
Automated Precision Tuning in Activity Classification Systems:
A Case Study

Nicola Fossati, Daniele Cattaneo, Michele Chiari, Stefano Cherubin, Giovanni Agosta
Politecnico di Milano, DEIB

nicola.fossati@mail.polimi.it,{daniele.cattaneo,michele.chiari,stefano.cherubin}@polimi.it,agosta@acm.org

ABSTRACT

The greater availability and reduction in production cost make
wearable IoT platforms perfect candidates to continuously monitor
people at risk, like elderly people. In particular these platforms,
along with the use of artifical intelligence algorithms, can be ex-
ploited to detect and monitor people’s activities, in particular poten-
tially harmful situations, such as falling. However, wearable devices
have limited computational power and battery life.

We optimize a situation-recognition application via the well-
known precision tuning practice using a dedicated state-of-the-art
toolchain. After the optimization we evaluate how the reduced-
precision version better fits the use case of limited-resources plat-
forms, such as wearable devices. In particular, we achieve over
500% of speedup in execution time, and consume about 6 times less
energy to carry out the classification.

CCS CONCEPTS

•Hardware→ Power estimation and optimization; • Software and

its engineering → Compilers; • Applied computing → Con-
sumer health.

KEYWORDS

Artificial Intelligence, Wearable Devices, Precision Tuning

ACM Reference Format:

Nicola Fossati, Daniele Cattaneo, Michele Chiari, Stefano Cherubin, Gio-
vanni Agosta. 2020. Automated Precision Tuning in Activity Classification
Systems: A Case Study. In 11th Workshop on Parallel Programming and Run-

Time Management Techniques for Many-core Architectures / 9th Workshop on

Design Tools and Architectures for Multicore Embedded Computing Platforms

(PARMA-DITAM’20), January 21, 2020, Bologna, Italy. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3381427.3381432

1 INTRODUCTION

The ageing of the European population is a well-known trend since
the last century, and it is projected to intensify, leading to over
25% of the population begin aged 65 or more by 2050. By the same
date, it is expected that 10% of the population will be aged 80 or
more [1]. One of the main health risks for frail elderly people and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PARMA-DITAM’20, January 21, 2020, Bologna, Italy

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7545-0/20/01. . . $15.00
https://doi.org/10.1145/3381427.3381432

people with neurological disorders is related to falls. Technology,
and particularly the Internet of Things, can play an important
role for an active and healthy population ageing by supporting
monitoring and rehabilitation of elderly people [2]. Monitoring of
end users during daily life allows to analyse (both quantitatively
and qualitatively) motor performances and to detect fall events. In
rehabilitation scenarios, IoT devices can enable tele-rehabilitation
and remote assessment of motor performance by enabling clinicians
to remotely collect information on motor performance tests such as
Sit-to-Stand [3] or Timed Up and Go [4], performed by the patient
at home.

In the last decade, fall and activity detection solutions based
on a variety of different technologies were proposed, leveraging
sensors such as range-finders, cameras, and inertial sensors [5].
Among these, inertial sensors (accelerometers and gyroscopes) are
suitable for wearable solutions, which enable monitoring in diverse
daily life environments. Furthermore, inertial sensors are among
the cheapest solutions, and can therefore reach a wide adoption.
Several fall detection and activity classification algorithms have
been developed [6; 7]. The main critical aspect for such wearable
devices is the need to trade-off device bulk and cost against the
battery life. The more energy is used to perform the tasks of sensing,
computation and communication, the less the battery is going to
last before needing to be recharged [8]. Otherwise, a larger battery
will be required to reach the same battery life. In wearable devices,
device size and bulk is a major factor of discomfort, which should
be avoided if the device is to be worn continuously for the entire
day. Thus, particularly for the monitoring scenarios, it is critical to
achieve the maximum battery life.

In the design of wireless networked embedded systems, duty
cycling is used to achieve longer battery life, by performing the
sensing, computation and communication steps in a timed loop,
and powering down the device between one iteration of the loop
and the next [9–11]. Thus, the primary driver for energy efficiency
is the duration of the loop iteration. To minimize communication,
which is generally the most costly phase, the designer will mini-
mize the amount of transmitted data, favoring the transmission of
features rather than raw measurements. Thus, the problem arises
of performing feature extraction or classification tasks on board,
and minimizing the energy cost of this task.

