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Abstract

Families of software systems evolve in space, by introducing and removing features, to
be available for different operating systems, and platforms, and offer functionalities to
satisfy different users’ requirements. In addition to evolution in space, families of software
systems also evolve over time, when features are revised due to bug fixes and enhancements
to keep the systems operating properly. For dealing with evolution in space and time
of families of software systems, preprocessor-based systems managed in version control
systems (VCSs) are the most used mechanism among existing ones. Preprocessor is one
of the most widely used variability mechanisms for implementing open-source as well as
industrial families of software systems within a software product line (SPL). One of the
advantages of preprocessor-based SPLs is the easy creation of different product variants by
selecting or deselecting different functionalities, i.e., features annotated in variation points
in the source code with preprocessor directives. Moreover, preprocessor directives are pieces
of text, and text can be tracked by VCSs, which makes their integration convenient.

A negative side effect of the development of a system with preprocessor directives in a
VCS is that for understanding and managing features developers have to perform manual
analysis of preprocessor directives within multiple files of the whole platform, which can be
a complex and time-consuming task. This is because preprocessor directives obfuscate the
code, which makes it harder to understand, comprehend and maintain. Moreover, VCSs
do not offer proper support to retrieve and analyze the changes at the level of features
annotated in the source code. In addition, often changes of a single commit touch and
affect multiple features, which can be tangled and scattered over different files and variation
points. Thus, determining which features were actually revised/changed is an infeasible
and error-prone task without additional tool support. Further, reusing and propagating a
feature implementation across different versions can be very challenging and expensive.

Even though combining other variability mechanisms, e.g., assuming certain programming
paradigms as feature-oriented or aspect-oriented programming, with VCS for managing
evolution in space and time, unfortunately, does not allow to comprehensively and uniformly
handle variants (concurrent versions) and their revisions (sequential versions). Although
variation control systems (VarCSs) have been proposed to realize a common platform based
on features with revision management, they are not mature enough, such as preprocessor-
based SPLs and VCS. Some of the limitations of VarCSs are that they have their own
proprietary repositories, unfamiliar operations, lack of collaboration support among de-
velopers, and high complexity and demand using logical expressions to handle variants
and their revisions. That is why preprocessor-based SPLs managed in VCS are still the
most popular mechanisms used in practice to deal with evolution in space and time. As
preprocessor-based SPLs managed in VCS are widely established and well-integrated into
development processes, it is necessary to bring up new solutions addressing their existing
limitations for managing variants and their versions. One of the limitations of preprocessor-
based SPLs managed in VCS is that VCSs do not offer support to keep track of changes
and propagation at the feature level as a feature can have different implementations in
different versions of a system.

Therefore, the goal of this thesis is to overcome such limitations and challenges to deal
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with evolution of families of software systems in space and time. In order to propose a novel
solution, we thus first conducted an empirical study of the feature life cycle in preprocessor-
based systems managed in VCSs to understand how features evolve and learn the challenges
and limitations of these mechanisms. This empirical study relies on an automated approach
we presented for mining repositories of preprocessor-based SPLs managed in VCSs. By
mining the feature life cycle, it was possible to observe that features are often introduced,
removed, and revised over time with complex implementation. This finding showed the need
for better support at the level of features. Taking into account the finding from the empirical
study, we posed four challenges of systems evolving in space and time. The challenges
concern feature location, and feature revision location to locate different implementations of
a feature at different points in time, as well as composition of new configurations based on
features and feature revisions, i.e., reuse of different implementations of features in different
versions of a system.

Based on these challenges, we defined and implemented a novel support that tracks
feature revisions. Thus, we presented an automated feature revision location approach
for tracing features’ implementation to their multiple points in time. The approach is
implemented in a publicly available tool and offers support for composing new products
based on new combinations of features and their revisions. To support the challenge of
reusing features evolving in space and time in preprocessor-based systems, this thesis also
presents a novel approach implemented in a non-intrusive tool for automatic analysis and
propagation of feature implementation in VCSs.

Overall, this thesis presents the findings and challenges posed concerning system evolution
in space and time together with a benchmark to enable future work and comparisons of
approaches addressing the challenges. The goal of presenting these challenges is to motivate
researchers and tool developers to optimize and address current limitations of existing
techniques and to develop more efficient mechanisms for managing systems evolving in
space and time. Based on findings and challenges of systems evolving in space and time,
this thesis also contributes with an automated approach for mining, analyzing and reusing
feature revisions; and for feature revision location and composition of new products. Both
approaches are realized in publicly available tools.
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Kurzfassung

Softwaresystem-Familien entwickeln sich im Raum wenn Eigenschaften hinzugefügt oder
entfernt werden um für unterschiedliche Betriebssysteme und Plattformen verfügbar zu sein.
Sie stellen des Weiteren zusätzliche Funktionalitäten für unterschiedlichste Benutzer zur
Verfügung. Zusätzlich zur Entwicklung im Raum findet auch eine Entwicklung über die Zeit
statt wenn Eigenschaften überarbeitet werden um Fehlerbehebungen und Erweiterung eines
Systems weiterhin garantieren zu können. Um die Entwicklung von Softwaresystem-Familien
in Raum und Zeit gewährleisten zu können werden primär präprozessorbasierte Systeme in
Verbindung mit Versionskontrollsystemen (Version Control Systems, VCSs) verwendet. Der
Präprozessor ist einer der am meisten verwendete Mechanismen um Open-Sourceprojekte
und Softwaresystem-Familien aus Industrie in Verbindung mit Softwareproduktlinien (SPL)
zu implementieren. Ein Vorteil von präprozessorbasierten SPL ist die einfache Erstellung von
unterschiedlichen Produktvarianten durch die Auswahl unterschiedlicher Funktionalitäten,
d.h. Eigenschaften werden im Sourcecode an Variationspunkten mit Präprozessordirektiven
annotiert. Des Weiteren ist es sehr einfach Präprozessordirektive zu integrieren, da es sich
um reinen Text handelt und dieser von VCSs einfach verarbeitet werden kann.

Eine negative Auswirkung bei der Entwicklung eines System mit Präprozessordirektiven
in einem VCS ist dass Entwickler Präprozessordirektive in mehreren Dateien des ganzen
Systems manuell analysieren müssen. Dies kann eine sehr zeitintensive und komplexe
Tätigkeit sein. Der Grund dafür ist, dass Präprozessordirektive den Sourcecode schwerer
verständlich machen. Weiters bieten VCSs keine Unterstützung um Veränderungen der
Eigenschaften auf Sourcecodeebene abzufragen oder zu analysieren. Zusätzlich können
Änderungen eines einzelnen Commits mehrer Eigenschaften beeinflussen, die wiederum über
mehrer Dateien und Variationspunkte verteilt sein können. Daher ist eine Bestimmung
veränderter Eigenschaften eine undurchführbare und fehleranfällige Aufgabe ohne die
Unterstützung von zusätzlichen Softwarewerzeugen. Weiter kann die Wiederverwendung
und Propagierung einer Eigenschaftsimplementierung über verschiedene Versionen sehr
herausfordernd und teuer sein.

Selbst das Kombinieren anderer Variabilitätsmechanismen, wie zum Beispiel Program-
mierparadigmen als eigenschafts- oder aspektorientierte Programmierung in Verbindung
mit VCSs zur Verwaltung in Zeit und Raum anzunehmen, erlaubt leider nicht eine um-
fassende und gleichmäßige Verwaltung von Varianten (gleichzeitige Versionen) und deren
Revisionen (sequentielle Versionen). Obwohl Variationskontrollsysteme (Variation Control
System, VarCS) als gemeinsame Plattform, basierend auf Eigenschaften mit Revisionsver-
waltung, vorgeschlagen wurden, sind diese leider nicht fortgeschritten genug im Gegensatz
zu präprozessorbasierte SPLs mit VCSs. Einige der Einschränkungen von VarCSs sind
zum Beispiel dass diese auf proprietäre Repositories basieren, unbekannte Operationen
ausführen, einen Mangel an Kollaborationsunterstützung haben und eine hohe Komplexität
beim Benutzen von Logikausdrücken besitzen um Varianten und Revisionen zu verwalten.
Aus diesen Gründen sind präprozessorbasierte SPLs verwaltet in VCSs die populärsten
Mechanismen in der Praxis um Entwicklungen in Raum und Zeit abbilden zu können. Da
präprozessorbasierte SPLs verwaltet in VCSs weitgehend eingeführt und in Entwicklungs-
prozessen integriert wurden ist es nötig, neue Lösung vorzuschlagen um die Limitierungen
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einer Verwaltung von Varianten und deren Revisionen zu beheben. Eine Limitierung von
präprozessorbasierten SPLs verwaltet in VCSs ist, dass VCSs keine Unterstützung zur
Verfolgung von Veränderungen und Verbreitungen auf der Eigenschaftsebene anbieten,
da eine Eigenschaft mehrer Implementierungen in verschiedenen Versionen eines System
besitzen kann.

Das Ziel dieser Arbeit ist daher diese Limitierungen und Herausforderungen zu bewältigen
um die Veränderung von Softwaresystem-Familien in Raum und Zeit zu bewerkstelligen.
Um eine neuartige Lösung vorschlagen zu können, haben wir zuerst eine empirische Studie
durchgeführt. Diese untersuchte den Lebenszyklus von Eigenschaften in präprozessorbasier-
ten Systemen verwaltet in VCSs um zu verstehen wie Eigenschaften sich verändern, und
ebenso zu lernen welche Limitierungen und Herausforderungen solche Mechanismen mit
sich bringen. Diese empirische Studie basiert auf einem automatisierten Vorgehen, welches
wir zur Gewinnung von Repositories von präprozessorbasierten SPLs verwaltet in VCSs
präsentiert haben. Durch die Gewinnung von Eigenschaftslebenszyklen war es möglich
Eigenschaften über die Zeit zu beobachten, die häufig in komplexen Implementierungen
hinzugefügt, entfernt und überarbeitet wurden. Diese Einsicht zeigt die Notwendigkeit einer
besseren Unterstützung auf der Eigenschaftsebene. Unter Berücksichtigung der Studie haben
wir vier Herausforderungen beim Entwickeln von Systemen in Raum und Zeit identifiziert.
Diese Herausforderungen beinhalten, Eigenschaftsposition und Eigenschfaftsrevisionspos-
ition um die unterschiedlichen Implementierungen einer Eigenschaft zu verschiedenen
Zeitpunkten zu lokalisieren. Weiters die Komposition neuer Konfigurationen basierend auf
Eigenschaften und Eigenschaftsrevisionen, daher die Wiederverwendung unterschiedlicher
Implementierungen von Eigenschaften in unterschiedlichen Versionen eines Systems.

Basierend auf diesen Herausforderungen haben wir eine neue Unterstützung definiert und
implementiert die es ermöglicht Eigenschaftsrevisionen nachzuverfolgen. Daher präsentieren
wir in dieser Arbeit einen automatisierten Eigenschftsrevisionen-lokalisierungsansatz zur
Nachverfolgung von Eigenschtsimplementationen zu deren Zeitpunkten. Dieser Ansatz
wurde mittels eines öffentlich verfügbaren Werkzeugs implementiert und bietet die Mög-
lichkeit neue Produkte zu erstellen basierend auf neuen Kombinationen von Eigenschaften
und deren Revisionen. Um eine Unterstützung in präprozessorbasierten Systemen für das
Wiederverwenden von Eigenschaften welche sich in Raum und Zeit ändern, präsentiert diese
Arbeit außerdem einen neuen Ansatz welcher mittels eines nicht intrusiven Werkzeugs zur
automatisierten Analyse und Propagierung von Eigenschfatsimplemntierungen in VCSs.

Im Allgemeinen präsentiert diese Arbeit die Erkenntnisse und Herausforderungen bezüg-
lich Entwicklungen in Raum und Zeit in Verbindung mit einer Bewertungsmethode für
zukünftige Arbeiten die versuchen diese Herausforderungen zu adressieren. Das Ziel der
Präsentation dieser Herausforderung ist auch um Forscher und Werkzeugentwickler zu
ermutigen aktuelle Limitierungen existierender Techniken zu adressieren und auch ef-
fizientere Mechanismen zu entwickeln um Systementwicklungen in Raum und Zeit zu
verwalten. Basierend auf den Erkenntnissen und Herausforderungen von Systementwicklun-
gen in Raum und Zeit trägt diese Arbeit ebenfalls mit einem automatisierten Ansatz zur
Analyse, Wiederverwendung und Förderung von Eigenschaftsrevisionen bei, ebenso für
Eigenschaftsrevisionspositionen und Produktkompositionen. Beide Ansätze wurden in
öffentlich verfügbaren Werkzeugen realisiert.
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Chapter 1

Introduction

Throughout the life cycle of families of software systems, it is unavoidable to customize
different system variants due to the diversity of functional and non-functional requirements
and the need of supporting multiple platforms and operating systems across different
environments [119]. In parallel, software systems have to evolve due to, e.g., scalability
issues, bug fixes, or features enhancement to continuously satisfy users [121]. Therefore,
software systems evolve in two dimensions: (i) space, when introducing or removing features
of a system variant, and (ii) time, when existing features of a system are modified/revised
over time [185].

Nowadays, software engineers and developers combine different mechanisms and tools
when evolving families of software systems in space and time [8, 119]. The preprocessor
variability mechanism is widely used for dealing with evolution in space in both open-source
and industrial systems [74]. Among the advantages of preprocessor-based systems is the easy
customization of system variants relying on features annotated in variation points guarded
by #ifdef preprocessor directives [75]. Preprocessor-based systems enable alternating
implementations and thus support different platforms and operating systems [119]. However,
to deal with evolution over time, it is necessary to combine additional tool support, such
as version control systems (VCSs), which have been used to keep track of the evolution
history of preprocessor-based systems [26]. Challenges of combining such tools motivate
the work of this thesis and are presented below.

1.1 Problem Statement and Research Goal

Preprocessor directives combined with VCSs make system understanding and maintainability
harder for developers and engineers, with limited separation of concerns, error proneness,
difficult comprehension, and code obfuscation [49,118,119,127]. Yet, VCSs can only track
changes of text and recover information either per file or for the whole system. Tracking
and propagating changes at the feature level would be desirable, but VCSs are not designed
to deal with preprocessor-based systems [21]. Providing such kind of support, requires to
also improve the understanding on how features evolve over time, and to know how the
implementation of a revision of a feature changes from one commit and from one release to
another. Thus, this thesis aimed to address the following problem:

Research Problem: How to improve the management of features in families of software
systems evolving in space and time?

The feature-level granularity can help to solve problems of, e.g., recovering feature
information in single commits involving multiple files and variation points annotated with
#ifdefs [127]. Further, recovering feature revisions can help to propagate different versions
of a feature among different releases or branches of systems managed in VCS [133]. For
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instance, if a particular change is required for a new hardware device acquired by a customer,
reusing this new revision of the feature in other products can rapidly become cumbersome.
Thus, in addition to manually analyzing which commits resulted in which feature revisions
and interactions, developers may need to manually copy, paste and edit the source code
to propagate changes to features in different releases [127]. Mapping feature revisions to
artifacts can help to comprehend, maintain, evolve and propagate features [133]. However,
the current development of preprocessor-based systems managed in VCSs does not support
for mapping, visualizing, and propagating feature revisions. Mapping artifacts to feature
revisions can be challenging and complex because multiple features interact with each other
through preprocessor directives, including the absence and presence of features. Further,
some macros defined can have arithmetic expressions besides Boolean operations that
determine if a hunk of code is kept or not. In addition, there are scalability issues to
be considered when mapping artifacts to feature revisions because a system can contain
multiple features and revisions that increase constantly over the system life cycle [134]. For
instance, the Linux kernel is maintained for more than 30 years, containing its evolution
through 1,074,491 Git commits involving 15,000+ features (configuration options), and its
features can have up to 3 values: “yes", “no", or “module" [153]. In addition, visualizing and
propagating a feature revision implementation in space and time among different releases
requires a laborious analysis because different releases contain different files, features, and
interactions. Therefore, this thesis goal is defined by taking into account these limitations
for properly dealing with the evolution of systems in space and time at the feature level as
follows:

Research Goal: Understanding how families of software systems evolve in space and time
and providing support for the analysis, maintenance, and reuse of feature revisions.

Based on this thesis research problem and goal, we formulate this thesis research questions
(RQs) as described in the next section.

1.1.1 Research Questions

RQ1. How often are features revised through their life cycle? We investigate how often
features are revised, introduced and removed along with evolution of preprocessor-based
systems. We computed the number of newly introduced, removed, and changed features
within each release of real-world preprocessor-based systems managed in VCSs.

RQ2. What is the scope of feature revisions? For all deltas, i.e., patches of code changed
in source code files between one commit to another, we analyze how many variation points
(#ifdefs) and lines of source code are affected for a feature. Further, we analyze how the
changes are tangled with features and files. This presents what are the characteristics of
the changes in features implementation over time.

RQ3. How do feature revisions affect the complexity of feature implementation? In this
RQ, we aim to understand if the evolution of features over time gets more complex, for
example, in terms of number of variation points (#ifdefs) and feature interactions.

RQ4. How to improve the support to aid analysis, maintenance, and reuse of feature
revisions? The goal of this RQ, based on the knowledge of previous RQs, is to define an
approach to map a feature to its different implementations over time and support the reuse
of feature revisions.

Research questions 1-3 provide answers to help understanding how families of software
systems evolve in space and time at the feature level, in terms of when and how features
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are introduced, removed, and revised during each commit of preprocessor-based systems
managed in VCSs. The research question 4 provides answer on how to support analysis,
maintenance, and reuse of feature revisions in families of software systems evolving in space
and time.

1.2 Contributions

This thesis contributes to expanding the knowledge on software maintenance and evolution
by (i) conducting empirical studies on how preprocessor-based systems have been managed
in VCS; (ii) proposing approaches to fill the gap existing in the literature for feature analysis
and propagation in space and time; and (iii) realizing such approaches in a non-intrusive
toolchain with a focus on directly supporting developers. More specifically, the concrete
outputs and contributions of this thesis are:

C1. Comprehension of how families of software systems evolve in space and time. This
contribution is based on empirical analyses of the feature life cycle of real-world families of
software systems evolving in space and time. The empirical analyses were performed by
using our developed approach that supports mining feature revisions, their implementation
and change characteristics.

C2. Support for mining, reusing, and propagating feature revisions in preprocessor-based
systems managed in VCSs. This contribution addresses families of software systems
implemented specifically with preprocessor directives in VCSs, mining feature revisions
from preprocessor directives and commits.

C3. Support for locating feature revisions in families of software systems evolving in space
and time and compose new products with feature revisions. This allows to locate feature
revisions in any artifact type from a set of products/variants of a family of software systems.
The support is implemented with an internal data structure that can be extended with
plug-ins/adapters as long as different implementation languages and kinds of artifacts are
needed. This support is also designed to use the artifacts mapped to feature revisions
for composing new products with feature revisions. Thus, it is a support to understand,
maintain, and reuse families of software systems evolving in space and time that is not
restricted to preprocessor-based systems.

C4. Four challenges posed and a benchmark for evaluating and comparing feature (revision)
location techniques with an established set of metrics and dataset. The first and second
challenge is related to evolution in space, specifically, we present a benchmark to motivate
researchers and tool developers to optimize and address the limitations of existing feature
location techniques and support for composing new products. The third and fourth
challenge is related to evolution in space and time, where we present a benchmark to
evaluate feature location techniques, i.e., feature location at multiple points in time, and
support for composing new products with feature revisions.

C5. Two non-intrusive and publicly available tools. Our implemented tools are available to
support developers to understand, maintain and reuse software systems evolving in space
and time as well as for follow-up studies and future collaborative improvements of our tools.

During this PhD thesis the author was involved in several studies, which resulted in
multiple papers published, already accepted for publication, or under revision/submission.
Table 1.1 shows all these papers according to which dimensions of evolution each one
addresses. Below, the first five papers listed are part of the core contributions of this
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thesis, addressing evolution in both dimensions: space and time. The complete papers that
compose the core of this thesis (Papers A-E) are available in Part II of this document.

Paper A [127] The Life Cycle of Features in Highly-Configurable Software Systems Evolving
in Space and Time with Wesley Klewerton Guez Assunção, David Obermann, Lukas Lins-
bauer, Paul Grünbacher, and Alexander Egyed. In the Proceeding of the 20th International
Conference on Generative Programming: Concepts and Experiences (GPCE 2021), pages
1–14, Chicago, IL, USA, 2021

In Paper A, we present a novel approach implemented in a tool support for mining
features in preprocessor-based systems managed in VCSs. The approach mines features,
interactions and their implementation characteristics, as well as the complexity of changes
performed over time. We applied our approach to the entire development life cycle of
four preprocessor-based systems managed in VCSs (13 to 20 years and 37,500 commits) to
conduct an empirical study on how features have been evolved over the system life cycle.
The information mined shows that features often change with substantial modifications
and feature interactions in their implementation. The findings of our empirical analyses
(see Paper A) stress the need for better support at the feature level to maintain and reuse
families of software systems evolving in space and time. Regarding the study presented in
Paper A, the basic ideas for the approach and evaluation were a result of discussions of
all the authors. G. Michelon implemented the automated mining approach for computing
metrics necessary to perform our empirical analysis. The evaluation was performed by G.
Michelon. The co-authors further contributed in writing the paper, implementing parts of
the approach, further discussions and proofreading the paper.

Paper B [126] Propagating Feature Revisions in Preprocessor-based Software Product Lines
with Wesley Klewerton Guez Assunção, Paul Grünbacher, and Alexander Egyed. Submitted
to the Conference, 2022 (omitted name for double-blind review process).

In Paper B, we present a novel approach for feature revision change analysis and
propagation of preprocessor-based systems managed in VCSs. This approach is implemented
in a non-intrusive tool, i.e., it enables automated feature revision change analysis and
propagation without changing any aspect of the traditional development of preprocessor-

Table 1.1: Contributions for evolution in Space and/or Time.

