is a conjunction of at most l literals.

2.6 Exponential Time Hypothesis

The Exponential Time Hypothesis (ETH), introduced by Impagliazzo, Paturi and Zane [30, 31] is
now an established tool used for proving conditional lower bounds in the parameterized complexity
area (see [35] for a survey on ETH-based lower bounds). Intuitively, ETH states that 3-Sat cannot
be solved in time subexponential in the number of variables.

Hypothesis 2.3 (Exponential Time Hypothesis (ETH) [30,31]). There is no 2o(n) time randomized
algorithm for 3-Sat.

Lemma 2.4. (Sparsification Lemma, [31]) For every ǫ > 0, there is an algorithm that takes a
3-CNF formula φ and returns l 3-CNF formulas φ1, ..., φl, such that: i) l = O(2ǫn), ii) for every i,
φi has n variables, and every such variable appears in at most cǫ clauses of φi, for some constant
cǫ ≥ 0, iii) φ is satisfiable if and only if at least one of φi is satisfiable. The running time of the
algorithm is O∗(2ǫn).

Consequently, based on ETH we have subexponential hardness of 3-Sat in terms of both the
number of variables and clauses.

Theorem 2.5 ([31]). Unless ETH fails, there is no 2o(m+n) time algorithm for 3-Sat.

2.7 Gap problems and PCPs

In a gap version of a problem, the input instance is promised to belong to one of two languages
specifying the allowed input, and the goal is to decide which case (language) a given instance belongs
to. Gap problems are associated with two parameters α, β. For example, in Gap Max Cut[α,β],
we are to distinguish between the case when a given graph admits a cut of size at least βm and the
case when a given graph does not admit a cut of size larger than αm. Similarly for satisfiability
problems with gap [α, β] we are to distinguish between a formula, for which at least βm clauses
can be satisfied, and the case where it is impossible to satisfy more than αm clauses.

To introduce gaps in our reductions, we will use the following fundamental result of Dinur.
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Theorem 2.6. (Almost Linear Size PCP, [17]) 3-Sat ∈ PCP1, 1
2
(log(n) +O(log log(n)),O(1))

3 Combining known reductions for OLA with PCPs and ETH

In this section we discuss the proof of Theorem 1.5, i.e., explain how to show that unless ETH fails,

there is no 2
O( n

logc(n)
)
-time algorithm for Optimum Linear Arrangement, for some constant

c ∈ N. We combine several well known concepts from the complexity theory: the ETH hypothesis,
the PCP theorem, the Sparsification Lemma, gap reductions, and gap amplification.

First, we show that the combination of the ETH hypothesis, together with the almost linear
size PCP theorem, and the Sparsification Lemma, gives subexponential hardness of Gap E3-SAT.
This fact was already observed and used by Marx [37].

Theorem 3.1 (see also Lemma 2.2 of [37]). Unless ETH fails, there exist c ∈ N, and r ∈ (0, 1)

such that there is no 2
O( m

logc(m)
)
-time algorithm for Gap E3-SAT[r,1].

Proof. From Theorem 2.6, it follows that there is a PCP1, 1
2
(log(n)+A log log(n), B) verifier V for

3-SAT, for some constants A,B > 0.

Assume we are given the input E3-CNF formula φ. Fix any ǫ > 0 and apply Lemma 2.4 to
φ, obtaining l = O(2ǫn) instances φi, i = 1, ..., l, each with size bounded by cn, for some constant
c > 0, depending on ǫ. Let R = log(cn) +A log log(cn).

If we take φi as the input to the verifier V , then for each random binary string of length at
most R, it reads at most B bits of the proof (we will assume without loss of generality that
V always reads exactly B bits). Thus, V has access to N bits of the proof in total, where
N ≤ B · 2R = B · cn logA(cn). We create variables x1, ..., xN corresponding to each of these bits.
For a boolean string r of length R, we define a boolean function fr : {0, 1}B → {0, 1}, with its
arguments corresponding to relevant variables xi1 , ..., xiB that can be read from the proof. fr is
defined as follows, for every S ∈ {0, 1}B it evaluates to true on S if and only if V accepts φi using S
as the bits from the proof. Every fr can be written as an equivalent E3-CNF formula Fr (possibly
adding some constant number of variables). Let C be an upper bound (depending on B) for the
number of clauses for each such formula. Let φ′i be a formula combined by AND of all Fr. It has
the number of clauses bounded by C · 2R and the following holds.

If φi is satisfiable, then there is a proof for which V always accepts. By taking the corresponding
values from this proof and setting them to x1, ..., xN , we obtain a satisfying assignment of φ′.

For the proof in the other direction, if φi is not satisfiable, then for any proof for at least half
of all binary strings r the verifier V rejects φi. Consider an arbitrary proof and set the variables
xi to the corresponding values from this proof. Observe, that for the binary strings r for which V
rejects φi at least one clause in Fr at least one clause is false. Consequently, at least 1

2 · 2R clauses
of φ′i are false, i.e., a fraction of at least 1

2C of the total number of clauses of φ′i.

Finally, let us put c = A + 1, and r = 1 − 1
2C and suppose there is a O∗(2

O( m

logA+1(m)
)
)-time

algorithm for Gap E3-SAT[1− 1
2C

,1]. Using this algorithm, we can check whether φi is satisfiable in

time 2o(n) and therefore check whether the initial formula φ is satisfiable in timeO∗(2ǫn+2ǫn·2o(n)) =
O∗(2ǫn). As ǫ is an arbitrary positive number, we obtain a contradiction with the ETH.
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Next, we inspect the chain of three textbook NP-hardness reductions [42], that starts with
Gap E3-SAT and ends with Gap Max Cut. All of them produce an output instance of linear
size in terms of the size of the input instance and at the same time preserve gaps. Combining them
with the previous theorem, we will establish (almost) subexponential hardness of Gap Max Cut.

Theorem 3.2.

Gap E3-SAT[α,β] ≤lin

P Gap E4-NAE-SAT[α,β] ≤lin

P

Gap E3-NAE-SAT
[ 1+α

2
, 1+β

2
]
≤lin

P Gap Max Cut
[ 16+α

18
, 16+β

18
]

Proof. For simplicity, the proof of Theorem 3.2 is split into the following four separate lemmas.

Lemma 3.3.

Gap E3-SAT[α,β] ≤lin

P Gap E4-NAE-SAT[α,β]

Proof. Given an E3-CNF formula φ = C1 ∧ . . . ∧ Cm, we create a new E4-CNF formula φ′ =
C ′
1 ∧ . . . ∧ C ′

m by adding a new variable z to every clause. That is, if Ci = l1 ∨ l2 ∨ l3, then we set
C ′
i = l1 ∨ l2 ∨ l3 ∨ z.
If some assignment satisfies k clauses of φ, then by additionally setting z = 0 the corresponding

k clauses of φ′ are NAE-satisfied. In the other direction, if some assignment ϕ NAE-satisfies k
clauses of φ′, then its negation ϕ̃ also NAE-satisfies k clauses of φ′. W.l.o.g. assume that ϕ sets z
to false, which means that ϕ restricted to the variables of φ satisfies k clauses of φ. Consequently
we obtain a gap preserving reduction and the theorem follows.

Lemma 3.4.

Gap E4-NAE-SAT[α,β] ≤lin

P Gap E3-NAE-SAT
[ 1+α

2
, 1+β

2
]

Proof. Given an E4-CNF formula φ = C1 ∧ ...∧Cm, we add m new variables z1, ..., zm, and replace
every clause Ci = l1 ∨ l2 ∨ l3 ∨ l4 with the following two clauses: C ′

i = l1 ∨ l2 ∨ zi, C ′′
i = l3 ∨ l4 ∨¬zi,

obtaining an E3-CNF formula φ′. In the following we show that one can NAE-satisfy at least k
clauses of φ if and only if one can NAE-satisfy at least m+ k clauses of φ′, which suffices to prove
the theorem.

First, observe that if an assignment NAE-satisfies Ci, then by setting zi appropriately both C ′
i

and C ′′
i become NAE-satisfied. On the other hand if an assignment does not NAE-satisfy Ci, then

setting zi to an arbitrary value NAE-satisfies exactly one clause out of C ′
i and C

′′
i . Consequently if

there is an assignment, which NAE-satisfies k clauses of φ, then it can be extended to an assignment
of variables of φ′, which NAE-satisfies m+ k variables of φ′.

Let us assume that there is an assignment ϕ, which NAE-satisfies at least m + k clauses of
φ′. Note that there is a set I of at least k indices i, such that ϕ NAE-satisfies both C ′

i and C ′′
i .

Consider a fixed i ∈ I and w.l.o.g. assume that ϕ sets zi to false. As ϕ NAE-satisfies both C ′
i and

C ′′
i , we infer that ϕ sets at least one of the literals l1, l2 to true, and at least one of the literals l3, l4

to false. Consequently ϕ restricted to the variables of φ NAE-satisfies all the clauses Ci for i ∈ I,
which finishes the proof of the theorem as |I| ≥ k.

Lemma 3.5.

