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We develop and extend a line of recent work on the design of mechanisms for two-sided markets. The markets

we consider consist of buyers and sellers of a number of items, and the aim of a mechanism is to improve the

social welfare by arranging purchases and sales of the items. A mechanism is given prior distributions on the

agents’ valuations of the items, but not the actual valuations; thus, the aim is to maximise the expected social

welfare over these distributions. As in previous work, we are interested in the worst-case ratio between the

social welfare achieved by a truthful mechanism and the best social welfare possible.

Our main result is an incentive compatible and budget balanced constant-factor approximation mechanism

in a setting where buyers have XOS valuations and sellers’ valuations are additive. This is the first such

approximation mechanism for a two-sided market setting where the agents have combinatorial valuation

functions. To achieve this result, we introduce a more general kind of demand query that seems to be needed

in this situation. In the simpler case that sellers have unit supply (each having just one item to sell), we give

a new mechanism whose welfare guarantee improves on a recent one in the literature. We also introduce a

more demanding version of the strong budget balance (SBB) criterion, aimed at ruling out certain “unnatural”

transactions satisfied by SBB. We show that the stronger version is satisfied by our mechanisms.
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1 INTRODUCTION

One-sided markets have been studied in economics for several decades and more recently in com-
puter science. Mechanism design in one-sided markets aims to find an efficient (high-welfare)
allocation of a set of items to a set of agents, and a property that is often desirable in this setting is
incentive-compatibility, i.e., truthfully reporting the input data is the best strategy for the agents.
The cornerstone method in mechanism design is the Vickrey-Clarke-Groves (VCG) mechanism
[10, 21, 34] that optimises the social welfare while providing the right incentives for truth-telling:
VCG mechanisms are dominant strategy incentive compatible (DSIC), and in many mechanism de-
sign settings VCG is also individually rational (IR). The IR requirement demands that participating
in the mechanism is not harmful to any agent. The DSIC requrement demands that truthfully re-
porting one’s preferences to the mechanism is a dominant strategy for each agent, independently
of what the other agents report.

Recently, increased attention has turned to the problems that arise in two-sided markets, in
which the set of agents is partitioned into buyers and sellers. In contrast with the one-sided setting
(where one could say that the mechanism itself initially holds the items), in the two-sided setting
the items are initially held by the sellers, who have valuations over the items they hold, and who
are assumed to act rationally and strategically. The mechanism’s task is now to decide which buy-
ers and sellers should trade and at which prices. The growing interest in two-sided markets can
be attributed to various important applications. Relevant examples are selling display-ads on ad
exchange platforms, the US FCC spectrum license reallocation, and stock exchanges. Two-sided
markets are usually studied in a Bayesian setting: there is public knowledge of probability distri-
butions, one for each buyer and one for each seller, from which the valuations of the buyers and
sellers are drawn.

In two-sided markets, a further important requirement is strong budget balance (SBB), which
states that monetary transfers happen only among the agents in the market, i.e., the buyers and
sellers are allowed to trade without leaving to the mechanism any share of the payments, and
without the mechanism adding money to the market. A weaker version of SBB often considered
in the literature is weak budget balance (WBB), which only requires the mechanism not to inject
money into the market. However, it is known from the work of Myerson and Satterthwaite [27]
that it is generally impossible for an IR, BIC, and WBB mechanism to maximise social welfare in
such a market, even in the bilateral trade setting, i.e., when there is just one seller and one buyer.1

The practical contexts noted above need the application of two-sided market mechanisms that
can work in a combinatorial setting, i.e., where there are multiple distinct items in the market
and agents having possibly complex valuations over the subsets of items that they may receive.
However, we are not aware of any such mechanism that approximates the social welfare while
meeting the IR, DSIC, and SBB requirements. The purpose of this article is to provide mechanisms
that satisfy these requirements and achieve an O (1)-approximation to the social welfare for a
broad class of agents’ valuation functions. We do, in fact, design mechanisms that work under the

1The VCG mechanism can also be applied to two-sided markets; however, in this setting, VCG is either not IR or it does

not satisfy WBB.
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assumption of the valuations being fractionally subadditive (XOS), a generalisation of submodular
functions that are contained in the class of subadditive functions.

Our results extend and improve on previous work that targeted an important special case of
a two-sided market: Each seller holds a single item, items are identical, and each agent is only
interested in holding a single item. In this setting, the valuations of the agents are thus given
by a single number, representing the agent’s utility for holding an item. A mechanism for this
setting is known in the literature as a double auction. The goal of several works on double auctions
[24, 30, 31] has been that of trading off the achievable social welfare with the strength of the
incentive compatibility and budget balance constraints. In our present work, we investigate this
question for the much more general class of combinatorial two-sided markets.

1.1 The Model

As stated above, the set of agents is partitioned into a set of sellers, each of which is initially
endowed with a set of heterogeneous items, and a set of buyers, having no items initially. Buyers
have money that can be used to pay for items. Every agent has its own, private valuation function,
which maps subsets of the items to numbers, and agents are assumed to optimise their (quasi-
linear) utility, which is given by the valuation of the set of items that the mechanism allocates to
an agent, minus the payment that the mechanism collects from the agent. A seller will typically
receive money (instead of pay money), which we treat as a negative payment.

For each agent, we are given a (publicly known) probability distribution over a set of valuation
functions, from which we assume her valuation function is drawn. The mechanism and the other
agents have no knowledge of the realized valuation function of the ith agent but only of her prob-
ability distribution.2 The general aim of the mechanism is to reallocate the items so as to maximise
the expected social welfare (the sum of the agents’ valuations of the resulting allocation).

Let OPT be the expected social welfare of an optimal allocation of the items. Note that this is
a well-defined quantity, even though computing an optimal allocation may be computationally
hard, and even though there might not exist an appropriate mechanism (satisfying IR, SBB, and
DSIC), that is guaranteed to always output an optimal allocation (as implied by the impossibility
result of Myerson and Satterthwaite [27]).

We are interested in mechanisms that satisfy IR, SBB, and DSIC (or, failing that, the weaker no-
tion of Bayesian incentive compatibility (BIC)) and that reallocate the items in such a way that the
expected social welfare is within some constant fraction of OPT, where expectation is taken over
the given probability distributions of the agents’ valuations, and over the randomness of the alloca-
tion that the mechanism outputs. In contrast with one-sided combinatorial auction design (where
the main challenge is polynomial-time implementability), for the two-sided case our primary goal
is to design (and thus show the existence of) IR, SBB, and DSIC/BIC mechanisms that O (1)-
approximate OPT. Such mechanisms circumvent the aformentioned impossibility result of Myer-
son and Satterthwaite [27] by weakening the requirement of optimal social welfare to that of ap-

proximately optimal social welfare (while nonetheless strengthening the WBB contraint into SBB).

1.2 Our Results and Their Significance

The present article starts off by showing that there is a straightforward technical trick that one may
apply to turn any WBB mechanism into an SBB one, with a small loss in the approximation factor.
Technically, one could, e.g., apply it to the WBB mechanism of Blumrosen and Dobzinski [4] for
combinatorial exchange markets; however, the trick is unsatisfactory in practice as it essentially
consists of giving the leftover money to a random agent. This demonstrates a weakness in the

2We note that these are standard assumptions, although knowledge of the distributions by the agents is not necessary for

our DSIC results to hold.
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Table 1. Summary of Our Results

Mechanism
Buyers’ Sellers’ Approximation

IR IC BB
valuations valuations ratio

M1-supply XOS unit-supply 6 ex-post IR DSIC DSBB
Madd XOS additive 6 interim IR BIC DSBB
Madd additive additive 6 ex-post IR DSIC DSBB

current definition of SBB, which motivates the introduction of a strengthened version, that we call
direct-trade strong budget balance (DSBB).

Let us briefly elaborate on why it is justified to ask for a (D)SBB mechanism over a WBB one. In
many two-sided markets that one encounters in industry, it is true that the business running the
mechanism is interested in making some profit. However, the way in which profit is made is usually
not through running a mechanism with too-large budget imbalance between the buyers and sellers
in the market. Rather, profit is made through entry fees or subscription fees (this happens in,
e.g., stock exchanges) or through charging a relatively small commission for each transaction or
volume of transactions that is made (which also happens in some stock exchanges and many two-
sided market platforms in the sharing/access economy). Having an underlying (D)SBB pricing
mechanism is then desirable over a WBB mechanism, as the former mechanism can be presented
to its customers in a more transparent way, and the amount of profit made by the market platform
is now easy to describe and control on the side, whereas the amount of profit made by a WBB
mechanism can be difficult to describe and control and is often very instance dependent. This is
not necessarily a problem in case the leftover budget is very small but gets problematic when the
surplus is large. Therefore, imposing the (D)SBB requirement results in mechanisms that capture
the intended primary goal in many practical mechanism design challenges: direct trades of goods
for money between its customers, which is essentially the product that a commercial two-sided
market platform primarily intends to offer to its customers. The way in which profit is made is
then designed around such a mechanism as a secondary step.

Our goal is the design of individually rational, incentive compatible, and direct-trade strongly
budget balanced mechanisms for combinatorial two-sided markets that achieve a constant approx-
imation to the optimal social welfare. We present two mechanisms adhering to these constraints
for general families of combinatorial two-sided markets, as summarized in the table below.

Our M1-supply mechanism handles the setting where all sellers have a single item for sale, and
buyers have fractionally subadditive (XOS) valuation functions over the set of items in the market.
Our Madd mechanism can handle the more general case where sellers have multiple items for sale
and have additive valuation functions over the items they possess, though Madd satisfies weaker
IC and IR notions than M1-supply. More precisely, Madd is DSIC and IR on the sellers’ side and
BIC and interim-IR on the buyers’ side. However, for the special case where buyers have additive
valuation functions, Madd does satisfy the stronger IC and IR notions for both buyers and sellers.
In all three cases, DSBB is satisfied (a strengthened variant of SBB), and our mechanisms achieve
an O (1)-approximation to the optimal social welfare.

To our knowledge, these are the first mechanisms for combinatorial two-sided markets that
simultaneously are IC, (D)SBB, IR, and approximate the optimal social welfare to within a con-
stant factor. Notice that with non-unit-supply sellers, a constant approximation was not previously
known even in the context of WBB or standard SBB.3 Furthermore, we note that our mechanisms

3The mechanism proposed in Reference [4] achieves a constant approximation to the optimal social welfare if the size of

the initial endowment of each agent is bounded by a constant; otherwise, the approximation factor is of logarithmic order.
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not only work for a more general setting than that of Reference [12] (see Section 1.3 for more
details) but also improve the approximation ratio for double auctions from 16 to 6.

In the case of Madd, buyers are required to answer a generalised type of demand query, in which
the mechanism gives prices for the items and asks a buyer which bundle she would like if, for each

seller j, the items of seller j in the bundle were to be received with probability 1/2. Although we
are not concerned here with that issue (we model agents as computationally unbounded as well
as rational), our apparent need for such queries highlights the general question of how agents’
computational limitations affect what outcomes can be achieved.4

1.3 Overview of the Techniques

The main challenge in two-sided market design is to find prices that stimulate truthful behavior
and are suitable for both buyers and sellers, which have contrasting interests. In fact, even in
the simplest imaginable setting—the bilateral trade—it is impossible to design a socially efficient
mechanism satisfying IR, BIC, and WBB [27].