Brief description Core of this thesis Space Time
Empirical study of features life cycle [127] Paper A yes yes
Feature revision change analysis and propagation [126] Paper B yes yes
Feature revision location [134] Paper C yes yes
ECSEST approach [133] extension from [134] Paper D yes yes
Challenges and benchmark [131] Paper E yes yes
Static feature location [129] Additional yes no
Doctoral symposium [125] Additional yes yes
Mining feature revisions [132] Additional yes yes
Feature location for test reuse [54] Additional yes no
Hybrid feature location [128] Additional yes no
Spectrum-based feature location [124] Additional yes no
Spectrum-based feature location [130] extension from [124] Additional yes no
Journal-first [55] of [54] Additional yes no
Workshop proposal VariVolution 2021 [58] Additional yes yes
Workshop proposal VariVolution 2022 [61] Additional yes yes
Systematic software reuse [101] Additional yes no
Feature-based test traceability tool [122] Additional yes yes
Code Smells detection in cloned variants [113] Additional yes yes
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based systems managed in VCSs. The feature revision change analysis retrieves relevant
information such as which files and lines of code and feature interactions are affected in
a release of a system when propagating changes to the implementation of a feature. The
feature revision propagation is an automated approach that propagates the implementation
of a feature from one point in time to any arbitrary one. This approach for feature revision
change analysis and propagation advances in the reuse of evolution in space and time by
retrieving and propagating feature revisions implementation between different releases of
preprocessor-based systems managed in VCS. In this paper, we show that without our
tooling support, a great effort and time are necessary when manually performing feature
revision change analysis and propagation. The approach was implemented by G. Michelon.
All the evaluation was performed by G. Michelon. The co-authors further contributed in
writing the paper, further discussions, and proofreading the paper.

Paper C [134] Locating Feature Revisions in Software Systems Evolving in Space and
Time with David Obermann, Lukas Linsbauer, Wesley Klewerton Guez Assunção, Paul
Grünbacher, and Alexander Egyed. In the Proceeding of the 24th International Systems
and Software Product Line Conference (SPLC 2020), pages 1–10, Montreal, QC, Canada,
2021

In Paper C, we present a novel and automated feature revision location technique. To
the best of our knowledge, this is the first feature location approach able to locate features
in space and time. The approach is able to map features at multiple points in time, i.e.,
feature revisions to their implementation. This approach for feature revision location allows
practitioners to reason about features with different implementation at different points in
time. The mapping of a feature and its different implementations at different points in
time can ease the maintenance and reuse of families of software systems evolving in space
and time. The basic ideas for the approach and evaluation of Paper A were a result of
discussions of all the authors. G. Michelon, L. Linsbauer and D. Obermann were responsible
for implementing the proposed approach and evaluation. The co-authors further contributed
to writing the paper, further discussions, and proofreading the paper.

Paper D [133] Evolving Software System Families in Space and Time with Feature Revi-
sions with David Obermann, Wesley Klewerton Guez Assunção, Lukas Linsbauer, Paul
Grünbacher, Stefan Fischer, Roberto E. Lopez-Herrejon, and Alexander Egyed. Published
at the Springer International Journal Empirical Software Engineering, May 2022 (EMSE
2022), pages 1–54, 2022

In Paper D, we present a novel approach: ECSEST - Extraction and Composition for
Systems Evolving in Space and Time. This paper presents the extension of our approach
for feature revision location containing improvements for supporting C language artifacts
and reuse of feature revisions to compose new products of a system. Further, in this paper,
we present an enhanced analysis of feature evolution in space and time. In comparison to
the previous paper (Paper C), we computed new metrics in additional systems and feature
revisions. ECSEST offers additional support for preprocessor-based systems managed in
VCS, such as the location of feature revisions implementation and combination of feature
revisions from different commits. The basic ideas for the approach and evaluation were
a result of discussions of all the authors. G. Michelon was responsible for implementing
the necessary analysis based on C Abstract Syntax Trees (ASTs) for the feature revision
location technique extracted with the Eclipse development tools CDT. G. Michelon also
implemented the approach for retrieving hints for the composition of new products and
the evaluation. The co-authors further contributed to implementing parts of the approach,
writing the paper, further discussions, and proofreading the paper.
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Paper E [131] Managing Systems Evolving in Space and Time: Four Challenges for
Maintenance, Evolution and Composition of Variants with David Obermann, Wesley
Klewerton Guez Assunção, Lukas Linsbauer, Paul Grünbacher, and Alexander Egyed. In
the Proceeding of the 25th International Systems and Software Product Line Conference
(SPLC 2021), 6 pages, Leicester, United Kingdom, 2021

In Paper E, we present four challenges concerning feature (revision) location techniques
and composition of variants/products with feature/s (revisions) to motivate researchers and
tool developers to develop more efficient mechanisms for managing systems evolving in space
and time. In this paper, we also provide a benchmark generator and a common ground
truth generated from preprocessor-based systems due to the need for introducing new, or
optimizing and addressing the limitations of existing techniques. In this work, G. Michelon
implemented the necessary analysis and created the benchmark and computation of metrics
available. D. Obermann implemented parts of the approach to create the benchmark. The
co-authors further contributed to writing the paper, further discussions, and proofreading
the paper.

1.2.1 Additional Papers

G. Michelon was also involved in further work and international collaborations with
researchers from different universities, countries, and industries focusing on addressing
evolution in space and/or time. The additional papers published, accepted, or under revision
are listed below by category.

Journal

1. Gabriela K. Michelon, Jabier Martinez, Bruno Sotto-Mayor, Aitor Arrieta, Wesley
K. G. Assunção, Rui Abreu, Alexander Egyed: Spectrum-based feature localization for
families of systems. Journal of Systems and Software (JSS) 2022 (Under Revision R2)

This paper is an extension of the work presented in [124]. In this work, we focus on
evolution in space and propose a solution for improving the performance of existing
feature location approaches. In previous work [124], we present a Spectrum-based
feature localization approach as the first step for feature-based SPL adoption, whereas
in the extension, we propose approaches also for the context of families of systems,
i.e., different system products resulted from opportunistic reuse. We also compare
and improve some results of previous work where G. Michelon is also the main
author [128,129].

2. Stefan Fischer,Gabriela K. Michelon, Rudolf Ramler, Lukas Linsbauer, Alexander
Egyed: Automated test reuse for highly configurable software. Springer International
Journal Empirical Software Engineering (EMSE) 2020

In this paper, we present an approach to automate test reuse by locating features of
test variants in order to compose different test variants to help test systems with a
large number of possible configurations. This is challenging in highly configurable
systems because these systems’ tests themselves are rarely configurable and instead
built for specific configurations.

Conference

1. Gabriela K. Michelon, Lukas Linsbauer, Wesley K. G. Assunção, Stefan Fischer,
Alexander Egyed: A Hybrid Feature Location Technique for Re-Engineering Single
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Systems into Software Product Lines. ACM International Working Conference on
Variability Modelling of Software-Intensive Systems (VaMoS) 2021

In this work, we present a hybrid feature location technique consisting of two comple-
mentary analyses: i) a dynamic analysis by runtime monitoring traces of scenarios
exercising features of a system, and ii) a static analysis for refining overlapping
traces between features. The goal of this work is to deal with evolution in space by
automating the feature location in single systems for re-engineering into software
product lines. This paper fostered discussion when presented at the VaMoS conference
and resulted in a new collaboration with researchers working in the same domain of
hybrid feature location techniques. That is how the collaborations that resulted in
the papers [124] and [130] arose.

2. Gabriela K. Michelon, Bruno Sotto-Mayor, Jabier Martinez, Aitor Arrieta, Rui
Abreu, Wesley K. G. Assunção: Spectrum-Based Feature Localization: A Case Study
using ArgoUML. ACM International Systems and Software Product Line Conference
(SPLC) 2021

In this work, we explore the use of the Spectrum-based localization technique and
compare it with the state-of-the-art feature location techniques for re-engineering single
systems into SPLs. We used Spectrum-based localization as a new complementary
analysis for the dynamic analysis presented in the hybrid approach by Michelon et
al. [128].

3. Stefan Fischer, Gabriela K. Michelon, Rudolf Ramler, Lukas Linsbauer, Alexander
Egyed: Automated Reuse of Test Cases for Highly Configurable Software Systems.
Software Engineering (SE) 2021

This is a Journal-First paper of the aforementioned work [54] published in the Springer
International Journal Empirical Software Engineering to increase its visibility.

4. Gabriela K. Michelon, David Obermann, Wesley K. G. Assunção, Lukas Linsbauer,
Paul Grünbacher, Alexander Egyed: Mining Feature Revisions in Highly-Configurable
Software Systems. ACM International Systems and Software Product Line Conference
(SPLC) 2020

In this paper, we propose an automated approach to mine features in highly configur-
able software systems (HCSS) taking into account evolution in space and time. This
approach contributed to future research on understanding the characteristics of HCSS
and supporting developers during maintenance and evolution tasks presented in the
core papers of this thesis [126,127,131,133,134].

5. Gabriela K. Michelon: Evolving System Families in Space and Time. Doctoral
Symposium ACM International Systems and Software Product Line Conference
(SPLC) 2020

This is a doctoral symposium work presented to the SPL community in order to
confirm this thesis goal and investigate future directions. By presenting preliminary
results, G. Michelon received valuable feedback and insights on how to conduct the
further steps of this thesis research.

6. Gabriela K. Michelon, Lukas Linsbauer, Wesley K. G. Assunção, Alexander Egyed:
Comparison-based feature location in ArgoUML variants. ACM International Systems
and Software Product Line Conference (SPLC) 2019

This work presents a solution to the ArgoUML-SPL feature location challenge posed
at SPLC [116]. The approach of the automated feature location is based on the
comparison of features and their implementation. Therefore, the more variants are
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available the better are the traces computed. This is the first work where G. Michelon
was involved in the context of this thesis, which helped advance her understanding of
system evolution and further in developing approaches that resulted in this thesis’s
theoretical and practical contributions.

7. Willian D. F. Mendonça, Silvia R. Vergilio, Gabriela K. Michelon, Alexander
Egyed, Wesley K. G. Assunção: Test2Feature: Feature-based Test Traceability Tool
for Highly Configurable Software. ACM International Systems and Software Product
Line Conference (SPLC) 2022 (Accepted)

In this paper, we propose a tool Test2Feature based on a static analysis for traceability
of test cases to features using the source code of C/C++ annotated HCSS. The tool
retrieves reports containing the source code lines that correspond to each feature, as
well as the lines and features that correspond to each test case. The reports retrieved
by our tool can be used to ease tasks, such as regression testing, feature management,
and HCSS evolution and maintenance.

8. Luciano Marchezan, Wesley K. G. Assunção, Gabriela K. Michelon, Edvin Herac,
Alexander Egyed: Code Smell Analysis in Cloned Java Variants: the Apo-games Case
Study. ACM International Systems and Software Product Line Conference (SPLC)
2022 (Accepted)

This work presents a solution for the challenge of identifying the flaws in the design
and implementation of the Apo-games family, i.e., cloned variants [87]. To tackle
this challenge, we applied an inconsistency and repair approach to detect and suggest
solutions for code smells, which appeared repeatedly in multiple products. We could
identify a considerable number of code smells resulting from clone-and-own and
suggest repairs for them.

Book Chapter

1. Lukas Linsbauer, Stefan Fischer, Gabriela K. Michelon, Wesley K. G. Assunção,
Paul Grünbacher, Roberto Erick Lopez-Herrejon and Alexander Egyed: Systematic
Software Reuse with Automated Extraction and Composition for Clone-and-Own.
Chapter - Handbook of Re-Engineering Software Intensive Systems into Software
Product Lines. Springer 2021 (Accepted)

This book chapter presents an approach for supporting flexible and intuitive clone-and-
own practice for creating variants of a system with automated reuse and centralized
maintenance. This is a result of successive works, in which all authors have been
contributed with the basic ideas, practical implementation, and evaluation of an
automated approach for extraction of feature-to-implementation traces from variants.

Workshop Organization

1. Lea Gerling, Sandra Greiner, Kristof Meixner, Gabriela K. Michelon: Fourth
International Workshop on Variability and Evolution of Software-Intensive Systems
(VariVolution 2021). ACM International Systems and Software Product Line Confer-
ence (SPLC) 2021

2. Sandra Greiner, Kristof Meixner, Gabriela K. Michelon, Philippe Collet: Fifth
International Workshop on Variability and Evolution of Software-Intensive Systems
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(VariVolution 2022). ACM International Systems and Software Product Line Confer-
ence (SPLC) 2022 (Accepted)

G. Michelon has been involved in the VariVolution workshop for several years due
to the strict relation of the workshop scope and this thesis topic. Participating in
this workshop certainly led to more knowledge on how to integrate or improve the
management of evolution in space and time. Over the already past four editions of
the VariVolution, G. Michelon participated as a listener in the first year of her PhD,
a second time actively presenting work for mining features in space and time [132],
and the third and fourth time (to happen) as co-organizer of the workshop. The
workshop has brought together active researchers and practitioners studying software
evolution and variability from different perspectives. Participating in the VariVolution
had been a great opportunity for G. Michelon to exchange new ideas that certainly
contributed to this thesis. Further, the fifth edition of the VariVolution will be
certainly a good opportunity for G. Michelon to discuss her findings acquired over
past years of research.

1.3 Outline

The thesis is organized into two parts. The first part (Part I-Prologue) contains Chapters 1-8,
where the first chapter introduces the topic of software systems evolving in space and time
(Chapter 1). Chapter 2 presents the motivation behind this thesis research. Chapter 3
provides the background necessary to understand concepts in this thesis, and additionally, it
quickly overviews the existing state of the art in the field of this thesis. Chapter 4 presents
the approach created and used to tackle this thesis research problem and answer the RQs
presented. Chapter 5 evaluates the research questions posed in Chapter 1. The first part
is then closed by the Chapter 6, which concludes this thesis and outlines potential future
research directions. The second part of this thesis (Part II-Papers) includes five Papers A-E
that represent the core of this thesis on which the author of this thesis worked on. These
papers have been included as originally published/submitted, except for using a consistent
layout and bibliography that do not affect the content.
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Chapter 2

Motivating Examples

Preprocessor-based systems or SPLs usually have many features with annotation spread
across many files and a file can have several features tangled, i.e., interacting with many
others. This situation makes the SPL implementation with preprocessor directives difficult to
understand and often makes maintenance, evolution, and testing activities time consuming
and error-prone tasks [73]. The maintenance and evolution of these systems become more
difficult when the SPL has been evolved for a while in a VCS. For instance, to determine
which feature has a bug or causes other faults, developers may need to look through
a large set of commits of the system development history to find where and when the
bug was introduced and which features it affects. However, analyzing manually for the
changes of each commit to retrieve the related features is a complex task, especially when
multiple features are changed or added in a single commit [17,76,195]. As an example, in a
single commit (77603db) from the LibSSH1 system, 415 additions and 338 deletions were
performed in 15 files. As we can see in Figure 2.1, the commit message does not reflect
which features were changed, and this commit contains refactoring, cleanup debugging
messages, inclusion and enhancing of features, and bug fixing. By using Git VCS, we can
see for each file which lines were added or removed but not which features are involved
in a change. For instance, Figure 2.2 shows multiple changes in one file, but there is
no information visible about the annotated features. Developers and engineers have to
manually inspect each file and identify for each delta which annotations are wrapping the
changes, considering all macros, features, interactions, operations, and header files in a file.

Another situation we found when analyzing real-world systems is that often in a commit
the conditional expressions of variation points are changed and not the source code itself.
This can lead to misunderstanding of which features were affected by a change. For instance,
the changes performed in commit 6f47401 of the LibSSH system affected 14 variation points.
However, the source code of the variation points were not affected, but the conditional
expression of the variation points replaced the feature HAVE_SSH1 by the feature WITH_SSH1,
as shown in the code snippet of Figure 2.3. Therefore, if developers try to find a specific bug
by looking for the feature HAVE_SSH1 in a version of the system with the aforementioned
commit, they will be misled, since, at that time, the problem was actually located in the
feature WITH_SSH1. The same situation can happen when new features are added to or
removed from a conditional expression, resulting in changes affecting feature interactions.

Another challenge faced when evolving a preprocessor-based SPL is that developers
need to consider all versions at the same time through preprocessor directives. There is
no support in VCSs to track changes of features between different versions/releases of
preprocessor-based SPLs. Often, changes of a feature in one release of a system have to
be propagated to different releases of a system. Figure 2.4 depicts such situation, where,
for example, a commit contains features introduced, revised, and removed in one release

1https://gitlab.com/libssh/libssh-mirror/
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Figure 2.1: Example of a commit 77603db from the LibSSH system involving big changes
in multiple files.

Figure 2.2: VCS support to visualize the changed file session.c in commit 77603db from
the LibSSH system.
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Figure 2.3: Example of revising the features HAVE_SSH1 and WITH_SSH1 by changing
conditional expressions in the file auth.c of commit 6f4740 from the LibSSH system.

(e.g., V4.2) of a system, and may imply in propagating these features to another releases
(e.g., V3.2, V2.1, V1.4). However, there is no automated support for propagating the entire
implementation of a feature and neither for visualizing the differences and interactions of
features between releases or commits. Therefore, an automated approach to propagate the
entire implementation between releases can aid maintenance, evolution and reuse tasks.

For instance, in the commit history of the SQLite system2, a C-language library imple-
menting the most widely used database engine in the world [183], the feature SQLITE_TEST
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Figure 2.4: Propagation of features between releases of a system.

2https://www.sqlite.org/src/info/7b4583f932ff0933
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was introduced to the release 3.9. The introduction of the feature SQLITE_TEST was propag-
ated to other three newer releases: 3.18, 3.19, and 3.22. Another example can be seen in a
pull request3 of the Marlin SPL, an open-source firmware for 3D printers. This pull request
was performed by users from the release 1.1.x. regarding the implementation of the feature
BLTouch for version 3.0 existing in the release 2.0.x that should be added to the previous
release 1.1.x. Otherwise, buying a new BL-Touch with version 3.0 would be incompatible
with the release v1.1.9. The propagation of this feature involved 114 files, where 3,208
lines were added and 911 deleted through 1,100 preprocessor directives. This is an example
of a software maintenance and evolution task that required mining the differences of this
feature between the two releases as well as propagating and reusing the implementation
of a revision of a feature. These examples highlight the need of support for mining and
locating the implementation of features at multiple points in time. Such support should
enable reusing of feature revisions for composition of new software system products with
different combinations of feature revisions from different points in time.

3https://github.com/MarlinFirmware/Marlin/pull/14839
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Chapter 3

Background and State of the Art

This chapter overviews the background necessary for understanding this thesis. It explains
how SPL evolution is addressed in VCSs and preprocessor-based systems. This chapter also
describes the basic concepts about feature location, since it is part of the main contributions
of this thesis. Additionally, we also present a rough overview of the state of the art for
evolution in space and time.

3.1 Software Product Line

An SPL consists of a platform with a core and variable parts represented by a set of features
implemented with a variability mechanism. The features of an SPL can be systematically
reused to facilitate mass customization of different products according to the customers’
requirements [155], improving the productivity of software companies, reducing costs, and
the human effort in developing systems [86,128]. There are many definitions of the term
feature in the literature [8, 22]. A feature can represent an end-user functionality or an
entity used for development purposes, such as test, debug, and deployment, or serve as
an abstraction for specifying, documenting, comprehending, managing, and reusing any
functionality of a system [22,86,89]. The variability mechanisms enable users or developers
enabling or disabling optional features of an SPL [8,155]. To name some of them: feature
toggles and runtime variability [120, 162]; annotative mechanisms with support of some
tools for easing the comprehension of annotation-based systems [15], such as C-CLR [181],
FeatureCommander [49], variation editor [94], PEoPL IDE [136] and CIDE [77]; and compos-
itional mechanisms and modularization with feature-oriented programming [9], supported
by tools such as AHEAD [18] or FeatureHouse [10], or aspect-oriented programming [78,92],
delta-oriented programming [170], or context-oriented programming [72]. Among the ex-
isting variability mechanisms, the preprocessor is the most widely used in industrial and
open-source systems [8, 74,96,119,137], which is presented in the next section.

3.2 Preprocessor-based Systems

The preprocessor is a mechanism to manipulate the source code of software systems with
directives before compilation [8]. It allows to implement variation points by annotating
feature fragments in the source code with preprocessor directives (e.g., #ifdef, #if, #ifndef,
#else, and #elif) [86]. The annotated blocks of code with preprocessor directives involve
macros in conditional expressions as shown in Figure 3.1. Line 6 shows an example of a
conditional expression involving macros connected via && logical operator. This conditional
expression is evaluated as TRUE if MD5_DIGEST_LEN is greater than five AND _LIBSSH_H is
true.

Macros defining features are usually defined using command-line parameters passed to
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1 #i f d e f WITH_SERVER
2 #de f i n e MD5_DIGEST_LEN 16
3 #end i f
4
5 #i f d e f __cplusplus
6 #i f _LIBSSH_H && MD5_DIGEST_LEN > 5
7 <code>
8 #end i f
9 #end i f

Figure 3.1: Conditional blocks of feature implementations.

the preprocessor for compilation. Although macros can be defined internally in source code
using the #define directive, they cannot be selected directly by users. Figure 3.1 shows
four different macros (WITH_SERVER, MD5_DIGEST_LEN, __cplusplus and _LIBSSH_H). In
this example, the macro MD5_DIGEST_LEN cannot be selected by the user and is not a
feature. MD5_DIGEST_LEN is defined in the conditional block corresponding to a conditional
expression of the feature WITH_SERVER in Lines 1-3. This means, the macro MD5_DIGEST_LEN
is defined when the feature WITH_SERVER is selected by the user. In this thesis, we refer to
features as the macros that can be selected by the user and thus can be any functionality
of the system visible to the end-user, as well as support for developers comprehending,
implementing, and maintaining a system [88].