Gap E3-NAE-SAT[α,β] ≤lin

P Gap Multigraph Max Cut
[ 3+2α

6
, 3+2β

6
]
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Proof. Given an E3-CNF formula φ = C1 ∧ ... ∧ Cm, let ni be the number of occurrences of xi in
φ, both in the positive and negative form. We construct a multigraph G with 2n vertices, and 6m
edges as follows. For each variable xi, we create two vertices corresponding to literals xi, ¬xi, and
add exactly ni edges between them. Finally, for every clause Ci we add a triangle connecting the
vertices corresponding to its literals. We will prove that there is an assignment which NAE-satisfies
at least k clauses of φ if and only if G admits a cut of size at least 3m+ 2k.

Let us assume that there is an assignment which NAE-satisfies k clauses of φ. We put vertices
of G, that correspond to literals evaluated to true, on one side of the cut, and remaining literals to
the other side of the cut. Every edge connecting xi and ¬xi is clearly in the cut, and all of them
contribute

∑

i ni = 3m to the cut. Furthermore, every triangle corresponding to a NAE-satisfied
clause has exactly two edges cut, all of them contribute 2k to the cut. Thus, we obtain the cut of
size at least 3m+ 2k.

Let us assume that G has a cut of size at least 3m+ 2k. First, suppose that xi and ¬xi are on
the same side of the cut for some variable xi. They contribute at most ni edges to the cut, and we
can move one of the vertices xi or ¬xi to the other side of the cut without decreasing the number
of edges in the cut. Thus, we can assume that variables are separated from their negations. The
edges connecting xi and ¬xi contribute exactly 3m to the cut. If a clause triangle is cut 2 times,
then it corresponds to a NAE-satisfied clause, otherwise the clause is not NAE-satisfied as all its
literals have the same value. Thus, we deduce that the considered cut corresponds to an assignment
which NAE-satisfies k clauses of φ.

Lemma 3.6.

Gap Multigraph Max Cut[α,β] ≤lin

P Gap Max Cut
[ 2+α

3
, 2+β

3
]

Proof. Given a multigraph G, for every edge e = uv of G, we create two auxiliary vertices we, ze,
add three edges uwe, weze, zev, and remove the edge uv, obtaining a resulting graph G′. We claim
that G has a cut of size at least k if and only if G′ has a cut of size at least 2m+ k.

Let C be a cut of G of size k. If e = uv 6∈ C, we put we and ze to the side of the cut opposite to
u. This way two of the new edges, i.e., uwe and zev, are in the cut. If e = uv ∈ C, then putting we,
ze to the opposite sides of u, v, respectively, gives three edges in the cut. All together we obtain a
cut of G′ of size 2m+ k.

Let C be a cut of G′ of size 2m+ k. Clearly, there are at least k edges uv of the original graph
G, such that all the three edges uwe, weze, and zev are in the cut C. Note that for such an edge uv
the vertex we is on the side opposite to u, ze in on the side opposite to we and v is on side opposite
to ze, which means that v in on the side of the cut opposite to u. Consequently a restriction of C
to vertices of G gives a cut of size k.

Lemmas 3.3, 3.4, 3.5, and 3.6 together prove Theorem 3.2.

Thus, we infer:

Theorem 3.7. Unless ETH fails, there exist c ∈ N, and 0 ≤ α < β ≤ 1 such that there is no

2
O( m

logc(m)
)
-time algorithm for Gap Max Cut[α,β].

Finally, we modify the reduction by Garey et al. [27] fromMax Cut toOLA. The construction
from [27] introduces a huge clique to the complement of the Max Cut instance; this clique is
supposed to separate in the ordering the sides of an optimum max-cut solution. The clique has to
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be large enough so that the cost of any edge going over the clique eclipses the “noise” contribution
that is given by internal ordering of parts on the left and on the right. For this reason the clique is
chosen to be of size Θ(n4), which imposes a significant blow-up in the instance size and immediately
prevents from obtaining a desired subexponential hardness result.

This is precisely the moment where we exploit that we are working with an instance ofMax Cut
with a gap, as starting with a gap instance, we can accommodate the noise in the gap, and therefore
we only need the clique to be of linear size. Note that in the following theorem the number of vertices
produced is linear, however the produced instance might be dense, hence we cannot use the notation
≤lin

P and formulate the reduction properties explicitly.

Theorem 3.8. There is a polynomial time algorithm, which given an instance I of Gap Max Cut[α,β]

with n vertices produces an instance I ′ of OLA with O(n) vertices, such that if I admits a cut with
at least βm edges, then I ′ is a yes-instance, and if I does not have a cut with at least αm edges,
then I ′ is a no-instance.

Proof. Given the input graph G, we create a corresponding instance of OLA, G′ as follows. We
take a complement of G, i.e., G and add a disjoint clique C of size Mn, for M = ⌈ 2

β−α⌉ and fully

connect it to G.
We will show that G has a cut of size at least βm if and only if G′ has a linear arrangement of

cost at most
((M+1)n+1

3

)

− βm ·Mn, that will prove the equivalence of the instances.
Let (A,B) be a cut of size at least βm. We define a linear arrangement π as follows. First, we

list the vertices of A, then we list the vertices of the clique C and then the vertices of B. The order
of vertices inside A, B and C can be arbitrary. Then by counting the costs of all the edges in the
clique on (M + 1)n vertices we obtain:

∑

uv∈E(G′)

|π(u)− π(v)| +
∑

uv∈E(G)

|π(u)− π(v)| =
(

(M + 1)n + 1

3

)

(∗)

Now, the costs of each edge going across the clique, i.e., each edge in EG′(A,B), is at least Mn,
thus

∑

uv∈E(G) |π(u) − π(v)| ≥ βm ·Mn, and it implies the desired inequality.

In the other direction, let π be a linear arrangement of G′ of cost at most
((M+1)n+1

3

)

−βm ·Mn.
First, we will prove that there exists an optimum linear arrangement π, such that the vertices of
C has to be in the same consecutive block of π. Before that, we will introduce notation regarding
to linear arrangements, also used in other proofs.

We assume the vertices of G′ are ordered from left to right according to a linear arrangement π.
When we speak about the i-th vertex (from the left), we mean the vertex mapped to the number
i by π. A set of vertices U is consecutive in π, if π(U) = {p, p + 1, . . . , q − 1, q} for p, q ∈ N. The
set of all vertices that are to the left of every vertex from some set U is called vertices to the left
of U and denoted by L(U). Similarly, we define vertices to the right of U and denote them by
R(U). A block of U is any inclusion-wise maximal non-empty subset of U that is consecutive in π.
The left-most block of U is the block of U whose vertices are mapped to the smallest values by π.
Second left-most block of U is the first block of U to the right of the left-most block of U . Inner
block of U is the set of all vertices from V (G′) \U located simultaneously to the right the left-most
block of U and to the left of the second left-most block of U (in the case when U forms a single
block, the inner block does not exist).

Claim 3.9. There exists an optimum linear arrangement π of G′ such that the vertices of C are
consecutive in π.

11



Proof. Let us choose π to be an optimum linear arrangement of G′ that minimize the number of
vertices of G that lie between the vertices of C, i.e. f(π) = |{v ∈ V (G) : π(u) < π(v) < π(w), u, w ∈
V (C)}| is the smallest possible. We claim that the vertices of C are consecutive in π, i.e. f(π) = 0.

Assume that this is not the case. Let X be the inner block of C and we consider the following
two cases:

• |EG(L(X),X)| ≤ |EG(X,R(X))|

• |EG(L(X),X)| > |EG(X,R(X))|

In each of them, we will create another linear arrangement that will contradict the assumptions
we made.

G′

L(C) C ′ X R(X)

EG′(L(X),X) EG′(X,R(X))

u

Figure 1: The situation in the proof of Claim 3.9.

If the first case occurs, let C ′ be the left-most block of C. We swap places of C ′ and X.
Then, we consider how it affects the cost of π. First, we note that by (∗), the optimality of
π can be equivalently restated as maximizing the sum of cost of edges of G, i.e. π is optimal if
∑

uv∈E(G) |π(u)−π(v)| is the largest possible. We claim that the value of this sum has not decreased.

Clearly, the cost of edges with both endpoints in V (G) \ X or X does not change. Hence, it is
enough to inspect the edges with exactly one endpoint in X. Every such edge goes from X to L(X)
or from X to R(X). An edge going from X to L(X) has decreased its length by |C|, and an edge
going from X to R(X) has increased its length by |C|. Thus, as |EG(L(X),X)| ≤ |EG(X,R(X))|,
the overall contribution of those edges has not decreased, but the number of vertices between C
has dropped by |X|, leading to the contradiction.

If the second case occurs, let C ′ be the second-left most block of C. Similarly we swap places
of C ′ and X. Again, only affected edges are the ones that have exactly one endpoint in X. The
inequality |EG(L(X),X)| > |EG(X,R(X))| imples that

∑

uv∈E(G) |π(u) − π(v)| has increased at

least by |X|, contradicting the optimality of π.
Thus, we have proved that C has to be consecutive in π.