A first feature all our mechanisms share to guarantee DSBB is being a generalised version of
two-sided sequential posted price mechanisms (SPMs) [12] for double auctions to combinatorial
two-sided markets. These mechanisms assign fixed, pre-computed prices to each item so that these
prices are the only ones for which the items can be traded. This yields a sequence of bilateral trades
in which the amount paid by the buyer equals the amount received by the seller.

While one-sided SPMs provide IR and IC for free, two-sided SPMs require additional conditions
to be met. In combinatorial two-sided markets, if prices are fixed for every single item, it cannot
be guaranteed that a bundle of items chosen by a buyer will surely be allocated to her, in case
at that point the corresponding seller has not been queried yet about her willingness to sell the
item. Symmetrically, when a seller would communicate to an SPM mechanism which bundle of
items she is willing to sell given the proposed item prices, then the mechanism cannot guarantee
to the seller that this bundle will surely be traded in case it has not yet queried the buyers which
item sets they demand. The situation is further complicated by the fact that there may exist strong
interdependencies among items within an agent’s valuation function, which implies that the choice
of bundle that a buyer requests (or that a seller makes available) depends strongly on the set of
items that the sellers are prepared to sell (or that the buyers request). Therefore, a mechanism
designer needs to be careful in proposing prices that are suitable for both sides of the market, and
needs to be particularly careful in selecting the side of the market to process first. The choice that
the mechanism made here can depend crucially on the types of valuation functions of the agents.
Indeed, one main difference between our two mechanisms lies in the choice of which market side
is processed first. Otherwise, all mechanisms proposed in this article are oblivious to the order in
which sellers and buyers are presented.

To additionally achieve a mechanism that results in a high social welfare, we exclude some
items from trade and introduce randomness into the mechanism. The main idea is to suppose
that all the items are available to the set of buyers as in a one-sided auction, and to compute the
expected marginal contribution of an item to the social welfare [19] under this assumption. Then,
the mechanism compares this contribution to the seller’s value for the item: If the seller’s value is
much higher, then we exclude the item from trade and leave it with the seller. Thus, the mechanism
only trades items that are of relatively high expected value to the buyers’ side of the market.

To estimate the expected marginal contribution of an item to the social welfare, M1-supply

and Madd make use of an algorithm A that, given a buyers’ valuation profile and a set of items,

4This question also applies to standard demand queries [18], which may be computationally hard to answer or may involve

a high communication complexity, depending on the computational model used and on the way in which the valuation

functions are represented.
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allocates the items to the buyers, without considering the sellers and their valuations. If one is
not interested in achieving a low runtime, then one can take A to be an exact algorithm that
outputs an optimal allocation. Alternatively, by using a technique of Feldman et al. [19], one
may take for A a polynomial time approximation algorithm and combine this with sampling a
sufficiently large number of valuation profiles from the distribution, to estimate the expected
marginal contribution of an item to the social welfare accurately in polynomial time. This yields
polynomial-time implementable approximation mechanisms. In particular, in the case where A
is a polynomial time α-approximation algorithm, it will run within time POLY (1/ϵ,n,m), and
approximate the optimal social welfare within an O (α ) multiplicative factor and an ϵ additive
term, where ϵ is a parameter that results from the sampling procedure. This technique is described
in further detail in Reference [19] and works for distributions with bounded support.

Randomness is added to make sure every seller independently sells her bundle of items with a
fixed probability of 1/2; which is used to bound the social welfare loss on both sides of the market
by no more than a constant factor.

To summarize, we utilize in the present article an implicit generalization of two-sided sequential
posted pricing mechanisms of Reference [12]. We furthermore make use of the posted pricing
techniques and concepts introduced in Reference [19] as one important component for achieving
the correct item prices, and, moreover, we (indirectly) utilize the basic idea of using the median of
a probability distribution for pricing, a concept that also, e.g., appears in Reference [25] and has
been used in other works, such as References [4, 12, 25]. We then combine this with various novel
insights on the sequence of offers, the prices, the probabilities, and the item bundling, to preserve
incentive compatibility. The technical contribution in our present article thus lies in the insights
and techniques used in the definition of the pricing procedure, in the bundles’ selection procedure,
and in the proofs that combine and connect these insights to establish the claimed approximation
bounds. Last, on the conceptual side we introduce the notions of probabilistic demand queries and
direct-trade SBB, which we believe are interesting concepts for future study.

1.4 Related Work

Due to the impossibility result of Myerson and Satterthwaite [27], no two-sided mechanism can
simultaneously achieve optimal social welfare and satisfy the BIC, IR, and WBB constraints, even
in the simple bilateral trade setting. Follow-up work thus had to focus on designing mechanisms
that tradeoff among these properties.

The following articles of the economics literature studied the convergence rate to the optimal
social welfare as a function of the number of agents when all sellers’ and buyers’ valuations are in-
dependently respectively drawn from identical regular distributions, while satisfying IR and WBB.
Gresik and Satterthwaite [20] showed that duplicating the number of agents by τ results in a mar-
ket where the optimal IR, IC, and WBB mechanism’s expected social welfare approximation factor
approaches 1 at a rate of O (logτ/τ 2). Rustichini et al. [28] and Satterthwaite and Williams [31]
investigated a family of non-IC double auctions and study the inefficiency and the extent to which
agents misreport their valuations in these double auctions. We remark that these results only hold
for unit-demand buyers and unit-supply sellers, identical valuation distributions, and the hidden
constants in these asymptotic results depend on the specific valuation distributions. In contrast,
our interest is in finding universal constant approximation guarantees for combinatorial settings
and not necessarily identical distributions.

In McAfee [24], an IC, WBB, and IR double auction is proposed that extracts at least a (1 − 1/�)
fraction of the maximum gain from trade,5 where � is the number of traders in the optimal solution.

5The gain from trade (sometimes called incremental social-welfare) represents how much the total utility of all agents

increases with respect to the situation where no trade happens. This is a meaningful objective in a two-sided market

ACM Transactions on Economics and Computation, Vol. 8, No. 1, Article 4. Publication date: March 2020.



Approximately Efficient Two-Sided Combinatorial Auctions 4:7

The same type of approximation guarantee is obtained in Reference [3] for a more general model
modeling spacially distributed markets, where there are multiple two-sided markets for the same
good, and shipping an item between markets is possible at a certain cost.

Optimal revenue-maximising Bayesian auctions were characterized in Myerson [26], which pro-
vides an elegant tool applicable to single-parameter, one-sided auctions. Various subsequent arti-
cles dealt with extending these results. Related to our work is the work of Deng et al. [13], which
studied maximising the auctioneer’s revenue in Bayesian double auctions. The same objective
was studied by Deshmukh et al. [14] yet in the prior-free model. In Reference [32], mechanisms for
some special cases of two-sided markets are presented that work by a combination of random sam-
pling and random serial dictatorship. The mechanism is IR, SBB, and DSIC and its gain from trade

approaches the optimum when the market is sufficiently large. Many other articles studied the
problem of approximating the gain from trade when the mechanisms are IC, IR, and SBB or WBB
[1, 7, 8, 11, 25, 33]. In Reference [8], a mechanism is presented that guarantees 2-approximation
to the gain from trade, under DSIC, IR, and WBB-in-expectation. This approximation guarantee
is with respect to an alternative benchmark from ours, called the second-best benchmark, where
the mechanism is compared to the best possible BIC, IR, WBB-in-expectation mechanism. More-
over, Reference [2], proposes a mechanism that is shown to achieve approximation guarantees to
both benchmarks simultanously: a constant guarantee for the second-best benchmark, while their
mechanism also approximates full efficiency as the market get larger.

For the special case of bilateral trade, i.e., with one seller buyer and item, it was shown in Ref-
erence [5] that the gain from trade cannot be approximated within any constant under the IC, IR,
and SBB constraints, and the asymptotic approximability factor in this setting was further char-
acterized in Reference [11]. Note that this implies that the constant approximation factors that we
establish in the present article rely crucially on taking the easier-to-approximate social welfare as
our objective function, instead of gain from trade.

From a social-welfare perspective, mechanisms that are IC, IR, and SBB have been given for bilat-
eral trade in Reference [4]. In addition to this, the authors proposed a WBB mechanism for a general
class of combinatorial exchange markets. We will use this result to construct our initial mecha-
nism. Sequential posted price mechanisms (SPMs) in one-sided markets have been introduced by
Sandholm and Gilpin [29] and have gained attention due to their simplicity, robustness to collu-
sion, and their easy implementability in practical applications. One of the first theoretical results
concerning SPMs is an asymptotic comparison among three different types of single-parameter
mechanisms [6]. They were later studied by Chawla et al. [9] for the objective of revenue max-
imisation. Additionally, Kleinberg and Weinberg [22] and Dütting and Kleinberg [16] strengthen
these results further. Very relevant to our work is the article of Feldman et al. [19], showing that
sequential posted price mechanisms can approximate social welfare up to a constant factor of 1/2
for XOS valuation functions if the published price for an item is equal to the expected additive
contribution of the item to the social welfare.

A line of recent work addressed the problem of approximating social welfare in double auctions
and related problems under the WBB requirement. Dütting et al. [17] indeed proposed a greedy
strategy that combines the one-sided VCG mechanism, independently applied to buyers and to
sellers with the trade-reduction mechanism of McAfee [24]. They obtain IR, DSIC, and WBB
mechanisms with a good approximation of the social welfare, for knapsack, matching, and
matroid allocation constraints. More recently, Colini-Baldeschi et al. [12] presented the first

because the sellers may have a positive utility even when no trade happens, simply because they possess some items. For

this reason, approximating the gain from trade is harder than approximating the social welfare.
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double auction6 that satisfies IR, DSIC, and SBB and approximates the optimal (expected) social
welfare up to a constant factor. These results hold for any number of buyers and sellers with
arbitrary, independent distributions on valuations. The mechanisms are also extended to the
setting where there is an additional matroid constraint on the set of buyers who can purchase an
item. The setting we study in the present article is more general than the double auction setting
by considering buyers and sellers with multiple distinct items and complex valuation functions.

Last, there is an alternative line of research where, among the desiderata of satisfying IC, IR,
SBB, and efficiency (i.e., achieving optimal social welfare), the IC notion is weakened instead of ef-
ficiency: In Reference [23], for example, an efficient iterative mechanism is proposed for exchange
markets that yields an outcome minimizing regret among the set of all budget-balanced payment
rules, when agents bid truthfully.

2 PRELIMINARIES

As a general convention, we use bold notation for vectors and use [a] to denote the set {1, . . . ,a}.
We will use I(X ) to denote the indicator function that maps to 1 if and only if event/fact X holds.

2.1 Markets

A two-sided market comprises a set of two distinct types of agents: the sellers, who initially hold
items for sale, and the buyers, who are interested in buying the sellers’ items. All agents possess
a monotone and normalized valuation function, mapping subsets of items to R≥0.7 Formally, we
represent a two-sided market as a tuple (n,m,k, I ,G, F ), where [n] denotes the set of buyers, [m]
denotes the set of sellers, [k] denotes the set of all items for sale, I := (I1, . . . , Im ) is a vector of (mu-
tually disjoint) sets of items called the initial endowment, where Ij is the set of items that is initially
held by seller j ∈ [m]. It holds that

⋃m
j=1 Ij = [k]. Vectors G = (G1, . . . ,Gn ) and F = (F1, . . . , Fm )

are vectors of probability distributions, from which the buyers’ and sellers’ valuation functions are
assumed to be drawn: The valuation function of buyer i ∈ [n] is drawn from distribution Gi , and
similarly the valuation function of seller j ∈ [m] is drawn from distribution Fj .