The preprocessor is a lightweight tool for product line adoption [8]. It eases the configur-
ation and derivation of variants by preprocessing the source code according to the features
defined by users. Then, code fragments are included or removed before compilation. Most
developers are familiar with this tool, which is easy to use, learn, and adopt [8]. This is why
it is the most common mechanism for implementing variability in product lines in industrial
practice [8]. However, preprocessors also have been criticized by academics with the term
"#ifdef hell" [49,109,118], mainly because preprocessor annotations obfuscate the source
code and the system features can be scattered over many files and lines, tangled with other
features [127]. This can make it hard to understand and maintain the source code [8, 132].
Next, we describe existing analysis approaches to determine where the features code is
located, known as feature location or variability mining [40,166].

3.3 Feature Location

Feature location techniques aim at locating software artifacts that implement a specific
feature and feature location is one of the most important and common tasks performed by
developers during software maintenance and evolution activities [40,88,166]. In addition,
feature location is commonly used to identify and manage common and variable source code
in families of software systems that emerged from an ad-hoc reuse [166]. Feature location is
also an essential task for re-engineering existing system products into an SPL [12].

Existing feature location techniques use different approaches, such as textual, static,
or dynamic analysis [40]. These techniques have also been combined in hybrid feature
location techniques, where different techniques are used to overcome the limitations of
each other [106,128,169]. Textual feature location is commonly based on techniques and
models of information retrieval and natural language processing [29,34,164] that analyze
naming conventions in source code artifacts, similar to a query that describes a feature.
Static techniques are based on comparing common artifacts and features in relation to
a set of system products/variants [129, 134] or by static analysis of control or data flow
dependencies [1]. The dynamic analysis consists of running the system and invoking the
feature of interest and record runtime traces of the source code that were executed [43].

The majority of existing feature location techniques can help with the evolution in
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space [40,166] but not with the evolution over time. The first feature location technique
which was able to locate feature revisions, i.e., divergent implementations of features over
time, was presented in our previous work [134] (see Paper C). Therefore, the terminology
feature revision in this thesis is used to refer to a feature at a specific point in time, where
the feature implementation differs from other points in time during the life cycle of a
software system. The feature revision location can support evolution of features in software
systems implemented in version control systems, as well as being integrated with variation
control systems to support the user when making changes to a product line [98,104,133]
(see Paper D).

3.4 Version and Variation Control Systems

VCSs are the facto tool for managing and tracking different revisions of files or the whole
software system, i.e., evolution over time [8]. Each revision is identified by a unique number.
VCSs mechanisms of branch and fork are used for variant management by cloning whole
systems in a coarse-grained way [104]. This strategy, however, does not scale with the
number of variants, leading to high maintenance efforts. A way to tackle this problem is
the adoption of an SPL [12]. Currently, the vast majority of industrial SPLs are realized
with preprocessor directives because of easy integration with VCSs [8, 21,104,119].

VCSs are used to version the whole platform by creating different releases or branches.
Every new release introduces, removes, and revises features, which can involve features for
deployment, i.e., for customers, and also for development and testing, i.e., not necessarily
features that provide core functionality for customers [22]. The life cycle of a release then
is composed of commits over time. Every new commit introduces changes in a (set of)
patch(es) of code, where changes in a (set of) patch(es) of code are represented by lines
added or removed in relation to two line-oriented text files. There exists approaches for
propagation of patches of code focusing on automating program repair by reusing and
adapting a patch that is already available [177, 178]. However, these approaches do not
relate patches of code to features, i.e., they do not take into account the features annotated
in the source code. Therefore, there is no automated mapping between changes of patches
of code and annotated feature(s) and interactions of a commit [126]. Current approaches
do not enable propagating/reusing the entire implementation of feature revisions.

Although variation control systems (VarCSs) are promising for handling variants and
evolution over time at the level of features, they are not mature tools and lack support for
collaborative and distributed development [70]. Further, VarCSs have their own proprietary
repository technology, besides unfamiliar operations [104]. These are some of the reasons
why developers are reluctant to use VarCSs, and decide to use more popular and convenient
tools, such as preprocessor-based systems managed in VCSs to deal with evolution in space
and time. This thesis, therefore, focus on addressing VCSs’ limitations to support SPL
evolution in space and time, such as limited support for retrieving information at the
feature level (commits usually involve changes in multiple files and features [17,76,195]),
and limited support for visualization, which only presents the history at the file and line
level [108].
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Chapter 4

Approach

In this chapter we present an non-intrusive approach to support preprocessor-based SPLs
and that can be integrated with the development of the current most used mechanisms. It
is a novel support for feature revision change analysis and propagation, which reduces the
time for traceability of feature revisions to implementation artifacts and help to understand,
maintain and reuse preprocessor-based SPLs managed in VCSs. Nonetheless, we also
present ECSEST (Extraction and Composition for Systems Evolving in Space and Time)
approach. This is an approach for supporting software systems evolving in space and time
at the feature level for any artifact type. ECSEST is an automated support for feature
revision location that can save time and effort in aiding the maintenance and reuse of
families of software systems evolving in space and time.

4.1 Support for Preprocessor-based SPLs Managed in VCSs

In order to understand how preprocessor-based SPLs evolve over time in VCSs, we created
an automated approach for analyzing the evolution of features in space and time (Paper A).
To investigate how often and which features are revised through their life cycle is a complex
and error-prone task. Although there exists guidelines recommending to perform small and
cohesive commits, this is not what usually happens in practice [17]. Often single commits
involve multiple independent changes. In addition, the implementation of features with
preprocessor directives is often highly complex [160]. Features implementations are scattered
in many variation points and files, and interacting with multiple features. Such analysis has
to take into account header files, macros in conditions, and how macros are defined within
#define directives. Furthermore, it is necessary to treat #else and #ifndef directives
when assigning changes to features to not misunderstand the system evolution [110].

We built our own approach to empirically analyze the life cycle of features because
existing approaches [39, 44, 74, 96, 119, 147, 160, 191] have some limitations. For example,
existing approaches do not solve constraints of complex expressions, involving Boolean,
arithmetic operations, and comparisons, or they focus on computing metrics based on
the programming language. Computing metrics at a low level such the abstract syntax
tree (AST) is expensive in terms of computational resources and runtime performance.
Further, existing approaches do not compute all the metrics needed for our analysis. For our
analysis, we wanted to compute metrics at a high level of abstraction, such as the annotated
blocks of code of features. We built an approach for mining the life cycle of features in
the whole history of commits, overcoming existing approaches limitations. Our approach
thus relies on a constraint satisfaction problem (CSP) solver to reliably identify interacting
features [19], considering all corner cases of preprocessor annotations [110]. Therefore, we
defined an approach to automatically computing characteristics of feature changes, feature
implementation complexity, and feature interactions at multiple points in time, i.e., in every
commit of a system.
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Figure 4.1: Automated approach for mining the life cycle of features.

4.1.1 Mining Feature Revisions

Figure 4.1 shows the steps performed by our approach for mining feature revisions and
their implementation and change characteristics. The approach uses as input the VCS
repository of a preprocessor-based SPL. Thus, the first step is to clone the repository to
a local machine, where the user will run our approach for analysis. In the second step
our approach collects information from all Git commits of all releases, or from a set of
selected commits, if preferred by the user. The third step is a partial pre-processing of
the checked-out commit files, i.e., annotated macros are expanded such that annotated
conditional blocks only consist of literals. The fourth step obtains the files resulting from
expanding macros in annotated conditional blocks and abstract the source code at the
annotated blocks of code of features in a tree structure. The tree structure contains
preprocessor directive nodes to represent the entire content of a commit and consists of
three major nodes: conditional nodes representing a block of code that can be surrounded by
#if/#ifdef/#ifndef/#else/#elif and its #endif, #define nodes, as well as, #include
nodes. The remaining steps concern the mining of feature revisions and computation of
metrics.

The fifth step identifies the features of the system by collecting all macros of conditional
blocks and all #defines of all files for every commit of a release. Thus, our approach takes
as features the macros that have never been defined within the source code, i.e., can only
be set externally by the user from the command line. We use the Listing 4.1 to represent a
file in the first commit of a system (Commit #0) and Listing 4.2 to represent the same file
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in the second commit (Commit #1). In Listing 4.1, the macros A and Y are part of the set
of features because they can only be set externally by the user. The other macros X, B and
C (non-boolean) are not considered features as they cannot be set externally, i.e., they are
defined within the source code via #define directive.

1 #if Y
2 #define X
3 #endif
4
5 #if X
6 #define B
7 #define C 9
8 #endif
9

10 #if B && C > 5
11 <code >
12 #endif
13
14 #ifndef A
15 <code >
16 #else
17 <code >
18 #endif

Listing 4.1. Commit #0.

1 #if Y
2 #define X
3 #endif
4
5 #if X
6 #define B
7 #define C 9
8 #endif
9

10 #if B && C > 5
11 <changed code>
12 #endif
13
14 #ifndef A
15 <code >
16 #else
17 <changed code>
18 #endif

Listing 4.2. Commit #1.

After obtaining the features of an SPL, our approach proceed to the sixth step to identify
the patches of code that has a Git diff [33], i.e., fragments of code that differ for the same
file from one commit to another. With this automated approach, developers and engineers
know which features changed in which commits. For example, the changes in Commit #1
(Listing 4.2) were made in Lines 11 and 17. To determine which features changed with the
change in Line 11 we cannot simply assume the macros B and C as changed features, because
they are defined within the source code (Lines 6-7). Our approach thus considers all the
subsequent lines of the file to analyze the feature implications to all the blocks of code
responsible to execute Lines 10-12. In this example, there is a feature implication with the
macro X, which defines B and sets a value greater than 5 to C. Also, the macro X is defined
in another block of code, containing the feature Y in the condition expression. With the
implications, the approach builds constraints, which are handed to the CSP solver, which
gives to the user a reliable solution that satisfies the constraint problem, i.e., which features
have to be selected to execute that particular block of code. For the change in Line 11, the
constraints are: (Y =⇒ X) ∧ (X =⇒ B) ∧ (X =⇒ (C = 9)) ∧ (B ∧ (C > 5)) ∧X ∧ Y .
This constraint problem is satisfied when Y = T , i.e., when feature Y is selected as X, B
and C are internal macros and not features of the system. Then, the change in Line 11
is then assigned to feature Y. In Lines 14-18, we have corner cases with #ifndef A and
#else directives. Our approach uses a heuristic that changes in negated conditions such
as #ifndef A are considered part of the core of the system, as the code inside this block
(Line 15) can only be executed when no feature is selected. Building the implications is very
important, as we can see with the changes in Line 17, which are inside an #else conditional
block that can only be executed when feature A is selected. Thus, the change in Line 17 is
assigned to feature A.

The seventh step is related to the computation of metrics for change and revision
characteristics (Table 4.1). These metrics are based on a literature survey [7, 50,96,160] of
metrics useful to measure the complexity of features implementation in preprocessor-based
SPLs. The change characteristics are computed for every feature that changed in a commit.
The revision characteristics are computed for every block of code presented in the source
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files of a commit. The revision characteristics are related to the implementation of a feature
in a specific commit, and not about the changes performed in the implementation of a
feature. To illustrate the metrics computed, let’s continue with our example containing
corner cases in Listings 4.1 and Listing 4.2. The metrics for change characteristics of Line 11
assigned to feature Y are computed as follows: LOC A = 1 (one line added in Commit
#1), LOC R = 1 (one line removed from Commit #0), SD #IFs = 2 (two patches of code
containing changes that affected a variation point, one line removed in Commit #0 and one
line added in Commit #1), SD File = 1 (the change was in one file), TD = 2 (involving
the features Y and BASE, which represents the core of the system).

Our illustrative example shows that only computing feature characteristics cannot show
that feature Y changed in Commit #1 as the feature characteristics remain the same as in
Commit #0. This is also because the change was performed in a variation point (lines 10-12)
that is impacted indirectly by this feature. The revision characteristics of feature Y are as
follows: LOC = 1 (line 2), SD #IFs = 1 (variation point lines 1-3), SD #NIFs = 0, SD File
= 1, TD = 1 (BASE is the only feature impacting or interacting to activate its variation point
from lines 1-3), ND = 0, NOTLB = 1 (it is a top-level branch variation point as there is no
other outermost block of code wrapping lines 1-3), NONTLB = 0. Regarding the change
in Line 17 assigned to feature A, the change characteristics are as follows: LOC A = 1,
LOC R = 1, SD #IFs = 2 (two patches of code containing changes that affect a variation
point, the line removed in Commit #0 and the line added in Commit #1), SD File = 1,
TD = 2 (involving A and BASE). The revision characteristics of feature A after a change
in Commit #1 remain the same as in Commit #0 as follows: LOC = 1, SD #IFs = 0,
SD #NIFs = 1, SD File = 1, TD = 1, ND = 0, NOTLB = 1, NONTLB = 0. The block
of code in line 14-16 is computed as part of the feature BASE, rather than A. Then, the

Table 4.1: Definition of metrics computed by the approach: Change characteristics concern
the scope of a feature modification, while revision characteristics refer to feature complexity
of a specific commit.

Change characteristics
LOC A Number of lines added for each feature revision’s patches of change
LOC R Number of lines removed for each feature revision’s patches of change

TD Number of feature revisions in variation points for each feature revision’s patches
of change

SD #IFs Number of patches of changes affecting the variation points of a feature revision
SD File Number of files impacted for each feature revision’s patches of change

Revision characteristics
LOC Number of lines of code of a feature revision
SD #IFs Number of #ifdef/#elif#if variation points of a feature revision
SD #NIFs Number of #ifndef/#else variation points of a feature revision
SD File Number of files with variation points of a feature revision

TD Number of feature revisions in its #ifdef/#if/ #ifndef/#elif/ #else vari-
ation points of a feature revision

ND Number of #ifdef/#if/#ifndef/#elif/#else variation points inside its vari-
ation point of a feature revision

NOTLB
Number of #ifdef/#if/#ifndef/#elif/#else variation points without any
outside enclosing variation point, i.e., the number of top-level branches of a
feature revision

NONTLB
Number of #ifdef/#if/#ifndef/#elif/#else variation points enclosed by
another variation point, i.e., the number of non-top-level branches of a feature
revision
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revision characteristics of BASE are as follows: LOC = 1, SD #IFs = 0, SD #NIFs = 1
(#ifndef line 14), SD File = 1, TD = 1, ND = 0, NOTLB = 1, NONTLB = 0.

The output retrieved by our automated approach for mining feature revisions and compute
change and revision characteristics enable us to observe when a specific feature has different
implementations between one release to another, in terms of size, number of variation
points, feature interactions, content and purpose. Therefore, by using our mining approach,
we obtained results to empirically analyzing the life cycle of features, which revealed to
us a challenge faced by systems evolving in space and time. As shown in our motivating
examples (Chapter 2), reusing different implementations of a feature in different releases of
a system often happens in preprocessor-based SPLs managed in VCSs. We thus built an
approach for change analysis and propagation of feature revisions (Paper B).

4.1.2 Feature Revision Change Analysis and Propagation

Figure 4.2 shows an overview of our approach for feature revision change analysis and
propagation (Paper B), which relies our mining approach already presented in this chapter.
The change analysis and propagation of feature revisions start with a feature, or a set of
features, needed to the user’s analyses, the pair of releases where the user would like to
analyze and/or propagate a feature, or a set of features. There is an optional step called
(mining releases features), which is our aforementioned mining approach for mining which
features exist in a release. This step is performed in case the developer/user does not know
the features existing in a release of a system. Following, the second step, feature revision
change analysis, is necessary to know for each delta, i.e., differences in the source code
between one release to another, which change belongs to which feature revision(s) to be
propagated.

The two releases’ commits are referred to as origin O and destination D, and are releases
in which a user wants to propagate a feature or a set of features from O to D. To compute
the change analysis, firstly, it is necessary to obtain the files of the two commits O and
D. Then, our approach identifies the changes between O and D, which can be propagated.
A file change FC corresponds to a file that can be either deleted, inserted, or modified, as
described next:
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Figure 4.2: Automated approach for change analysis and propagation of feature revisions.
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DELETE. Consists of a file existing in commit D that does not exist in O. The reference
of this change type in FC contains the number 1 to represent the first line, and the total
number of lines of the deleted file (n) to represent the last line of the deleted file.

INSERT. Consists of a file in commit O that does not exist in D. The reference of this
change type in FC contains the number 1 to represent the first line, and the total number
of lines of the inserted file (n) to represent the last line of the inserted file.

MODIFY. Consists of a file existing in commit O that also exists in D, but in a different
state. A modified file may be affected by many deltas. Thus, to assign the reference to each
of the deltas in FC, our approach uses the patches of code contained in the file’s deltas.
Delta is a way of storing or transmitting data in the form of differences between sequential
lines rather than complete files. For each delta, our approach obtains its type (REMOVE,
ADD, or CHANGE), as shown in our examples of Figure 4.3. An ADD delta (Line 2-2 in O,
Figure 4.3a) contains lines added in O in comparison to D, referencing the line number
of the beginning and end of the lines added in the ADD delta. A REMOVE delta contains
lines removed from O to D, referencing the line number of the beginning and end of the
removal (Line 2-2 in D, Figure 4.3b). A CHANGE delta (Figure 4.3c, Line 2-3 and Figure 4.3d,
Line 2-4) contains lines changed, consecutive removals and additions, from O to D. The
file change thus contains not only one, but two references. The first reference contains the
beginning and end of the addition delta lines (Lines 2-2 in O, Figure 4.3c, and Lines 2-3 in
O, Figure 4.3d), while the second reference contains the beginning and end of the removal
delta lines (Lines 2-2 in D, Figure 4.3c, and Lines 2-2 in D, Figure 4.3d).

The output of the feature revision change analysis contains the conditional blocks of code
corresponding to the deltas and their respective feature(s) to be propagated. And for each
delta, the feature revision change analysis also describes the feature interactions and the
features that might be affected, i.e., nested features in conditional blocks of code. A feature
interaction refers to all the features that are in the set of revised features of a conditional
block of code, i.e., the features of the configuration necessary to execute a particular
block of code related to a change. For instance, using our running example presented in
Figure 4.4, we presented three deltas modifying the code snippet adapted from the LibSSH
system in Figure 4.5: The first delta (Line 1, Figure 4.5) is a CHANGE delta, where Line 1
in D is removed, which contains a conditional expression (#if WITH_SERVER) and a new
line added (Line 1 in O, Figure 4.5) to substitute the conditional expression by another
(#if WITH_SERVER && WITH_SSH1). The feature revision change analysis automates the
analyses of which features were introduced, revised, and deleted. For this delta (Line 1

(a) ADD delta. (b) REMOVE delta.

(c) CHANGE delta. (d) CHANGE delta.

Figure 4.3: Examples of delta types of a modified file (FC MODIFY) resulting in new revisions
of the feature WITH_SERVER.
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Figure 4.4: Code snippet adapted from LibSSH.

removed in D and Line 1 added in O, Figure 4.5), one feature was introduced, because
after this change, the conditional block of code in Lines 1-4, Figure 4.4 has a new feature
WITH_SSH1 (assuming our system has only the features presented in Figure 4.4). The feature
WITH_SERVER interacts with the feature WITH_SSH1 for the changes regarding the conditional
block of code in Lines 1-4, Figure 4.4. Thus, before propagating the implementation of
the feature WITH_SSH1, the feature revision change analysis provides delta(s) of inserted,
deleted, or modified files, lines added and/or removed, the features that were revised,
introduced, and deleted, as well as feature interactions.

The REMOVE deltas in Line 6 and 10 in D (Figure 4.5) are deltas resulting in deleting the
feature __cplusplus. In this example, propagating the deletion of the feature __cplusplus
from the system has interaction with the code of the core of the system (BASE) and the
feature _LIBSSH_H might be impacted, as it is nested with the conditional block of code
respective to the REMOVE deltas in Line 6 and 10 in D. The ADD delta in Line 8 in O is the
result of a revision of the feature _LIBSSH_H. If the feature deletion is propagated, this also
means that the feature _LIBSSH_H does not depend anymore on the feature __cplusplus,
but still interacts with WITH_SERVER because WITH_SERVER defines MD5_DIGEST_LEN.

After performing the feature change analysis, i.e., retrieving which files, patches, and
feature interactions will be affected by propagating a feature revision, our approach can
perform the next step. The feature revision propagation is based on the selection of
deltas obtained in the Feature Revision Change Analysis. To propagate a feature revision
considering differences between O and D, our approach gets the snapshot files from the
Git repository of O and D releases. Propagating a feature revision implementation for an
inserted file means copying the file from commit O to the resulting directory, as the file
does not yet exist in commit D. Then, all files are copied from D to the resulting directory
excluding the deleted and modified files of D. For modified files, our approach obtains
the file from O as well as from D. Then, our approach creates a modified file line by line,

Figure 4.5: Examples of deltas resulting in one feature introduced (WITH_SSH1), one feature
revised (_LIBSSH_H) and one feature deleted (__cplusplus).
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using a counter starting from zero and ending with the same number of lines of the file
of D. Before writing a line, our approach checks whether the line is in a position of a delta,
where the line must be removed or a new line must be added. In case of a removed line, the
approach does not add the respective line. In case of an added line, the approach adds the
respective line from O to D before continuing with the next lines of the file of D. When
more lines are added in sequence, then all lines are added before continuing with the next
lines of the file of D.

To illustrate the feature revision propagation of a modified file, we will continue with
our running example presented in Figure 4.4. Figure 4.3 shows possible delta types in
FC MODIFY: Figure 4.3a contains an ADD delta; Figure 4.3b contains a REMOVE delta; and
Figures 4.3c and 4.3d contain a CHANGE delta, where a CHANGE delta can be one line/a
sequence of lines removed followed by one line/a sequence of lines added (Figure 4.3c).
A CHANGE delta can be either one line or a sequence of lines added followed by one or a
sequence of lines removed (Figure 4.3d). The ADD delta contains one reference with one line
added (Line 2 in O, Figure 4.3a) before Line 2 in D, i.e., from the previous revision of the
feature WITH_SERVER (Figure 4.4). To propagate a feature revision from the O snapshot to
D snapshot, our approach retrieves each delta for each file containing a feature revision.
For the example of an ADD delta, the approach adds the lines of the added lines reference in
O, beginning in the line number of the corresponding file in D where the delta begins. For
example, the lines in Figure 4.4 are copied to the new version of the D file until there is a
line number corresponding to the ADD delta in Figure 4.3a. As there is no line removed, the
next lines existing in D are copied right after the line added. As shown in Figure 4.4, in
D the line number 2 was “<code>" and now this line is in the third line of the file in D
because a new line has been added in the second line number of the D file. The REMOVE
delta contains one reference with one line removed (Line 2 in D, Figure 4.3b), which was the
Line 2 of previous revision of the feature WITH_SERVER (Figure 4.4). The result of feature
revision propagation is then the snapshot of a destination release containing the feature
revision(s) propagated.