In the case of activity classification and fall detection, the goal
is to classify the motion of the subject in categories such as walk-
ing, standing, sitting, lying or falling. Fall detection generally aims
at a binary classification (falling or not), whereas activity detec-
tion aims at a more precise classification. This class of applications
often rely on machine learning algorithms, which are generally
developed in high level languages by domain experts, and later

https://doi.org/10.1145/3381427.3381432
https://doi.org/10.1145/3381427.3381432

PARMA-DITAM’20, January 21, 2020, Bologna, Italy Fossati et al.

translated to C or C++ for implementation in embedded devices.
These algorithms are therefore initially developed using large data
types representing real numbers, usually through the IEEE 754
double precision representation ("double" in C and related program-
ming languages) [12]. They are later manually re-written to use
fixed point representations, since many ultra-low power embedded
microcontrollers do not provided hardware implementations of
floating point arithmetics. A large amount of domain knowledge is
required in this case, since the limitations in range and precision
of the small integers used in such systems force the developer to
finely tune the representation, possibly readjusting it in different
phases of the algorithm.

A viable alternative to manual re-writing is the use of precision
tuning solutions, a type of approximate computing strategy [13]
that has been gaining increasing traction both in High Performance
Computing [14] and in hardware/software co-design [15].

In this paper, we demonstrate how it is possible to achieve major
energy savings in the computation part of the duty cycle of an em-
bedded system performing activity monitoring and classification,
by automatically performing precision tuning on the computation-
ally intensive kernel of a machine learning algorithm, k-nearest
neighbors classification, that has been adopted for fall detection
and activity classification [16]. To this end, we leverage a dedicated
set of plugins developed for the LLVM compiler framework, which
allow, starting from C/C++ code annotated with initial value ranges
for the input variables, to automatically tune the data types and
perform the necessary conversion to generate an equivalent fixed-
point version of the code, while keeping error under control [17].

Through our approach, we are able to perform the classifica-
tion task with a speedup over 500% with respect to the floating
point implementation, when running on an STM32 board with an
ARM Cortex M3 processor. The fixed-point version of the code
has slightly more compute intensity, leading to a modest increase
in average instant power consumption. However, this increase is
small enough that the overall energy to solution also achieves a
reduction of an order of magnitude. This performance and energy
improvement is achieved with no loss of accuracy. As a result, we
can achieve significant improvements in relation to both functional
and non-functional characteristics of the activity detection system,
like reactivity and battery life.

The rest of this paper is organized as follows. In Section 2 we
briefly survey the main tools available for precision tuning during
the code compilation stage, whereas in Section 3 we describe the
hardware and software components of the fall detection system
we aim to optimize, and we detail the precision tuning solution we
employ. In Section 4 we provide an experimental evaluation of the
system, while in Section 5 we draw some conclusions and highlight
future research directions.

2 RELATEDWORKS

Precision Tuning is traditionally a task related to hardware/software
codesign [15]. More recently, this technique has also been explored
in the high performance computing domain [18]. Several tools have
been proposed in the literature to tune applications whose domain
range from signal processing [19] to weather forecast [20].

GeCoS [21] is a compiler framework that specifically focus on
custom hardware design. It allows building a compiler flow where
the output is not only optimized for speed, but can depend on
different parameters, like hardware size or power consumption. It
also provides precision tuning capabilities. In particular, it allows
to convert floating point operations into fixed point operations.
Analyses and transformations from the GeCoS compiler have been
adapted to the use case of fixed point exploitation in HPC [18].

FlexFloat [22] proposes an extension to the existing floating point
types, that can be fully computed in hardware, to assess the effects
of reduced precision data types for transprecision computing. In
particular, they designed 8-bit and 16-bit floating point data types.
Their goal is to demonstrate how a less complex FPU can carry out
results with less circuitry and power consumption. Unfortunately
these data types require a custom processor design – or a reconfig-
urable chip –, as such data types are currently implemented only
in microprocessor prototypes.