A (combinatorial) exchange market is a more general version of the above defined two-sided
market where an agent can act as both a buyer and a seller. Thus, everyone may initially own items
and may both sell and buy items. As a result, in this setting, we override the notation and simply
use n to denote the total number of agents. Formally, an exchange market is thus a tuple (n,k, I , F ).

Throughout the article, we reserve the usage of the letter i to denote a single buyer, the letter
j to denote a single seller, and the letter � to denote a single item. Moreover, we use vi to denote
buyer i’s valuation function and w j to denote seller j’s valuation function.

In two-sided markets, sellers are assumed to only value items in their initial bundle and are
therefore not interested in buying from other sellers, i.e.,∀j ∈ [m] and∀S ⊆ [k],w j (S ) = w j (S ∩ Ij ).
Conversely, in exchange markets, no such restriction on the valuation functions exists.

2.2 Mechanism Design Goals

The following discussion is specific to two-sided markets (the main focus of this article), but these
concepts can be extended straightforwardly to combinatorial exchange markets. Given a two-sided
market, our aim is to redistribute the items among the agents so as to maximise the social welfare

(the sum of the agents’ valuations). An allocation for a two-sided market (n,m,k, I ,G, F ) is a pair
of vectors (X ,Y ) = ((X1, . . . ,Xn ), (Y1, . . . ,Ym )) such that the union of X1, . . . ,Xn ,Y1, . . . ,Ym is

6Recall that in double auctions (following the definition used in the classical body of literature in economic theory), items

are identical and buyers and sellers are respectively assumed to have one unit of demand and supply, respectively.
7By a monotone valuation function v , we mean that v (S ) ≥ v (T ) for all sets of items T ⊆ S . That is, getting more items

cannot decrease an agent’s overall valuation. By normalized, we mean that v (∅) = 0.

ACM Transactions on Economics and Computation, Vol. 8, No. 1, Article 4. Publication date: March 2020.



Approximately Efficient Two-Sided Combinatorial Auctions 4:9

[k], and X1, . . . ,Xn ,Y1, . . . ,Ym are mutually disjoint. Note that Yj represents the bundle of items
that remains in the seller’s possession after execution of the mechanism. When discussing a given
two-sided market, we will denote by A the set of all allocations for that market.

Redistribution of the items is done by running a mechanism M. A mechanism interacts with
and receives input from the agents, and outputs an outcome, consisting of an allocation (X ,Y ) and
a payment vector (ρB , ρS ) ∈ Rn ×Rm , where ρB refers to the buyers’ vector of payments and
ρS to the sellers’ one. An outcome is therefore a tuple (X ,Y , ρB , ρS ). Note that when an agent is
charged a negative payment, this should be interpreted as an agent receiving money. The payment
of a seller is usually negative in a reasonable two-sided market mechanism, and this is also the case
for the mechanisms proposed in the present article.

Agents are assumed to maximise their utility, which is defined as the valuation for the bun-
dle of items that they possess with respect to the allocation vector, minus the payment charged
by the mechanism. In particular, the utility uB

i (vi , (X ,Y , ρB , ρS )) of a buyer i ∈ [n] with val-

uation function vi is vi (Xi ) − ρB
i , whereas for a seller j ∈ [m] with valuation function w j it is

uS
j (w j , (X ,Y , ρB , ρS )) = w j (Yj ) − ρS

j .

Furthermore, agents are assumed to be fully rational, so that they will strategically interact
with the mechanism to achieve their goal of maximising utility. Our goal is to design a mechanism
such that there is a dominant strategy or Bayes-Nash equilibrium for the agents under which the
mechanism returns an allocation with a high social welfare. For an allocation (X ,Y ), the social
welfare SW(X ,Y ) is defined as

SW(X ,Y ) =
∑

i ∈[n]

vi (Xi ) +
∑

j ∈[m]

w j (Yj ).

We now describe three main economic properties our mechanisms must satisfy. For each of these
constraints, we first introduce the strictest version and then a more relaxed one. We aim to satisfy
the strictest versions, whenever possible.

• Incentive compatibility (IC)8

—Dominant strategy incentive compatibility (DSIC): It is a dominant strategy for every agent
to report her true valuation sincerely. That is, for every agent i and for every vector of
valuations of all other players, it is impossible for agent i to increase her expected utility
by misreporting her valuation.

—Bayesian incentive compatibility (BIC): It is a Bayes-Nash equilibrium (BNE) for the agents
to truthfully report their valuations to the mechanism. That is, each agent i maximizes her
expected utility by truthfully reporting her valuation if all other players also truthfully
report their valuations.

• Individual rationality (IR)

—Ex-post individual rationality (ex-post IR): It is not harmful for any agent to participate in
the mechanism, i.e., there is guaranteed to be a strategy for an agent that yields the agent
a utility that is not less than her initial utility. (The initial utility of a seller with bundle
Ij is w j (Ij ), and the initial utility of a buyer is vi (∅) = 0.)

— Interim individual rationality (interim IR): There is a strategy for each agent that yields
her an expected utility that is not less than her initial utility (where expectation is over

8Technically, as can be inferred, the DSIC properties are reserved for direct revelation mechansims, i.e., where the buyer

solely interacts with the mechanism reporting her valuation function. It is well known that mechanisms admitting a domi-

nant strategy can be transformed into DSIC direct revelation mechanisms, and those with a Bayes-Nash equilibrium can be

transformed into BIC direct revelation mechanisms. This way, the DSIC and BIC definitions naturally extend to non-direct

revelation mechanisms.
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4:10 R. Colini-Baldeschi et al.

the random outcome of the mechanism, resulting from internal randomness of the mech-
anism and randomized strategies adopted by the agents).

• Budget balance (BB)

—Strong Budget Balance (SBB): The sum of all agents’ payments output by the mechanism
is equal to zero. Conceptually, this means that no money ends up at an external party, and
no external party needs to subsidise the mechanism.

—Weak Budget Balance (WBB): The sum of all payments is at least zero. In two sided-
markets, this generally means that the buyers’ payments are at least as large as the pay-
ments received by the sellers. No external party needs to subsidise the mechanism.

For valuation profiles (v,w ), OPT(v,w ) := max{SW(X ,Y ) : (X ,Y ) ∈ A} denotes the optimal

social welfare. The expected optimal social welfare is the value OPT = Ev,w [OPT(v,w )]. We say
that a mechanism M α-approximates the optimal social welfare for some α > 1 if and only if
OPT ≤ αEv,w [SW(M(v,w ))]. Our goal is to find mechanisms that α-approximate the optimal
social welfare for a low α , are DSIC (or BIC), SBB, and ex-post IR (or interim IR).

2.3 Valuation Functions

We will consider probability distributions over the following classes of valuation functions. Let
v : 2[k] → R≥0 be a valuation function. Then,

• v is additive if and only if there exist numbers α1, . . . αk ∈ R≥0 such thatv (S ) =
∑

j ∈S α j for
all S ⊆ [k].

• v is fractionally subadditive (or XOS) if and only if there exists a collection of additive func-
tions a1, . . . ,ad such that for every bundle S ⊆ [k] it holds that v (S ) = maxi ∈[d] ai (S ).

• v is subadditive if and only if for for all S,T ⊆ [k] it holds that v (S ∪T ) ≤ v (S ) +v (T ).

It is easy to see that every additive function is a XOS function. Further, it is well known that the
class of submodular functions are contained in the class of XOS functions, and XOS functions are
contained in the class of the subadditive functions.

3 AN INITIAL MECHANISM AND DIRECT TRADE STRONG BUDGET BALANCE

Blumrosen and Dobzinski [4] present a mechanism for exchange markets with subadditive valua-
tion functions. It works by partitioning the set of agents into two setsA and B uniformly at random.
For the agents in A, an agent i is offered a payment equal to his median valuation MEDi for the
whole bundle. All the agents of A that accept this payment hand in their items, and the total set
of collected items is then sold through a VCG auction to the agents in B. However, in running this
VCG auction, an objective function is maximized that is a modified version of the regular social
welfare, where an amount of H (ti )MEDi is subtracted for each agent i ∈ A, where ti is the number
of agents in B holding an item from i , and H (·) denotes the harmonic numbers. The auctioneer
potentially takes items away from agents inA that subsequently remain unallocated after running
the VCG mechanism. They prove the following for this mechanism, which we name Mbd.

Theorem 3.1 (Blumrosen and Dobzinski [4]). Mechanism Mbd is a DSIC, WBB, ex-post IR ran-

domized direct revelation mechanism that 4H (s )-approximates the optimal social welfare for combi-

natorial exchange markets (n,k, I , F ) with subadditive valuation functions, where s = min{n, |Ii | : i ∈
[n]} is the minimum of the number of agents and the number of items in an agent’s initial endowment.

This mechanism gives us a constant approximation factor if the number of starting items of the
agents is bounded by a constant, in particular in the unit-supply case.

The budget imbalance that Mbd may generate can be arbitrarily high and is highly instance-
dependent. We show now how we can use this mechanism as a black box to obtain an SBB
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mechanism with only a slightly worse approximation ratio. Define mechanism Msbb as follows.
When given as input a combinatorial exchange market C = (n,k, I , F ),

(1) Select an agent in i ∈ [n] uniformly at random.
(2) Run Mechanism Mbd on the combinatorial exchange market

C−i = ([n] \ {i}, I−i = (I1, . . . , Ii−1, Ii+1, . . . , In ), F−i = (F1, . . . , Fi−1, Fi+1, . . . , Fn )).

Let (X−i , ρ−i ) be the outcome that Mechanism Mbd outputs.
(3) SetXi = Ii and setpi = −

∑
j ∈[n]\{i } pj . Output the allocation (Xi ,X−i ) and output payment

vector (pi , ρ−i ).

So Mechanism Msbb essentially runs Mechanism Mbd where one random agent is removed
from the market. This agent receives the leftover money that Mechanism Mbd generates and does
not receive or lose any items. Note that if we would like to ensure that all items are allocated to
the agents (hence do not end up at the auctioneer) after running the mechanism, then we may
additionally allocate any leftover items to the agent that we removed a priori. The following is a
direct corollary of the DSIC, WBB, and ex-post IR properties of mechanism Mbd.

Theorem 3.2. Mechanism Msbb is a DSIC, SBB, and ex-post IR mechanism for exchange markets

with subadditive valuation functions.

Second, the following theorem shows that the mechanism loses only a factor 2n/(n − 1) ≤ 3 in
the approximation ratio for n ≥ 3.9

Theorem 3.3. Mechanism Msbb achieves an 8nH (s )/(n − 1)-approximation to the optimal social

welfare for exchange markets with subadditive valuations and at least three agents.