4.2 Support for Families of Software Systems Evolving in
Space and Time

Features can have different implementations at multiple points in time along with system
evolution. When conducting this thesis research, we observed that there was no automated
approach to make the traceability of features to their different implementations at different
points and time, as well as no automated approach enabling the reuse of feature revisions
to create different products of a system. As we presented in Chapter 3, feature location is
one of the most important and essential tasks for supporting software maintenance and
evolution tasks, as well as in the re-engineering process [13,164]. Therefore, in this thesis
we also presented ECSEST (Extraction and Composition for Systems Evolving in Space
and Time). ECSEST is an automated approach for feature revision location that can save
time and effort in aiding the process of re-engineering of software systems into SPLs at
the level of feature revisions, as well as aiding the maintenance and evolution of systems
evolving in space and time (Paper D).

Figure 4.6 presents an overview of ECSEST for locating and composing variants/products
with feature revisions. The approach is implemented in the ECCO VarCS1, which supports
the evolution of arbitrary types of artifacts [134] based on plug-in architecture [104]. Step 1
in Figure 4.6) is the feature revision location for mapping feature revisions to artifacts from
existing software system products/variants. The feature revision location is an incremental
process, which receives as input a product implementation and a configuration characterizing

1https://github.com/jku-isse/ecco
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Figure 4.6: The ECSEST approach overview.

its features at a specific point in time. This step creates new traces and refines existing
ones in the ECCO repository for every new input variant/product. Our approach for
variant composition (Step 2 in Figure 4.6), requires as input a configuration provided by the
user and the output traces stored in the ECCO repository created when locating feature
revisions. The variant composition results in the product implementation and a file with
hints to help the product completion. In the following, we give details of the processes of
the feature revision location and variant composition.

4.2.1 Feature Revision Location

Our approach for feature revision location maps artifacts in common between variants to a
feature called BASE that represents the core of a system, i.e., not related to the artifacts of
features of a system. The feature revision location then analyzes in how many variants a
feature revision appears, in how many variants a (set of) artifact(s) appears, and in how
many variants a pair of feature revision(s) and a (set of) artifact(s) appear together. In this
way, all artifacts are mapped to feature revisions. This mapping between feature revisions
and artifacts consists of presence or absence of features for every artifact of a system in the
form of a disjunctive normal form (DNF) formula. The literals of the DNF formula are
features, i.e., a set of feature revisions. Whether a feature revision is mapped to an artifact
depends on five intuitive rules that have already been proven to work properly for feature
location [129]. Given two variants v1 and v2 of a system:

1. Common artifacts in v1 and v2 likely trace to common features.

2. Artifacts in v1 and not v2 likely trace to features that are in v1 and not v2, and vice
versa.

3. Artifacts in v1 and not v2 cannot trace to features that are in v2 and not v1, and vice
versa.

4. Artifacts in v1 and not v2 can at most trace to features that are in v1, and vice versa.
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5. Artifacts in v1 and v2 can at most trace to features that are in v1 or v2.

Regarding feature revisions, only one revision of a feature can be present in any given
variant. In other words, if a feature is present in a variant, it is present in exactly one
revision. Regarding artifacts, we do not consider every artifact individually, but cluster
artifacts that never appear without each other in any variant and assign presence conditions
to those clusters instead of every individual artifact. We use counters for mapping feature
revisions to artifacts. For every feature revision, we count in how many input variants
it was contained, for every artifact cluster in how many input variants it was contained,
and for every pair of feature revision and artifact cluster in how many input variants
both were contained together. This has the advantage that it works incrementally, i.e.,
new input variants can be added whenever necessary, simply by increasing the respective
counters. Hence, already computed traces do not have to be recomputed when a new
variant is encountered. Instead, the counters are simply increased and the existing presence
conditions are trimmed by removing the feature revisions for which the above conditions
do not hold anymore.

4.2.2 Variant composition

Aiming to facilitate the composition of new variants with feature revisions, we presented an
approach for composing new variants with different combinations of feature revisions. Our
approach for composing a variant works similar to a VCS checkout operation. It retrieves
a working copy of the content from a repository. Our approach checks out a variant by
joining the artifacts from a set of traces given a configuration with a set of feature revisions.
Further, our approach for composing new variants retrieves hints with possible conflicts and
interactions when creating a variant with a new set of feature revisions. Whether a variant
has a valid configuration or not, it is not part of our approach. This thesis focus on the
domain implementation and product derivation [8]. Therefore, variability models, which
denote a set of choices and their dependencies for obtaining configurations [161] is out of
the scope of this thesis. Nonetheless, in order to help in the composition of variants with
new combination of feature revisions, the approach for composition retrieve hints, which
show traces containing possible surplus and/or missing implementation artifacts of feature
revisions used to compose a variant. The retrieved hints by our approach can be used by
developers and engineers to analyze which artifacts may need to be added and/or removed
for completing a product variant. The retrieved hints contains the trace identifier (hash
code), which can be used to look in the ECCO repository which artifacts belong to a stored
trace.
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Evaluation and Results Overview

We conducted an empirical study to understand the phenomenon of feature evolution in
space and time in preprocessor-based SPLs managed in VCSs. The results of our empirical
study enabled us to answer the RQ1, RQ2, and RQ3 of this thesis. The empirical study
was performed with our automated support presented in Paper A analyzing the entire
history evolution of four real-world preprocessor-based SPLs, covering a total of 37,500
commits from up to 20 years of development. Our analysis differs from previous work by
analyzing and computing metrics of the entire feature life cycle. Existing work analyze
smaller number of commits and do not compute all the set of metrics computed by our tool
support [82, 95, 96, 118,147,152,160, 191]. For instance, analyzing feature characteristics in
every single commit of a preprocessor-based SPL enables to identify feature interactions
and evolution of implementation complexity. In addition, our analysis computes metrics,
such as change characteristics that make clear which features are affected in every commit
of a preprocessor-based SPL.

Evaluating our RQ1, we found out that features are typically not removed after being
introduced. Most of the removed features in later revisions of a system are usually features
used for test purposes. Interestingly, features are revised while new features are introduced,
showing a tendency that releases with a higher number of features evolving in space usually
also have a higher number of features evolving over time. Overall, our analysis of the
evolution in space of the entire life cycle of a preprocessor-based SPL presented similar
results compared to an analysis of few releases of the Linux kernel [82, 152]. Analyzing
addition and removal of features in the variability model (KConfig files) of the Linux kernel,
it was observed that evolution in space ranged between 3%-7% of the commits, which seems
to be a small percentage, but in proportion to a large number of commits is still a large
number of commits introducing and removing features. Yet, about 7% of the commits
analyzed in few releases of the Linux kernel revised features, similar to our subject systems
(up to 8% of all commits), which shows that the frequency of evolution over time affecting
features in a large system such as Linux kernel is similar to smaller SPLs, such as our
subject systems. Therefore, knowing which commits affect which features can reduce the
effort of analyzing and verifying the commits with feature evolution in space and time.

To answer RQ2 and RQ3, we selected metrics to measure feature implementation com-
plexity in preprocessor-based SPLs based on a literature survey [50, 160]. The metrics
count the number of variation points (scattering degree), feature interactions (tangling
degree), and nesting features inside variation points (nesting degree) of a feature. In
addition, we also computed the number of variation points of a feature revision that are
top-level branches (NOTLB), i.e., an outermost variation point, and non-top-level branches
(NONTLB), i.e., a variation point enclosed by another variation point. Following Queiroz
et al.’s [160] threshold for feature characteristics, in our study, some of our subject systems
contained complex changes in terms of number of variation points affected (≥ 7) and feature
interactions (≥ 2). By analyzing the scope of changes, we could identify that features
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kept their characteristics in terms of how they are implemented, e.g., number of variation
points and feature interactions, even if their implementation changed. By looking to change
characteristics of nested features, i.e., features that have non-top-level variation points, we
identified features being indirectly affected by changes performed in outermost variation
points of other features. Therefore, mining change characteristics of a feature with our
support shows when changes of a commit resulted in new variation points in additional files,
or if part of the source code of a feature was removed or added in nested variation points.
Answering our RQ2, commits adding, changing, or removing lines of source code is mostly
related to only one feature, but sometimes it indirectly impacts the outermost variation
points, namely top-level branches and dependencies to and interactions with other features.
Regarding our RQ3, about the complexity of features implementation, we concluded that
often features implementation become more complex over time. We observed that systems
with complex implementations of their features (scattering degree ≥ 7), have their features
more often revised over time. Further, our analysis shows that features scattered over
many variation points tend to lead to more revisions over time than features with complex
tangling, i.e., high number of feature interactions, and non-top-level branch implementation.

For RQ4, the answer was obtained by evaluations presented in Papers B, C, and D.
We evaluated the quality and runtime performance of our proposed supports for mining,
locating and reusing feature revisions. Our support for mining feature revisions, feature
revision change analysis and propagation between releases of a preprocessor-based SPL can
aid maintenance and reuse tasks at the feature level. The subject systems of our study had
a high number of files and patches of code to analyze per random pair of releases, as an
example, one system had on average 19 files affected per feature revision propagated and
another system had up to 11,454 patches of code to be propagated between two releases.
We conjecture that manually analyzing the differences between two releases and finding out
feature interactions, files, and patches of code for propagating a specific feature revision
is highly complex and error prone. Thus, retrieving information similar to Git VCS but
at the feature level to find which files and lines of source code are differing facilitates the
propagation of feature revisions and ease the reuse of feature revisions implementation.
In summary, our support for mining feature revisions and changes between releases of
preprocessor-based SPLs can speed up the process of feature revision change analysis and
propagation. The reuse of feature revisions requires retrieving the patches of code differing
between source code files of two releases as well as the feature interactions, and this is
provided by our novel support in around 60 seconds.

Regarding our support for feature revision location, it as novel technique, which locate
features at multiple points in time. Thus, this support addresses the limitation of existing
feature location techniques of only locating features at a certain point in time. Our support
for feature revision location allows to reason about feature revisions in a reasonable time,
ranging between 25 and 250 seconds to map artifacts to feature revisions for each input
product/variant. Our support for locating feature revisions enabled us to create new
products by reusing feature revisions within 18 seconds, on average. Even in some cases
manual completion can be necessary, it probably will not require extensive code additions
or deletions by a developer. The completion of a product/variant can be facilitated by
hints provided by our support, which presents feature interactions and possibly missing or
surplus feature revisions for a specific product configuration. We show that our automated
support for locating and reusing feature revisions to compose new products aids to save
time and effort in maintenance and reuse of feature revisions in families of software systems
evolving in space and time. Therefore, locating feature revisions supports the domain
implementation and product derivation by reusing and combining artifacts that correspond
to located feature revisions.

30



Chapter 6

Conclusion and Future Work

In this chapter, we summarize the contributions of this thesis for maintenance and reuse of
families of software systems evolving in space and time, and give future research directions
in this field.

6.1 Conclusion

This thesis investigated how families of software systems evolve in space and time and
how to assist developers when maintaining such systems. We first conducted an analysis
of the features’ life cycle (Paper A). The analysis consists of how features are introduced,
removed/deleted, and revised over the system development. For instance, how are the
feature characteristics of preprocessor-based SPLs in terms of the number of variation
points, i.e., number of #ifdefs, and in how many files the variation points are distributed
and how many features are involved in their condition expressions. This analysis was
performed over all commits of the systems analyzed, which enabled us to know how these
characteristics have been evolved over time. Our findings resulted from this analysis showed
that our target systems have similar evolution in space (3%-7%) when compared to the
large Linux kernel system (6%) [152], which has a higher number of commits, features, and
lines of source code. Still comparing our subject systems to the Linux kernel, our results
confirmed that features are revised significantly less (2% to 11% of the systems’ commits)
than the core of the system is [83]. However, regarding the scattering degree of features
implementation in our systems, we observed that features were introduced already scattered
and did not remain constant over releases as shown in the evolution of some releases of
the Linux kernel. Contrary to what happens to the features of the Linux kernel, in the
preprocessor-based SPLs of our empirical analysis the complexity of feature implementation
increases over time, which reinforces the need of support to maintain and reuse feature
revisions in preprocessor-based SPLs. Therefore, in addition to the empirical analysis, we
contributed with an automated support that can be used by developers and practitioners to
understand and track the feature evolution of other preprocessor-based SPLs. The support
can be further improved for other purposes, such as change analysis and propagation of
feature revisions in preprocessor-based SPLs, as we presented in Paper B.

Throughout this thesis work, we also investigated that propagating feature revisions in the
most popular mechanisms used in practice, i.e., preprocessor-based SPLs managed in VCSs,
is a manual laborious and challenging task. The current VCSs do not support the analysis
and propagation of revisions at the feature level. Thus, we presented a support to address
such limitations and aid developers to analyze and propagating different implementations
of the same feature among releases that can be in different branches (Paper B). From
the practical point of view, the way our support presents information at the feature level
makes easier the maintenance and evolution of the "#ifdef hell" [36,49,118]. The feature
level is of paramount importance because manually recovering feature information is very
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difficult, and even more when multiple files change in a commit or a sequence of commits,
touching many blocks of code and involving multiple features and interactions. While VCS
tracks changes and recovers information either per file or for the whole system, our tool
support can recover information per feature. Thus, it can be used as complementary tool
for maintenance and reuse of feature revisions in preprocessor-based SPLs managed in
VCSs.

Despite the vast majority of SPLs being implemented with preprocessor directives in
VCSs, there are still systems developed without a common platform. Aiming to help these
systems without a common platform to deal with evolution in space and time, we also
present, to the best of our knowledge, the first feature revision location technique in the
literature. Our feature revision location addresses the limitation of locating features at
only a single point in time (Paper C). The proposed technique allows developers to reason
about variants and features at different points in time. Further, our automated technique
assists developers to keep a history of modifications in features by mapping artifacts to
feature revisions. The feature revision location technique can be applied to any type of
artifact if the input information is compatible with its internal data structure.

Based on the acquired knowledge of the empirical study, we proposed a support that not
only aids the analysis and maintenance of families of software systems evolving in space
and time by locating feature revisions, but also allows the composition of new products by
reusing the feature revisions located. Therefore, we presented ECSEST (Extraction and
Composition for Systems Evolving in Space and Time) in Paper D, which is an extension
of the work presented in Paper C. As further contributions of this thesis, we also presented
and discussed four challenges for evolution in space and time concerning feature location
and composition of new products with features and feature revisions (Paper E). In addition
to the challenges, we presented a benchmark and a ground truth extractor to cover the
space dimension and time dimension of software system evolution. The benchmark counts
with scenarios, dataset, and tool utilities to compute metrics. By proposing a benchmark,
we expect that future work related to these challenges can be evaluated with common
case studies enabling reproducibility, comparison, and optimization of limitation aspects of
current techniques.

6.2 Future Work

As preprocessor-based SPLs managed in VCSs are the most used mechanism to deal
with evolution in space and time, it is important to provide solutions for improving their
limitations. A long-term future work would be to provide a native and mature solution
that is self-sufficient to provide adequate support for evolution in space and time. Short-
term future work can be directed to improve our support for feature revision propagation
presented in Paper B to recommend which releases might need propagation of a revision
of a feature. Hence, this can save time and effort for developers to decide which features
of which releases must be propagated, for example, for bug fixes or refactoring. Another
future direction, is the semantic impact analysis of merging the source code of a specific
feature revision to different releases. This may help to prevent possible errors and bugs
that can occur from, for example, features source code containing function calls of functions
not yet implemented in relation to another release.

Regarding ECSEST support, future improvements can be directed to optimize the
runtime performance of the support for mapping and reusing feature revisions. Currently,
as high is the number of feature revisions and artifacts mapped, higher is the time needed
to map new feature revisions, and reuse feature revisions artifacts to compose new products.
The composition of products by reusing feature revisions requires first the extraction
process performed, i.e., the mapping between feature revisions and artifacts, which could be
improved. Currently, the extraction process is incrementally performed for every product
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containing new feature revision(s), as the process should create new mappings and update
existing ones. Further efforts can be directed to improve ECSEST capability of composing
products with feature revisions by taking into account a variability model showing the
problem space of valid configurations of feature revisions. Existing studies investigating
how to propose models presenting valid configurations based on the feature evolution could
be integrated with ECSEST [48, 71].
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Abstract Feature annotation based on preprocessor directives is the most common mech-
anism in Highly-Configurable Software Systems (HCSSs) to manage variability. However,
it is challenging to understand, maintain, and evolve feature fragments guarded by #ifdef
directives. Yet, despite HCSSs being implemented in Version Control Systems, the support
for evolving features in space and time is still limited. To extend the knowledge on this
topic, we analyze the feature life cycle in space and time. Specifically, we introduce an
automated mining approach and apply it to four HCSSs, analyzing commits of their entire
development life cycle (13 to 20 years and 37,500 commits). This goes beyond existing
studies, which investigated only differences between specific releases or entire systems. Our
results show that features undergo frequent changes, often with substantial modifications
of their code. The findings of our empirical analyses stress the need for better support of
system evolution in space and time at the level of features. In addition to these analyses,
we contribute an automated mining approach for the analysis of system evolution at the
level of features. Furthermore, we also make available our dataset to foster new studies on
feature evolution in HCSSs.
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1. Introduction

1 Introduction

Highly-Configurable Software Systems (HCSSs) allow users to customize program beha-
vior and create different variants by selecting configuration options that address different
requirements [75]. Feature annotations rely on code fragments guarded by #ifdef pre-
processor directives and are widely used to control such customization and implement
software product lines (SPLs) [160]. Further, preprocessor directives enable alternating
implementations and supporting multiple platforms and operating systems across different
environments [119]. However, annotation-based code typically makes it harder to under-
stand and maintain software features, receiving strong criticism regarding the separation
of concerns, error proneness, and code obfuscation [96, 119]. Therefore, the evolution of
HCSSs in space, i.e., features included or excluded, and in time, i.e., different revisions of
features due to modifications of the system’s implementation, is a challenging and complex
task [21,131,189].

For managing system evolution in time, developers of HCSSs use Version Control Systems
(VCSs), which keep track of changes over time. However, HCSSs implemented in VCSs do
not offer proper support to retrieve and analyze the changes at the level of features as often
multiple features are committed at once [67,104]. Further, features are often tangled and
scattered over different files. Thus, determining which features changed when multiple files
and lines were modified in a single commit can be an infeasible and error-prone task [110].
Existing studies thus recommend research on recovering and tracking the evolution of
features managed in version control systems (VCSs) [85,119].

Based on the aforementioned, a better comprehension of the entire feature life cycle, i.e.,
when and how features are introduced, removed, and revised in both space and time is of
paramount importance for improving the management of HCSSs in VCSs and a prerequisite
for developing tools that ease maintenance and evolution. However, there is no empirical
work analyzing the life cycle of features throughout all commits and for all releases of
HCSSs.

Therefore, this paper provides a comprehensive analysis of the feature life cycle in space
and time, revealing the challenges and limitations of current mechanisms. We provide
insights regarding the complexity of feature implementations throughout the revision history.
In particular, we investigate which and how features changed from one commit to another
and introduce an automated approach for mining repositories of HCSSs managed in VCSs.

Our approach is the first using a constraint satisfaction problem (CSP) solver to reliably
identify interacting features or features depending on the execution of other features [19]. It
also considers corner cases [110] for mining variability in space and time. Other approaches
only capture features annotated in presence conditions [39,74,96,160] and do not solve con-
straints of complex expressions, involving Boolean, arithmetic operations, and comparisons.
Our approach also enables mining metrics of feature changes, again going beyond previous
work, which only presents metrics of feature characteristics at one point in time or for few
commits [39,74,96,119,147,191].

We applied our approach to four subject systems and analyzed their entire life cycle of
active development, ranging from 13 to 20 years, altogether covering 37,500 Git commits.
We adopted well-established metrics [45, 160] to analyze the variability of the systems
and the implementation complexity of the features: the scattering degree counting the
number of variation points; the tangling degree counting the number of features interacting
in variation points; the nesting depth counting the number of variation points inside a
variation point; and the number of top-level branches, i.e., the number of variation points
without any outside enclosing variation points. We also analyzed the correlation of these
metrics across the feature life cycle to understand, e.g., if a metric is correlated with other
metrics. Adding the time dimension enabled us to find different information compared
to previous work, e.g., that features scattered over many variation points lead to more
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revisions over time than features with complex tangling.
Our main contributions are: (1) an automated approach for analyzing the evolution of

features in space and time and for computing the characteristics of changes and feature
implementation complexity of HCSSs managed in VCSs1; (2) an empirical study of the
feature life cycle, which provides findings and insights on how developers maintaining and
evolving HCSSs can benefit from the mined information; and (3) a dataset covering the
entire development history of four open-source systems from different domains, with a total
of 37,500 commits from up to 20 years2.

The remainder of this paper is organized as follows: Section 2 illustrates the complexity of
manually identifying changed features and their revision characteristics in HCSSs. Section 3
presents the automated mining approach for feature evolution analysis. Section 4 describes
the research method of our empirical study. Section 5 presents the results of our analysis.
Section 6 discusses findings and insights. Threats to validity are pointed out in Section 7.
Section 8 highlights how our work differs from previous research. Section 9 presents
conclusions and future work.

2 Problem Statement

Our work investigates the feature life cycle of HCSSs. Features in this context are configur-
ation options represented by external literals, i.e., macro names never defined in the source
code by a #define directive. Therefore, the features considered in our analysis are variation
points that represent system functions as well as features needed for debugging and testing.
Also, we generically use the term ifdefs to refer to the variation points, i.e., variability
enclosed by the C preprocessor annotations in conditional blocks #ifdef, #ifndef, #if,
#elif, #else.