Daisy [23] is a tool that combines two techniques, mixed preci-
sion tuning and code rewriting. The latter consists in reordering
operations or exploiting arithmetic properties – like associativity
or distributivity – in order to change the operations executed in the
kernel without changing its semantic and precision requirements.
Daisy can then output the modified code as Scala or C source code.
Unfortunately, the input to the tool must be a description of the
algorithm in a high level language. Therefore, this tool requires
high implementation effort from the programmer.

Precimonius [24] is a tool based on the llvm compiler toolchain
which focuses on finding the best precision for each variable in a
program. The precision mix found is subject to two constraints: a
given error bound on the output, and the presence of a speedup
in the execution time of the optimized kernel. While being a very
versatile tool – as it is language agnostic – it does not support the
usage of fixed point data representations.

CRAFT [25] is a framework for analyzing and instrumenting ap-
plications exploiting floating point representations. CRAFT allows
the user to analyze a program – provided as a compiled binary –
and determine the smallest data type required to perform a correct
computation w.r.t. the precision constraints.

taffo [17] is a framework based on the llvm toolchain which
performs precision tuning of C and C++ programs. taffo focuses
on the exploitation of the fixed point numeric representation, and
operates on the llvm intermediate representation. Additionally,
taffo includes a component named Feedback Estimator which
provides an estimate for the errors introduced by the conversion,
and a prediction of whether a speedup will be achieved [26].

3 APPLICATION SCENARIO

The task of activity classification can be performed by systems of
varying complexity and size, depending on the specific use case
the system is aimed at. Complementarily, there are more than one
algorithm being used for such a task, even though the majority of
them is based on machine-learning principles.

We target very small computing systems, such as microcon-
trollers. Such systems are employed in real world scenarios for

Automated Precision Tuning in Activity Classification. . . PARMA-DITAM’20, January 21, 2020, Bologna, Italy

activity detection in wearable devices and internet-of-things appli-
cations. Given this premise, in this section we analyze the scenario
in which we envision our solution to be utilized, and the charac-
teristics of the activity detection system that is the object of the
improvements we propose.

3.1 Activity classification system

We consider a typical activity detection system featuring accelerom-
eter, gyroscope, and magnetometer sensors, alongside the storage,
processing and user-interface elements. The operation of such a
system acquires data from sensors continuously in real time. Subse-
quently to the acquisition, a data aggregation step is performed, in
order to extract specific features of the data. In the case of activity
classification, the following features are calculated:

• Total acceleration, computed as the norm of the acceleration
vector
• Sum of the absolute values of the acceleration components
• Average of the total acceleration over a moving window
• Variance of the total acceleration over a moving window
• Minimum and maximum values over z-acceleration compo-
nent over a moving window

These data features are later processed by a classification algorithm
to detect the current activity of the subject. In this work, we consider
the k-nearest neighbour (KNN) [27] algorithm.

The data aggregation process can be performed either on the
CPU of the wearable device, or by exploiting custom hardware
logic. However, the most complex task is certainly the classification.
Since the offloading of this task to remote or cloud devices may
lead to large delays and/or to unacceptable service downtime, the
classification typically runs on the CPU of the wearable device. In
addition to the real-time-collected data, the classification algorithm
also requires a pre-definedmodel. In the case of the KNN algorithm,
the model consists of a collection of a data entries representing
known user situations. This model data-set has to be in the device
memory before running the classification.

Whenever the classification system detects a dangerous situation,
the processing element initiates the emergency routine related to
that situation. This routine typically involves the activation of a
user interface and/or other outward-facing components – such as
phone calls to an emergency service. The effectiveness of the system
as a whole mainly depends on its accuracy and on its reactivity.

3.2 Improving the classification algorithm

The accuracy of the KNN classification depends on the quality of
the model that the vendor installed on the device, and on the time
granularity of the aggregated data to test. We aim at improving the
latter factor. Indeed, a shorter classification time allows our system
to fetch and to aggregate data more frequently from the sensors.
Moreover, the classification time also impacts the reactivity of the
system. The ability of the system to detect and to react to a threat
– such as a fall event – before the user is actually harmed enables
the possibility to trigger countermeasures to reduce or to nullify
the effect on the user. This is the case of air-bag systems inflated
before the fallen person hits the floor[28].