Proof. Fix a valuation vector v of the agents, let X ∗∗v ⊆ A be the social welfare maximising
allocation when the agents have valuationsv . For an agent i ∈ [n], denote by X ∗∗

v,−i the allocation

for C−i where (X ∗∗
v,−i )j = (X ∗∗v )j \ Ii for j ∈ [n] \ {i}, i.e., the allocation obtained from X ∗∗v when i

is removed, and all items of i are removed. Moreover, let X ∗
v,−i be the optimal allocation of the

combinatorial exchange market C−i when the valuation function vector of the players [n] \ {i}
is fixed to v−i . Mechanism Msbb selects i uniformly at random, so by Theorem 3.1, the expected
social welfare of Mechanism Msbb is at least

1

4H (s )
Ei

⎡⎢⎢⎢⎢⎢⎣
∑

j ∈[n]\{i }
vj (X ∗v,−i )

⎤⎥⎥⎥⎥⎥⎦
≥ 1

4H (s )
Ei

⎡⎢⎢⎢⎢⎢⎣
∑

j ∈[n]\{i }
vj (X ∗∗v,−i )

⎤⎥⎥⎥⎥⎥⎦
=

1

4nH (s )

∑

i ∈[n]

∑

j ∈[n]\{i }
vj ((X ∗∗v )j \ Ii )

=
1

4nH (s )

∑

i ∈[n]

∑

j ∈[n]\{i }
vi ((X ∗∗v )i \ Ij )

=
1

4nH (s )

∑

i ∈[n]

∑

{j, j′ }:j, j′ ∈[n]\{i }
∧j�j′

1

n − 2
(vi ((X ∗∗v )i\Ij ) +vi ((X ∗∗v )i\Ij′ ))

9For n = 2 there exist alternative mechanisms that achieve a good approximation ratio. In this case, one may for example

restrict to a mechanism that either considers reallocating the whole bundle of Agent 1 to Agent 2 or vice versa. The mech-

anism selects one of the two alternatives uniformly at random, and then runs a 2-approximate DSIC, SBB, IR mechanism

for the bilateral trade setting (i.e., the setting with one buyer, one seller, one item) [5] where the bundle of the selling agent

is treated as a single item. This yields a DSIC, SBB, IR mechanism where the random choice in the first step introduces an

additional factor of 2 to the approximation factor, so that we get an upper bound of 4 on the total approximation factor.
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=
1

4nH (s )

∑

i ∈[n]

∑

{j, j′ }:j, j′ ∈[n]\{i }∧j�j′

1

n − 2
vi (X ∗∗v )

=
1

4nH (s )

∑

i ∈[n]

n − 1

2
vi (X ∗∗v )

=
n − 1

8nH (s )

∑

i ∈[n]

vi (X ∗∗v ),

where the second inequality follows from subadditivity, and the second-to-last equality is obtained

through the insight that the number of terms in the inner summation is
(
n−1

2

)
= (n − 1) (n − 2)/2,

which yields the factor (n − 1)/2 when multiplied by the coefficient 1/(n − 2). This proves the
claim, since the above holds for every valuation vectorv . �

This yields an ex-post IR, SBB, and DSIC mechanism that O (1)-approximates the social welfare
if the number of items initially posessed by an agent is bounded by a constant.

The principle that we used to construct Mechanism Msbb can more generally be used to turn
any WBB mechanism into an SBB one, while preserving the DSIC and ex-post IR properties. This
principle also reveals a problematic aspect of the notion of SBB: It allows for agents to receive
money, while they are not involved in any trade. This motivates a strengthened notion of strong
budget balance, which we call direct trade strong budget balance.

Definition 3.4. A mechanism for an exchange market satisfies direct trade strong budget balance

(DSBB) if and only if the outcome it generates can be achieved by a set of bilateral trades, where
each trade consists of a reallocation of an item from an agent i to an agent j, and a monetary
transfer from agent j to agent i . Moreover, each item may only be traded once.

DSBB strengthens the traditional SBB notion and seems to be a reasonable requirement in most
two sided markets and exchange markets settings. Note that the way in which we strengthen SBB
is rather mild: DSBB still allows an arbitrarily large amount of money to be transfered from one
agent to another as long as at least one item is exchanged in the opposite direction. DSBB does
not even require such a bilateral exchange to be profitable for both parties but does nonetheless
seem to rule out the rather unsatisfactory type construction such as the one used in Msbb.

It can be seen that Mechanism Msbb does not satisfy DSBB. In the remainder of the article, we
will proceed to design mechanisms for two-sided markets that do satisfy DSBB.10

4 A MECHANISM FOR UNIT-SUPPLY SELLERS AND XOS BUYERS

In this section, we present a DSIC, ex-post IR, and DSBB mechanism for two-sided markets, when
sellers initially possess a single item and buyers have XOS valuation functions. This mechanism
achieves a constant approximation to the optimal social welfare. In this setting, we use [k] to
denote both the set of items and the set of sellers, where item j is owned by seller j (so Ij = {j}
for all j ∈ [k]). When clear from context, in this section we will use w j to denote the valuation of
seller j for his initial bundle {j}. For each seller j ∈ [k], we then treat Fj as a distribution over R≥0

instead of a distribution over functions.
We assume throughout this section that (n,k,k, I ,G, F ) is a given two-sided market, on which

we run the mechanism to be defined. For an allocation (X ,Y ) ∈ A, we shall use the notation
SWB , SWS to respectively denote the buyers’ and the sellers’ contribution to the social welfare, i.e.,

10We note that the double auctions given in Reference [12] also satisfy the DSBB property. Moreover, one may define anal-

ogously “direct-trade” version of weak budget balance, say DWBB, which turns out to be satisfied by the WBB mechanisms

of References [2, 3, 8, 24].
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SWB (X ,Y ) :=

n∑

i=1

vi (Xi ),

SWS (X ,Y ) :=

k∑

i=1

w j (Yj ) =
k∑

j=1

w jI[j ∈ Yj ].

(1)

Our mechanism requires fixing a price for every item in the market. For a bundle of available
items Λ and an item price vector p = (p1, . . . ,pk ) ∈ Rk

≥0, we define the demand correspondence of
buyer i ∈ [n] with valuation function vi as

D (vi ,p,Λ) :=
⎧⎪⎪⎨⎪⎪⎩
S ⊆ Λ : vi (S ) −

∑

j ∈S
pj ≥ vi (T ) −

∑

j ∈T
pj for all T ⊆ Λ

⎫⎪⎪⎬⎪⎪⎭
,

i.e., D (vi ,p,Λ) is the set of bundles of items in Λ that maximise i’s utility under the given item
prices.

For a buyer i with an XOS valuation function vi , we define the additive representative function

for bundle T ⊆ [k] as any additive function a(vi ,T , ·) : 2[k] → R≥0 such that vi (T ) = a(vi ,T ,T ),
and vi (S ) ≥ a(vi ,T , S ) for all S ⊆ [k]. An additive representative function of a bundle is guaran-
teed to exist for each buyer i and for each valuation function in the support of Gi , by the defini-
tion of XOS functions. Regarding the computational aspects of our mechanisms: They assume the
ability to compute an additive representative function of an XOS function for a given bundle of
items. Regarding the computational complexity of the latter task, given value query access to an
XOS-function, computing an additive representative function for a bundle of items can be done
efficiently for some special subclasses of XOS-functions, such as submodular functions.11 To the
best of our knowledge for general XOS-functions, it is not known whether one can compute an ad-
ditive representative function in polynomial time for a given bundle. Various previous works (e.g.,
References [15, 19]) that deal with XOS functions simply assume the existence of an XOS-oracle

that performs this task without spending computational resources.

4.1 Mechanism

Let A be an algorithm that, given a buyers’ valuation profile v and a set of items [k], allocates
the items to the buyers, without considering the sellers and their valuations. A can either be an
exact algorithm that outputs an optimal allocation of [k] to the buyers (if one is not interested
in the runtime) or an approximately optimal one (in the case that one insists on polynomial-time
implementability). Our mechanism uses A as a black-box for the computation of item prices.

Let X all (v ) = (X all
1 (v ), . . . ,X all

n (v )) (where the superscript “all” stands for “allocation”) be the

output allocation of A(v ). Let SW(X all (v )) be the total social welfare of the allocation X all (v ).
We define for each item j ∈ [k] its contribution SW

B
j (v ) to the social welfare SW(X all (v ))

as follows: if there exists a buyer i that receives item j in allocation X all
i (v ), then SWB

j (v ) =

a(vi ,X
all
i (v ), {j}). Otherwise, if j is not allocated to any buyer in X all

i (v ), then SWB
j (v ) = 0.

This notion allows us to make a distinction between high welfare items and low welfare items,
where these notions are with respect to the ratio of the social welfare of the item on the buyer’s
side, and the seller’s social welfare . An item j ∈ [k] is said to have high welfare with respect to

SW(X all
i (v )) if and only if Ev [SWB

j (v )] ≥ 4E[w j ], i.e., the expected social welfare contribution of

11For submodular functions one can order the items in the given bundle arbitrarily, set the coefficients outside of the bundle

to 0, and set the coefficient of each item inside of the bundle to the marginal increase in valuation with respect to the set of

predecessors in the ordering. It is then straightforward to prove that this yields the coefficients of an additive representative

function for the given bundle and requires at most k value queries to compute.
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j if we would allocate j according to X all (v ) is at least four times as high as the social welfare that
results from leaving item j with its seller.

Formally, let H be the set of high welfare items, i.e., H := {� ∈ [k] : E[SWB
� (v )] ≥ 4E[w j ]}, and

let L be the set of low welfare items, i.e., L := [k] \ H . For each high welfare item j ∈ H , the mech-
anism makes use of the following associated item price pj :

pj :=
1

2
Ev

[
SWB

j (v )
]
.

Observe that pj ≥ 2E[w j ] for all j ∈ H , by our definition of high welfare items.
The reason why H is chosen in such a way is twofold: First, the items in L if kept by their sellers

provide a welfare loss of at most a constant factor; second, every item in H is guaranteed to be
sold (if sold) at a high price, to make sure that the buyer receiving the item has a high valuation
for it.

Our (randomized) mechanism does the following. First, it considers the sellers with an item in
H (in any order) and asks each of them whether they would sell their item for a price of pj . As
mentioned above, by definition of the prices, every seller j ∈ H accepts the price with probability
at least 1/2, by Markov’s inequality (recall that pj ≥ 2E[w j ] for all j ∈ H ).

To make sure that this probability is exactly 1/2, the seller j is only given the opportunity to
sell her item at the price pj with probability qj such that (in expectation) the offer is accepted with
probability exactly 1/2. Formally, this means that the mechanism makes an offer to the seller j
with probability

qj :=
1

2Fj (pj )
, where Fj (pj ) = Pr[w j ≤ pj ].

An item in H is considered to be “in the market” if the mechanism makes an offer to the corre-
sponding seller for this item, and the corresponding seller accepts the mechanism’s offer. After the
mechanism has made the offers to the sellers of H , it knows which items are in the market and
then asks each buyer (sequentially, in any order) for her favourite bundle of items (given the price
vector p) among those items that are still in the market. If an item j is among the items requested
by a buyer, then j is transferred from its corresponding seller j, and the buyer pays pj to seller j.
Item j is then removed from the set of items in the market, and the mechanism proceeds to the
next buyer.

We call the mechanism sketched above M1-supply, which we now present more precisely:

(1) Let H := {j ∈ [k] : Ev [SWB
j (v )] ≥ 4E[w j ]}.

(2) For all j ∈ H , set pj := 1
2Ev [SWB

j (v )].

(3) Let Λ1 := ∅,Xi := ∅ for all i ∈ [n] and Yj := {j} for all j ∈ [k].

(4) For all j ∈ H :

(a) Set qj := 1/(2Pr[w j ≤ pj ]).
(b) With probability qj , offer payment pj in exchange for her item.

(c) If j accepts the offer, set Λ1 := Λ1 ∪ {j}.
(5) For all i ∈ [n]:

(a) Buyer i chooses a bundle Bi ∈ D (vi ,p,Λi ) that maximises her utility.

(b) Allocate the accepted items to buyer i , i.e., Xi := Bi and Yj := ∅ for all j ∈ Bi .