Although developer guidelines recommend small and cohesive commits, developers in
practice often commit multiple independent changes to VCSs at once [17]. Understanding
the code of such multi-feature commits is much harder compared to the code of smaller
commits representing independent changes. Thus, the analysis of which features changed
and in what way is even more complex in HCSSs, as developers need to consider preprocessor
directives, including #define and #include, as well as expressions in conditional blocks
of code [110]. Furthermore, the implementation of features developed within preprocessor
directives is often highly complex, scattered across many files, and comprising many blocks
of code. Even expanding macros in conditions can make it harder to reason about problems
in the code, as it may exclude parts of the source code depending on which and how macros
are defined. Features can be tangled when involved in the same variation points, i.e., in
the same blocks of ifdefs. Nonetheless, features can also be nested with other features
when blocks of code guarded by ifdefs are enclosed by other ifdefs [160]. In addition, it
is necessary to treat #else and #ifndef directives when assigning changes to features as
ignoring such corner cases can lead to faulty assumptions about system variability [110].
As a consequence, developers are often overwhelmed when trying to understand large code
changes during maintenance and evolution.

To illustrate the difficulty of manually analyzing feature changes, let us consider commit
#26773 from release libssh-0.6.0 (i.e., Git Tag [33]) of the LibSSH system. This commit
changed 22 source files of six features. As the commit message says, the developer removed
the enter_function() and the leave_function() from all the 22 files, thereby affecting single
lines of multiple blocks of code that belong to multiple ifdefs. However, the commit message
does not mention the affected features. This would be difficult to analyze manually, given
that the 268 additions and 495 deletions are spread over at least five features and 55 macros.

1https://github.com/GabrielaMichelon/git-ecco
2http://doi.org/10.5281/zenodo.4158191
3https://gitlab.com/libssh/libssh-mirror/-/commit/c64ec43
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Thus, such kinds of commits require an in-depth and recursive analysis of where macros
are defined and which ones are responsible for activating blocks of code.

3 Automated Mining and Computation of Metrics

Figure 1 shows the steps performed by our automated mining approach to retrieve the
information used for our empirical study. The mining approach computes the metrics
(detailed in Section 4.2) for each feature appearing in each commit: we begin by cloning
the repository of a system selected for analyses (Step 1). Then, we collect information
from all Git commits of all releases, i.e., Git tags [33] (Step 2). Afterwards, we partially
pre-process the checked out commit files, i.e., annotated macros are expanded such that
annotated conditional blocks only consist of literals (Step 3). This allows determining the
corresponding values for macros that are defined at some point in the code by a #define
directive. These values are important to compute possible solutions via the Choco CSP
Solver [158], which receives as input an expression corresponding to a specific block of
code of interest to collect revision or change characteristics and a queue of implications
for each particular macro that influences in some way the specific block to be executed.
The files resulting from expanding macros in annotated conditional blocks are then used to
create a tree structure (Step 4) to mine information about the features. The tree represents
the entire contents of one commit and consists of three major nodes: conditional nodes
representing a block of code that can be surrounded by #if/#ifdef/#ifndef/#else/#elif
and its #endif, #define nodes, as well as, #include nodes. Our approach for computing
metrics relies on a tree structure of preprocessor directive nodes [132], which reduces the
computational costs of the analysis [80].

Steps 5 to 7 concern the computation of metrics and the mining of information: Step 5
is necessary to obtain the features of the system. This step first collects all macros of
conditional blocks and all #defines of all files for every commit of a release. Then, we
look for the macros that have never been defined within the source code, i.e., can only be
set externally by the user from the command line. In this way, we obtain the macros that
can be considered features of the system. Every block is identified and for each block that
has a Git diff [33], i.e., fragments of code that differ for the same file from one commit to
another (Step 6), we compute metrics on the change characteristics (Step 7). We obtain
the fragment differences with Git patches, i.e., representations of the differences between
two text files in a line-oriented way as computed by a diff utils library [11]. We also
compute revision characteristics (Step 7) for every block of code presented in the source
files of a commit. The resulting metrics from our mining approach are presented in Table 1
(Section 4.2).

Our approach uses a high level of abstraction to compute metrics of features and analyzes
only the annotated blocks of code and not the abstract syntax tree (AST), which makes it
computationally less expensive. Thus, the runtime performance of our approach is O(n),
growing with the number of variation points. The Choco Solver is among the fastest
constraint problem (CP) solvers available [158]. For every commit, the runtime performance
for computing the metrics varies from a few seconds to a couple of minutes due to the
number of features and the constraints that a block of code can involve in the CP. Table 2
shows the average time to compute the metrics in minutes per release (RP ). SQLite took
longer than other systems due to the higher number of commits per release, which increases
the total time needed to compute metrics per release. However, once the metrics for the
entire life cycle of the system are computed, future commits can be analyzed individually
to get results faster.
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Figure 1: Automated approach for mining the life cycle of features.

4 Empirical Study Design

This section explains the study goal and research questions, as well as the metrics and
subject systems used in our empirical work.

4.1 Study Goal and Research Questions

Study goal: We aim to analyze the life cycle of features, in terms of when and how they
are introduced, removed, and revised in both space and time, during each commit of system
development and evolution.

RQ1: How often are features revised through their life cycle? We investigate the
frequency of feature revisions along with system evolution. Also, we analyze how developers
introduce and remove features in each commit, leading to system evolution in space. For
each commit of the subject systems, we analyze the new and removed features, as well as
the features that were revised by a change. We compute the number of newly introduced,
removed, and changed features within each release.

RQ2: What is the scope of feature revisions? We analyze each patch of change of a
feature in a commit, thereby assessing the impact and characteristics of the changes. In
particular, we determine the characteristics of the changes of each revision of the features.
We compute for each commit the number of variation points, tangled features, files, lines
added and/or removed based on the Git diffs between one commit to another for each
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feature. We also investigate how the characteristics of the feature changes and the feature
implementation evolve over time. So far, no study combines the analysis of the revision
characteristics of features and the characteristics of each change to determine the impact of
revisions on the implementation complexity of features along with system evolution. To
answer RQ2, we compute metrics about change characteristics (cf. Table 1 in Section 4.2).

RQ3: How do feature revisions affect the complexity of feature implementation?
We aim to understand how features evolve over time, i.e., to what extent the implementation
of a revision of a feature changes from one commit and from one release to another.
Answering RQ3 helps to understand how revisions of features are implemented and how
their implementation complexity changes over time. To answer RQ3 we compute revision
characteristics, such as the scattering and tangling degrees (cf. Table 1 in Section 4.2).

4.2 Metrics

We selected the metrics based on a literature survey [50,160] on the usefulness of feature
metrics for preprocessor-based systems, which regards scattering degree, tangling degree,
and nesting degree as useful metrics to measure feature implementation complexity. Also,
the number of nested #ifdef blocks can influence the understandability of feature code:
when developers modify features inside a block, they have to analyze each implication for
all features nested in a specific block. Thus, as an approximation of the implementation
complexity of a feature, we also compute the number of variation points of a feature revision
that are top-level branches (NOTLB) and non-top-level branches (NONTLB) in addition
to scattering degree (SD) and nesting depth (ND). The tangling degree (TD) is a metric
widely used to analyze how many features are tangled in an implementation, to estimate
the complexity of modifying features [7, 96].

Let us use an example containing corner cases to illustrate how we compute these metrics
and why a CSP solver is needed. Listing A.1 shows a code snippet in the first commit
(Commit #0) and Listing A.2 shows the code snippet of the same file, but in the second
commit (Commit #1). In this illustrative example, we assume the macros A and Y as part
of the set of features, which can only be set by the user. The other macros X, B and C
(non-boolean) are defined within the source code and are not considered features as they
cannot be set externally. We create logic formulas to represent feature interactions and
feature implications for every block of code to know which features are responsible to
activate it and to be able to compute metrics for every commit.

Lines 11 and 17 changed in Commit #1. Analyzing the change in line 11, we cannot
simply assume that B and C have changed, as they are not features of the system. We have
to walk up the file to see which features are defining B and C. Also, we need to analyze the
feature implication of the outermost block of code in case it exists. The change will be
assigned to the feature that can activate this block of code. Thus, walking up the file, we
have a feature implication with the macro X, which defines B and sets a value greater than
5 to C. Also, the macro X is defined in another block of code, containing the feature Y in
the condition expression.

The constraints built are handed to the CSP solver, which gives to us a solution that
satisfies the constraint problem, i.e., which features have to be selected to activate a block of
code. For the change in line 11, the constraints are defined as follows: (Y =⇒ X)∧(X =⇒
B)∧ (X =⇒ (C = 9))∧ (B ∧ (C > 5))∧X ∧ Y . This formula is satisfied when Y = T , i.e.,
when feature Y is selected as X, B and C are not considered as features. Then, the change is
assigned to feature Y and the metrics for change characteristics are computed as follows:
LOC A = 1 (one line added in Commit #1), LOC R = 1 (one line removed from Commit
#0), SD #IFs = 2 (two patches of changes affecting a variation point, one line removed in
Commit #0 and one line added in Commit #1), SD File = 1 (the change was in one file),
TD = 2 (involving the features Y and BASE, which represents the core of the system).
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Table 1: Definition of metrics computed by the approach: Change characteristics concern
the scope of a feature modification, while revision characteristics refer to feature complexity
of a specific commit.

Change characteristics
LOC A Number of lines added for each feature revision’s patches of change
LOC R Number of lines removed for each feature revision’s patches of change

TD Number of feature revisions in variation points for each feature revision’s patches
of change

SD #IFs Number of patches of changes affecting the variation points of a feature revision
SD File Number of files impacted for each feature revision’s patches of change

Revision characteristics
LOC Number of lines of code of a feature revision
SD #IFs Number of #ifdef/#elif#if variation points of a feature revision
SD #NIFs Number of #ifndef/#else variation points of a feature revision
SD File Number of files with variation points of a feature revision

TD Number of feature revisions in its #ifdef/#if/ #ifndef/#elif/ #else vari-
ation points of a feature revision

ND Number of #ifdef/#if/#ifndef/#elif/#else variation points inside its vari-
ation point of a feature revision

NOTLB
Number of #ifdef/#if/#ifndef/#elif/#else variation points without any
outside enclosing variation point, i.e., the number of top-level branches of a
feature revision

NONTLB
Number of #ifdef/#if/#ifndef/#elif/#else variation points enclosed by
another variation point, i.e., the number of non-top-level branches of a feature
revision

1 #if Y
2 #define X
3 #endif
4
5 #if X
6 #define B
7 #define C 9
8 #endif
9

10 #if B && C > 5
11 <code >
12 #endif
13
14 #ifndef A
15 <code >
16 #else
17 <code >
18 #endif

Listing A.1. Commit #0.

1 #if Y
2 #define X
3 #endif
4
5 #if X
6 #define B
7 #define C 9
8 #endif
9

10 #if B && C > 5
11 <changed code>
12 #endif
13
14 #ifndef A
15 <code >
16 #else
17 <changed code>
18 #endif

Listing A.2. Commit #1.

With the aforementioned example, we can see that only computing feature characteristics
cannot show that feature Y changed in Commit #1 as the feature characteristics remain
the same as in Commit #0. This is also because the change was performed in a variation
point (lines 10-12) that is impacted indirectly by this feature. The revision characteristics
of feature Y are as follows: LOC = 1 (line 2), SD #IFs = 1 (variation point lines 1-3),
SD #NIFs = 0, SD File = 1, TD = 1 (BASE is the only feature impacting or interacting
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to activate its variation point from lines 1-3), ND = 0, NOTLB = 1 (it is a top-level
branch variation point as there is no other outermost block of code wrapping lines 1-3),
NONTLB = 0.

Existing analyses still assign the feature constant (macro name) to the negated directives.
For example, they assign feature A to the block #ifndef A in lines 14-16 (Listing A.1) when
computing the metrics, which is incorrect [110]. Another corner-case example is the code
in the #else block (lines 16-18), which is only executed if feature A is selected. However,
existing studies measuring scattering degree and tangling degree are limited to counting the
macro names in source code, as shown in [110]. In our example, a change in the code of the
#ifndef does not belong to feature A, instead, a change in the #else block of code does.
We thus compute the change characteristics in line 17 for feature A as follows: LOC A = 1,
LOC R = 1, SD #IFs = 2 (two patches of changes affecting a variation point, the line
removed in Commit #0 and the line added in Commit #1), SD File = 1, TD = 2 (involving
A and BASE). The revision characteristics of feature A after a change in Commit #1 remain
the same as in Commit #0 as follows: LOC = 1, SD #IFs = 0, SD #NIFs = 1, SD File = 1,
TD = 1, ND = 0, NOTLB = 1, NONTLB = 0. The block of code in line 14 is computed
as part of the feature BASE, rather than A. Then, the feature characteristics of BASE are as
follows: LOC = 2, SD #IFs = 1 (#else line 16), SD #NIFs = 0, SD File = 1, TD = 1,
ND = 0, NOTLB = 1, NONTLB = 0.

4.3 Subject Systems

Our study investigated the evolution history, i.e., all commits of all releases of four open-
source C preprocessor-based systems of different sizes and from different domains (Table 2).
These systems were selected due to their substantial evolution history, their active and
collaborative development, their popularity, as well as their use in previous research
[57,64,96,118,191]. Table 2 presents the number of releases (NR), the year of inception, the
total number of commits (NC), the total lines of code (LOC), the number of features (NF )
in the last release, and the runtime average (RP ) in minutes for mining and computing
metrics per release, i.e., involving multiple commits of the systems.

Table 2: Overview of the subject systems.

System Domain NR Since NC LOC NF RP

Bison Parser 105 2002 6,991 39,904 83 9.6
LibSSH Network library 48 2005 5,022 110,590 121 8.5
Irssi Chat Client 69 2007 5,331 85,325 57 20.6
SQLite Database system 113 2000 20,090 173,714 384 85.4

5 Results and Analysis

We present findings based on the results of our automated analysis, organized by our three
research questions.

5.1 RQ1. How often are features revised through their life cycle?

The numbers of introduced and removed features for all releases of the Bison, LibSSH, and
Irssi system show that features are typically hardly removed anymore after being introduced.
In case of the SQLite system features were removed in 33 of 113 releases analyzed. In
particular, analyzing the in-space feature evolution of SQLite, we observed that features
were removed until the 78th release. When analyzing the removed and added features in
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Figure 2: Number of commits based on systems’ changes to feature types.

more detail, however, we noticed that the features removed first were then reintroduced in
commits of the same release. This happened for many features in SQLite, but mostly for
features used for test purposes. This confirms the findings of Berger et al. [22], who showed
for industrial systems that features are also used for testing, debugging, build, optimization,
deployment, simulation, or monitoring.

Interestingly, we could see in all subject systems that features are changed while new
features are introduced, showing a tendency that releases with a higher number of features
evolving in space usually also have a higher number of features evolving in time. Overall, in
some commits of the releases, features were removed, introduced, and changed, representing
constant system evolution in space and time. In previous work [152] evaluating the Linux
kernel 6% of the commits either added or removed features over the releases range analyzed
(v2.6.25-v3.3). Despite the Linux kernel being much larger in terms of features (13,000)
and LOC (more than 33,000 C files with over 10 million source LOC), our systems have a
similar evolution in space (3%-7%).

Kröher et al. [82] show that features in the Linux kernel change significantly less often
when not considering the changes in the core of the system. About 7% of all commits
analyzed introduce changes to variability information, i.e., features annotated in ifdefs. Only
up to 8% of all commits were changes affecting only the code of features. Yet, changes in
both BASE and other features’ code co-occur in 2% to 11% of the systems’ commits. Based
on the information gathered with our automated mining approach, the effort for analysis
and verification can be avoided for about 80% of the commits that do not introduce changes
in the variability of our subject systems. Thus, our analysis of how features evolve along
the commits of the four subject systems, as observed in Figure 2, confirms their findings,
which shows that the degree of evolution in time of the Linux kernel can be generalized to
smaller SPLs, such as our subject systems.

Taking into account the characteristics of each subject system (cf. Table 2), we see
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that the number of commits, lines of code, or the number of features does not explain the
number of feature changes. For example, LibSSH is smaller than SQLite but has more
single commits involving changes to specific features (8% compared to 3% of SQLite) and
single commits involving changes in both features and BASE code (19% compared to 13% of
SQLite). When analyzing the commits involving more than one feature change, we could
see that changes related to 2-5 features happened in 1,384 commits (28%) of the LibSSH
system; in 3,600 commits (18%) of SQLite; in 202 commits (4%) of Irssi; and 364 commits
(5%) of Bison. These numbers confirm that changes over commits are tangled [67] and
analyzing the evolution of features manually might be infeasible. For instance, a single
commit of Bison (1f65350) changed 103 files, with 491 additions and 24,579 deletions made
to 66 features due to an upgrade to the latest versions of gnulib and Automake. From the
aforementioned information, we thus formulate our first finding:

Finding 1. Features are subject to evolution in space and time, for instance, due to new
and enhanced functionality, refactoring, bug fixes, or testing. Often, multiple features are
introduced and changed together in a single commit. This happened over all releases of the
systems. The great majority of commits contains changes to the common implementation
(BASE code), which confirms the findings for the Linux kernel [82]. However, there are also
many commits regarding feature evolution. In addition, we could see specific commits with a
large impact, e.g., a single commit in Bison impacted 66 features and 103 files. Interestingly,
we noticed that in the case of SQLite, some of the most-changed features were defined for
testing purposes.

Answering RQ1. Our analyses show a great diversity of how developers manage and
evolve HCSSs in VCS over each commit. We observed commits covering changes in both
space and time. We also observed commits in which changes affect multiple features and
files, sometimes including dependencies and interactions between features. Curiously,
in SQLite we even observed cases of constant evolution in space, i.e., inclusion and
exclusion of features, to support testing tasks in this project.

5.2 RQ2. What is the scope of feature revisions?

Table 3 presents the change characteristics across all commits, summarizing SD #IFs, SD
Files, and TD. Following Queiroz et al.’s [160] threshold for feature characteristics, we
considered change characteristics as complex if more than 15% of the features have a
scattering degree (SD #IFs) ≥ 7 and more than 20% have a tangling degree (TD) ≥ 3. In
our study, we used a tangling degree ≥ 3 for the feature expressions impacted by a change
(instead of ≥ 2 as in [160]) because we always computed TD including the BASE code in
the feature expression. Therefore, we can infer that LibSSH changes are complex in terms
of scattering #IFs and tangling degree. The changes in other systems are also complex
in terms of tangling degree (as more than 20% of the features have a TD ≥ 3). For the
scattering degree of files (SD Files) we just assumed the same classification of SD #IFs, but
in most cases Git delta’s change, i.e., the code added or removed in a system just impacted
few files (≤ 6).

Analyzing correlations of change characteristics allows understanding how changes to a

Table 3: Change characteristics in all commits of the system.

System LibSSH Irssi Bison SQLite
SD #IFs ≥ 7 19% 9% 13% 14%
TD ≥ 3 22% 29% 56% 38%
SD Files ≥ 7 1% 1% 1% 1%
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Table 4: Correlation of change characteristics in Irssi features.

Feature SSL HAVE_CAPSICUM HAVE_OPENSSL
LOC A/LOC R -0.62 -0.42 0.54
LOC A/SD #IFs -0.58 -0.08 0.80
LOC A/SD File -0.66 0.06 -0.04
LOC A/TD * * *
LOC R/SD #IFs 0.98 0.64 0.82
LOC R/SD File 0.71 0.42 0.32
LOC R/TD * * *
SD #IFs/SD File 0.70 0.93 0.07
SD #IFs/TD * * *
SD File/TD * * *

SSL = SSL_get_server_tmp_key.

feature impact complexity in terms of SD #IFs, SD File, and TD. We applied the Spearman
correlation coefficient [182], as the sample data do not follow a normal distribution and a
linear behavior, with a confidence interval of 95%, and classified it according to Evans [47].
Table 4 presents the results for the Irssi system, showing very strong correlations (the
highlighted cells) of the change characteristics of the hotspot features changing more often.
Correlations were computed for all possible pairs of LOC A, LOC R, SD #IFs, SD File,
and TD of Git delta changes for hotspot features. When looking at the correlations of
feature HAVE_OPENSSL (Table 4), we can see that when more LOCs were added in a block
impacting this feature, more variation points of #IFs were impacted. From this, we can
infer that changing a feature with a complex implementation may have a big impact on
system implementation and other features.

Yet, taking into account the correlations of change characteristics of the feature
HAVE_OPENSSL, we can also see that besides SD #IFs and LOC A also SD #IFs and
LOC R are strongly correlated. When a change involves many SD #IFs, it not only means
that code was added or changed, but also that lines were removed from its implementation.
While in the case of feature SSL_get_server_tmp_key there is a strong correlation between
LOC R and SD #IFs, there is a moderate negative correlation between SD #IFs and LOC A.
This shows that the Git deltas of a change across this feature’s life cycle often affect the
feature by removing existing lines instead of adding new lines to it.

We analyzed the commits for the points in time where the feature
SSL_get_server_tmp_key changed. The strong correlation between changed SD
#IFs and LOC R can be seen in commit 322625b4, where the SD affected were deleted,
and the removed lines were only the lines of the preprocessor directives, meaning that
the code of this feature was moved to the BASE, affecting three files. Furthermore, when
analyzing the characteristics of this feature, we see that it was introduced with an SD of
four, while the SD was one in the last release of the system. The change characteristics of
this feature indicate that it was not changed after the 62nd release of the Irssi system, and
its revision characteristics also remain unchanged until the last release. Existing research
on feature evolution does not evaluate such characteristics of changes. By doing that, we
could observe that the code may change even if the feature revision characteristics do not
change, and thus a feature of a specific commit does not have the same implementation as
in another commit. Based on the change characteristics, we now present our second finding:

Finding 2. Analyzing both feature changes and revision characteristics, i.e., implementa-
tion complexity, is important for understanding the feature life cycle. Interestingly, only

4https://github.com/irssi/commit/322625b
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knowing revision characteristics of features, e.g., the number of variation points or the
nesting depth, is not enough to reveal the features and how they were changed in some
cases. By analyzing the change characteristics, we could identify that features kept their
characteristics even if their implementation changed.