Let π be the optimum linear arrangement from the claim above. We define a cut (A,B), by
taking A to be L(C) and B to be R(C). Then by (∗) we know:

βm ·Mn ≤
∑

uv∈E(G)

|π(u)− π(v)| =

12



∑

uv∈E(G),
u,v∈A

|π(u)− π(v)| +
∑

uv∈E(G),
u,v∈B

|π(u)− π(v)| +
∑

uv∈E(G),
u∈A,v∈B

|π(u)− π(v)| <

nm+ (Mn+ n) · |EG(A,B)| ≤ 2nm+Mn · |EG(A,B)|
Thus:

|EG(A,B)| > βm− 2m

M
≥ βm− (β − α) ·m = αm

By the promise given by the gap problem we know that if G admits a cut greater than αm, then
it actually admits a cut of size at least βm.

The proof of Theorem 1.5 follows immediately from Theorems 3.7 and 3.8.

4 Sparse reduction

We now introduce a polynomial-time Turing reduction from a gap version of the Min Bisection
problem on d-regular graphs to Optimum Linear Arrangement. Its key property is that the
instances of the former problem result in instances of Optimum Linear Arrangement with
linear number of vertices and bounded degree. Even though the created instance of Optimum
Linear Arrangement is a multigraph, it does not cause any additional difficulties in further
reductions described in Section 5. The reduction allows one to distinguish between instances of
Min Bisection with at most αm edges and at least βm edges in the optimum cut for some fixed
choice of 0 ≤ α < β ≤ 1 by solving the resulting instance of Optimum Linear Arrangement.
This relates Optimum Linear Arrangement to the following hypothesis:

Hypothesis 1.2. There exist 0 ≤ α < β ≤ 1, and an integer d > 4
β−α , such that there is no

2o(n)-time algorithm for Gap Min Bisection(d)[α,β].

The main result of this section is:

Theorem 1.6. Unless Hypothesis 1.2 fails, there exists an integer d ∈ N such that there is no
2o(n)-time algorithm solving OLA≤(d) in multigraphs.

We first describe a transformation T (·) from an instance G of Min Bisection to an instance
of Optimum Linear Arrangement that forms the key component of our reduction. Then, we
introduce several technical claims about its properties. Finally, we prove Theorem 1.3 by showing
how to decide the instances of Gap Min Bisection based on the cost of the optimum arrangement
of T (G). The fact that our reduction exhibits only a linear increase in the size of the instance is
crucial in achieving the 2Ω(n) bound.

The result of transformation T (·) is influenced by several parameters. The choice of their values
is deferred to the proof of Theorem 1.3. Consider an instance G of the Min Bisection problem,
where G is a dG-regular graph. Assume V (G) = {v1, . . . , vn}. The transformation produces a
graph G′ := T (G) with the vertex set {v1, . . . , vn, x1, . . . , xZ·⌈ϕn⌉}, where Z ∈ N and ϕ ∈ (0, 1) are
constants chosen later. Note that G′ contains the vertices of G. Indeed, we are going to construct
the edge-set in such a way that G is an induced subgraph of G′. It is actually convenient to
introduce notation for some of the induced subgraphs of G′. The subgraph with the vertex set
{x1, . . . , xZ·⌈ϕn⌉} is denoted by H. The graph H is (arbitrarily) divided into Z disjoint induced
subgraphs Hi of size ⌈ϕn⌉ each, for some constants Z ∈ N and ϕ ∈ (0, 1).

The result of the transformation is illustrated in Figure 2. The edge-set of G′ is constructed as
follows:
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G H1 H2 H3 HZ

H ≈ GZ⌈ϕn⌉,dH

G′

Hi ≈ G⌈ϕn⌉,dHi

Figure 2: The resulting instance G′ = T (G) after applying the reduction. The original graph G is
an induced subgraph of G′ with its edges shown in green. The edges of the bipartite graph added
between V (G) and V (H1) are shown in blue.

• The induced subgraph of G′ on {v1, . . . , vn} is G.

• We construct a dH -regular expander G|H|,dH using Theorem 2.2 satisfying h(G|H|,dH ) ≥ pH ,
and add its edges on the vertices of H (the value pH will be determined later).

• For each i ∈ {1, . . . , Z} we construct a dHi-regular expander G|Hi|,dHi
using Theorem 2.2

satisfying h(G|Hi|,dHi
) ≥ pHi , and add its edges on the vertices of Hi (the value pHi will be

determined later).

• For each i ∈ {1, . . . , Z} we add a bipartite graph on parts V (G) and V (Hi) such that all
vertices of V (G) have degree 1 in this bipartite graph and the degrees of vertices from V (Hi)
differ by at most 1. We denote the maximum degree of the V (Hi) part of this added bipartite
graph by ∆H,G. It is at most ⌈ 1

ϕ⌉.

Note that we are constructing a multigraph, that is when an edge is to be added several times
in the construction process, we keep all its copies.

In the following part, we give the proof of correctness of the transformation, as well as determine
the parameters driving the reduction. In the proof, we first show that the vertices of H have to be
consecutive in an optimum linear arrangement. Next, we show that actually vertices of each small
expander Hi are consecutive in such an ordering. This is crucial when we analyze the change of
the cost of the ordering when moving a vertex of G from one side of H to the other, and in turn
prove that in an optimum ordering the parts of G to the left and to the right of H are almost of
the same size. Interestingly, in our reduction we have to use the hypothetical oracle solving the
decision version of Optimum Linear Arrangement to find the cost of an optimum ordering of
an auxiliary graph by using binary search.

The constructed G′ is influenced (apart from the input graph G) by our choice of parameters
Z,ϕ, pH and pHi , which in turn influence dH and dHi by Theorem 2.2. The lemmas below impose a
particular structure on the optimum linear arrangement of G′, provided certain inequalities between
these parameters are satisfied. Eventually, the lemmas are employed in the proof of the main
theorem of this section.

The following technical Swapping Lemma establishes a condition on degrees in two consecutive
sets of G′ under which the swapping of the two sets results in a decreased cost of the ordering.
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Lemma 4.1 (Swapping Lemma). Consider an ordering π of any finite graph G′. Assume that the
sets X,Y ⊆ V (G′) are consecutive and X immediately precedes Y . Let L := L(X) and R := R(Y ).
Assume

• the value PX upper bounds the degree of vertices from X in the induced bipartite subgraph
G′[L,X],

• PC is an upper bound on the maximum degree of G′[X,Y ], and

• PY is an upper bound on the degree of a vertex from Y in G′[Y,R].

Finally, let p be a lower bound on the average degree of a vertex from X in G′[X,R]. Then the
inequality p > PX +2PC +PY implies that swapping the vertices of X with the vertices of Y in the
order specified by π results in a decrease in the cost of the ordering.

G′

L := L(X) X Y R := R(Y )

PYPX

PC p

Figure 3: The vertex set of G′ is partitioned into four sets, L,X, Y, and R, in Lemma 4.1. The
bounds PX , PY , PC (upper bounds), and p (a lower bound) on the degrees of the induced bipartite
subgraphs are also shown.

Proof. The situation is illustrated in Figure 3. The length of all edges connecting a pair of vertices
from one of the sets L,X, Y,R remains unchanged after swapping X and Y in the ordering. The
same holds for edges connecting L with R. The length of each edge connecting X and Y increases
by at most |X| + |Y | ≤ 2max{|X|, |Y |}. The cost of each edge connecting X and L increases by
at most |Y |. Similarly, the cost of each edge connecting Y and R increases by at most |X|. On
the other hand, the edges connecting X and R are shortened, each by |Y |. The upper bounds on
maximum degrees and the lower bound on average degree from the statement of the lemma allow
us to lower bound the decrease in the cost of the ordering after the swap is performed. For example,
the decrease in total cost of the edges connecting X with R is at least p|X||Y |. The decrease in
cost after swapping is at least

p|X||Y | − 2min
{

|X|, |Y |
}

PC max
{

|X|, |Y |
}

− |X|PX |Y | − |Y |PY |X|,

which is equal to
|X||Y |(p− 2PC − PX − PY ).

Assuming the inequality from the lemma, this is strictly larger than zero.
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We now make several claims about the optimum ordering π of G′ := T (G), where G is a
dG-regular graph. Recall that that Z,ϕ, pH , pHi , dH , and dHi are the parameters of the transformation
T (·) still to be determined.

Lemma 4.2. If pH > 3∆H,G+3Z+dG and π is an optimum linear arrangement of G′, then V (H)
is consecutive in π.

Proof. Suppose V (H) is not consecutive in π. Consider the left-most block of V (H) and denote its

elements by X. We can assume that |X| ≤ |H|
2 – otherwise we take the right-most block of V (H)

and proceed with a mirrored version of the following argument. Denote by Y the inner block of
V (H) and set L := L(X), R := R(Y ). The following choice of values satisfies the assumptions on
degree upper-bounds of the Lemma 4.1:

PX := ∆H,G, PY := dG + Z, PC := ∆H,G + Z.

Since H is an expander, |X| ≤ |H|/2 and H \ X ⊆ R, we take p = pH . It remains to show the
inequality from the statement of the Swapping Lemma. We have:

p = pH > 3∆H,G + 3Z + dG = PX + 2PC + PY .

Thus, we can swap X and Y and decrease the cost of the ordering. This contradicts the optimality
of π.