(c) Remove the selected items from the available items, i.e., Λi+1 := Λi \ Bi .

(6) Return the outcome consisting of allocation (X = (X1, . . . ,Xn ),Y = (Y1, . . . ,Yk )) and payments

ρ = (ρB , ρS ), where ρB
i =
∑

j ∈Xi
pj for i ∈ [n] and ρS

j
= −pjI[Yj = ∅] for j ∈ [k].

Note that AlgorithmA is only used in the first steps of mechanismM1-supply, whereEv [SWB
j (v )]

is computed. Let α be the factor by which A is guaranteed to approximate the social welfare of the
buyers.
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4.2 Results

Now, we are ready to present the main result of this section:

Theorem 4.1. M1−supply is ex-post IR, DSIC, and DSBB, and (2 + 4α )-approximates the optimal

social welfare.

In particular, taking for A an optimal algorithm (i.e., α = 1), we obtain that there exists a
mechanism that is ex-post IR, DSIC, and DSBB, and 6-approximates the optimal social wel-
fare. As mentioned in Section 1.3, one may alternatively take for A a polynomial time α-
approximation algorithm and use the technique in Reference [19], to obtain a mechanism with
runtime POLY (1/ϵ,n,m) that approximates the optimal social welfare within a 2 + 4α multiplica-
tive factor and an ϵ additive term.

We split the proof of Theorem 4.1 into two lemmas that separately bound the sellers’ and
the buyers’ relative contributions to the social welfare. We use the notation OPT as defined
in Section 2, and we use ALG to denote the expected social welfare of the mechanism, i.e.,
Ev,w [SW(M1-supply (v,w ))]. Moreover, the superscripts S,B respectively denote the sellers’ and

buyers’ contributions to the social welfare, e.g., OPT = OPTS + OPTB and ALG = ALGS + ALGB ,
consistent with the notation of (1).

The following lemma is a simple consequence of the fact that M1-supply lets every seller in H
accept an offer with probability exactly 1/2.

Lemma 4.2. If every seller j ∈ H puts her item into the market with probability exactly 1/2, then

2ALGS ≥
k∑

j=1

E[w j ] ≥ OPTS .

Proof. The second inequality is trivial, so we focus on the first inequality. First, observe that

Pr[w j > pj ] ≤ Pr[w j > 2E[w j ]] <
1

2
,

where the first inequality holds because j ∈ H , and the second inequality follows by Markov’s
inequality. Thus, with probability at least 1/2 a seller j is happy to sell her item at pricepj . But every
seller receives an offer from the mechanism with probabilityqj := 1/(2Pr[w j ≤ pj ]), so every seller
in H accepts to trade with probability exactly 1/2. This implies that every seller j ∈ H contributes
in expectation at least E[w j ]/2 to the social welfare. Moreover, every seller in L never trades, so
that such a seller contributes her full expected valuation to the expected social welfare. �

Next, we provide a more difficult bound that relates ALGB and ALGS to OPTB . The proof of this
lemma is lengthy and therefore deferred to Appendix A.1.

Lemma 4.3. The buyers’ contributions to the optimal social welfare is bounded by

4αALG = 4αALGB + 4αALGS ≥ OPTB .

Intuitively, Lemma 4.3 uses two main ingredients:

• the partition of the items between high-welfare (H ) items and low-welfare items (L), and
• the definition of SWB

j (v ) w.r.t. a one-sided (approximation) algorithm A.

The latter tells us that the sum of the expected contributions of all the items, i.e.,∑k
j=1 E[SWB

� (v )], is an upper-bound on OPTB/α . From the former, we know that:

• the sellers do not trade items in L, and this is enough to ensure that their contribution to
the expected social welfare is greater than a constant fraction of the expected contribution
of the items in L, i.e., ALGS > 1

4

∑
j ∈L E[SWB

j (v )],

ACM Transactions on Economics and Computation, Vol. 8, No. 1, Article 4. Publication date: March 2020.



4:16 R. Colini-Baldeschi et al.

• the only items that the agents can trade are those that have a high welfare w.r.t. SW(X all
i (v )).

From that, we can (not trivially, see Appendix A.1) infer that the contribution of the buyers
to the expected social welfare is greater than a constant fraction of the expected contribution
of the items in H , i.e., ALGB > 1

4

∑
j ∈H E[SWB

j (v )].

By combining these bounds, the claim of Lemma 4.3 follows. Theorem 4.1 is then obtained
straightforwardly from Lemma 4.2 and Lemma 4.3.

Proof of Theorem 4.1. The bound on the approximation ratio follows from the sum of the
inequalities of Lemma 4.2 and Lemma 4.3. Moreover, it is a dominant strategy for a seller to accept
if and only if the payment offered to her exceeds her valuation, and it is a dominant strategy for
a buyer to choose a utility-maximising bundle for the items and item prices offered to her. Thus,
when viewed as a direct revelation mechanism, M1-supply is DSIC. It is clear that participating in
the mechanism can never lead to a decrease in utility when truthful for both buyers and sellers, and
therefore the mechanism is also ex-post IR. Last, it is straightforward to see that the mechanism is
DSBB, as the definition of M1-supply, which we gave in terms of sequential posted pricing naturally
yields us the required set of bilateral trades. �

5 A MECHANISM FOR ADDITIVE SELLERS AND XOS BUYERS

We now consider the setting in which sellers may own multiple distinct items and have an additive
valuation function over them. We design a DSBB mechanism that is DSIC and ex-post IR on the
sellers’ side and BIC and interim IR on the buyers’ side. At the end of the section, we show that, in
the case that both buyers and sellers have additive valuation functions, the mechanism we present
is DSIC and ex-post IR on both sides of the market.

Note that if the coefficients of the additive valuation functions of the sellers would be drawn
from independent distributions, the present setting can be handled satisfactorily by our previous
mechanism (i.e., by treating the individual items of a single seller as if they were all items held by
individual sellers) while preserving all desirable properties and the approximation ratio. However,
in the present setting there generally exists a correlation among the coefficients of a seller’s
valuation function, which causes the incentive compatibility property of the first mechanism to
not carry through to this case where we have additive sellers with multiple items. An example of
an instance where the M1-supply mechanism would fail is when there is one buyer and one seller of
two items. The buyer holds (deterministically) a XOS valuation function consisting of two additive
functions in its support, with respectively the coefficients (42, 0) and (0, 40). The seller holds
(deterministically) an additive valuation function with coefficients (10, 0). Both items would be
classified by the mechanism as high welfare items, and prices of 21 and 20 would be offered for the
two respective items. If the seller behaves truthfully and accepts the offered price for both items,
then the buyer would request only the first item, leaving the seller with a utility of 21. However,
if the seller only accepts the price for the second item, then the buyer would request that item,
and the seller obtains a utility of 30, which demonstrates that M1-supply is not DSIC in this setting.

We assume throughout this section that (n,m,k, I ,G, F ) is a given two-sided market with XOS
buyers and additive sellers, on which we run the mechanism to be defined. Here, the number of
items and sellers is in general different, we use m to denote the number of sellers and k for the
number of items. The valuationw j of a seller j is now an additive function. We reuse the following

notation from Section 4: The allocation (X all
1 (v ), . . . ,X all

n (v )) returned by algorithm A on input
v is a mapping of [k] to [n]. We let α ≥ 1 again denote the approximation factor by which A
approximates the social welfare. For XOS valuation vi and bundle T ⊆ [k] we use a(vi ,T , ·) to
denote an additive representative function of vi for T . Also, we use the buyers’ social welfare
contribution SWB

� (v ) for item � ∈ [k] and buyers’ valuation profilev , as defined in Section 4.

ACM Transactions on Economics and Computation, Vol. 8, No. 1, Article 4. Publication date: March 2020.



Approximately Efficient Two-Sided Combinatorial Auctions 4:17

Furthermore, we define the sellers’ social welfare contribution SWS
� (w ) for item � ∈ Ij and sell-

ers’ valuation profile w as SWS
� (w ) := w j ({�}). Due to the fact that for j ∈ [m], w j is an additive

function, there is no need for defining the notion of an additive representative function for a seller.

5.1 Mechanism

We aim to design a BIC, interim IR, and DSBB mechanism that approximates the optimal social
welfare within a constant. We propose the following mechanism, which we refer to as Madd. We
let Hj := {� ∈ Ij : E[SWB

� (v )] ≥ 4E[SWS
� (w )]} and Lj := Ij \ Hj for all j ∈ [m], and we let H :=⋃m

j=1 Hj and L := [k] \ H denote the sets of high-welfare items and low-welfare items, respectively.

Our mechanism will only allow trading items in H . We define for � ∈ H the item price

p� :=
1

2
E
[
SWB

� (v )
]
,

similarly to what we did for M1-supply.
An essential difference between Madd and M1-supply is that the order in which buyers and sellers

are processed is reversed. Mechanism Madd roughly works as follows. It first asks every buyer
which set of items it would like to receive (given the price vector p) from those items in H that
have not been requested yet. Then Madd offers every seller j ∈ [m] a payment in exchange for the
subset of all items in Ij that have been requested. This offer is made with probability qj , chosen in
such a way that the requested items of seller j are transferred to the buyers with probability 1/2.
The items of the sellers accepting the offer are transferred to the buyers for the corresponding item
prices. Buyers act strategically and will request a bundle of items that maximises their expected
utility (given the price vector p), knowing that the item sets requested from each seller will be
assigned to them with probability 1/2.12 In our mechanism, the sellers will each have a dominant
strategy, while the buyers’ aformentioned behaviour relies on the sellers playing their dominant
strategies. This reliance results in a BIC (rather than a DSIC) mechanism. Below we describe the
mechanism in more detail and we subsequently provide an example of the mechanism’s execution
on a simple instance.

(1) For � ∈ [k], compute E[SWB
�

(v )] and E[SWS
�

(w )].

(2) For all j ∈ [m], compute Hj .

(3) Compute H and L.

(4) Let Λ1 := H , Xi := ∅ for all i ∈ [n], and Yj := Ij for all j ∈ [m].

(5) For each buyer i ∈ [n]:

(a) Ask buyer i to select an expected-utility maximising bundle Bi ⊆ Λi given the prices {p� : � ∈
Λi } from the set of available items Λi (where the expectation is taken w.r.t. the randomness of

the valuations and the mechanism).

(b) Update the set of available items Λi+1 := Λi \ Bi .

(6) Let B :=
⋃n

i=1 Bi be the set of all items demanded by the buyers.

(7) For each seller j ∈ [m]:

(a) Let Sj := B ∩Hj be the set of items owned by seller j that are demanded.

(b) Let p (Sj ) :=
∑

�∈Sj
p� and let qj = 1/(2Pr[w j (Sj ) ≤ p (Sj )]).

(c) With probability qj , offer payment p (Sj ) in exchange for the bundle Sj . Otherwise, skip this

seller.

(d) If the seller accepts the offer, allocate each item in Sj to the buyer that requested it (i.e., remove

Sj from Yj and add Sj ∩ Bi to Xi for all i ∈ [n])

(8) Return the outcome consisting of allocation (X = (X1, . . . ,Xn ),Y = (Y1, . . . ,Yk )) and payments

ρ = (ρB , ρS ), where ρB
i =
∑

�∈Xi
p� for i ∈ [n] and ρS

j
=
∑

�∈Ij \Yj
−p� for j ∈ [m].