ALGORITHM 1: Pseudocode of the software system.

load dataset;
model← scale(dataset, 0.0, 1.0);
while true do

data_in← read sensors;
test← aggregate(data_in);
prediction← classify(model, test);
if prediction = danger then

emergency();
end

end

Algorithm 1 shows the typical software structure of a continuous
activity detection system. Our goal is to improve the execution time
of the control loop. This metric is tightly coupled with hardware
performance figures, such as CPU clock rate, and memory latency.
Since the amount of data to be processed after the aggregation
step is fixed, the impact of memory accesses on the execution
time depends on the size of the model. The CPU processing time
depends on the size of the model and on the layout of the data to
be processed.

Tuning the size of the model is beyond the scope of this work.
We aim at reducing the execution time by acting on the layout of
the data to be processed. In particular, we explore precision tuning
to exploit fixed point data types instead of floating point ones.

3.3 Precision tuning

Precision tuning aims to substitute a computational kernel with an
equivalent one that features a different set of data types. Reducing
the data size typically allows a reduction of the time-to-solution, as
it is well-known that the amount of time required for performing
arithmetic computations is heavily dependent on the number of
bits that they process. Some precision tuning approaches focus on
replacing floating point representations with other smaller floating
point representations, – e.g. double precision with single precision.

A different approach consists in the use of fixed point represen-
tations, instead of floating point. Fixed point notation, although not
appropriate for data with high dynamic ranges, allows a more fine
grained tuning. Additionally, it exploits the same functional units
as integer representations. This last peculiarity is most relevant in
embedded systems, as Floating Point Units are often missing or very
inefficient on such platforms. Thus, the usage of fixed point repre-
sentations allows to carry out the computation faster and using less
energy. Since the activity-detection system we are considering is a
kind of embedded system, such an optimization is indeed relevant
for the use case at hand.

The chief side-effect of precision tuning is that the output of
the tuned software will be necessarily different with respect to
the original software. However, machine-learning algorithms such
as KNN are inherently error-tolerant, and thus constitute prime
candidates for exploiting precision tuning.

Adopting precision tuning often requires laborious and error-
prone rewriting of the software. In addition to this inherent work-
load, additional effort is required to determine the most appropriate

PARMA-DITAM’20, January 21, 2020, Bologna, Italy Fossati et al.

level of accuracy-to-performance trade-off. For this reason, we rely
on an automatic tool from the state of the art – taffo [17] – to
guide our process.

More specifically, the process of precision tuning involves several
stages. At first, we should apply an analysis of the values involved
in the computation. Since we know in advance from Algorithm 1
that the classification task immediately follows the scaling, we
know that test values at runtime will range within known upper
and lower bounds. Such information must be given to the compiler
as source code annotations. An example of annotation is shown
in Listing 1. The information in such annotations is converted to
llvm-ir metadata by the clang compiler frontend. Later stages
of the precision tuning process will be applied on the llvm-ir
representation of the KNN algorithm.

1 double minSMV

2 __attribute((annotate("target('minSMV')␣scalar(range(-25,25))")));

Listing 1: Example of annotation, as required by taffo. This

annotation specifies that the variableminSMV shall be con-

verted into fixed point representation, and that the numeri-

cal range it will assume at run-time will be [−25, 25].

It follows an analysis stage that propagates value range informa-
tion to all the intermediate values. This stage can be automatically
performed by an analysis pass of the llvm compiler infrastructure.
We rely on the taffo toolchain – which features one of such passes
– to implement this step.

From this information on the dynamic range of each value of
the kernel, taffo is able to automatically allocate a fixed point
data type and bit partitioning to each of them. The size of the
fixed point data types is constrained to 32 bit. The point position
is automatically determined individually for each value, such that
the integer part is large enough to represent the dynamic ranges
computed by the previous pass. Then, taffo performs the code
transformation proper, by replacing floating point data types and
instructions within the llvm-ir with fixed point equivalent ones.