Lemma 4.3. Let i ∈ {1, . . . , Z}. If pHi > dHi+1+4dH+2∆H,G, π is an optimum linear arrangement
of G′, and for each i′ < i the vertices of Hi′ are consecutive in π, then the vertices of Hi are
consecutive in π. (For the purposes of this lemma, we set dHZ+1

:= 0.)

Proof. Assume Hi not to be consecutive and denote by X the left-most block of V (Hi) in π.
Similarly to the situation in the proof of Lemma 4.2, we can assume |X| ≤ |Hi|/2. (Otherwise we
consider the right-most block instead and proceed with a mirrored version of the argument.) We
show that moving X to the right decreases the cost of the arrangement.

Denote by u the vertex positioned by π immediately to the right of X. Due to Lemma 4.2, we
know u 6∈ V (G). Therefore, u ∈ V (Hj) for j 6= i. We distinguish two cases: either j < i or j > i.

Suppose that u ∈ V (Hj) for j < i. Note that Hj is consecutive in π. We set Y := V (Hj), L :=
L(X), andR := R(Y ). Again, we employ the Swapping Lemma. The following degree upper-bounds
satisfy its assumptions:

PX := ∆H,G + dH , PY := ∆H,G + dH , PC := dH .

SinceHi is an expander, |X| ≤ |Hi|/2 and V (Hi)\X ⊆ R, we can set the average degree lower-bound
p to pHi . By the inequality from the statement of this lemma, we have

p = pHi > 4dH + 2∆H,G = PX + 2PC + PY .

Thus, the inequality from the Swapping Lemma holds and we can use it to decrease the cost of
ordering, contradicting the optimality of π.

Suppose therefore that u ∈ V (Hj) for j > i. We now use Lemma 4.1 again to move the block
X one position to the right, effectively swapping X and Y := {u}. We set L := L(X), R := R(Y ).
This time, we set:

PX := ∆H,G + dH , PY := ∆H,G + dH + dHi+1 , PC := dH .
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Similarly to the previous cases, we set p := pHi . The inequality from the Swapping Lemma is again
satisfied:

p = pHi > 4dH + 2∆H,G + dHi+1 = PX + 2PC + PY .

Once more, we get a contradiction with the optimality of π.

Due to Lemma 4.2 we know that an optimum linear arrangement of G′ places vertices of H
consecutively, assuming the inequalities from its statement are satisfied. Furthermore, by iterating
Lemma 4.3 we get that within H, the vertices of each Hi are grouped together in the arrangement.
To be precise, in the optimum ordering the subgraphs Hi are placed in the order Hℓ1 ,Hℓ2 , . . . ,HℓZ ,
where (ℓ1, ℓ2, . . . , ℓZ) is a permutation of {1, 2, . . . , Z}. The vertices of G can thus be only to the
left of H or to its right. The next lemma shows that H divides the graph G into two roughly equal
parts.

Lemma 4.4. Assume G′ has been constructed by the transformation T (·) with parameters satisfying
the inequalities from the statements of Lemmas 4.2 and 4.3 as well as Zϕ ≥ 2. Moreover, assume
γ = 3ϕdG. Consider an optimum linear arrangement π of G′ and set A := L(H), B := R(H).
Then

∣

∣|A| − |B|
∣

∣ ≤ γn.

Proof. Assume the imbalance
∣

∣|A| − |B|
∣

∣ is strictly bigger than γn. Without loss of generality,
assume |A| > |B|. We consider the vertex u such that π(u) = 1 (i.e., the one placed on the left side
of the arrangement).

Moving u to the right-most position results in the following changes in the cost of the arrangement.
The cost associated with the edges of G might be increased by at most dG(Z⌈ϕn⌉+n) ≤ dG(Zϕn+
Z + n). Note that for sufficiently large n we have Zϕn

2 ≥ Z and by the assumption of the

Lemma we have Zϕn
2 ≥ n, therefore the cost assosiated with the edges of G increases by at most

dG(Zϕn + Z + n) ≤ 2dGZϕn.
In addition to this, the vertex u is connected to precisely one vertex vi of each Hℓi . Before

moving u, the edge cost of uvi was |A|+ (i− 1)⌈ϕn⌉+ ri, for some 0 ≤ ri ≤ ⌈ϕn⌉ − 1 and after, it
becomes |B|+ ((Z − i+ 1)⌈ϕn⌉ − ri), thus the contribution of all those edges has changed by:

(|B| − |A|)Z +

Z
∑

i=1

((Z − i+1)⌈ϕn⌉− ri)−
Z
∑

i=1

((i− 1)⌈ϕn⌉+ ri) = (|B| − |A|)Z +

Z
∑

i=1

(⌈ϕn⌉− 2ri) <

−γnZ + Z⌈ϕn⌉ γ=3dGϕ
= −3dGZϕn+ Z⌈ϕn⌉

Z⌈ϕn⌉<dGZϕn
< −2dGZϕn

Note that in the last inequality we have used the assumption ⌈ϕn⌉ < dGϕn which holds for dG ≥ 2
and suffiently large n, as ϕ is a constant.

Combining this cost change with the cost increase of edges of G being at most 2dGZϕn, we
obtain that moving u to the right-most position causes the decrease in the cost of π, leading to a
contradiction.

Being equipped with all the required tools, we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. We prove the theorem by introducing a Turing reduction from Gap Min
Bisection(d)[α,β] to OLA≤(d′), where

d >
4

β − α
(1)

17



and d′ is some constant depending on d, α, and β. The reduction proceeds in the following way.
Given an instance G of Gap Min Bisection(d)[α,β], we create an equivalent instance (G′, k)

of OLA≤(d′) based on the transformation T (·) applied to G. The value k will depend on, among
other parameters, the cost of the optimal arrangement of the expander H (recall this is an induced
subgraph of G′). As mentioned in the beginning, the reduction is a Turing reduction. It is therefore
equipped with an oracle solving the decision version of OLA, which in turn is enough to find the
cost of an optimal ordering by using binary search (we will use it to compute OLA(H)).

We start by establishing the parameters of the transformation in the following order.

• First, we set γ := β−α
4 and ϕ := γ

3dG
. Note that γ, ϕ ∈ (0, 1) and γ, ϕ satisfy the condition

γ = 3ϕdG from Lemma 4.4.

• Next, we set the value of Z to the following integer:

Z := ⌈2(2α + 1)

(β − α)ϕ
)⌉ .

In particular Z ≥ 2
ϕ satisfying the condition from Lemma 4.4. Moreover, the following

inequality holds:

2(2α + 1) ≤ (β − α)Zϕ. (2)

• By construction ∆H,G ≤
⌈

1
ϕ

⌉

=
⌈

3dG
γ

⌉

.

• Next, we define pH , which in turn determines the value of dH by Theorem 2.2:

pH := 3∆H,G + 3Z + dG + 1 .

The additive term +1 is just to make sure the inequality from Lemma 4.2 is strict and it
could be replaced by any positive constant.

• Finally, we set the values pHi :

pHi := dHi+1 + 4dH + 2∆H,G + 1,

in the decreasing order i = Z, . . . , 1, where for simplicity we denote dHZ+1
= 0. Note that the

value of pHi determines the value of dHi via Theorem 2.2.

Observe that with the above definition of all the constants we satisfy all the requirements of
Lemmas 4.2, 4.3, 4.4.

Let G′ be the result of the transformation T (G) with the above choice of parameters. The value
k is then set as follows:

k := OLA(H) + αm · (Z⌈ϕn⌉+ n) +m · n
2
+

(

(
n

2
+ 1)

n

2
Z + n

Z
∑

i=1

i⌈ϕn⌉
)

. (3)

Note that to compute the value of k we need use the oracle solving the decision version of T in a
binary search routine. It remains to show that G has a bisection of size at most αm if and only if
G′ has an optimum linear arrangement of size at most k.
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Let us assume G has a bisection with at most αm edges. We claim that k is an upper bound on
the cost of an optimum linear arrangement of G′. This is because it accounts for all costs associated
with an ordering of G′ constructed from the optimum bisection of G. Denote by A,B the partition
of V (G) corresponding to an optimum bisection of G. We create an ordering π that first lists all
vertices of A, then the vertices of H in the order of an optimum linear arrangement of H, and
finally the vertices of B.

The first term of (3) is the cost of all edges inside H. The second term upper bounds the cost
of edges of G between A and B: there are at most αm of them and we upper bound the cost of
every such edge by |V (G′)| = (Z⌈ϕn⌉ + n). In the third term, we account for the cost of edges
within A and within B. There are at most m of them and since |A| = |B| = n

2 every such edge has
cost at most n

2 . The last term is an upper bound on the cost of edges connecting G and H. Every
vertex v of G has an edge to exactly one vertex of each Hℓi . If v ∈ A we may bound its cost by
j(v)+ i⌈ϕn⌉, where j(v) is the length of the part of the ordering from v to the first vertex in H. We
first count the contribution of the j(v)-terms in the above expression for all choices of v ∈ A. Since

|A| = n/2, summing over all v ∈ A and i = 1, . . . , Z we get
∑|A|

j=1 jZ =
(n
2
+1)n

2
2 Z. The situation is

analogous for B. The last term of (3) is obtained by summing the remaining edge costs i⌈ϕn⌉ for
all i = 1, . . . , Z and v ∈ G. This proves the claimed upper bound.