According to the number of changes, the feature HAVE_OPENSSL changed more often than
other features of the Irssi system. We analyzed the commit messages of all changes of
this feature to understand the reasons for the changes, as the revision characteristics of
this feature show that it is not interacting with other features (TD = 2) and it is in the
variation points’ top-level branches with no nested features. Thus, this feature has no
interactions and there are no features implemented in its variation points. Hence, we know
that when this feature changed, it was not due to changes in other features that could have
affected the feature HAVE_OPENSSL. It is interesting for developers to know that changing
existing variation points of a feature does not affect other features. We now present our
third finding:

Finding 3. Features are indirectly affected by changes in other features, mainly because
of the nesting degree of features. For example, features of top-level branches, i.e., outermost
variation points, in some cases have increasing numbers of lines of code due to nesting
features that changed their code implementation.

Answering RQ2. Our study investigated the scope of feature revisions from many
perspectives, e.g., regarding the number of variation points and files affected in a feature
by a single commit and the kind of changes usually performed in a specific feature
over time. Mining the change characteristics of a feature shows if the changes of a
commit resulted in new variation points in additional files, or if code was removed or
added in nested features. This information can be obtained by mining both the revision
characteristics of features and the change characteristics of each revision along the
feature life cycle. Although adding, changing, or removing lines of code is most of
the time related to only one feature, sometimes it indirectly impacts the outermost
variation points, namely top-level branches and dependencies to and interactions with
other features.

5.3 RQ3. How do feature revisions affect the complexity of feature
implementation?

Table 5 shows that the implementation complexity of the features, according to the Queiroz
et al.’s [160] threshold, is high when more than 15% of a system’s features have an SD ≥ 7,
which means that features are spread over many variation points. In their findings, feature
scattering is highly skewed, which is what we could also observe in our subject systems.
This is due to the scattering degrees reaching extreme values for large systems, such as
the Linux kernel (max. SD = 2,698). In our subject systems, high SD #IFs was found for
SQLite (max. SD #IFs = 239) and Bison (max. SD #IFs = 130).

In terms of SD #IFs less than 15% of features have a SD ≥ 7 for Bison and Irssi, which
indicates comparably simple implementations in general. SQLite and LibSSH have a
complex implementation because for more than 15% of their features SD #IFs are ≥ 7.
Comparing to Linux kernel [149, 152], 20% of the features have high scattering, where 75%
of the scattered features have a SD ≥ 8, and are mainly features used for infrastructure
and platform purposes, thus showing complex implementation.

Regarding the feature characteristics, we observed different evolution in comparison to
the Linux kernel because features in our systems were introduced already scattered and
did not remain constant over releases. We found that this happens for features with high
impact on the system. For example, in LibSSH, the feature WITH_SERVER was changed
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Table 5: Revision characteristics over the features’ life cycle

LibSSH Irssi Bison SQLite
SD #IFs ≥ 7 24% 5% 10% 16%
SD #NIFs ≥ 7 4% 9% 6% 6%
SD Files ≥ 7 16% 3% 3% 9%
TD ≥ 3 16% 7% 31% 18%
ND ≥ 2 12% 7% 8% 7%
NOTLBs 58% 67% 39% 51%
NONTLBs 42% 33% 61% 49%

multiple times to fix bugs such as memory leaks or security vulnerabilities. Other examples
are debugging and testing features that often change, adding and removing variation points
for debugging problems, and testing new features and bug fixes.

In terms of SD File, LibSSH also has more than 15% of the implementation of features
with SD File ≥ 7. Bison is considered a complex system in terms of TD because it is the
only system for which TD ≥ 3 for more than 20% of the features. The high TD means
that the implementation of features is dependent on other features, and changing a tangled
feature might affect these other features. ND ≥ 2 holds for at least 7% of features for all
systems analyzed. For Bison, the NOTLBs is about 40% of the features’ variation points,
meaning more than 60% of features implementation are a non-top-level branch. Higher
NONTLBs make it difficult to retrieve a feature’s code for maintenance, and also the
changes of features can have an impact on other features. Thus, only the SQLite system is
below Queiroz et al.’s thresholds of complex implementation [160]. We now present our
fourth finding:

Finding 4. Feature evolution often increases implementation complexity. We observed that
systems with complex implementations of their features, i.e., scattering degree ≥ 7, have
more feature revisions. Interestingly, features scattered over many variation points tend
to lead to more revisions over time than features with complex tangling and non-top-level
branch implementation.

Figure 3 allows analyzing hotspot features which most often change over time for all
commits. Figure 3a and 3b shows the characteristics of the hotspot feature over time
for the LibSSH and Irssi systems. The LOCs of the LibSSH hotspot feature (Figure 3a)
increase over time as do the numbers of SD #IFs and File. In addition, we can see that its
ND is ≥ 1, meaning that when a change to this feature increases its LOC, the new lines of
code can be part of another feature that is inside of one of its variation points. Then, to
understand this feature’s evolution, it is necessary to determine within the commits at what
point its characteristics changed, thereby finding out if the changes affected only the feature
itself or one of its nested features. We can also note by looking at the LibSSH hotspot
feature that the number of changes is not related to a high number of SD #IFs because
even with lower SD #IFs it changed many times. However, these changes can be highly
correlated with the ND of a feature. When a variation point that is inside an outermost
variation point changes, the outermost feature indirectly changes. Thus, developers need to
take care not only of scattered features, but also of features with higher nesting degrees.

The TD of the hotspot features is one, meaning that their condition expression does not
contain other features. The ND is more complex for the hotspot feature of Irssi, reaching
three conditional blocks inside its variation points. The NOTLBs from the Irssi system
(Figure 3b) increased when the NONTLB decreased, which can indicate that the non-top
level variation points were removed or transferred to newer top-level variation points of
this feature. Yet, when looking at the LOCs of the hotspot feature of Irssi, we can see
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Figure 3: The hotspot features’ evolution along their life cycle.
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that it continuously increases, while its SD #IFs, SD #NIFs, SD File, and TD remain
unchanged, meaning that feature complexity did not increase during evolution. However,
its ND increased, i.e., variation points of other features were introduced inside this feature.
Evolving this feature may thus have an impact on the features enclosed by its variation
point. It is important to analyze all these revision characteristics to understand the impact
of changes.

We found that the characteristics of the feature HAVE_OPENSSL increased in terms of ND in
release 0.8.16, in which the feature HAVE_DANE was introduced (commit5) inside its variation
points. In another commit6, the ND of HAVE_OPENSSL increased again because another
feature was introduced inside its variation points (SSL_CTRL_SET_TLSEXT_HOSTNAME). The
increase of the LOC of the feature HAVE_OPENSSL in this commit was due to the lines of
code of the new feature introduced. This can make developers aware that the feature
HAVE_OPENSSL evolved over time and became responsible for activating other features. Thus,
we can easily notice the new features and their dependencies on the feature HAVE_OPENSSL.

The revision characteristics show if new revisions of features have more dependencies
or interactions with other features. If the number of variation points increases over time
and the ND of the feature HAVE_OPENSSL does not change, it can be assumed that these
features have new variation points outside the feature HAVE_OPENSSL and that they can
have interactions with other features if their TD ≥ 3. Yet, they can be responsible for
activating the code of other features if their ND ≥ 1, or can be dependent on other features
if their NONTLB increases instead of their NOTLB. Our last finding thus is:

Finding 5. Dependencies and/or interactions were constantly introduced, changed, and
removed along the life cycle of the features. By analyzing the revision characteristics, i.e.,
SD, TD, ND, and NOTLB, we observed that the complexity of feature implementations
increased. We found cases in which a feature that evolved over time had many changes
covering different files and affecting multiple features depending on and interacting with
each other.

Answering RQ3. The evolution of feature complexity during system evolution varies
in terms of changes and their characteristics. Many changes indirectly affect other
features, and impacted multiple variation points, leading to the scattering of feature
implementations. Usually, features with more revisions are the ones with a higher
number of variation points that have high importance in the system, and thus need
constant bug fixes and enhancements. Changes increasing the number of variation
points usually lead to more revisions over time. Another characteristic directly affecting
the variability and complexity of features is the inclusion, change, or exclusion of
dependencies and interactions between features that are commonly scattered among
many different files.

6 Discussion

Based on our results we now present lessons learned and discuss the practical usefulness of
our mining approach.
Developers need awareness of HCSSs evolution in space and time. Regarding
RQ1, our analysis shows that in most commits, the code of the BASE feature changed.
However, we still observed that many features changed across releases, e.g., in the LibSSH
system, 1,143 commits were changes to features from a total of 5,022 commits, covering 45
of 48 releases of the system. It would be difficult to manually detect the changed features
for such a high number of commits. Hence, it would be hard to determine the most likely

5https://github.com/irssi/commit/d826896
6https://github.com/irssi/commit/28aaa65
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affected configurations when selecting these features. As pointed out by Mühlbauer et
al. [139], it is infeasible to test each and every commit and configuration when uncovering
and fixing performance deficiencies and related problems caused by certain revisions. Our
approach therefore suggests which commits led to specific feature changes. This can reduce
the number of variants developers need to check.

Therefore, mining how frequently features are revised can make developers aware in
which releases features actually changed. Our approach retrieves which features changed
across all commits, which eases the selection of commits to be analyzed when investigating
a specific feature. In the LibSSH system, for example, the release libssh-0.6.0 contains
the highest number (185) of commits changing features. For example, the LibSSH hotspot
feature WITH_SFPT changed in 14 commits of this release. The feature WITH_SFPT from
LibSSH changed 174 times during its life cycle, so knowing which commits to analyze can
be extremely helpful.

Features co-evolve in single commits. Our approach determines which features evolve
together, e.g., the feature WITH_SFPT co-evolved 61 times with 21 other features (not
considering the feature BASE). This information reveals that the feature WITH_SERVER most
frequently co-changed with WITH_SFPT. Yet, looking at the release libssh-0.6.0 shows that
the feature WITH_SERVER is the one that changed most often. It was involved in 71 of the
262 commits of this release. Knowing which features often co-evolve can also help to migrate
a monolithic system to microservices [144] because according to Henry and Ridene [66], a
good strategy is to migrate features that frequently change and that can bring more value
when being managed separately.

VCSs lack mechanisms to deal with the evolution of HCSSs. In a particular commit7,
the features HAVE_LIBCRYPTO or HAVE_LIBGCRYPT require that the feature WITH_SSH1 is
included. The information retrieved, such as ND and NOTLB across revisions shows
cases when the number of top-level branches is reduced, while the number of non-top-level
branches increased in a commit. This helps to investigate if new feature interactions and
dependencies are still consistent with the feature model of a system. Further, the feature
history helps in finding out which commit first introduced a feature and which commits
are part of its further evolution, to determine the developers that originally developed or
maintained a feature. For example, in the aforementioned commits, we could observe that
the same developer moved the features HAVE_LIBCRYPTO and HAVE_LIBGCRYPT in and out
of the feature WITH_SSH1. Future maintenance and evolution tasks involving these features
could thus be assigned to this developer.

Keep track of change characteristics over time makes clear which features
are affected. The information mined regarding RQ2 shows that one changed feature
usually impacts other features in 20% of the commits of a system. For example, three
features changed in the commit d6829d08 of the LibSSH system (release libssh-0.6.0 ). The
mined information shows that the features HAVE_LIBCRYPTO and HAVE_LIBGCRYPT remained
constant in terms of their LOC, SD #IF, SD #NIF, SD File, TD, and ND but changed in
terms of NOTLB and NONTLB. When analyzing the source code of these commits, we
could see that this happened because one block of code of each feature was transferred to
the feature WITH_SSH1. Hence, the feature characteristics of WITH_SSH1 show that in this
commit 79 new lines were added, which already existed in the system in variation points
of the features HAVE_LIBCRYPTO and HAVE_LIBGCRYPT. Thus, these two features were just
moved into a variation point of the feature WITH_SSH1, being dependent on the selection
of WITH_SSH1. This information may help, for instance, to find a bug when any of these
features does not work as expected.

7https://gitlab.com/libssh/libssh-mirror/-/commit/bf72440
8https://gitlab.com/libssh/libssh-mirror/-/commit/d6829d0
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Analyzing feature characteristics in every single commit can bring further
information about bugs of feature interactions, test priorities, and implement-
ation complexity. In the aforementioned example, the features HAVE_LIBCRYPTO and
HAVE_LIBGCRYPT did not change in terms of their implementation code but were transferred
to a variation point of another feature (WITH_SSH1). This impacted the implementation
characteristics such as the ND and NOTLB of the three features. Thus, by looking at the
revision characteristics of the feature WITH_SSH1, a developer can find out that the features
were moved out again from the feature WITH_SSH1 130 commits later7, when the LOC of
the feature WITH_SSH1 decreased. Therefore, it is important to know the characteristics
of a feature in every single commit of a system. This makes it easier to determine in
multi-feature commits, if the implementation of features changed, or just their SD, TD,
ND, and NOTLB values. Thus, the information mined by our automated approach may
help to find feature interaction bugs.

Yet, regarding the example about the hotspot feature of LibSSH, the revision character-
istics show why the feature WITH_SERVER co-evolved often with the feature WITH_SFPT. The
feature WITH_SERVER has an SD #IFS = 2, and one of its variation points is nested with an
outermost variation point of the feature WITH_SFPT. When analyzing the life cycle evolution
of the feature WITH_SFPT, we see that its SD #IFS raised above six in the 44th release
(libssh-0.9.0 ). The mined information shows the features which often change, features
which influence other features, features which usually were changed with more features, or
features which the number of variation points increased over time. This information all
together indicates that future maintenance and evolution of the WITH_SFPT feature may be
difficult.

7 Threats to Validity

Internal validity: The selection of software systems can lead to biased results. To minimize
this threat, we analyzed multiple systems from diverse domains and of different sizes,
with varying numbers of releases, and commits, which have been used already in previous
work [57,64,96,118,191]. Furthermore, according to Liebig et al. [96], the complexity of
feature annotations is independent of the size of the software system. Regarding the features
included in our analysis, we considered as features only the macros that can be set externally
by the command line, which includes features other than functional ones. According to
Berger et al. [22] features are also used for, e.g., testing, debugging and deployment. Further,
previous empirical analyses [74, 96] have considered all macros of a system as features.
Although the non-functional features considered in our analysis comprise only 1-5% of the
features, we believe that analyzing their life cycle is also important for evolution tasks.

External validity: The systems we analyzed use C preprocessor directives to encode
variability. It is uncertain whether our results can be generalized to other variability
mechanisms. However, HCSSs are widely used to deal with evolution in space. Regarding
the metrics, we tried to avoid varying definitions, and different ways of measurement to not
limit the applicability of our work. Specifically, we used common metrics from previous
research [45,74,96,110,159,160].

Conclusion validity: Regarding the statistical analysis, we conducted a Shapiro-Wilk
test [176] to check for the normal distribution of collected data to use the most suitable
correlation coefficient.

8 Related Work

In this section, we discuss how our work differs from related work of evolution of C/C++
preprocessor-based SPLs in VCSs. We exclude previous work on feature-oriented SPL and
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8. Related Work

feature model evolution [142,145,146] as our automated mining approach is intended to
support the analysis of HCSSs at the level of annotated features in source code.

Our analysis goes beyond previous work by analyzing and computing metrics of the entire
feature life cycle. Existing work computing metrics of features annotated with C/C++
preprocessor directives used more subject systems, however, the total number of commits
analyzed was much smaller than in our analysis: one commit per system [96,118,160,191],
or up to 500 commits of one specific release [95, 147]. Our analysis on the other hand
covers all commits of the systems and from all releases of the system, overall covering up
to 20 years of development and 37,500 commits. Liebig et al. [96] mentioned that they
did not analyze all commits as this would be an expensive analysis, however, they pointed
out that mining data of a software system over time could raise interesting insights for
developers. This is demonstrated in our work. In addition, our automated approach not
only computes the revision characteristics of the implementation complexity of features but
also the change characteristics affecting the revisions. It also considers the corner cases
mentioned by Ludwig et al. [110] and the metrics are computed with a CSP solver that can
be easily interpreted by humans. Therefore, our work may help to gain interesting insights
for every system’s version adaptation and evolution over all commits.

Passos et al. [151,152] explored the variability evolution by capturing the addition and
removal of features in the Linux kernel. They manually analyzed commits where features
were introduced or removed in the variability model (KConfig files), implementation (source
code with ifdefs), and mappings (Makefile). They did not consider changes of features.
In [149], Passos et al. extended previous work [148] and improved their analysis and
discussion of feature scattering in the Linux kernel by adding a survey and interview with
developers. Their goal was to analyze only the scattering of features and which ones were
usually scattered. Their work does not contain an approach for computing metrics by
analyzing ifdefs conditions, as ours does with CSP solvers. For measuring the scattering
of features, they identify ifdefs that refer to the corresponding feature. For this, their
approach is based on the declaration of features in the variability model and the syntactic
reference of features in code.

Dintzner et al. [39] also improve Passos et al. [151] approach: FEVER automatically
extracts details on changes in variability models (KConfig files), preprocessor-based source
code, and mappings (Makefiles). Other studies [60, 82, 168] also used the FEVER approach
for analyzing the variability of the Linux kernel development, for characterizing and propose
safe and partially safe evolution scenarios in SPL. Despite many studies analyzing the
evolution of the Linux kernel, their results cannot be generalized for other SPLs, because
other systems (including ours) do not use “tristate” features, the features are not defined in
the Kconfig file (kernel’s variability model), and they do not map features to source files in
Makefiles. Furthermore, the authors of FEVER also suggested future improvements and a
more precise approach that can capture the exact presence condition of assets, rather than
the main features participating in that condition.

MetricHaven presented in [44] computes up to 42,000 metrics for variability-aware of
SPLs. However, their focus is to compute metrics based on the programming language, and
thus, it is more expensive in terms of computational resources and runtime performance.
Their approach takes more than 11 hours to compute the metrics of only one version of
the Linux Kernel when running on one thread. Kästner et al. [91] presented the TypeChef
approach to computing detailed information of the AST of the source code besides the
annotated variability, which requires much more effort than our approach. Furthermore, it
uses a SAT solver, which only covers blocks of code with Boolean values. Undertaker from
Sincero et al. [180] is similar to our approach and focuses on only parsing annotated blocks
of code to extract variability information of product line artifacts. It also uses SAT solver
and only analyzes dead blocks of code, i.e., conditional blocks that cannot be executed
under any possible input configuration. Therefore, their work does not compute metrics
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and only analyzes the Linux kernel.
Our approach goes beyond existing ones, as it can deal with the expensive computational

process of solving constraints to assign features to changes using constraint satisfaction
problems. Furthermore, our automated analysis is more detailed and for each commit
of every release of a system, also segmenting the ifdefs analysis by features. This allows
distinguishing between external literals (macros never defined within the source code and
likely the features of the system) and internal literals (macros defined by #define directives)
in relation to previous work from Hunsen et al. [74]. They considered all literals/macros of
ifdefs to capture the entire system’s variability, while our work analyzes other systems than
the Linux kernel. Our approach also automatically computes an analysis of the number of
lines that affected variability. In addition, our approach computes the characteristics of the
feature complexity and each change in every commit of the system.

Therefore, our approach focuses on a higher level of abstraction to compute metrics for
features parsing only preprocessor annotated blocks of code with a CSP solver involving
Boolean as well as numeric values in the range of integers or double in arithmetic operations
and comparisons. In this way, our approach is faster and computationally less expensive
for analyzing all versions of all commits of a system in computing metrics for change and
feature characteristics. We thus believe our approach can also be used to compute more
feature metrics and can be used to several further research opportunities, such as combining
with heuristics to analyze commit messages aiming to result in more reliable metrics and
more accurate predictions of defects than previous work from Strüder et al. [186].

9 Conclusions and Future Work

This work presents an analysis of the features’ life cycle by investigating the frequency
of changes, their characteristics, and the impact of changes on the complexity of feature
implementations. We introduced an automated approach for mining characteristics of
changes and the implementation complexity of feature revisions to track the feature
evolution. The results show that a specific feature from one commit of one release can be
very different from another commit of another release, not only in terms of size, SD, and
TD but also in terms of its content and purpose. Our analysis and findings also show the
complexity of evolving software systems in space and time combining HCSSs with VCSs and
stress the need for better support at the level of features [3,21,125,134]. In future work, we
will investigate granularity-levels of changes of every commit and connect the information
on feature evolution with bug reports and bug fixes [186]. Further, we aim to provide a
tool for data visualization to make the result analysis understandable for developers and
engineers.
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Abstract Preprocessor-based software product lines (SPLs) are used in practice to derive
customized variants of a system. SPLs enable practitioners to deal with evolution in space,
in which features (so-called configuration options)—annotated in source code with #ifdefs—
are included, removed, and systematically reused. Inevitably, feature implementations
also evolve over time, i.e., when existing features are revised. Nowadays, version control
systems (VCSs) are well-integrated into SPL development processes for versioning support
of the whole platform. However, evolving an SPL is complex, since developers need to
work on all variants at the same time. Changes to existing features in one version, a.k.a.
release of an SPL, usually developed in a branch, frequently need to be propagated to other
releases. However, there is no automated support for versioning and propagating features in
SPL releases managed in VCSs. For instance, the VCS can only propagate changes at the
commit level. Manually mining and propagating versions of a feature, i.e., feature revisions,
through #ifdefs is risky, time consuming, and error prone. In this paper, we thus present a
novel approach for feature revision change analysis and propagation without changing any
aspect of the traditional development of preprocessor-based SPLs managed in VCSs. The
results show our approach successfully propagates 3,134 features in space and time with
precision and recall of 99%, on average. These propagations involve 237,854 patches of code
within 14,244 source code files in 200 pairs of releases of four real-world preprocessor-based
SPLs.
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1 Introduction

Preprocessor-based SPLs provide a reuse-oriented platform with common and variable code
from which multiple software product variants are derived [75]. When implementing such
systems, preprocessor directives have to be employed to define variation points specifying the
parts of the SPL that will differ among different variants [23]. The preprocessor directives
delineate features, which represent end-user functionality or are used for development
purposes, such as testing, debugging, and deployment [22,86]. Thus, preprocessor directives
allow deriving variants by selecting features that address different requirements [143].