The output of aforementioned process is a llvm-ir fixed point
version of the kernel. It can be compiled to machine code using
the same clang compiler used to compile the rest of the program.
taffo also features an error estimation component that provides
an upper bound estimation of the quantization error introduced
by the floating point to fixed point conversion. However, this error
estimation can only provide information on the distance between
the values as using original data type and such as using fixed point
version. Hence, it is impossible to estimate the misprediction rate
a priori. In our experimental campaign we evaluate this metric
experimentally.

Through the application of automatic precision tuning via taffo,
we are able to dramatically reduce the time-to-solution and energy
consumption of an embedded activity-detection system, at a much
lower cost in terms of effort spent in adapting the classification
algorithm, and without significantly impacting other metrics such
as storage requirements and detection accuracy. Thus, our method-
ology allows to widen the spectrum of ultra-low-power platforms

Tool Option Size T IµC VµC P E
set [KiB] [ms] [mA] [V] [mW] [mJ]

taffo

-O3 39.67 366.5 36.25 3.23 117.1 42.9
-Ofast 39.79 366.0 36.25 3.23 117.1 42.9
-Os 39.68 366.3 36.11 3.23 116.6 42.7
-Oz 33.26 384.7 35.88 3.23 115.9 44.6

llvm

-O3 40.35 2281.3 35.54 3.23 114.8 261.9
-Ofast 41.39 2281.2 35.83 3.23 115.7 264.0
-Os 31.53 2330.0 35.87 3.23 115.9 270.0
-Oz 31.13 2356.6 35.67 3.23 115.2 271.5

Table 1: Execution data relative to the temporal, spatial

and energetic performance of the proposed solution on

the STM32F207IG microcontroller, compared to the stan-

dard llvm toolchain. The minimum values for the time-to-

solutionT and the energy-to-solution E are marked with an

underline.

where it is advantageous to exploit machine-learning algorithms,
and to improve non-functional characteristics – such as battery life
– of similar existing applications.

4 EXPERIMENTAL EVALUATION

In order to evaluate the performance and energy consumption im-
provements we achieve through our solution in a concrete scenario,
we perform a series of experiments aimed at quantifying such mea-
sures. While the approach we employ operates by modifying the
software development methodology, the results we seek are specific
to a particular hardware context.

4.1 Hardware Setup

As hardware platform, we select a development board that simu-
lates the actual physical device. More specifically, we employ the
STM3220G-EVAL board1. This board features the STM32F207IGH6
microcontroller based on the ARM Cortex M3 CPU core, alongside
16 Mbit of SRAM and several input-output devices such as a screen,
an infra-red receiver, and a MEMS device. Such a selection of pe-
ripherals is typical for a device aimed at activity detection, thus
we can consider this board representative of a typical hardware
configuration employed in our use case.

In order to evaluate the energy consumption relative to our
solution, we employ a IDM-8351 digital multimeter to measure the
power supply voltage and the current draw of the STM32F207IGH6
microcontroller. As our solution does not involve modifications
to the input-output and storage elements of the device, we do not
measure the power consumption of such components.

4.2 Software Setup

In order to construct a realistic classification model, and for evalu-
ating the classification performance, we simulate the sensor data

1https://www.st.com/en/evaluation-tools/stm3220g-eval.html

https://www.st.com/en/evaluation-tools/stm3220g-eval.html

Automated Precision Tuning in Activity Classification. . . PARMA-DITAM’20, January 21, 2020, Bologna, Italy

acquisition component with an open source data-set2, which con-
tains about 4.5 hours of annotated activity data, and has been used
in other activity detection works[16]. The raw movement data was
collected from 16 male and female subjects between 23 and 50 years
of age, and each data sample has been manually labeled. The labels
given to the activities include Sitting, Standing, Walking, Running,
Jumping, Falling, and Lying. We pre-process the aforementioned
data-set, to serialize it in a format suitable for storage into persistent
memory. This task is performed offline, by means of a dedicated
script written in Python.

To assess the classification algorithm performance, we rely on
an implementation of the KNN classifier written in C. We annotate
the source code of the classifier as required by the taffo tool.
Annotations include the KNN kernel and the scaling function. Since
we assume that values in the data-set file are obtained by data
aggregation, as in Algorithm 1, we know a priori the range of
values that such data can assume at runtime. In our experimental
campaign, we derive the value ranges of the inputs to the algorithm
by automatic inspection of the values in the data-set file.