In the other direction, we start with assuming that the graph G′ has an optimum arrangement
π of cost at most k. The aim is to prove that G has a bisection of size at most αm. Lemma 4.2,
Lemma 4.3, and Lemma 4.4 together impose a certain structure on π. Particularly, the vertices of
H are placed together in π. We use this fact to construct a bisection of G. Set A := L(H) and
B := R(H), and if |A| < |B|, then replace A with B. Note that (A,B) is a partition of V (G)
and these two sets might have different sizes with the imbalance bounded by Lemma 4.4. We now
bound the number of edges between A and B. To this end we lower bound the cost of π in terms
of |EG′(A,B)|. Specifically, it is at least:

OLA(H) + |EG′(A,B)| · Z⌈ϕn⌉+
(

(
n

2
+ 1)

n

2
Z + n

Z
∑

i=1

(i− 1)⌈ϕn⌉
)

. (4)

There, the first term of (4) accounts for the cost of the edges of H, as it is lower bounded by
OLA(H). The second term of (4) is a lower bound on the cost of edges of G going across the
partition (A,B). There are |EG′(A,B)| of such edges and each contributes at least Z⌈ϕn⌉ to the
cost. Recall that vertices ofH must have the following orderHℓ′1

,Hℓ′2
, . . . ,Hℓ′Z

, where (ℓ′1, ℓ
′
2, . . . , ℓ

′
Z)

is some permutation of {1, 2, . . . , Z}. The third term lower bounds the cost of edges connecting G to
H. Every vertex v of G has an edge to exactly one vertex from Hℓ′i

. Similarly to the analysis above,
we lower bound the cost of such an edge by j(v) + (i − 1)⌈ϕn⌉. The contribution of j(v)’s from

the above expression for all choices of v ∈ G is equal to
(

∑|A|
j=1 j +

∑|B|
j=1 j

)

Z ≥
(

2
∑

n
2
j=1 j

)

Z ≥
(n2 +1)n2Z. The remaining part is obtained by summing (i−1)⌈ϕn⌉ over all v ∈ G and i = 1, . . . , Z.
Comparing (3) with (4) we obtain:

|EG′(A,B)| · Z⌈ϕn⌉ ≤ αm · (Z⌈ϕn⌉+ n) +m · n
2
+ n

Z
∑

i=1

i⌈ϕn⌉ − n
Z
∑

i=1

(i− 1)⌈ϕn⌉ =

αm · Z⌈ϕn⌉+ 2(2α + 1)mn

4
+ n

Z
∑

i=1

⌈ϕn⌉
by (2)
≤ αm · Z⌈ϕn⌉+ (β − α)m · Zϕn

4
+ n · Z⌈ϕn⌉

ϕn≤⌈ϕn⌉
≤
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αm · Z⌈ϕn⌉+ (β − α)m

4
· Z⌈ϕn⌉+ n · Z⌈ϕn⌉

n= 2
dG

m<β−α
2

m by (1)
<

α+ 3β

4
m · Z⌈ϕn⌉.

We infer that |EG′(A,B)| < α+3β
4 m. Next, we create a bisection (A′, B′) of G as follows. Let C

be a set of |A|−|B|
2 arbitrary vertices of A, then we put A′ = A− C, B′ = B ∪ C. By moving these

vertices we get at most γn
2 · dG = γm additional edges in the cut, thus:

|EG′(A′, B′)| ≤ |EG′(A,B)|+ γm <
α+ 3β

4
m+

β − α

4
m = βm.

Therefore, we have |EG′(A′, B′)| < βm. Since the problem considered is a gap problem, we know
that G admits either a bisection of size at most αm or there is no bisection of size less then βm.
Therefore, we conclude the instance admits a bisection of size at most αm.

5 Lower Bounds for Minimum Fill-in and Other Completion

Problems

In this section we prove Theorems 1.1 and 1.3, that is prove conditional lower bounds (under
ETH and under Hypothesis 1.2) for parameterized completion problems such as Minimum Fill-In,
Chain Completion, Proper Interval Completion, Interval Completion, Threshold
Completion, Trivially Perfect Completion. As a starting point we use Theorems 1.5
and 1.6, hence our goal is to transform an instance of OLA into an instance of a graph completion
problem. The main reduction of this section, which transforms an instance of OLA to Chain
Completion is a slight modification of the reduction of Yannakakis [44], with the only difference
that on bounded degree instance of OLA we obtain linear number of vertices in the final instance
of Chain Completion. This fact is crucial to prove Theorem 1.3 while for proof of Theorem 1.1
it is enough to use the original version of Yannakakis reduction.

Definition 5.1. A bipartite graph (A,B,F ) with vertices A ⊎ B and edges F is a chain graph if
the set of vertices A (called left side) can be ordered v1, v2, . . . , vn (called left order) in such a way
that N(v1) ⊆ N(v2) ⊆ · · · ⊆ N(vn).

In the Chain Completion problem given a bipartite graph (A,B,F ) one is asked to add a
minimum number of edges F ′ ⊆ A×B \ F such that (A,B,F ∪ F ′) is a chain graph.

Lemma 5.2. There is a polynomial time algorithm, which given an instance I = (G = (V,E), k)
of Optimum Linear Arrangement creates an equivalent instance I ′ = (G′ = (A,B,F ), k′) of
Chain Completion, such that the number of vertices of G′ is bounded by O(∆G · |V |), where ∆G

is the maximum degree of G. The reduction works even if G is a multigraph.

Proof. As the left side of G′ we take A = V . For each vertex v ∈ V create a set of ∆G new vertices
Sv = {ve : e ∈ δG(v)} ∪ {vi : deg(v) < i ≤ ∆G}. We define B as the union of all the sets Sv, thus
B contains exactly ∆G · |V | vertices. The set of edges F is constructed as follows. For each w ∈ Sv
we add to F an edge vw. Additionally, for each ve ∈ B, where e ∈ E, e = uv we add to F an edge
uve, so that the vertex ve is of degree exactly two in G′. The described transformation is depicted

in Fig. 4. To finish the construction of I ′ we define k′ = k +∆G
n(n−1)

2 − 2|E|.
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(b) Chain Completion instance G
′

Figure 4: Transformation of Optimum Linear Arrangement to Chain Completion

For a given ordering π of the vertices of the graph G = (V,E) denote by C(G,π) the cost of
arrangement induced by this ordering (i.e., C(π,G) =

∑

uv∈E |π(u) − π(v)|). For an ordering σ of
the left side A of the bipartite graph G′ = (A,B,F ) denote by E(G′, σ) the number of edges that
we should add to obtain a minimal chain graph in which the left order coincides with σ. We will
prove the following claim.

Claim 5.3. For any ordering π of V (or equivalently A) we have E(G′, π) = C(G,π)+∆G
n(n−1)

2 −
2|E|.

Proof. Let us inspect what is the number of edges in a minimal chain bipartite graph G′′ which
has left order π = (v1, v2, . . . , vn) and contains G′ = (A,B,F ) as a subgraph. We know that
N(vi) ⊆ N(vj) for any i < j, which means that each x ∈ Svi must be connected to all vertices from
the set {vi, vi+1, . . . , vn}. So it means that each vertex from Svi is connected to at least (n+1)− i
vertices from the set A. Moreover, by minimality of G′′ the vertex x is connected to exactly this
number of the vertices if x does not correspond to any edge in G, i.e., when x is of degree exactly
one in G′. If a vertex wi ∈ Svi corresponds to some edge e ∈ G with endpoints vi, vj (note there
could be several edges with equal endpoints as we are working with multigraphs) then the vertex
wi is connected to vertices vi, vj in the graph G′. Hence, in a minimal chain graph G′′ the degree
of wi is either (n+1)− i or (n+1)− j = (n+1)− i+ (i− j) depending on whether i < j or i > j.
Note that there is a second vertex wj ∈ Svj which also corresponds to the edge e. The degrees of
wi and wj in G′′ both are equal to (n+ 1)− i or (n+ 1)− j, depending whether i < j or i > j. In
both cases the sum of degrees wi, wj in G′′ can be written as ((n+ 1)− i) + ((n+ 1)− j) + |i− j|.
Hence, for each edge e with endpoints vi, vj we have additional cost of |i − j|. Summing up, we
infer that the number of edges in G′′ equals

∆G(

n
∑

i

((n+ 1)− i)) +
∑

vivj∈E
|i− j| = ∆G

n(n+ 1)

2
+C(G,π).

The number of added edges equals the number of edges in G′′ minus the number of edges in G′.
So we add exactly

(∆G
n(n+ 1)

2
+ C(G,π)) − (∆Gn+ 2|E|) = ∆G

n(n− 1)

2
+ C(G,π)− 2|E|

edges.
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Graph class name Forbidden induced subgraphs

Chordal Cn for n ≥ 4
Proper Interval claw, 2-net, 3-tent, Cn for n ≥ 4

Interval bipartite claw, umbrella, n-net for n ≥ 2, n-tent for n ≥ 3, Cn for n ≥ 4
Threshold 2K2, C4, P4

Trivially perfect C4, P4

Table 1: Characterization of graph classes by forbidden induced subgraphs

Equivalence of the instances I and I ′ follows from the claim, and it proves the lemma.