Preprocessor directives are widely used for many reasons [160], among them supporting
multiple platforms and operating systems across different environments [119]. Portability
problems are overcome by setting values to macros or features using preprocessor directives
that enable a specific operating system or compiler. Preprocessors handle variability by
guarding code fragments with preprocessor directives, like #ifdef, #if, or #elif, which
support the definition of optional features and alternate implementations [160]. Currently,
#ifdef directives are the most common variability mechanism to deal with evolution over
space, i.e., introducing or removing features of a system [21].

In addition to the evolution of systems in space, feature revisions are unavoidable
due to modifications of the systems’ implementation, which is known as evolution in
time [21]. Feature revisions happen because of bug fixes, refactoring, and enhancements [132].
Currently, the most common mechanism to manage evolution of systems over time are
Version Control Systems (VCSs) [134], e.g., Git. SPLs implemented with preprocessor
directives integrate very well with VCSs, as the preprocessor directives are basically pieces
of code [21]. Hence, the preprocessor variability mechanism in combination with VCSs is
widely adopted in practice to manage the development of variants (concurrent versions)
and revisions (sequential versions) of an SPL [127,134].

However, practitioners and researchers criticized the use of preprocessor directives claiming
that they make source code harder to understand and maintain due to limited separation
of concerns/features, error proneness, and code obfuscation [49, 118, 119, 127]. Further,
recovering feature information is very difficult when multiple files change in a commit,
touching many blocks of code and involving multiple features [17,36,76,127,195]. VCSs
can track changes and recover information either per file or for the whole system, however,
they do not recognize variation points, hindering feature analysis. Consequently, when
developers need to investigate a problem happening in some variants of a preprocessor-based
SPL, they have to manually analyze the preprocessor annotations within multiple files of
the whole platform to understand which features are actually affected by a change [127].

Furthermore, a revision of a specific feature on a specific release of an SPL, maintained
in a branch of the VCS, can be necessary to be propagated to other releases. However,
with current VCS support such as Git, only commit-level changes can be propagated [28].
Yet, cherry-picking a commit is a proper solution for a few scenarios, i.e., when developers
identify a pre-existing bug during the development of a release, and then create an explicit
individual commit patching this bug [16]. Nonetheless, propagating an entire feature
revision implementation in space and time between releases with different files and features
requires laborious analysis of feature interactions to know which files and patches of code,
i.e., sequences of lines are differing for a feature in different releases. A recent study confirms
that feature propagation is very challenging and expensive in preprocessor-based SPLs
managed in VCSs, and there is no automated support for propagating feature revisions
in such reuse-oriented platform [86]. Furthermore, preprocessor-based SPLs and VCSs
mechanisms do not analyse and provide visualization of which features are interacting
and affected between different releases [127]. These limitations and challenges of change
propagation during evolution in space and time confirm the need for a novel and automated
solution [127,131].
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Recently, Michelon et al. presented a mining approach for tracking feature revisions [127]
in preprocessor-based SPLs in VCSs and a feature revision location technique to map
artifacts from existing variants of a system that evolved over time to feature revisions [134].
The feature revision location technique is presented to facilitate the management of system
variability in space and time by the possibility of composing variants with feature revisions.
However, both approaches for mining and locating feature revisions do not present automated
support for propagating feature revisions in different releases of preprocessor-based SPLs in
VCSs.

In this work, we present an approach for propagating feature revisions from one release
to another, which can exist in different branches. Our goal is to ease the reuse of features
between releases that are evolving in space and time by an automated support for analyzing
and propagating feature revisions of preprocessor-based SPLs in VCSs. We evaluated our
approach in a large dataset. The results show that our approach can automate inspection of
#ifdefs in multiple files to find the affected files, patches of code, features, and interactions
between releases of a system, and propagate features in space and time.

In summary, we make the following contributions: (i) an approach for change analysis
and propagation at the feature level in preprocessor-based SPLs managed in VCSs; (ii) a
non-intrusive tool [5] that can be integrated in the existing development of preprocessor-
based SPLs in VCSs to support developers in propagating features in space and time; (iii)
a dataset containing information of the 3,134 features propagated in space and time [6] in
200 target releases from four real-world preprocessor-based SPLs for replications and future
work.

2 Motivation

SPL commonly evolves in space and time when features are introduced, deleted, and
revised, resulting in different releases of a system with a different set of features and some
features in common but with different implementations [127]. On top of that, the evolution
over time of preprocessor-based SPLs in VCSs is tracked for the whole platform at coarse
granularity [21, 104] and there are several studies acknowledging for the importance of
tracking implementation and changes of feature revisions [2, 71, 131,132,134].

Analyzing the evolution of features in real-world preprocessor-based SPLs in VCSs,
we found out that a feature revision existing in a specific release may be needed to be
propagated in releases where it does not exist. As an example, let’s use the Marlin SPL,
which is an open-source firmware for 3D printers. In a pull request from Marlin1 users were
claiming that the feature BLTouch V3.0 in release 2.0.x is not in 1.1.x, and thus nobody
buying a new BL-Touch, i.e., V3.0 would be able to use the release v1.1.9. In this pull
request, 114 files were changed within 3,208 lines added and 911 deleted involving around
1,100 preprocessor directives. An approach to automate the propagation, i.e., reuse of
the implementation of the BLTouch V3.0 feature revision to release v1.1.9 could ease this
propagation and give the users the freedom to buy the new version of BL-Touch to use in
their printers with release 1.1.x.

Another example of the utility of an automated approach for propagating feature revisions
can be seen in the SQLite preprocessor-based SPL, where a feature for testing purposes is
propagated over four releases2. This example shows that developers could also get benefit
of such approach for automatically propagating feature revisions for purposes of testing or
debugging the evolution of releases of an SPL. Having to manually analyze in which files
and lines of code a feature of a preprocessor-based SPL is implemented and considering
which features are interacting with it is a laborious, tough, and highly challenging task.

1https://github.com/MarlinFirmware/Marlin/pull/14839
2https://www.sqlite.org/src/info/7b4583f932ff0933
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Therefore, we aimed to propose an approach thinking in terms of feature revisions to ease
the reuse of feature (revision) implementation of preprocessor-based SPLs in VCSs. Next,
we present our automated support for feature revision propagation and change analysis.
The feature revision change analysis is a necessary preliminary step to feature revision
propagation for retrieving relevant information such as which files and lines of code and
feature interactions are affected in a release when propagating feature revisions to it.

3 Approach

Our approach comprises change analysis and propagation of feature revisions and is
illustrated in Figure 1. It enables the propagation of patches of code of a specific feature
revision between different releases. Before performing the feature revision change analysis
and propagation, our approach needs as input the set of features existing in each release, as
well as the features to be propagated between one release to another, and the snapshot of
each release. Our approach has an optional step (mining releases features), which is based
on the existing mining approach from Michelon et al. [132] for mining the set of feature
revisions existing in a release in case the developer/user does not know. The mining releases
features step retrieves for each conditional block of code, i.e., #ifdef, which feature(s)
belong to it. Following, the second and third steps are novel and the core of our approach.
The second step, feature revision change analysis, is necessary to know for each delta, i.e.,
differences in the source code between one release to another, which change belongs to
which feature revision(s) to be propagated. Then, the feature revision propagation step is
performed after knowing which files, patches, and feature interactions will be affected by
propagating a feature revision. The result of this step is then the snapshot of a destination
release containing the feature revision(s) propagated. We describe these steps in detail
next.

3.1 Mining Releases Features (Optional Step)

The mining approach presented by Michelon et al. [132], retrieves which features were
revised in which commits. For every patch of code that differs between a specific commit to
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Figure 1: Approach overview for change analysis and propagation of feature revisions.
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another, called by them as “changed block", the approach builds constraints including the
#ifdef and #define preprocessor directives responsible for activating the changed block.
A macro defined via a #define preprocessor directive that is wrapping a patch of code via
#ifdef, for example, cannot be considered a feature revision as it cannot be selected directly
by users. However, macros defined within the source code may influence in activating a
changed block. Thus, all macros (feature revisions or not) are taken into account to build
constraints influencing in activating a changed block. These constraints then are handed to
a constraint satisfaction problem (CSP) solver [158], which finds a solution that contains
which features must be selected in the corresponding SPL to activate a particular changed
block, including all features and their interactions. The solver is necessary to automatically
and reliably identify features interacting or depending on the execution of other features [19].
That is one of the reasons why we decided to build our approach for feature revision change
analysis and propagation based on Michelon et al. [132].

To better illustrate the need for a CSP solver, let us use a code snippet ad-
apted from LibSSH, as shown in Figure 2. There are four different macros
WITH_SERVER, MD5_DIGEST_LEN, __cplusplus and _LIBSSH_H. In this example, the
macro MD5_DIGEST_LEN cannot be selected by the user and is not a feature revision.
MD5_DIGEST_LEN is defined in a block of code corresponding to a conditional expression
of feature WITH_SERVER (Lines 1-4). This means, the macro MD5_DIGEST_LEN is defined
when the feature WITH_SERVER is selected by the user. To mine the feature revision(s) of
the patch of code in Line 8 of Figure 2, the following constraint is built and enable us to
know the feature interactions: (WITH_SERVER =⇒ MD5_DIGEST_LEN = 16) ∧ __cplusplus
∧ _LIBSSH_H ∧ (MD5_DIGEST_LEN > 5) ∧ BASE. The solution retrieved is then a configur-
ation able to execute the patch of code in line 8: WITH_SERVER = TRUE ∧ __cplusplus
= TRUE ∧ _LIBSSH_H = TRUE. The set of features responsible for activating the patch of
code in Line 8 are WITH_SERVER, __cplusplus and _LIBSSH_H. Now that the features and
interactions are obtained, the feature revised is computed according to the heuristic from
Michelon et al. [132]. A feature is revised if it already has blocks of code before the commit
changes and if its blocks of source code have been changed. The feature is deleted when
no blocks of code, i.e., conditional blocks involving the feature in #ifdefs exist anymore
after the commit changes. A feature is introduced when the commit changes contains at
least one conditional block involving the feature in #ifdefs. The heuristic takes all the
features retrieved in a configuration and assigns as the features revised the closest features
to the changed block, which are the ones directly impacted. In our illustrative example
the feature that is revised is the feature _LIBSSH_H, which interacts with WITH_SERVER and
__cplusplus.

3.2 Feature Revision Change Analysis

This analysis starts with the computation of the differences between two arbitrary releases’
commits, referred to as origin O and destination D. The commit O contains the snapshot

Figure 2: Code snippet adapted from LibSSH.
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of a point in time of the source code containing the feature revision to be propagated and D
contains the snapshot of a point in time where the feature revision with the implementation
of the commit O should be propagated. To compute the differences, firstly, the files of
the two commits O and D are obtained. Secondly, the approach identifies the changes
between the commits, which are the differences to be possibly propagated from O to D.
A file change FC corresponds to a file that can be either deleted, inserted, or modified.
Thirdly, the approach maps to a FC the numbers of the first and last lines removed or
added for each of the patches of code that differs between the commits O and D. Each FC
is described next:

DELETE. In this file change, a file existing in commit D does not exist in O. The reference
of this change type in FC contains the number 1 to represent the first line, and the total
number of lines of the deleted file (n) to represent the last line of the deleted file. Then,
FC receives the flag “DELETE”.

INSERT. In this file change, there is a file in commit O that does not exist in D. The
reference of this file change in FC contains the number 1 to represent the first line, and
the total number of lines of the inserted file (n) to represent the last line of the inserted file.
Then, FC receives the flag “INSERT”.

MODIFY. In this file change, a file existing in commit O also exists in D, but in a different
state. A modified file may be affected by many deltas. Thus, to assign the reference to each
of the deltas in FC, our approach uses the patches of code contained in the file’s deltas.
Delta is a way of storing or transmitting data in the form of differences between sequential
lines rather than complete files. For each delta, our approach obtains its type (REMOVE, ADD,
or CHANGE). Examples are presented in Figure 3. An ADD delta (Line 2-2 in O, Figure 3a)
contains lines added in O in comparison to D, referencing the line number of the beginning
and end of the lines added in the ADD delta. A REMOVE delta contains lines removed from O
to D, referencing the line number of the beginning and end of the removal (Line 2-2 in D,
Figure 3b).

Finally, a CHANGE delta (Figure 3c, Line 2-3 and Figure 3d, Line 2-4) contains lines
changed, consecutive removals and additions, from O to D. The file change thus contains
not only one, but two references. The first reference contains the beginning and end of the
addition delta lines (Lines 2-2 in O, Figure 3c, and Lines 2-3 in O, Figure 3d), while the
second reference contains the beginning and end of the removal delta lines (Lines 2-2 in D,
Figure 3c, and Lines 2-2 in D, Figure 3d).

Next, our approach gets the conditional blocks of code corresponding to added, removed,

(a) ADD delta. (b) REMOVE delta.

(c) CHANGE delta. (d) CHANGE delta.

Figure 3: Examples of delta types of a modified file (FC MODIFY) resulting in new revisions
of the feature WITH_SERVER.
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Figure 4: Examples of deltas resulting in one feature introduced (WITH_SSH1), one feature
revised (_LIBSSH_H) and one feature deleted (__cplusplus).

and changed deltas respective to the feature(s) to be propagated. Thus, the output of the
feature revision change analysis contains the conditional blocks of code with deltas respective
to the feature(s) that can be propagated. For each delta, the feature revision change analysis
also describes the feature interactions and the features that might be affected, i.e., nested
features in conditional blocks of code, which is very important [96,110,160] and part of our
novel approach. A feature interaction refers to all the features that are in the set of revised
features of a conditional block of code, i.e., the features of the configuration necessary to
activate the block of code related to the changes. For instance, using our running example
presented in Figure 2, we presented three deltas modifying the code snippet adapted from
LibSSH in Figure 4: The first delta (Line 1, Figure 4) is a CHANGE delta, where Line 1 in
D is removed, which contains a conditional expression (#if WITH_SERVER) and a new line
added (Line 1 in O, Figure 4) to substitute the conditional expression by another (#if
WITH_SERVER && WITH_SSH1). The feature revision change analysis now is in charge of
finding which features were introduced, revised, and deleted. For this delta (Line 1 removed
in D and Line 1 added in O, Figure 4), one feature was introduced, because after this
change, the conditional block of code in Lines 1-4, Figure 2 has a new feature WITH_SSH1
(assuming our system has only the features presented in Figure 2). The feature WITH_SERVER
interacts with the feature WITH_SSH1 for the changes regarding the conditional block of
code in Lines 1-4, Figure 2. Thus, before propagating the implementation of the feature
WITH_SSH1, the feature revision change analysis provides delta(s) of inserted, deleted, or
modified files, lines added and/or removed, the features that were revised, introduced, and
deleted, as well as feature interactions.

The REMOVE deltas in Line 6 and 10 in D (Figure 4) are deltas resulting in deleting the
feature __cplusplus. In this example, propagating the deletion of the feature __cplusplus
from the system has interaction with the code of the core of the system (BASE) and the
feature _LIBSSH_H might be impacted, as it is nested with the conditional block of code
respective to the REMOVE deltas in Line 6 and 10 in D. The ADD delta in Line 8 in O resulted
in a revision of the feature _LIBSSH_H. If the feature deletion is propagated, this also means
that the feature _LIBSSH_H does not depend anymore on the feature __cplusplus, but still
interacts with WITH_SERVER because WITH_SERVER defines MD5_DIGEST_LEN.

3.3 Feature Revision Propagation

The feature revision propagation is based on the selection of deltas obtained in the Feature
Revision Change Analysis. Our approach analyzes if the selected deltas are related to
inserted, deleted, and modified files. Then, it uses the files from the respective snapshots of
two releases (O and D), and a directory path to check out the files of D containing the
implementation updated with feature revision(s) propagated.
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To propagate a feature revision considering differences between O and D, our approach
gets the files from the Git repository of O and D releases’ snapshot. Propagating a feature
revision implementation for an inserted file means copying the file from commit O to the
resulting directory, as the file does not yet exist in commit D. Then, all files are copied from
D to the resulting directory excluding the deleted and modified files of D. For modified
files, the approach obtains the file from O as well as from D. Then, it creates a modified
file line by line, using a counter starting from zero and ending with the same number of
lines of the file of D. Before writing a line, our approach checks whether the line is in a
position of a delta, where the line must be removed or a new line must be added. In case
of a removed line, the approach does not add the respective line. In case of an added line,
the approach adds the respective line from O to D before continuing with the next lines
of the file of D. When more lines are added in sequence, then all lines are added before
continuing with the next lines of the file of D.

To illustrate the feature revision propagation of a modified file, we will continue with
our running example presented in Figure 2. To make it easier to understand we use the
conditional block of code of feature revision WITH_SERVER (Lines 1-4, Figure 2). Figure 3
shows possible delta types in FC MODIFY: Figure 3a contains an ADD delta; Figure 3b
contains a REMOVE delta; and Figures 3c and 3d contain a CHANGE delta, where a CHANGE
delta can be one line/a sequence of lines removed followed by one line/a sequence of lines
added (Figure 3c). A CHANGE delta can be either one line or a sequence of lines added
followed by one or a sequence of lines removed (Figure 3d).

The ADD delta contains one reference with one line added (Line 2 in O, Figure 3a) before
Line 2 in D, i.e., from the previous revision of the feature WITH_SERVER (Figure 2). To
propagate a feature revision from the O snapshot to D snapshot, our approach retrieves
each delta for each file containing a feature revision. For the example of an ADD delta, the
approach adds the lines of the added lines reference in O, beginning in the line number of
the corresponding file in D where the delta begins. For example, the lines in Figure 2 are
copied to the new version of the D file until there is a line number corresponding to the
ADD delta in Figure 3a. As there is no line removed, the next lines existing in D are copied
right after the line added. As shown in Figure 2, in D the line number 2 was “<code>"
and now this line is in the third line of the file in D because a new line has been added in
the second line number of the D file. The REMOVE delta contains one reference with one
line removed (Line 2 in D, Figure 3b), which was the Line 2 of previous revision of the
feature WITH_SERVER (Figure 2). For the REMOVE delta, the same procedure happens as for
the ADD delta. However, the REMOVE delta has a reference for removing the content of the
line number 2 existing in D, and thus the line number 2 will have the content of the line
number 3 in Figure 2.

The CHANGE delta contains two references: in the CHANGE delta of Figure 3c, the first
reference contains line number where addition begins and where it ends (Line 2-2 added in
O), and the second reference contains line numbers where removal begins and where it ends
(Line 2-2 removed in D). In the example in Figure 3c, the line number 1 does not change
in D, and the second line is removed. Then the line number 2 in O is copied to the line
number 2 in D. The second CHANGE delta presented in Figure 3d) differs from the former
CHANGE delta because it starts with a sequence of lines added and then a line is removed
between O and D. The second CHANGE delta contains in its first reference Lines 2-3 (added
in O). Its second reference contains the beginning and end of line(s) removed (Line 2-2
in O). Therefore, the line number 1 does not change in D, and the second line in D is
substituted by the second line in O. Then, instead of copying the next line existing in D
(Line 3 in Figure 2), it is necessary to first add all the lines existing in the sequence of lines
added before continuing writing the next lines of the file in D. Note that file D will now
have the content of Lines 3 and 4 in Lines 4 and 5 after the propagation of the CHANGE
delta in Figure 3d.
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4 Evaluation

This section presents the research question (RQ), the subject systems, the methodology, and
the metrics used to evaluate our approach. The evaluation is based on propagating features
in space and time from one release to any another arbitrary release, which can be from a
newer release to an older release and vice versa, in four open-source preprocessor-based
SPLs.

With the goal of evaluating our approach to automate the reuse of different features
implementation involving evolution in space and time in releases of a preprocessor-based
SPL, our study was guided by the following RQ:
RQ. How effective is the proposed approach to propagate features and feature revisions in
preprocessor-based SPLs in VCSs? Our goal is to check the correct behaviour and runtime
performance of our approach for feature revision change analysis and propagation. We check
whether our approach propagates the implementation of different revisions of a feature
existing in two releases. In addition, we check whether our approach introduces new features
and removes features not in common between two releases in preprocessor-based SPLs in
Git VCS. Further, we measure propagation characteristics to estimate how much effort our
approach automates in terms of analysis and propagation of conditional blocks, files, and
features when propagating an entire feature revision implementation. We are aware that
our approach does not avoid further developer intervention but it can automate part of
this laborious task of reusing parts of a feature implementation between two releases.

4.1 Subject Systems

Our study relies on four open-source preprocessor-based SPLs managed in VCSs (Table 1).
We reduced bias by choosing different application domains. Furthermore, each system
has a considerable history of development and use in research [57, 64, 96, 118, 127, 191].
The systems comprise ≈40,000-174,000 lines of source code, ≈5,000-20,000 Git commits,
and ≈15-22 years of development. A criterion for including these subject systems is that
they were subjects in related work of feature evolution in space and time with dataset
available [127]. Based on the dataset available, we thus know which features exist in one
release that do not exist in any another arbitrary release. Therefore, this information helped
us to check our approach’s correct behaviour for propagating the implementation of feature
revisions in preprocessor-based SPLs in VCSs.

4.2 Methodology

Figure 5 illustrates how we conducted the evaluation of our approach for propagating feature
revisions. For each subject system, we cloned their Git repository. After, to avoid bias
we randomly chose 200 different pairs of releases to be destination and origin targets. We
also carefully analyzed the possible random combination of releases to obtain a significant
number of commits between the releases, which should have considerable changes and thus
different feature revisions. As the total number of possible pair combinations is huge and
unfeasible to compute, we determined the same number of combinations for all systems,

Table 1: Subject systems and their characteristics.