As a last step, we embed the classifier in a test program, consist-
ing in a loop which continuously samples data from the data-set
in persistent memory, and calls the classification subroutine on
that data. The role of the test program is to emulate the behavior
of a typical activity detection system, from the perspective of the
classification algorithm. To reduce the development overhead, we
relied on the Miosix3 real-time embedded operating system. This
test program is outlined in Algorithm 2.

ALGORITHM 2: Pseudocode of our system emulation.

for i = 1 to 100 do
load dataset;
<train,test>← random(dataset);
<train,test>← scale(<train,test>, 0.0, 1.0);
performance← classify(train, test);

end

Additionally, the scale and classify operations have been instru-
mented in order to measure their execution time, and report the
classification performance. We compile the test program with the
llvm 8.0.1 toolchain —more specifically the clang compiler — with
taffo conversions enabled, and without employing taffo. Further-
more, we also exploit different optimization levels provided by the
compiler. The optimization levels we use are the following:
-O3 Highest optimization level available in llvm for general use.

Performs a tradeoff between code size and speed.
-Ofast Like -O3, but prioritizing speed over code size.
-Os Like -O3, but prioritizing code size over speed.
-Oz Like -Os, prioritizing code size even further.

4.3 Analysis of the Results

As shown in Algorithm 2, through the test program we collect
100 samples related to the execution time and the classification

2https://www.dlr.de/kn/en/desktopdefault.aspx/tabid-12705/22182_read-50785/
3https://miosix.org

error rate. Simultaneously, we collect energy consumption data, as
described in Section 4.1. The data relative to the performance of
the application is shown in Table 1. For each version, we show:
• The size of the application binary in KiB,
• The average execution time of the classification task T over
100 samples,
• The average current draw IµC and supply voltageVµC of the
microcontroller during the classification task,
• The average power consumption P of the microcontroller
during the classification task,
• The average energy E required to execute the entire classifi-
cation task.

We observe that the application versions optimized through
taffo present the same error rate as the un-optimized versions.
The prediction error we observe is 30.49%, both for the kernel
optimized by taffo and the floating point kernel. In particular,
the misclassification events happens on the same entries for both
versions. We can conclude that the kernel after the conversion to
fixed-point is functionally equivalent with respect to the kernel
implementation exploiting floating-point representations.

Regarding the temporal efficiency of the classification task, our
approach based on automatic precision tuning presents substantial
improvements. Let us define the speedup metric as follows:

Speedup[%] = 100

(
Tun−optimized

Toptimized
− 1

)
Independently of the optimization option being exploited, the ver-
sions optimized with taffo consistently reach speedups of approx-
imately 500% with respect to the corresponding llvm version. This
data is shown in Figure 1.

Figure 1: Speedup of the version optimized with taffo w.r.t.

the version compiled with llvm alone.

The reduction in the time-to-solution that we obtain is primarily
determined by the fact that the original classification program
heavily exploits floating point representations. In fact, the Cortex
M3 CPU core we employ for our experiments does not have a

https://www.dlr.de/kn/en/desktopdefault.aspx/tabid-12705/22182_read-50785/
https://miosix.org

PARMA-DITAM’20, January 21, 2020, Bologna, Italy Fossati et al.

floating point unit. Thus, all floating point operations are performed
by a software emulation. Therefore, in such a scenario the usage of
taffo in the application development phase is particularly effective,
as it allows to achieve the considerable speedups that derive from
avoiding floating point emulation transparently.

In contrast to the reduced execution time, the average power
dissipation P relative to the program optimized with taffo is higher
than the unmodified application. However, this effect is more than
offset by the reduction in execution time. As a result, the total
energy-to-solution E is greatly reduced by exploiting taffo. We
believe that the higher energy consumption of the taffo-optimized
versions is due to the fact that they achieve higher utilization of
the CPU core of the microcontroller.