Having an instance of Chain Completion we transform it further to an instance of other
completion problems by simply making A a clique, or by making both A and B cliques. By
inspecting the forbidden subgraphs definition of each graph class we infer the equivalence of the
instances, which is enough to prove Theorems 1.1 and 1.3.

(a) claw (b) P4 (c) 2K2

n1

2
. . .

(d) Cn, n ≥ 4 (e) bipartite claw

(f) umbrella

1 2 n. . .

(g) n-net, n ≥ 2

1 2 3
. . . n

(h) n-tent, n ≥ 3

Figure 5: Forbidden induced subgraphs for various graph classes

Classes of chordal, interval, proper interval, threshold, trivially perfect graphs have many
characterizations. For our purposes the most convenient one is by the set of forbidden induced
subgraphs [12]. The characterization is presented in Table 1.

Lemma 5.4. There are polynomial time reductions from Chain Completion problem to Minimum
Fill-In, Interval Completion, Proper Interval Completion, Threshold Completion,
Trivially Perfect Completion problems and these reductions do not change vertex set.

Proof. For any bipartite graph H ′ = (U1, U2, F ) consider a graph Ch(H ′) = (U1, U2, F ∪{uv|u, v ∈
U1} ∪ {uv|u, v ∈ U2}). In [44] it is shown that any bipartite graph H ′ is a chain graph if and only
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if Ch(H ′) is a chordal graph. It means that in order to reduce an instance of Chain Completion
H = (A,B,F ) to Minimum Fill-In it is enough to construct cliques on sets of vertices A and
B. So the constructed graph is a union of two cliques and some edges between cliques. Hence any
arbitrarily completion of this graph does not contain a claw, bipartite claw, umbrella, p-net, q-tent
for p ≥ 2, q ≥ 3 as these graphs have an independent set of size 3 and a union of two cliques does
not. It follows that solutions for Minimum Fill-In, Proper Interval Completion,Interval
Completion problems on such instances coincide and we can look at this reduction to Minimum
Fill-In as a reduction to Proper Interval Completion or Interval Completion problems.

It is left to show a reduction from a Chain Completion instance to Threshold Completion
and Trivially Perfect Completion instances. Having a Chain Completion instance with a
bipartite graph H = (A,B,F ) we consider Trivially Perfect Completion and Threshold
Completion problems on the graph G = (A ∪ B,F ∪ {(u, v)|u, v ∈ A}). We just add edges such
that A becomes a clique. We show that a minimum chain completion of the graph H corresponds
to a completion towards trivially perfect or threshold graph. Let F ′ be a solution of Chain
Completion for the graph H. Consider graph G′ = (A ∪ B,F ∪ {(u, v)|u, v ∈ A} ∪ F ′), G′ is a
union of independent set and clique plus some edges between independent set and clique. So it
does not contain induced 2K2 or C4. If G′ contains induced P4 = v1v2v3v4 then v2, v3 belong to
clique and v1, v4 to independent set. However, this contradict to fact that edges between clique and
independent set form a chain completion. As G′ does not contain induced 2K2, P4, C4 it is trivially
perfect and threshold graph. Let now F ′ denote solution of Trivially Perfect Completion
or Threshold Completion on instance G′. To finish the proof of correctness of reduction it is
enough to show that (A,B, (F ∪F ′)∩E(A,B)) is a chain graph. If this graph is not a chain graph
then it must contain two independent edges v1v2, v3v4 [44]. However in such case graph on vertices
v1, v2, v3, v4 will induce a P4 in graph G′∪F ′ which contradict to the fact that G′∪F ′ is a threshold
or trivially perfect graph.

To sum up all our reductions fromChain Completion toMinimum Fill-In, Proper Interval
Completion, Interval Completion, ThresholdCompletion, Trivially Perfect Completion
add some edges to a graph of Chain Completion instance and do not change a vertex set of a
graph.

At this point we almost proved Theorem 1.1 and Theorem 1.3.

Theorem 1.1. Unless ETH fails, there is an integer c ≥ 1 such that there are no 2O(
√
n/ logc n),

and consequently no 2O(k1/4/ logc k) ·nO(1) algorithms for the following problems: Minimum Fill-In,
Interval Completion, Proper Interval Completion, Trivially Perfect Completion,
Threshold Completion, Chain Completion.

Proof. If the statement is not true then for some of the problems there is an algorithm running
in time 2O(

√
n/ logc n). Having instance of Optimum Linear Arrangement on n vertices we can

reduce it to problem under consideration with (∆G +1)n = O(n2) vertices by Lemmas 5.2 and 5.4.

This gives us an 2O(
√
n2/ logc n2) = 2O(n/logcn) time algorithm which contradicts Theorem 1.5. As

k ≤ n2 we also have 2Ω(k1/4/ logc k) · nO(1) lower bound on the running time.

Theorem 1.3. Unless Hypothesis 1.2 fails, there is no 2o(n+m)-time algorithm for Chain Completion,
and no 2o(n)-time algorithms for Minimum Fill-In, Interval Completion, Proper Interval
Completion, Trivially Perfect Completion, and Threshold Completion. Consequently,

none of these problems can be solved in time 2o(
√
k) · nO(1).
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Proof. In Section 4 we transformed a d-regular Min Bisection instance to Optimum Linear
Arrangement instance with bounded degree. Pipelined with Lemma 5.2 we get a reduction from
d-regular Min Bisection to a Chain Completion instance with O(n) vertices and edges. So
2o(n+m)-time algorithm for Chain Completion contradicts Hypothesis 1.2. By Lemma 5.4 we can
reduce Chain Completion to Minimum Fill-In, Interval Completion, Proper Interval
Completion,Trivially Perfect Completion, andThreshold Completion instance without
changing the vertex set. Combining all three reductions in one we get reductions from Min
Bisection toMinimum Fill-In, Proper Interval Completion, Interval Completion,Threshold
Completion, Trivially Perfect Completion problems which transform an instance with n
vertices into an instance with O(n) vertices. This leads to 2Ω(n) lower bound for all discussed

completion problems as well as to 2Ω(
√
k) · nO(1) lower bound because k ≤ n2.

6 Hardness of Feedback Arc Set in Tournaments

In this section we prove Theorem 1.4, that is, the lower bound on the complexity of Feedback Arc
Set in Tournaments. We start with preparing an appropriately hard instance of Feedback Arc Set
in general digraphs, so that we can apply the reduction of Ailon et al. [1].

6.1 Preparing a hard instance of FAS

By (E31,1,E2d,d)-SAT we denote the version of 3-Sat where every variable has

• exactly 1 positive occurrence in a clause of size 3,

• exactly 1 negative occurrence in a clause of size 3,

• exactly d positive occurrences in clauses of size 2,

• exactly d negative occurrences in clauses of size 2, and

• there are no clauses of size 1.

Similarly as before, Gap (E31,1,E2d,d)-SAT[α,β] for 0 ≤ α < β ≤ 1 is the problem of distinguishing

whether the maximum number of clauses that can be satisfied in a given instance of (E31,1,E2d,d)-SAT
is at most αm, or at least βm, where m is the total number of clauses. We now give a hardness
result for Gap (E31,1,E2d,d)-SAT[α,β].

Lemma 6.1. There exists a positive integer d such that

Gap E3-NAE-SAT[α,1] ≤lin

P Gap (E31,1,E2d,d)-SAT[ 1+α+3d
2+3d

,1]

Proof. Let φ be the input E3-CNF formula. For every variable x, let n(x) be the number of
occurrences of x in φ. LetGx be a d-regular expander with n(x) vertices, obtained using Theorem 2.2
for p = 2; suppose vertices of Gx are numbered 1, 2, . . . , n(x). Create ψ as follows:

• Replace x with n(x) new variables x1, x2, . . . , xn(x), corresponding to the occurrences of x in
φ;

• For every ij ∈ E(Gx) with i 6= j, introduce two clauses (¬xi ∨ xj) and (xi ∨ ¬xj), which (if
unbroken) force the evaluation of xi to be equal to that of xj ;
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• For every ii ∈ E(Gx), introduce a trivial clause (¬xi ∨ xi);

• Perform the same construction for every other variable of φ;

• For every 3-clause C of φ, introduce two new clauses C ′ and C ′′ to ψ. Clause C ′ is constructed
from C by replacing each occurrence of some variable x with the new variable xi corresponding
to this occurrence; the polarity of the literals in C ′ is the same as in C. Clause C ′′ is
constructed from C ′ by reversing the polarity of each literal. For example, if C = (x∨¬y∨z),
then C ′ = (xi ∨ ¬yj ∨ zk) and C ′′ = (¬xi ∨ yj ∨ ¬zk), where i, j, k are the indices of the
occurrences of x, y, z in C, respectively.

It is easy to see that every variable of the new formula ψ appears in exactly two 3-clauses, once
positively and once negatively. Also, it has exactly 2d occurrences in 2-clauses: d positive and d
negative. Since the original formula had only clauses of size 3, the new formula has exactly 3m
variables and m(2 + 3d) clauses.