12Buyers may need to make complex calculations to establish which bundle maximises her expected utility.
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Notice the mechanism Madd runs in polynomial time, but it makes use of a variant of a standard
demand query in which the mechanism gives prices for the items, and asks a buyer which bundle
she would like if, for for each seller j, the items of seller j in that bundle were to be received with

probability 1/2. Note that in answering such a query, a buyer has to take into account the positive

correlation that exists between the presence of items in the market, as two items coming from the same

seller are always either bothin the market or bothnot in the market. This type of demand query places
a heavier computational and cognitive burden on the agent than with standard demand queries.
Answering such a demand query gets more difficult with increasing expressiveness of the class of
valuation functions considered. In particular, the structure of the XOS valuation functions consid-
ered here will make answering such value queries easier than more expressive classes. This said,
we will not address in the present article the complexity aspects of the buyer’s task in answering
such queries, though we believe that it is an important open question to investigate. This might
be interesting even for a simpler type of probabilistic demand query where each item (rather than
seller’s bundles) are independently received with probability 1/2.

The following example illustrates some important aspects of Madd, and the strategies of the
buyers under a BNE.

Example 5.1. There is one buyer and two unit-supply sellers. Each seller has one item. The
buyer has two XOS valuation functions v1 and v2, each chosen with probability 1/2. Valuation v1

is composed of 3 additive functions a1, a2, and a3, i.e., v1 (S ) = max{a1 (S ),a2 (S ),a3 (S )}. Valuation
v2 consists of a single additive function a4. Each seller j has a valuation function w j = 0. Recall
that a function a is additive if there exists α1, . . . ,αk such that a(S ) =

∑
j ∈S α j for all S ⊆ [k]. The

functions a1 to a4 are described in the table below by listing the values α1 and α2.

Function item 1 ( α1) item 2 ( α2)
a1 0 2
a2 8 0
a3 7 2
a4 1 6

Let us compute the prices offered by the mechanism Madd when A is an optimal algorithm.
Thus, we need to compute the expected contribution to the optimal social welfare of every item.
First, notice that the optimum allocates the items 1 and 2 to the buyer when her valuation is v1. In
this case the contribution to the optimal social welfare of item 1 is 7, and the contribution of item
2 is 2. Similarly, if the buyer has valuationv2, then the optimum still allocates items 1 and 2 to her,
but in this case the contribution to the optimal social welfare of item 1 is 1, and the contribution
of item 2 is 6. Thus, the expected contribution of every item to the optimal social welfare is 4, i.e.,
E[SWB

j (v )] = 4 for all j = 1, 2. Since the price pj of each item is defined to be half of the expected

contribution to the optimal social welfare, pj = 2 for all the items.
When the mechanism asks a buyer to select a bundle that maximizes her expected utility, the

buyer has to answer by taking into account the fact that each item in her requested bundle will
be allocated with probability 1/2. First, consider the case when the buyer has valuation v1. In this
case the expected utility for the different bundles are

u ({1}) = 1

2
· (8 − 2) +

1

2
· 0 = 3,

u ({2}) = 1

2
· (2 − 2) +

1

2
· 0 = 0,

u ({1, 2}) = 1

4
· (8 − 2) +

1

4
· (2 − 2) +

1

4
· (9 − 4) +

1

4
· 0 = 11

4
.
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The utility-maximising bundle that will be requested by the buyer in case ofv1 is {1}, in which case
the mechanism will let the buyer pay Seller 1 a price of 2 in exchange for the item. Instead, if the
valuation of the buyer is v2, then the requested bundle will be {2}, in which case the mechanism
will let the buyer pay seller 2 a price of 2 in exchange for item 2.

5.2 Results

Our main result for Madd is the following theorem.

Theorem 5.2. The mechanism Madd is interim IR, BIC, DSBB, and (2 + 4α )-approximates the op-

timal social welfare.

By taking for A an optimal algorithm (i.e., α = 1), we obtain a mechanism that is ex-post IR,
DSIC, SBB, and 6-approximates the optimal social welfare. Again, we split the proof of this theo-
rem 5.2 into two lemmas that separately bound the sellers’ and the buyers’ relative contributions
to the social welfare. Like the previous section, we use the notation OPT as defined in Section 2,
and we use ALG to denote the expected social welfare of the mechanism. Moreover, we use again
the superscripts B and S to refer to the buyers’ and sellers’ expected contribution to the social
welfare of a given allocation, as we did in Section 4.

Let us first discuss how we bound the sellers’ expected contribution to the optimal allocation.

Lemma 5.3.
2ALGS ≥ OPTS .

Proof. The only items that our mechanisms potentially reallocates are the ones belonging to
H . Every item in L stays with its seller. For the items in H , the mechanism ensures every seller
sells her demanded bundle with probability exactly 1/2, so for each seller it holds that she retains
her full initial endowment with probability at least 1/2, which implies the claim. �

Similarly, we want to provide an upper bound on the buyers’ expected contribution to the op-
timal allocation. To do that, we need two auxiliary propositions.

The first proposition exploits the partition of the items among high-welfare items and low-
welfare items. Since the low-welfare items are not traded, the sum of the expected contribution
of the buyers on the high-welfare items and the expected contribution of the sellers on the low-
welfare items gives us an upper bound on the buyers’ expected contribution in the allocation
computed by A.

Proposition 5.4.
∑

�∈H
Ev

[
SW

B
� (v )

]
+ 4
∑

�∈L

Ew

[
SW

S
� (w )

]
>

n∑

i=1

Ev

[
vi (X all

i (v ))
]
.

Proof. Let a(vi ,X
all
i (v ), ·) be an additive representative function of vi for the bundle X all

i (v ).
Then,

n∑

i=1

E[vi (X all
i (v ))] =

n∑

i=1

E

⎡⎢⎢⎢⎢⎢⎢⎣
∑

�∈X all
i

(v )

a(vi ,X
all
i (v ), {�})

⎤⎥⎥⎥⎥⎥⎥⎦
=

n∑

i=1

k∑

�=1

E
[
a
(
vi ,X

all
i (v ), {�}

)
I
[
� ∈ X all

i (v )
] ]

=

k∑

�=1

E
[
SWB

� (v )
]
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=
∑

�∈H
E
[
SWB

� (v )
]
+
∑

�∈L

E
[
SWB

� (v )
]

<
∑

�∈H
E
[
SWB

� (v )
]
+ 4
∑

�∈L

E
[
SWS

� (w )
]
.

The last inequality follows, because, by definition of L,

4
∑

�∈L

E
[
SWS

� (w )
]
>
∑

�∈L

E
[
SWB

� (v )
]
. �

Now, since buyers can obtain only high-welfare items, their contribution to the expected social
welfare of Madd is greater than a constant fraction of the expected contribution of the high-welfare
items to the allocation computed by A. The proof of Proposition 5.5 is deferred to Appendix A.2.

Proposition 5.5.

ALGB ≥ 1

4

∑

�∈H
Ev

[
SW

B
� (v )

]
.

Thus, using Proposition 5.4 and Proposition 5.5 we can prove that the sum of the buyers’ ex-
pected contribution and the sellers’ expected contribution of Madd provides a constant approxi-
mation to the buyers’ expected contribution in the optimal allocation.

Lemma 5.6.

4αALGB + 4αALGS > OPTB .

Proof. By Proposition 5.5, 4ALGB ≥ ∑�∈H Ev [SWB
� (v )]. Moreover, our mechanism leaves ev-

ery item � ∈ L with its seller, and so ALGS ≥ ∑�∈L Ew [SWS
� (w )]. Therefore,

4ALGB + 4ALGS ≥
∑

�∈H
Ev

[
SWB

� (v )
]
+ 4
∑

�∈L

Ew

[
SWS

� (w )
]
>

n∑

i=1

Ev

[
vi (X all

i (v ))
]
≥ 1

α
OPTB .

The second inequality holds by Proposition 5.4, and the last inequality follows, because we de-
fined α to be the approximation factor of algorithm A, which is the algorithm that we assumed to
generate allocation X all (v ). �

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem 5.2. On the sellers’ side, the mechanism is ex-post IR and DSIC: The sellers
solely have to decide between accepting or rejecting a single offer to receive a proposed payment
in exchange for a bundle of items, and it is clearly a dominant strategy to accept if and only if
such an exchange leads to an improvement in the seller’s utility. Every buyer chooses a bundle
that maximises her expected utility, and this choice depends solely on the choice of strategies of
the sellers. Therefore, the mechanism has a BNE in which the sellers play a dominant strategy,
and the mechanism is thus ex-interim IR and BIC. The fact that the mechanism is DSBB follows
from its definition, which makes clear that payments are defined by the appropriate sequence of
trades and payments from buyers to sellers. The approximation guarantee follows by the sum of
the inequalities of the above Lemmas 5.3 and 5.6. �

It is important to notice that the mechanism Madd turns into a DSIC and ex-post IR mechanism
if the buyers have additive valuations instead of XOS valuations.

Corollary 5.7. For the special case that for all i ∈ [n], distribution Gi is over additive valuation

functions, Madd is ex-post IR, DSIC, DSBB and (2 + 4α )-approximates the optimal social welfare.
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Proof. If a buyer i ∈ [n] has an additive valuation function, then it is a dominant strategy to
request the items in Λi (v<i )) for which it holds that vi ({�}) > p� . This follows from the simple
fact that by additivity, the utility that a buyer has for any bundle of items S can be written as∑

�∈S vi ({�}) − p� . Thus, for every item � ∈ [k] that a buyer requests (recall that this item is then
allocated to her for price p� with probability 1/2), a term of (1/2) (vi ({�}) − p� ) gets added to her
expected utility. So including � in her requested bundle is profitable if and only ifvi ({�}) − p� ≥ 0.
Using the same argument, the ex-post IR property is also satisfied by following this strategy. �

6 DISCUSSION

An open problem is to extend or refine our mechanisms so that they satisfy the DSIC and ex-post
IR properties for the case of XOS buyers and additive sellers. The first naïve approach for doing
so might be trying to consider every additive seller as a set of distinct unit-supply sellers and then
run M1-supply. However, this is not guaranteed to work due to the fact that an additive valuation
function may have intrinsic interdependencies among the items (e.g., if there are duplicates among
the items) and so the independence of these distinct unit-supply sellers is not guaranteed.

Additionally, we might consider asking every seller for her favorite bundle to place in the mar-
ket. However, this may cause a seller to regret having chosen that particular bundle after seeing
the realizations of the buyers’ valuations. However, it also seems highly challenging to establish
any sort of impossibility result for any reasonably defined class of posted price mechanisms for
two-sided markets.

Another natural direction is to extend the above mechanism to the setting in which both buyers
and sellers possess an XOS valuation function over bundles of items. A first challenge consists in
finding a suitable definition of the sellers’ social welfare contribution of an item using a corre-
sponding additive representative function.

We also comment on the reason for why we choose, in our two mechanisms, to scale down the
probability of an item being “in the market” so that it is exactly 1/2. The reason for scaling down
these probabilities is twofold: First, it makes the definition of the probabilistic demand queries
cleaner and easier to comprehend. It might be easier for a buyer to answer queries where the
probability of an item being in the market is exactly 1/2 instead of any arbitrary probability (al-
though we do not yet have formal evidence for that). Second, our current proof technique is to
decompose the social welfare into the buyer’s and seller’s contribution and show that both sides
contribute a substantial amount. If our mechanisms would not ensure the scaling of the probability
parameters, then this proof technique does not generalize appropriately, because the sellers’ con-
tribution to the social welfare can no longer be shown to be high enough. This loss can possibly
be compensated for by the gain in social welfare on the buyer’s side, but we expect that such a
proof would differ significantly from the one provided, and in particular we would no longer be
able to split the proof into two separate lemmas we do presently. We leave it as an open research
direction to investigate whether such a modification can yield an improved approximation factor.