5 CONCLUSIONS

We optimized a machine learning kernel by applying precision

tuning. The analyzed use case closely simulates the behaviour of
a human activities classification system. We compared different
levels of code optimization (execution time, code size) by using
both the standard llvm toolchain and the taffo toolchain. We
demonstrated that this technique improves both the execution time
and the energy consumption on a wearable-like platform without
increasing the misprediction rate.

We believe that this technique can achieve similar results on
several other wearable applications based on machine-learning
techniques. Although the fixed point KNN classifier for fall detec-
tion does not worsen the misprediction rate, applications based on
machine-learning typically tolerate further approximations. Thus,
we can gain better battery life on existing devices. This achievement
implies improvements on the ability to run the activity detection
algorithm longer and more frequently. Other possibilities push to-
wards devices with smaller batteries, which are easier to be worn
during the whole day by elderly people and can even be embedded
in smart clothes.

Future directions involve the exploitation of custom hardware
that implements energy-efficient small floating point units – i.e.
units with less than 32 bits of size. These architectures are proven
to be effective on microbenchmarks, yet they lack industry-wide
adoption because of production cost and lack of compiler tools that
can properly exploit such features.

ACKNOWLEDGMENTS

Work supported by the FET-HPC project RECIPE, G.A. n. 801137.

REFERENCES

[1] Emily M Grundy and Michael Murphy. Population ageing in europe. Oxford
Textbook of Geriatric Medicine, page 11, 2017.

[2] Mirza Mansoor Baig, Shereen Afifi, Hamid GholamHosseini, and Farhaan Mirza.
A systematic review of wearable sensors and IoT-based monitoring applications
for older adults–a focus on ageing population and independent living. Journal of
medical systems, 43(8):233, 2019.

[3] Richard W Bohannon. Sit-to-stand test for measuring performance of lower
extremity muscles. Perceptual and motor skills, 80(1):163–166, 1995.

[4] Anne Shumway-Cook, Sandy Brauer, and Marjorie Woollacott. Predicting the
probability for falls in community-dwelling older adults using the Timed Up &
Go test. Physical therapy, 80(9):896–903, 2000.

[5] Maria Cornacchia, Koray Ozcan, Yu Zheng, and Senem Velipasalar. A survey on
activity detection and classification using wearable sensors. IEEE Sensors Journal,
17(2):386–403, 2016.

[6] Yueng Santiago Delahoz and Miguel Angel Labrador. Survey on fall detection and
fall prevention using wearable and external sensors. Sensors, 14(10):19806–19842,
2014.

[7] Stefano Abbate, Marco Avvenuti, Paolo Corsini, Janet Light, and Alessio Vecchio.
Monitoring of human movements for fall detection and activities recognition in
elderly care using wireless sensor network: a survey. InWireless Sensor Networks,
chapter 9. IntechOpen, 2010.

[8] G. Agosta, W. Fornaciari, D. Atienza, R. Canal, A. Cilardo, J. Flich, C. Hernandez
Luz, M. Kulczewski, G. Massari, R. Tornero Gavila, and M. Zapater Sancho.
Challenges in deeply heterogeneous high performance systems. In 2019 22nd

Euromicro Conference on Digital System Design (DSD), pages 428–435, Aug 2019.
[9] Prabal Dutta, Mike Grimmer, Anish Arora, Steven Bibyk, andDavid Culler. Design

of a wireless sensor network platform for detecting rare, random, and ephemeral
events. In Proceedings of the 4th international symposium on Information processing

in sensor networks, page 70. IEEE Press, 2005.
[10] Vijay Raghunathan, Saurabh Ganeriwal, and Mani Srivastava. Emerging tech-

niques for long lived wireless sensor networks. IEEE Communications Magazine,
44(4):108–114, 2006.

[11] D. Zoni, L. Cremona, and W. Fornaciari. All-digital energy-constrained controller
for general-purpose accelerators and cpus. IEEE Embedded Systems Letters, 2019.

[12] William Kahan. IEEE standard 754 for binary floating-point arithmetic. Lecture
Notes on the Status of IEEE, 754(94720-1776):11, 1996.