If there is a variable evaluation λ for φ that NAE-satisfies all clauses of φ, then we can construct
a variable evaluation λ′ for ψ by assigning all the variables xi that originate in variables x the value
λ(x). Then it is easy to see that λ′ satisfies all the clauses of ψ.

Suppose now that every variable evaluation for φ NAE-satisfies at most αm clauses, and for
the sake of contradiction suppose that there is a variable evaluation λ′ for ψ that satisfies more
than (1+α+3d)m clauses. Let x be a variable of φ, and let us modify λ′ as follows: assign all the
variables x1, x2, . . . , xn(x) the value that is taken by the majority of these variables in the original
evaluation λ′ (breaking ties arbitrarily). Observe that since h(Gx) ≥ 2, this step cannot decrease
the number of satisfied clauses: if q is the number of variables out of x1, x2, . . . , xn(x) that take
the minority value, then by replacing their values by the majority value we can unsatisfy at most
2q 3-clauses, but we satisfy at least h(Gx) · q ≥ 2q 2-clauses that were previously unsatisfied. By
performing this operation for every variable of φ, we can assume without loss of generality that in
λ′ all the variables originating in the same variable of φ are assigned the same value. This naturally
defines a variable evaluation λ for φ. Then, provided λ′ satisfied more than (1 + α+ 3d)m clauses
of ψ, we infer that λ NAE-satisfies more than αm clauses of φ. This is a contradiction.

We now turn our attention to the Feedback Vertex Set in general directed multigraphs:
given a directed multigraph G, find the smallest possible subset of vertices X such that G −X is
acyclic. By FVS-BAL(d) we denote the variant of FVS where the input directed multigraph has
no loops, and is 2d-regular and balanced, i.e., the indegree and the outdegree of every vertex is
equal to d. Again, Gap FVS-BAL(d)[α,β] is the gap problem where we need to distinguish between
the cases when the optimum size of X is at most αn and at least βn, where n is the number of
vertices of the multigraph.

Lemma 6.2.

Gap (E31,1,E2d,d)-SAT[α,1] ≤
lin

P Gap FVS-BAL(d+ 2)[1/2,(4−α)/6]

Proof. Let φ be the input instance of (E31,1,E2d,d)-SAT, and let n be the number of variables of
φ. Then m, the number of clauses of φ, is equal to (2/3 + d)n.

Construct a directed multigraph G as follows. For every variable x of φ, create two vertices
ux⊤ and ux⊥, corresponding to setting x to true and false, respectively. Add edges (ux⊤, u

x
⊥) and

(ux⊥, u
x
⊤) to the edge set, for every variable x of φ. Moreover, for every 2-clause of φ add a 2-cycle

between vertices corresponding to its literals (e.g. clause x ∨ ¬y gives rise to edges (ux⊤, u
y
⊥) and
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(uy⊥, u
x
⊤)), and similarly for every 3-clause of φ add a 3-cycle between vertices corresponding to its

literals, oriented arbitrarily. Note that in this manner trivial clauses of the form (¬x ∨ x) give rise
to additional copies of the 2-cycle (ux⊤, u

x
⊥)(u

x
⊤, u

x
⊥). This concludes the construction of G. It is

easy to verify using the assumed properties of φ that every vertex of G has indegree and outdegree
equal to d + 2, and moreover in the construction we did not introduce loops. Let n′ = 2n be the
number of vertices in G.

Suppose first that there exists a variable evaluation λ for φ that satisfies all the clauses of φ.
Define X to be the set of all the vertices uxλ(x) for x being a variable of φ; note that |X| = n =

n′/2. Since λ satisfies all the clauses, and every variable of φ participates in exactly one 3-clause
positively and in exactly one 3-clause negatively, then it is easy to see that all the weakly connected
components of G−X are either isolated vertices or single edges. Thus, G−X is acyclic.

Assume now that every variable evaluation for φ satisfies at most αm clauses, and for the sake
of contradiction suppose that there exists a set X with |X| < 4−α

6 n′ = 4−α
3 n such that G − X is

acyclic. Observe that from each pair {ux⊤, ux⊥} at least one vertex has to belong to X. Define a
variable evaluation λ for φ as follows: if |{ux⊤, ux⊥} ∩ X| = 1, then λ(x) is such that uxλ(x) ∈ X,

and otherwise λ(x) is chosen arbitrarily. Observe that the first alternative holds for a set of more
than n− 1−α

3 n variables; let us denote them by S. Since G−X is acyclic, each of 2- and 3-cycles
constructed for a clause C of φ has at least one vertex from X. If all the variables of C belong to
S, then it can be easily seen that this implies that λ satisfies C. Hence, the only clauses of φ that
can be unsatisfied by λ are the ones that contain at least one variable outside S. Every variable of
φ occurs in at most 2d+2 clauses, and there are less than 1−α

3 ·n variables outside S, which means

that λ unsatisfies less than (1−α)(2d+2)
3 · n clauses. Hence the fraction of unsatisfied clauses is less

than
(1− α)(2d + 2)n

3m
=

(1− α)(2d + 2)

(2 + 3d)
≤ 1− α.

This is a contradiction.

Finally, there is a well-known reduction that reduces Feedback Vertex Set to Feedback Arc Set
in the directed setting. This reduction appears to preserve the gap. In the following, byGap FAS(d)[α,β]
we denote the problem of determining, for a given directed multigraph G without loops whose
underlying undirected multigraph is d-regular, whether the minimum number of edges that needs
to be removed from G to make it acyclic is at most αm or at least βm, where 0 ≤ α < β ≤ 1 and
m is the number of edges in G.

Lemma 6.3.

Gap FVS-BAL(d)[α,β] ≤lin

P Gap FAS(d+ 1)
[ α
d+1

, β
d+1

]

Proof. Let G be the input directed multigraph, and let n and m denote the numbers of edges and
vertices of G, respectively; by the assumption that G is 2d-regular we know thatm = dn. Construct
a graph G′ as follows:

• For every u ∈ V (G) create two vertices u−, u+ ∈ V (G′) and an edge (u−, u+) ∈ E(G′);

• For every edge (u, v) ∈ E(G), create an edge (u+, v−).

This concludes the construction of G′. Let E1, E2 be the sets of edges constructed in the first and
second bullet point, respectively. Since G was 2d-regular and balanced, we infer that every vertex
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u+ has outdegree d and indegree 1, whereas every vertex u− has outdegree 1 and indegree d. Thus,
G′ has n′ = 2n vertices and m′ = m+ n = (d+ 1)n edges.

Suppose first that X is a subset of vertices of G with size at most αn such that G − X is
acyclic. Let F = {(u+, u−) |, u ∈ X} ⊆ E1. Then it can be easily seen that G′ − F is acyclic, and
|F | = |X| ≤ αn = α

d+1m
′.

Assume now that every subset X ⊆ V (G) for which G−X is acyclic has size at least βn, and
for the sake of contradiction suppose that there is a set F ⊆ E(G′) such that G′ − F is acyclic
and |F | < β

d+1m
′. Observe that if F contains some edge (u+, v−) ∈ E2, then we could modify F

by removing (u+, v−) from F and adding (v−, v+) to F (unless it is not already contained in F , in
which case we do not add any edge to F ). This operation can only decrease the number of edges
in F and preserves the property that G′ − F is acyclic; this is because after removing (v−, v+), v−

becomes a sink. Thus, without loss of generality we can assume that F ⊆ E1. Let X be the set of
vertices u ∈ V (G) for which (u−, u+) ∈ F . Since G′ − F is acyclic, it easily follows that G −X is
also acyclic. Moreover, |X| = |F | < β

d+1m
′ = βn. This is a contradiction.

Finally, observe that in an instance of FAS without loops one can subdivide every edge once,
which doubles the number of edges while not changing the size of the optimum solution. Thus,
application of this reduction to the gap problem shrinks the gap twice and makes the directed
graph at hand simple: it has no loops, no parallel edges, and moreover if (u, v) is an edge then
(v, u) is not. By combining this observation with Theorem 3.1 and Lemmas 3.3, 3.4, 6.1, 6.2, and 6.3,
we obtain the following result.

Theorem 6.4. Unless ETH fails, there exist 0 ≤ α < β ≤ 1, c ≥ 1, and d > 0 such that there is

no 2
O( n

logc(n)
)

algorithm for Gap FAS[α,β] on directed simple graphs of maximum total degree d.

6.2 Reducing FAS to FAST

Theorem 1.4. Unless ETH fails, there is an integer c ≥ 1 such that there is no 2O(
√
n/ logc n), and

consequently no 2O(k1/4/ logc k) · nO(1) algorithm for Feedback Arc Set in Tournaments.

Proof. We provide a randomized reduction that essentially reiterates the argument of Ailon et
al. [1]. In the analysis, we use the known fact that for any directed graph H, fas(H) is equal to
the minimum possible number of edges oriented backwards (called feedback edges) in an ordering
of vertices of V (H), where fas(H) is the optimum size of a feedback arc set in H. Thus, we may
equivalently think of the FAS problem as finding an ordering π of V (H) that minimizes the number
of feedback edges. For an ordering π of V (H), by fas(H,π) we denote the number of feedback edges
in the ordering π.