Finally, we think it is an interesting open question to design a mechanism for the case of addi-
tive sellers and XOS buyers, where buyers do not need to answer the probabilistic-type demand
queries currently used, i.e., where a buyer has to specify a utility-maximizing bundle from a set
of presented items, given item prices, under the assumption that each seller’s bundle is allocated
with probability 1/2. Answering such a query places an additional burden on the buyer of which
the complexity is as of yet unclear. Can we remove this burden by removing entirely the need for
these demand queries, or can we replace those queries by a less demanding variant where, e.g., a
buyer only needs to assume that each individual item is independently allocated with probability
1/2?
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APPENDIX

A PROOFS

A.1 Proof of Lemma 4.3

To do prove Lemma 4.3, we first prove two propositions: one of them bounds the expected sum of
the buyers’ utilities, and one of them bounds the expected sum of the buyers’ payments. In both
propositions, we only consider items in H .

Given a buyers’ valuation profilev , letv<i = (v1, . . . ,vi−1). Further, let Z be a random variable
that denotes the sellers that receive and accept an offer from the mechanism, i.e., the set Λ1 at step 5
of M1-supply. For i ∈ [n] let Λi (v<i ,Z ) be the set Λi as given in the definition of M1-supply when the
valuation profile of the buyers isv and Z are the sellers in the market. Note that this implies that
Xi ⊆ Λi (v<i ,Z ) ⊆ Z . Consequently, Λn+1 (v,Z ) is the subset of items for which the correspond-
ing sellers have accepted the offer made to them by the mechanism, but remain allocated to the
corresponding seller after execution.

Proposition A.1. The total expected utility of the buyers for the allocation returned by M1−supply

is bounded from below by

E

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[n]

ui (M1−supply (v,w ))

⎤⎥⎥⎥⎥⎥⎦
≥ 1

2

∑

j ∈H
Prv,Z [j ∈ Λn+1 (v,Z ) | j ∈ Z ]pj .

(Note that the random variables in this expression are v,w , and the decisions of the mechanism to

make offers to the sellers in H .)

Proof. First, note that for each j ∈ H it holds that Pr[j ∈ Z ] = 1/2. Recall that we defined pj :=

(1/2)Ev [SWB
j (v )]. Thus, observe that by definition of pj , SWB

j (v ), and the law of total probability,

it holds for all j ∈ H that

pj = Ev

[
SWB

j (v ) − pj

]
=

n∑

i=1

Ev

[(
SWB

j (v ) − pj

)
I
[
j ∈ X all

i (v )
] ]
. (2)

Fix i ∈ [n], buyers’ valuation profilev , and set Z ⊆ H of sellers who accepted the mechanism’s
offer, and now consider the set Λi (v<i ,Z ) ⊆ H of available items that i can choose from. Notice that
these do not depend onvi , since the buyers in {1, . . . , i − 1} select their favorite bundle regardless of
vi . Moreover, notice that since the sellers are processed before the buyers, Λ1 (v<1,z) only contains
items whose sellers are willing to trade at the posted prices. Buyer i selects a bundle that maximises
her utility, i.e., that is in D (vi ,p,Λi (v<i ,Z )).

Now consider an additional randomly drawn profile of valuation functions ṽ−i for all buyers ex-
cept i , that is independent ofv . LetX all

i (vi , ṽ−i ) be the allocation of buyer i returned by A(vi , ṽ−i ).

For i ∈ [n], consider a corresponding additive representative function a(vi ,X
all
i (vi , ṽ−i ), ·), such

that a(vi ,X
all
i (vi , ṽ−i ), {j}) = SWB

j (vi , ṽ−i ). Let

Si (vi ,v−i , ṽ−i ,Z ) := X all
i (vi , ṽ−i ) ∩ Λi (v<i ,Z )

be the items in X all
i (vi , ṽ−i ) that buyer i may choose from under valuation profilev . As i chooses

a bundle Bi (v,Z ) ∈ D (vi ,p,Λi (v<i ,Z )) that maximises her utility, and Si (vi ,v−i , ṽ−i ,Z ) is in
Λi (v<i ,Z ), it follows that i’s utility for Bi (v,Z ) is at least the utility she would get for choosing
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Si (vi ,v−i , ṽ−i ,Z ). That is, for allv and Z ⊆ H

vi (Bi (v,Z )) −
∑

j ∈Bi (v,Z )

pj ≥ Eṽ−i

⎡⎢⎢⎢⎢⎢⎣
vi (Si (vi ,v−i , ṽ−i ,Z )) −

∑

j ∈Si (vi ,v−i ,ṽ−i ,Z )

pj

⎤⎥⎥⎥⎥⎥⎦
≥ Eṽ−i

⎡⎢⎢⎢⎢⎢⎣
∑

j ∈Si (vi ,v−i ,ṽ−i ,Z )

(
a
(
vi ,X

all
i (vi , ṽ−i ), {j}

)
− pj

)⎤⎥⎥⎥⎥⎥⎦
= Eṽ−i

⎡⎢⎢⎢⎢⎢⎣
∑

j ∈Si (vi ,v−i ,ṽ−i ,Z )

(
SWB

j (vi , ṽ−i ) − pj

)⎤⎥⎥⎥⎥⎥⎦
.

The second-to-last inequality follows from the definition of the corresponding additive function
a(vi ,X

all
i (vi , ṽ−i ), ·); that is, vi (S ) ≥ a(vi ,X

all
i (vi , ṽ−i ), S ) for all S ⊆ [k].

Now summing the above expression over all i ∈ [n] and taking the expectation over v and Z ,
we get

Ev,Z

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

��
�vi (Bi (v,Z )) −

∑

j ∈Bi (v,Z )

pj
��
�
⎤⎥⎥⎥⎥⎥⎦
≥ Ev,ṽ−i ,Z

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

∑

j ∈Si (vi ,v−i ,ṽ−i ,Z )

(
SWB

j (vi , ṽ−i ) − pj

)⎤⎥⎥⎥⎥⎥⎦
= Ev,ṽ−i ,Z

⎡⎢⎢⎢⎢⎣
n∑

i=1

∑

j ∈H

(
SWB

j (vi , ṽ−i ) − pj

)

·I
[
j ∈ X all

i (vi , ṽ−i )
]
I
[
j ∈ Λi (v<i ,Z )

]⎤⎥⎥⎥⎥⎦ .
Note that we exploited the independence of the events (j ∈ X all

i (vi , ṽ−i )) and (j ∈ Λi (v<i ,z)).
Thus, switching the order of the sums and using linearity of expectation, we get that

Ev,Z

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

��
�vi (Bi (v,Z )) −

∑

j ∈Bi (v,Z )

pj
��
�
⎤⎥⎥⎥⎥⎥⎦

≥
∑

j ∈H

n∑

i=1

Prv,Z [j ∈ Λi (v<i ,Z )]Evi ,ṽ−i

[(
SWB

j (vi , ṽ−i ) − pj

)
I
[
j ∈ X all

i

(
vi , ṽ−i

)] ]

≥
∑

j ∈H
Prv,Z [j ∈ Λn+1 (v,Z )]

n∑

i=1

Ev

[(
SWB

j (v ) − pj

)
I
[
j ∈ X all

i (v )
] ]

=
∑

j ∈H
Prv,Z [j ∈ Λn+1 (v,Z )]pj

=
∑

j ∈H
Prv,Z [j ∈ Λn+1 (v,Z ) | j ∈ Z ]Pr[j ∈ Z ]pj

=
1

2

∑

j ∈H
Prv,Z [j ∈ Λn+1 (v,Z ) | j ∈ Z ]pj .

For the first inequality, we simply renamed ṽ−i = v−i , since they are equally distributed (and so
equal under expectation) and then used Equation (2). For the last one, we used the fact that for
any i ∈ [n] it holds that Prv [j ∈ Λi (v<i ,Z )] ≥ Prv [j ∈ Λn+1 (v,Z )]. �
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Proposition A.2. The expected sum of the payments charged by M1−supply to the buyers is equal

to

E

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[n]

ρB
i

⎤⎥⎥⎥⎥⎥⎦
=

1

2

∑

j ∈H
pj Prv,Z [j � Λn+1 (v,Z ) | j ∈ Z ].

Proof. The revenue extracted by the mechanism, meaning the sum of the payments charged
to the buyers, is equal to∑

j ∈H
pj Prv,Z [j � Λn+1 (v,Z ) ∧ j ∈ Z ] =

∑

j ∈H
pj Prv,Z [j � Λn+1 (v,Z ) | j ∈ Z ]Pr[j ∈ Z ]

=
1

2

∑

j ∈H
pj Prv,Z [j � Λn+1 (v,Z ) | j ∈ Z ].

�

We now prove Lemma 4.3 using the above two propositions. Observe that the buyers’ contribu-
tion to the social welfare ALGB extracted by M1-supply is equal to the sum of all the buyers’ utilities
and all the buyers’ payments.

Proof of Lemma 4.3. As just observed above, from Proposition A.1 and Proposition A.2, we
have that

ALGB = E

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[n]

ui (M1-supply (v,w ))

⎤⎥⎥⎥⎥⎥⎦
+
∑

j ∈H
pj Prv,Z [j � Λn+1 (v,Z ) ∧ j ∈ Z ]

≥ 1

2

∑

j ∈H
Prv,Z [j ∈ Λn+1 (v,Z ) | j ∈ Z ]pj +

1

2

∑

j ∈H
pj Prv,Z [j � Λn+1 (v,Z ) | j ∈ Z ]

=
1

2

∑

j ∈H
pj =

1

4

∑

j ∈H
E
[
SWB

j (v )
]
.

By definition of L, for each j ∈ L it holds that 4E[w j ] > E[SWB
j (v )]. Every item in L stays unsold

so,

ALGS ≥
∑

j ∈L

E[w j ] >
1

4

∑

j ∈L

E
[
SWB

j (v )
]
.

Therefore,

ALGB + ALGS ≥ 1

4

k∑

j=1

E
[
SWB

j (v )
]
.

Now recall that E[SWB
j (v )] was defined by the allocation X all (v ), being the one returned by

Algorithm A. So,

1

4

k∑

j=1

E
[
SWB

j (v )
]
=

1

4

n∑

i=1

Ev

[
vi

(
X all

i (v )
)]
≥ 1

4α
OPTB . �

A.2 Proof of Proposition 5.5

Proposition A.3. Let v be a buyers’ valuation function profile and let (X ′1, . . . ,X
′
n ) be any allo-

cation of items to the buyers, let X ′i, j := X ′i ∩ Hj be the set of items in H that are allocated to buyer

i ∈ [n] and belonged to seller j ∈ [m]. For each seller j ∈ [m], let zj ∈ {0, 1} be a Bernoulli random

variable such that E[zj ] = 1/2. Let X ′′i (z) :=
⋃

j ∈[m]:zj=1 X
′
i, j for all i ∈ [n]. Then, for all i ∈ [n] it

holds that

Ez [vi (X ′′i (z))] ≥ 1

2
vi (X ′i ).
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Moreover, given any vector p ∈ Rk of item prices, the inequality also holds on the utilities of the

buyers:

Ez

⎡⎢⎢⎢⎢⎢⎣
vi (X ′′i (z)) −

∑

�∈X ′′
i

(z )

p�

⎤⎥⎥⎥⎥⎥⎦
≥ 1

2
��
�vi (X ′i ) −

∑

�∈X ′
i

p�
��
� .