[13] Sparsh Mittal. A survey of techniques for approximate computing. ACM Com-

puting Surveys, 48(4):62:1–62:33, March 2016.
[14] Michael O Lam and Jeffrey KHollingsworth. Fine-grained floating-point precision

analysis. The International Journal of High Performance Computing Applications,
32(2):231–245, 2016.

[15] Markus Willems, Volker Bürsgens, Thorsten Grötker, and Heinrich Meyr.
FRIDGE: an interactive code generation environment for HW/SW codesign.
In 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing,
volume 1, pages 287–290 vol.1, April 1997.

[16] Z. Liu, Y. Cao, L. Cui, J. Song, and G. Zhao. A benchmark database and baseline
evaluation for fall detection based on wearable sensors for the internet of medical
things platform. IEEE Access, 6:51286–51296, 2018.

[17] Stefano Cherubin, Daniele Cattaneo, Michele Chiari, Antonio Di Bello, and Gio-
vanni Agosta. TAFFO: Tuning assistant for floating to fixed point optimization.
IEEE Embedded Systems Letters, pages 1–1, 2019.

[18] Stefano Cherubin, Giovanni Agosta, Imane Lasri, Erven Rohou, and Olivier
Sentieys. Implications of Reduced-Precision Computations in HPC: Performance,
Energy and Error. In Parallel Computing is Everywhere, volume 32: Advances
in Parallel Computing, pages 297 – 306, Mar 2018. International Conference on
Parallel Computing (ParCo), Sep 2017.

[19] Daniel Menard, Daniel Chillet, François Charot, and Olivier Sentieys. Automatic
floating-point to fixed-point conversion for dsp code generation. In Proceedings

of the 2002 International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems, CASES ’02, pages 270–276, 2002.
[20] Matthew Chantry, Tobias Thornes, Tim Palmer, and Peter Düben. Scale-

selective precision for weather and climate forecasting. Monthly Weather Review,
147(2):645–655, 2019.

[21] A. Floc’h, T. Yuki, A. El-Moussawi, A. Morvan, K. Martin, M. Naullet, M. Alle,
L. L’Hours, N. Simon, S. Derrien, F. Charot, C. Wolinski, and O. Sentieys. GeCoS:
A framework for prototyping custom hardware design flows. In International

Working Conference on Source Code Analysis and Manipulation (SCAM), pages
100–105, 2013.

[22] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu, and Luca
Benini. A transprecision floating-point platform for ultra-low power computing.
In 2018 Design, Automation Test in Europe Conference Exhibition (DATE), pages
1051–1056, March 2018.

[23] Eva Darulova, Einar Horn, and Saksham Sharma. Sound mixed-precision op-
timization with rewriting. In Proceedings of the 9th ACM/IEEE International

Conference on Cyber-Physical Systems, ICCPS ’18, pages 208–219, 2018.
[24] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel,

William Kahan, Koushik Sen, David H. Bailey, Costin Iancu, and David Hough.
Precimonious: Tuning assistant for floating-point precision. In Proceedings of the

International Conference on High Performance Computing, Networking, Storage

and Analysis, SC ’13, pages 27:1–27:12, Nov 2013.
[25] Michael O. Lam. CRAFT: Configurable Runtime Analysis for Floating-point

Tuning. https://github.com/crafthpc/craft, 2018. Accessed: 2018-08-07.
[26] Daniele Cattaneo, Michele Chiari, Stefano Cherubin, and Giovanni Agosta.

Feedback-driven performance and precision tuning for automatic fixed point
exploitation. In International Conference on Parallel Computing, ParCo, Sep 2019.

[27] Thair Phyu. Survey of classification techniques in data mining. Lecture Notes in
Engineering and Computer Science, 2174, 03 2009.

[28] Robert F Buckman, Jay A Lenker, and Donald J Kolehmainen. Air bag inflation
device, March 28 2006. US Patent 7,017,195.

https://github.com/crafthpc/craft

	Abstract
	1 Introduction
	2 Related Works
	3 Application scenario
	3.1 Activity classification system
	3.2 Improving the classification algorithm
	3.3 Precision tuning

	4 Experimental Evaluation
	4.1 Hardware Setup
	4.2 Software Setup
	4.3 Analysis of the Results

	5 Conclusions
	References