Let α, β, c, d be the constants given by Theorem 6.4, and let G be an instance of Gap FAS[α,β],
where G is a simple directed graph with n vertices and m edges and has maximum total degree d.
Note that w.l.o.g. we may assume m ≥ n, as otherwise there is a vertex in G with no outgoing
edges, which can be safely removed. Let us fix an integer k, to be determined later. We consider the
k-blow up Gk defined as follows: for every u ∈ V (G) we create a k vertices u1, u2, . . . , uk in Gk, and
for all 1 ≤ i, j ≤ k we put (ui, vj) ∈ E(Gk) if and only if (u, v) ∈ E(G). Thus, vertices ui are twins.
Ailon et al. [1], based on a communication by Alon, argue that there is an optimum ordering for Gk

which may be obtained by taking an optimum ordering for G and replacing every vertex u ∈ V (G)
by a block consisting of vertices {ui}1≤i≤k in any order; hence in particular fas(Gk) = k2 · fas(G).
For an ordering σ of V (G), let σk be an ordering of V (Gk) constructed in the manner descibed
above.
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Construct a tournament Tk from Gk by adding edges between every pair of vertices that are
not connected by an edge in Gk, where the orientations of these edges are chosen independently
and uniformly at random. Observe that |E(Gk)| = k2 · |E(G)| ≤ dk2n/2. Let Rk = (V (Tk), E(Tk)\
E(Gk)) be the directed graph consisting only of the edges picked at random. Then for a sufficiently

large n we have that |E(Rk)| =
(nk
2

)

− |E(Gk)| ≥ (nk)2

4 , and of course |E(Rk)| ≤ (nk)2

2 .
We now prove that with high probability, Feedback Arc Set(Tk) is closely related to

Feedback Arc Set(Gk), because the number of feedback edges that need to be chosen from the
edges picked at random is concentrated around the expected value.

Let us fix some ordering π of V (Gk), then fas(Tk, π) = fas(Gk, π)+fas(Rk, π). For e ∈ E(Rk), let
Xe be the indicator random variable having value 1 if e is a feedback edge w.r.t. π, and 0 otherwise.

Let also X =
∑

e∈E(Rk)
Xe; then EX = |E(Rk)|

2 . Let η = β−α
3 . Since Xe-s are independent, from

the Chernoff bound we obtain that

Pr(|X − EX| ≥ ηk2n) ≤ 2 exp

(

−2η2k4n2

|E(Rk)|

)

≤ 2 exp(−4k2η2).

Suppose now that there exists an ordering π of V (G) that has at most αm feedback edges.
Then, with probability at least 1− 2 exp(−4η2k2) we have that

fas(Tk, πk) ≤ αk2m+ |E(Rk)|/2 + ηk2n ≤ 2α + β

3
· k2m+ |E(Rk)|/2. (5)

Hence, if we can set k to be a large enough constant, such that conclusion (5) holds with probability
at least 3/4.

Suppose now that fas(G) ≥ βm. Then, for a fixed ordering σ of V (Gk) we have that with
probability at least 1− 2 exp(−4η2k2) it holds that

fas(Tk, σ) ≥ fas(Gk, σ) + |E(Rk)|/2 − ηk2n ≥ k2fas(G) + |E(Rk)|/2− ηk2n

≥ k2βm+ |E(Rk)|/2− ηk2n ≥ α+ 2β

3
· k2m+ |E(Rk)|/2. (6)

We would like to infer that with high probability this conclusion holds for all the possible orderings σ,
and for this we will use the union bound. Observe that the number of orderings σ of V (Gk) is (nk)! =
exp(O(nk log(nk))), while the probability of failure for each of them is at most 2 exp(−4η2k2). Since
η is a positive constant, simple computations show that by setting k = Θ(n log n), we have that
(nk)! · 2 exp(−4η2k2) ≤ 1/4, and hence conclusion (6) holds simultaneously for all orderings σ with
probability at least 3/4.

Suppose now that Feedback Arc Set in Tournaments admitted an algorithm with running

time 2
O( n1/2

logc
′
n
)
for c′ = c+ 1

2 , where c is as in Theorem 6.4. Apply this algorithm to the constructed
tournament Tk to compute fas(Tk). In case fas(G) ≤ αm, then with probability at least 3/4 we
have that fas(Tk) ≤ 2α+β

3 · k2m+ |E(Rk)|/2. In case fas(G) ≥ βm, then with probability at least

3/4 we have that fas(Tk) ≥ α+2β
3 · k2m+ |E(Rk)|/2. Since 2α+β

3 < α+2β
3 , these two alternatives are

disjoint and the algorithm can, with double-sided error, resolve the input instance of Gap FAS[α,β].

Since |V (Tk)| = Θ(n2 log n), this procedure runs in time 2
O( n

logc(n)
)
. This is a contradiction with

Theorem 6.4.
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7 Conclusions

In this work we have given evidence that 2O(
√
k·polylog(k)) · nO(1) can be the final answer for

the running times of parameterized algorithms for Minimum Fill-In, Interval Completion,
Proper Interval Completion, Trivially Perfect Completion, Threshold Completion,
and Chain Completion. This evidence is based on a new complexity hypothesis connected to the
hardness of approximation for the Min Bisection problem. Thus, the answer given by us is not
completely satisfactory: the lower bounds that we can give only under the assumption of ETH are
much weaker. Rather, our results uncover a surprising link between the parameterized algorithms
for Minimum Fill-In and related problems, and the approximability of Min Bisection. Thus it
seems that the question about the optimality of the former has a much deeper, fundamental nature.

Therefore, we believe that our work strongly motivates further investigation of Hypothesis 1.2.
Can this conjecture be linked to ETH and possibly some other strong conjectures like SETH, the
existence of linear PCPs, or the conjectures proposed by Feige [22]? Or maybe it can be simply
disproved?

Our improved lower bound for Feedback Arc Set in Tournaments still has a gap between
k1/4 and k1/2. A closer inspection of the proof uncovers a fundamental obstacle for why we cannot
achieve tightness: the Chernoff concentration bound used in the proof of Theorem 1.4 is essentially
tight, because in every tournament on n vertices there is a feedback arc set of size

(n
2

)

/2−Ω(n3/2) [29].

If this error term was of magnitude Θ(n) instead of Θ(n3/2), then our approach would give a tight
result for FAST. Can this problem be circumvented, or maybe the high anticoncentration of the
number of feedback edges in a random ordering of a tournament can be exploited algorithmically
to obtain a faster algorithm?

Finally, even assuming Hypothesis 1.2 we do not get tight bounds, due to the (poly)logarithmic
factors in the exponent describing the running time of the existing algorithms for completion
problems. Bridging this gap can be seen as another forthcoming goal.
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A Problem definitions

Optimum Linear Arrangement (OLA)
Input: A graph G = (V,E), an integer k.
Question: Does there exist a linear arrangement π of G of cost at most k?

Optimum Linear Arrangement≤(d) (OLA≤(d))
Input: A graph G = (V,E) with degree at most d, an integer k.
Question: Does there exist a linear arrangement π of G of cost at most k?
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Max Cut
Input: A graph G = (V,E), an integer k
Question: Does there exist a cut of size at least k?

Gap Max Cut[α,β]

Input: A graph G = (V,E).
Case 1: G admits a cut of size at least βm.
Case 2: G does not admit a cut of size larger than αm.

Min Bisection
Input: A graph G = (V,E) with even number of vertices, an integer k.
Question: Does there exist a cut (A,B) of size at most k, such that |A| = |B|?

Gap Min Bisection(d)[α,β]
Input: A d-regular graph G = (V,E) with even number of vertices.
Case 1: G admits a cut (A,B) of size at least βm, such that |A| = |B|.
Case 2: G does not admit a cut (A,B) of size larger than αm, such that |A| = |B|.

A.1 Satisfiability problems

We consider several variants of the satisfiability problem, in general defined as follows.

X-Sat
Input: An X-Sat formula φ = C1 ∧ . . . ∧ Cm.
Question: Does there exist an assignment of the variables of φ, such that φ is satisfiable?

X-Sat[α,β]

Input: An X-Sat formula φ = C1 ∧ . . . ,∧Cm.
Case 1: φ admits an assignment satisfying at least βm clauses.
Case 2: φ does not admit an assignment assignment satisfying more than αm clauses.

Where an X-Sat formula is a formula from the Sat related problem, precisely it is an El-CNF
formula for El-Sat, El-NAE-Sat, and an l-AND formula for l-And-Sat.

We also similarly define a problem X-Sat (d) with the difference that the variables of an input
formula occur in at most d clauses, e.g. l-And-Sat (d).

A.2 Completion problems

The following problems is a generic version of a completion problem to a given graph class X.
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X-Completion
Input: An undirected graph G, an integer k.
Question: Is it possible to add at most k edges to G, so that the obtained graph belongs to
the graph class X?

We consider the following list of completion problems: Minimum Fill-In, Chain Completion,
Proper Interval Completion, Interval Completion, Threshold Completion, Trivially
Perfect Completion, where Minimum Fill-In is completion to chordal graphs, and other
problems have self-descriptive names.
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