Proof. For the first claim, first note that due to subadditivity

Ez [vi (X ′′i (z))] ≥ vi (X ′i ) − Ez

⎡⎢⎢⎢⎢⎢⎣
vi

��
�
⋃

j ∈[m]:zj=0

X ′i, j
��
�
⎤⎥⎥⎥⎥⎥⎦
.

Observe that

Ez [vi (X ′′i (z))] = Ez

⎡⎢⎢⎢⎢⎢⎣
vi

��
�
⋃

j ∈[m]:zj=1

X ′i, j
��
�
⎤⎥⎥⎥⎥⎥⎦
= Ez

⎡⎢⎢⎢⎢⎢⎣
vi

��
�
⋃

j ∈[m]:zj=0

X ′i, j
��
�
⎤⎥⎥⎥⎥⎥⎦
,

because the events zj = 0 and zj = 1 are equiprobable for all j ∈ [m]. Combining this with the
above inequality establishes the first claim.

The second claim follows from the following derivation:

Ez

⎡⎢⎢⎢⎢⎢⎣
vi (X ′′i (z)) −

∑

�∈X ′′
i

(z )

p�

⎤⎥⎥⎥⎥⎥⎦
= Ez [vi (X ′′i (z))] − Ez

⎡⎢⎢⎢⎢⎢⎢⎣
∑

j ∈[m]:zj=1

∑

�∈X ′
i, j

p�

⎤⎥⎥⎥⎥⎥⎥⎦
= Ez [vi (X ′′i (z))] − Ez

⎡⎢⎢⎢⎢⎢⎢⎣
m∑

j=1

���
�
∑

�∈X ′
i, j

p�
���
�
I[zj = 1]

⎤⎥⎥⎥⎥⎥⎥⎦
= Ez [vi (X ′′i (z))] −

m∑

j=1

���
�
∑

�∈X ′
i, j

p�
���
�
Ez

[
I[zj = 1]

]

= Ez [vi (X ′′i (z))] −
∑

�∈X ′
i

p�
1

2

≥ 1

2
vi (X ′i ) − 1

2

∑

�∈X ′
i

p� .
�

Proposition A.4. Let j ∈ [m] be a seller. The probability that the mechanism Madd makes in

Step 7c an offer to j that she accepts, is 1/2.

Proof. For every j ∈ [m] and � ∈ Hj , it holds by definition of p� and Hj that p� ≥ 2E[w j ({�})].
From Markov’s inequality it follows that

Pr

⎡⎢⎢⎢⎢⎢⎣
w j (S j ) >

∑

�∈Sj

p�

⎤⎥⎥⎥⎥⎥⎦
≤ Pr[w j (S j ) > 2E[w j (S j )]] <

1

2
.

Thus, Pr
[
w j (S j ) ≤

∑
�∈Sj

p�
]
≥ 1/2, meaning that j accepts the offer with probability at least 1/2,

in case she is made an offer. The mechanism makes the offer with probability qj , and qj is defined
such that

qj Pr

⎡⎢⎢⎢⎢⎢⎣
w j (S j ) ≤

∑

�∈Sj

p�

⎤⎥⎥⎥⎥⎥⎦
= 1/2. �

ACM Transactions on Economics and Computation, Vol. 8, No. 1, Article 4. Publication date: March 2020.



4:26 R. Colini-Baldeschi et al.

For i ∈ [n + 1] and valuation profile v , let v<i = (v1, . . . ,vi−1) and let Λi (v<i ) be the set Λi

defined in Step 5b, when Madd is run when the buyers in [i − 1] have valuation profilev<i . Given
this definition, the set Λn+1 (v ) are the items not requested by any buyer at the end of Step 5, when
the buyers’ valuation profile isv .

Lemma A.5. The expected total utility of the buyers is at least

1

2

∑

�∈H
Prv [� ∈ Λn+1 (v )]p� .

Proof. First, let us consider a fixed buyer i ∈ [n] and a fixed buyers’ valuation profile v .
Let ṽ−i be an independently sampled valuation profile for the buyers in [n] \ {i}, and con-
sider the bundle X all

i (vi , ṽ−i ) that A allocates to i when the valuation profile is (vi , ṽ−i ).

Let XH
i (v, ṽ−i ) = X all

i (vi , ṽ−i ) ∩ H ∩ Λi (v<i ). Moreover, let z be a vector of m Bernoulli ran-
dom variables with E[zj ] = 1/2 and define for a subset S (v ) ⊆ Λi (v ) the random variable
S (v,z) =

⋃
j ∈[m]:zj=1 (S ∩ Hj ). Particularly, from this definition we obtain the random variable

Xi (v, ṽ−i ,z) =
⋃

j ∈[m]:zj=1 (XH
i (v, ṽ−i ) ∩ Hj ). Also, note that when the buyers’ valuations are v ,

the mechanism will let i choose to request a bundle from the set Λi (v<i ) with item prices p. The
buyer maximises her expected utility and will therefore request the bundle Bi (v ) that maximises
her expected utility, i.e.,

Ez

⎡⎢⎢⎢⎢⎢⎣
vi (B (v,z)) −

∑

�∈B (v,z )

p�

⎤⎥⎥⎥⎥⎥⎦
.

By Proposition A.4 each seller’s requested items will be allocated with probability 1/2, as reflected
by the Bernoulli random variables z.

Since Bi (v ) is an expected utility-maximising bundle and Xi (v, ṽ−i ,z) ⊆ Λi (v ) is selectable by
i , it holds that

Ez

⎡⎢⎢⎢⎢⎢⎣
vi (B (v,z)) −

∑

�∈B (v,z )

p�

⎤⎥⎥⎥⎥⎥⎦
≥ Eṽ−i ,z

⎡⎢⎢⎢⎢⎢⎣
vi (Xi (v, ṽ−i ,z)) −

∑

�∈Xi (v,ṽ−i ,z )

p�

⎤⎥⎥⎥⎥⎥⎦
≥ 1

2
Eṽ−i

⎡⎢⎢⎢⎢⎢⎢⎣
vi

(
XH

i (v, ṽ−i )
)
−

∑

�∈X L
i

(v,ṽ−i )

p�

⎤⎥⎥⎥⎥⎥⎥⎦
≥ 1

2
Eṽ−i

⎡⎢⎢⎢⎢⎢⎢⎣
a
(
vi ,X

all
i (vi ,v−i ),XH

i (v,v−i )
)
−

∑

�∈X H
i

(v,ṽ−i )

p�

⎤⎥⎥⎥⎥⎥⎥⎦
=

1

2
Eṽ−i

⎡⎢⎢⎢⎢⎢⎢⎣
∑

�∈X H
i

(v,ṽ−i )

(
SWB

� (vi , ṽ−i ) − p�
)⎤⎥⎥⎥⎥⎥⎥⎦
,

where the second inequality follows from Proposition A.3, and the last inequality follows from the
definition of an additive representative function a(vi ,X

all
i (vi , ṽ−i , ·).
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If we sum over all i ∈ [n] and take the expectation w.r.t. every vi , then we obtain the following
bound on the total expected utility of the buyers:

Ev,z

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

��
�vi (B (v,z)) −

∑

�∈B (v,z )

p�
��
�
⎤⎥⎥⎥⎥⎥⎦
≥ 1

2
Ev,ṽ−i

⎡⎢⎢⎢⎢⎢⎢⎣
n∑

i=1

∑

�∈X H
i

(v,ṽ−i )

(
SWB

� (vi , ṽ−i ) − p�
)⎤⎥⎥⎥⎥⎥⎥⎦

=
1

2
Ev,ṽ−i

⎡⎢⎢⎢⎢⎣
n∑

i=1

∑

�∈H

(
SWB

� (vi , ṽ−i ) − p�
)
I
[
� ∈ XH

i (v, ṽ−i )
]⎤⎥⎥⎥⎥⎦

=
1

2
Ev,ṽ−i

⎡⎢⎢⎢⎢⎣
n∑

i=1

∑

�∈H

(
SWB

� (vi , ṽ−i ) − p�
)
I
[
� ∈ X all

i (vi , ṽ−i )
]
I[� ∈ Λi (v<i )]

⎤⎥⎥⎥⎥⎦
=

1

2

∑

�∈H

n∑

i=1

Evi ,ṽ−i

[(
SWB

� (vi , ṽ−i ) − p�
)
I
[
� ∈ X all

i (vi , ṽ−i )
] ]

Ev−i
[I[� ∈ Λi (v<i )]] .

For the second-to-last equality, we exploited the independence of the events (� ∈ X all
i (vi , ṽ−i ))

and (� ∈ Λi (v<i )). Then, Ev−i
[I[� ∈ Λi (v<i )]] = Pr[� ∈ Λi (v<i )], and since L = Λ1 (v<1) ⊇ . . . ⊇

Λn+1 (v ), it holds that Pr[� ∈ Λi (v<i )] ≥ Pr[� ∈ Λn+1 (v )]. So, we have that the above expression
is at least

1

2

∑

�∈H
Prv [� ∈ Λn+1 (v )]

n∑

i=1

Evi ,ṽ−i

[(
SWB

� (vi , ṽ−i ) − p�
)
I
[
� ∈ X all

i (vi , ṽ−i )
] ]

=
1

2

∑

�∈H
Prv [� ∈ Λn+1 (v )]

n∑

i=1

Ev

[(
SWB

� (v ) − p�
)
I
[
� ∈ X all

i (v )
] ]
.

The equality follows from renaming the random variablevj := ṽj for all j � i Now observe that by

definition of the prices,p� =
∑n

i=1 Ev [(SWB
� (v ) − p� )I[� ∈ X all

i (v )]]. Combining these derivations,
we obtain the desired bound on the expected utilities

Ev,z

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

��
�vi (B (v,z)) −

∑

�∈B (v,z )

p�
��
�
⎤⎥⎥⎥⎥⎥⎦
≥ 1

2

∑

�∈H
Prv [� ∈ Λn+1 (v )]p� . �

Lemma A.6. The expected sum of payments made by the buyers is equal to

1

2

∑

�∈H
Prv [� � Λn+1 (v )]p� .

Proof. For j ∈ [m], let zj be the random (0, 1)-variable that indicates whether seller j has been
made an offer and accepted it in Step 7c of Mechanism Madd, so zj = 1 is a Bernoulli variable with
expected value 1/2. The expected sum of payments made by the buyers is then

m∑

j=1

∑

�∈Hj

Pr[� � Λn+1 (v ) ∧ zj = 1]p� =

m∑

j=1

∑

�∈Hj

Pr[� � Λn+1 (v )]Pr[zj = 1]p�

=
1

2

m∑

j=1

∑

�∈Hj

Pr[� � Λn+1 (v )]p�

=
1

2

∑

�∈H
Pr[� � Λn+1 (v )]p� .

The second equality holds by the independence of the two events. �
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Proof of Proposition 5.5. The expected social welfare contribution of the buyers is equal to
the sum of the expected utilities and expected payments. By the above two lemmas, their sum is
at least

1

2

∑

�∈H
Pr[� ∈ Λn+1 (v )]p� +

1

2

∑

�∈H
Pr[� � Λn+1 (v )]p� =

1

2

∑

�∈H
p� =

1

4

∑

�∈H
Ev [SWB

� (v )],

by definition of p� . �
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