System Domain Releases Since Commits LOC Features
LibSSH Network library 48 2005 5,022 110,590 121
SQLite Database system 113 2000 20,090 173,714 384
Irssi Chat client 69 2007 5,331 85,325 57
Bison Parser 105 2002 6,991 39,904 83
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Figure 5: Evaluation methodology of our approach for feature revision propagation.

taking into account that it should not take more than 48 hours for computing all the
propagations between the random pairs of releases.

For each destination and origin release, our approach copies their snapshot files (Step 1).
The snapshot’s files together with the set of features of each release and the features and
feature revisions to be propagated are used as input for Step 2. The releases’ features,
as mentioned before, are available in the dataset published by related work [123]. The
feature(s) revision(s) to be propagated are all the features existing in the origin release that
not exist in the destination release. This means that features existing in both releases but
with different implementations are the feature revisions to be propagated. The features
existing in the origin release but not in the destination release are the features to be
introduced in the destination release. Lastly, the features existing in destination release
that do not exist in origin release are the features to be removed in destination release.

For each feature to be propagated, there is an output from Step 2, which contains
propagation characteristics (Section 4.3). The files and lines affected per feature revision
to be propagated are now used as input for Step 3. In Step 3, each feature revision is
incrementally propagated, and the output of this step is the destination snapshot updated
with the feature revisions propagated. The goal of propagating all the features from
origin to destination is to be able to evaluate the correct behaviour for propagating the
implementation of feature revisions. Therefore, after propagating all features from origin
to destination we get an updated snapshot of the destination release. If our approach
performed the feature revision change analysis and propagation correctly, the updated
destination snapshot must be equal to or very similar to the content of origin snapshot. We
also get the runtime computation of Step 3, as well as further propagation characteristics
for each pair of release (Section 4.3).

Following, Step 4 consists of a line-wise comparison of files affected between the origin
and destination releases with the feature revisions propagated. When there is a line or a
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sequence of lines that is not supposed to be in the destination file using the corresponding
origin file as baseline, this will result in false positive(s). False negative(s) occurs when a
line or a sequence of lines is missing in the destination file using the corresponding origin file
as baseline. Then, the false negatives (lines missing) and the false positives (lines surplus)
are used as input for the last step (Step 5), which computes the remaining metrics used to
answer our RQ.

4.3 Metrics

We evaluated our approach by analyzing propagation characteristics, checking the correct
behaviour, and computing runtime.

Propagation characteristics. The propagation characteristics were measured by the number
of features (features revised, introduced and deleted), files, patches and lines affected.
Further, propagation characteristics include for each feature (revision) propagated the
differences between destination and origin releases. The differences include which files are
modified, deleted and inserted, as well as the patches of code. For each feature revision, we
also compute the total number of conditional blocks of code, i.e., #ifdefs that has a delta
between the pair of releases. For each delta, i.e., patch of code added, changed or removed
inside a conditional block of code of a feature, there might be feature interactions, which
are also computed and retrieved in the output of this step. The total number of conditional
blocks of code and feature interactions are part of the output (propagation characteristics)
and are used to quantify the change characteristics complexity (cf. [127]).

In order to check whether a system implementation includes a complex usage of #ifdefs
Queiroz et al. [160] proposed thresholds to the use of feature annotations. There is a
threshold for the number of conditional blocks of code of a feature, where, at least, 85%
of the features of a system should have a number of #ifdefs ≤ 6, and as assumed by
Michelon et al. [127], should be spread in ≤ 6 files. Another threshold presented by Queiroz
et al [160], is that at least 80% of the features of a system should interact with one feature
besides the core of a system. In order to estimate the complexity and effort to perform
manual feature revision change analysis and propagation, we set up these thresholds as
limits in relation to deltas of a feature (revision) between two releases.

The propagation characteristics metrics can be used to interpret, for example, why
different pair of releases can take longer to perform feature revision change analysis and
propagation by our approach, and also quantify how much manual effort would be necessary
without our tooling support. These metrics are used in this work as a way to quantify how
challenging can be to manually analyze source code differences regarding conditional blocks
of code and propagating the source code among multiple files taking into account feature
interactions using our dataset as baseline.

Correct behaviour. For checking the correct behaviour of our approach we computed
precision (Equation B.1), recall (Equation B.2), and F1-score (Equation B.3) metrics [190],
where the true positives (TP) are the lines of source code from the destination release
updated with the propagations that match with the origin release. The false positives (FP)
are the lines of source code that are surplus in matched patches of code between destination
release updated with the propagations and origin release. The false negatives (FN) are the
lines of source code that are missing in the matched patches of code between destination
release updated with the propagations and origin release.

Precision =
TP

TP + FP
(B.1)

Recall =
TP

TP + FN
(B.2)
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F1− score = 2 ∗ Precision ∗Recall

Precision+Recall
(B.3)

Runtime. We measured the runtime performance in seconds for completing the feature
revision change analysis and feature revision propagation. To run the experiments, we used
a laptop with an Intel® Core™ i7-8650U processor (1.9GHz, 4 cores), 16GB of RAM, and
Windows 10.

5 Results

Propagation Characteristics. Table 2 shows the percentage of features containing more
than six conditional blocks and files of source code affected, and more than two features
interacting with a feature propagated from one release to another. According to Queiroz
et al.’s [160] threshold of complexity implementation, we can see in Table 2 that 18% and
20% of the feature revisions propagated in LibSSH and Bison, respectively had patches of
code propagated in more than 6 conditional blocks of code. This exceeds the limit of at
most 15% of Nr. #ifdefs ≥ 6. Regarding feature interactions in the patches affected when
propagating features, all systems presented more than 20% of feature revisions propagated
with more than two feature interactions. These metrics allow us to conclude that for most of
the feature revisions, a great effort and time would be required from engineers to manually
perform feature revision change analysis and propagation without our tooling support.

Table 3 shows the total (T ), mean (µ), median (η), and standard deviation (σ) for the
number of feature revisions propagated over all random pairs of releases for each subject
system. We can see that most of the releases contain changes to existing features of a
system, and thus the number of features introduced and deleted (evolution in space) is
lower than the number of features revised (evolution over time). In relation to the total
number of features propagated, 87.7% were features revised, 11.3% features introduced and
1.0% removed. Therefore, 12.3% of the feature revisions propagated represented evolution
in space, and 87.7% represented evolution over time affecting a total of 237,854 patches of
code and 14,244 files.

Table 2: Number of conditional blocks, files and features affected per feature propagated.

System Nr. #ifdefs ≥ 6 Nr. files ≥ 6 Nr. feature interacting ≥ 2
LibSSH 18% 10% 29%
SQLite 9% 5% 37%
Irssi 10% 3% 26%
Bison 20% 7% 68%

Table 3: Total, mean, median and standard deviation of propagation characteristics for
each subject system.

LibSSH SQLite Irssi Bison
T µ η σ T µ η σ T µ η σ T µ η σ

FP 672.0 13.4 12.0 6.3 1,367.0 27.3 21.5 28.4 278.0 5.6 5.0 3.3 817.0 16.3 15.5 9.5
FR 620.0 12.4 11.0 6.3 1,175.0 23.5 20.5 16.4 210.0 4.2 4.4 3.1 742.0 14.8 14.0 9.0
FI 52.0 1.1 1.0 0.3 166.0 3.3 1.0 12.8 64.0 1.3 1.0 1.4 72.0 1.4 1.0 3.1
FD 0.0 0.0 0.0 0.0 26.0 0.5 0.0 3.0 4.0 0.1 0.0 0.6 3.0 0.1 0.0 0.4
P 29,783.0 595.7 375.5 524.7 73,197.0 1,463.9 1,065.0 1,637.7 55,897.0 1,117.9 861.5 915.9 78,977.0 1,579.5 1,610.5 650.3
F 2,131.0 42.6 36.0 21.8 3,702.0 74.1 73.0 22.9 5,351.0 107.0 122.0 78.5 3,060.0 61.2 62.5 23.6

FP: features propagated; FR: features revised; FI: features introduced; FD: features deleted; P: patches of
code; F: files of source code; T : total; µ: mean; η: median; σ: standard deviation.
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Figure 6 shows additional information to Table 3, where we can see propagation charac-
teristics for each pair of releases. For instance, for a pair of releases of SQLite, 199 feature
revisions were automatically analyzed and propagated in 172 source code files resulting in
11,454 patches of code. The highest number of features propagated and files of source code
affected by propagation was in SQLite mainly because it is the biggest system in terms
of lines of code, files, features and Git commits (Table 1). However, although the highest
number of feature revisions were propagated in SQLite, the highest number of patches of
code was propagated in Bison, with on average 1,579.5 patches of code to propagate around
16 feature revisions per random pair of releases. While Irssi had the smallest number of
feature revisions propagated, it had the highest number of files of source code affected by
the propagations.

In summary, the random pairs of releases contain evolution in both space and time.
The quantitative metrics to characterize our feature revisions propagation show that the
systems have a high number of feature interactions to be analyzed when propagating feature

Figure 6: Number of patches of code, features revised, features propagated including
features introduced and removed, number of files, lines added and removed for all features
propagated between one release to any arbitrary one.

67



Paper B. Propagating Feature Revisions in Preprocessor-based Software Product Lines

revisions. The systems had a high number of files and patches of code to analyze per
random pair of releases, for example, Irssi had on average 19 files affected per feature
revision propagated and SQLite had up to 11,454 patches of code to be propagated between
two releases. We conjecture that manually analyzing the differences between two releases
and finding out feature interactions, files, and patches of code for propagating a specific
feature revision is highly complex and error prone. Thus, retrieving information similar to
Git VCS but at the feature level to find which files and lines of source code are differing
can facilitate the propagation of feature revisions and ease the reuse of feature revisions
implementation.

Correct behaviour. Regarding the correct behaviour of our approach, we could propagate
feature revisions for each target system with 99% precision, recall, and f1-score, on average,
considering the 50 random pairs of releases for each system. Table 4 shows the total number
of lines surplus and missing in relation to the total propagated, i.e., not considering the files
of source code where no patches were propagated. We investigated why our approach did
not reach 100% for the feature revision propagation. The reason is that multiple cases of
"dead code" were encountered in the source code files. A dead code is a conditional block of
code (#ifdefs) that is never included under the precondition enclosing it, which means the
block is unselectable and cannot be activated under any configuration option [79]. Thus, if
a presence condition of a conditional block is unsatisfiable and no solution is found by the
CSP solver, it is a dead code and cannot be linked to any feature revision. Therefore, we
found dead codes in some pairs of releases in our experiment during the feature revision
change analysis.

Finding dead code is an important issue because it allows detecting defects and bugs in
some parts of a system implementation without considering the implementation at large [81].
Dead codes are commonly encountered in preprocessor-based SPLs, for example, the Linux
kernel [187]. There exist many dead variable analyses for identifying dead conditional blocks
of code [81,140,187,188]. However, although this is not the focus of this work we present
some examples of dead codes to explain why our approach could not reach 100% precision
and recall. For instance, in release GNU_1_27, commit hash e7ae9cf of Bison system, the file
reader.c contains a conditional block of code with conditional expression #if 0. This is
often used for commenting out/removing temporarily part of the source code that should
not be compiled and potentially will be turned back on later. Another dead code in release
GNU_1_27 was found in file getopt1.c, in a conditional block with #if !defined _LIBC &&
defined __GLIBC__ && __GLIBC__ >= 2 as conditional expression that is never satisfied.

In conclusion, our approach is effective for propagating feature revisions given that the
surplus and missing lines were very few in relation to the total retrieved. Further, it
retrieved existing dead codes that may help to find bugs and refactor the SPL.

Runtime. On average, the runtime performance for each feature revision change analysis
and propagation per system is presented in Figure 7. The system that took the longest
time on average for one feature revision change analysis and propagation was Irssi with 851
seconds. The runtime of feature revision change analysis and propagation varies with the

Table 4: Total number of lines surplus and missing in relation to the total propagated for
all random pairs of release.

System Total Surplus Missing
LibSSH 1,640,846 62 1,128
SQLite 7,037,363 1,270 11,488
Irssi 2,446,339 231 2,118
Bison 1,340,663 3,824 11,017
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Figure 7: Average Runtime performance in seconds per feature revision change analysis
and propagation for each random pair of releases.

number of feature interactions, patches, files, and lines of code involving conditional blocks
of code of a feature that differ between two releases, which explains the outliers we observed
in all systems. Figure 6 better illustrates the relation of the total number of patches of
code, features revised, propagated, files of source code, and lines added and removed to
the runtime analysis and propagation. For instance, the pair of releases denominated
as "49" from SQLite is clearly the one that took the most time for the feature revision
change analysis in comparison to all pairs of releases we considered for the feature revisions
propagation. This is because the "49" pair of releases is also the pair with the greatest
number of patches, lines of source code added and removed, and features propagated.

In summary, the runtime performance increases with the number of feature interactions
and patches of code differing between two releases of a feature revision. By the results, we
conclude that our automated approach for reusing feature revision implementation would
not delay the SPL development. Instead, it can speed up the process of feature revision
change analysis and propagation by retrieving the patches of code differing between source
code files of two releases as well as the feature interactions.

Answering our RQ. How effective is the proposed approach to propagate features and
feature revisions in preprocessor-based SPLs in VCSs? Our approach was able to propagate
3,134 feature revisions with 99% of precision, recall, and f1-score on 200 random pairs of
releases of four real-world preprocessor-based SPLs involving evolution in space and time.
Although our approach did not reach 100% precision and recall, the propagation behaved as
intended if excluding dead codes. The runtime performance was, on average, considering the
four target systems ≈63 and 0.2 seconds per feature for feature revision change analysis and
propagation, respectively. We also presented that most of the feature revisions propagated
were interacting with more than two features, and involving changes in multiple files, and
conditional blocks of code. We thus estimate that manually feature revision change analysis
and propagation would take a considerable effort and time, while our approach can automate
these tasks. We are aware that our approach does not completely substitute developer
intervention and as with any other common tasks of reuse, refactoring, and bug fixes, it
may require further code adaptations, and tests might be run to verify that the system will
behave as intended.
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6 Threats to Validity

Internal Validity. We propagated feature revisions over 200 random pairs of releases to
evaluate our approach, which can be a bias. However, we carefully analyzed the random
combination of releases if at least one feature revision was propagated besides the core
of the system, and that there was no pair of releases where the origin was released right
after the destination. Thus, we also computed the number of features introduced, deleted,
and revised, as well as files and patches of code affected which should have considerable
deltas and thus challenging feature revisions propagation. Further, we are proposing a novel
approach to propagate feature revisions and there is currently no automated mechanism to
retrieve such data. Therefore, we had to validate our approach through testing and code
reviews. After propagating feature revisions to a release, the SPL might contain bugs and
tests have to be applied. Anyway, this is already necessary for the conventional development
and evolution of software systems. Moreover, as there is no way to completely substitute
tests and code review, methods and tools will be necessary to assist them. The source
code [5] and data [6] are made available, and we encourage researchers to replicate our
study and improve our approach for feature revision propagation.

External Validity. The selected systems can be a source of bias. However, we do not
attempt to generalize the scenarios but to use them as an experience report from real-world
systems to confirm the practical needs and validate our approach. Further, we included
these systems as they were recently investigated in a close related work on feature evolution
in space and time [127], containing information useful for a preliminary analysis of how much
features have been evolved over time. Nonetheless, the subject systems encompass diverse
domains and sizes and have been used also in other studies [57,64,96,118,132,134,191].
Further, the systems we used are available and open-source C preprocessor-based SPLs
in VCSs. These SPLs have a considerable time of development and history of commits
involving evolution in space and time.

Construct Validity. Our experiments rely on evaluation metrics that may affect the
construct validity of the results. We use metrics to characterize the feature revisions
propagated, however, most of them have already been used in prior study [127]. Another
potential threat pertains to the metrics we used in order to assess the correct behaviour of
our approach to propagate feature revisions. Precision and recall [190] have been widely
used to assess whether the information retrieved of existing approaches to locate source
code to feature(s) (revisions) is correct [34,116,134]. However, in our study, the calculation
of precision and recall depends on our definition of true positives, false positives, and
false negatives. To be able to check whether the implementation of a feature revision was
successfully propagated, we considered as false positives and false negatives lines surplus or
missing, respectively to correct sequences of lines matching between a pair of releases.

7 Related Work

Some tools were designed to support easier comprehension of annotation-based systems by
hiding annotations [15] and/or using colors for visualization of features in the source code,
such as C-CLR [181], FeatureCommander [49], variation editor [94], PEoPL IDE [136] and
CIDE [77]. Although these tools can be used for better comprehension of annotated SPLs,
they do not analyze changes in commits and relate them to the evolution in space and
time. CheckConfigMX [27] is a tool for change-aware per-file analysis of annotated systems
with preprocessor directives to reduce compilation effort. However, this tool is intended to
compile only configurations impacted by one code change and the change analysis does not
consider the feature level as ours.

Dintzner et al. [38] and Passos et al. [150] presented tools for mining information of
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feature-evolution in a variability model, build system and source code. A Web tool called
FeatureCloud [37] was presented to mine and visualize changes in #ifdef blocks of systems
in Git repositories. Another related work about an empirical analysis of feature-evolution
was presented by Michelon et al. [127], mentioning the challenge of dealing with changes
in Git commits on preprocessor-based SPLs affecting multiple variants source code. That
is why we reuse part of their approach to build up our approach. The main difference
between our approach and the previous ones is that we enriched Michelon et al.’s [127]
approach with a feature revision change analysis and propagation between releases. Our
approach intents to support evolution in space and time of preprocessor-based SPLs at
the feature level, as it is a challenge and of paramount relevance for open-source and
industry systems using the C/C++ preprocessor directives for implementing variable and
configurable systems [21,71,74,127,134].

Regarding propagation, there is related work of change propagation presented in [135],
which presents a browser extension for GitHub synchronizing Java artifacts versions in
different products forked from a core repository of a Feature-oriented SPL. There is related
work in the context of propagation of patches of code proposing approaches for patch
transplantation [178] and backporting [177]. Although these approaches can automatically
transfer patches between different versions of preprocessor-based systems, they do not relate
patches of code to features. In other words, they do not take into account the features
annotated in the source code and do not focus on reusing feature (revision) but rather
on automated program repair by reusing and adapting a patch that is already available.
Therefore, our approach focuses on a different perspective of propagation by an automated
support for change analysis and propagation of an entire feature (revision) implementation.
The feature (revision) in our context must be implemented within conditional blocks
(#ifdefs) in the source code to ease the software reuse and enable its selection by developers
or users.

Gupta et al. [63] proposed an impact analysis approach allocating tokens to the changes
between two versions of a system for estimating the impact of changes in the code in a
semantic way. Some studies focus on the impact analysis techniques based on dependency
analysis [93], analyzing the change in semantic dependencies between program entities. For
instance, Zhang et al. [194] presented a change analysis for systems developed with another
language than C/C++, for AspectJ programs based on AspectJ call graph construction.
Also, for change impact analysis of Java systems, Chianti [165] is a tool implemented in the
Eclipse environment, which uses tests execution to infer modification of the behavior of
a system. Yet, compared to previous work [83] we see that they used a different change
analysis of SPL evolution in Git VCS and their analysis counts the number of modified
lines containing variability in code, build and model artifacts. Their approach does not
focus on the lines modified per feature, and the feature interactions of a delta between
releases, as our approach does.

Variation control systems have been proposed to support the evolution of preprocessor-
based SPLs or a family of systems that arise from opportunistic reuse by copying, pasting,
and modifying without adopting any variability mechanism. For instance, Michelon et
al. [134] presented the ECCO variation control system as a tool support for tracking features
at multiple points in time to artifacts. However, these systems have not become popular
and adopted in practice, mainly, because these systems are not mature enough with limited
experiences and lack of support for collaborative and distributed development [104,184].
Further, variation control systems have their own repository and unfamiliar operations [104].
Preprocessor-based SPLs in VCSs, on the other hand, are more popular and convenient
tools to deal with evolution in space and time, even though they can result in a system
with a high number of feature revisions and variants. In this context, we believe our
approach is a promising automated support for reusing features implementation. The
main difference between our work and earlier research is that we present an approach for
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feature revision change analysis of deltas from two arbitrary releases associated to a specific
feature or a set of features and an automated implementation reuse at the feature level in
preprocessor-based SPLs.

8 Conclusion and Future Work

We proposed a novel feature revision propagation approach to automatically and efficiently
reuse different implementations of features in preprocessor-based SPLs from one release
to any arbitrary one. The approach is implemented in a non-intrusive tool, which can
automate manual and time-consuming propagation of features to propagate functionalities
or new user’s requirements.

Our approach provides (i) a feature revision change analysis between an origin and
destination release used to propagate feature revisions, as for example which files and lines
were modified/introduced/deleted and which features were introduced/deleted/revised and
affected by features interactions when propagating a specific feature revision in space or
time, and (ii) feature revision propagation advancing in the reuse of evolution in space and
time merging the necessary patches of code differing between origin and destination release
that affect a specific feature revision to be propagated. By conducting an experiment we
evaluated our approach performance, showing that it reaches 99% precision and recall,
taking on average for the four target systems ≈63 and 0.2 for performing each feature
revision change analysis and propagation, respectively. Further, we also evaluated how
much effort our approach can automate by showing some propagation characteristics, such
as the number of conditional blocks of code, feature interactions, patches, and files of source
code that were automatically analyzed and modified.

For future work, we intend to conduct studies to evaluate the usability of our tool
to support developers and engineers. We believe that next future work can be directed
toward extending our approach with semantic impact analysis and making our approach
available as a browser extension for GitHub. We also plan for future work, an automated
recommendation to update features of existing releases when a new version of the system is
released to ease decision-making for propagation of feature revisions.
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Abstract Software companies encounter variability in space as variants of software systems
need to be produced for different customers. At the same time, companies need to handle
evolution in time because the customized variants need to be revised and kept up-to-date.
This leads to a predicament in practice with many system variants significantly diverging
from each other. Maintaining these variants consistently is difficult, as they diverge across
space, i.e., different feature combinations, and over time, i.e., revisions of features. This
work presents an automated feature revision location technique that traces feature revisions
to their implementation. To assess the correctness of our technique, we used variants and
revisions from three open source highly configurable software systems. In particular, we
compared the original artifacts of the variants with the composed artifacts that were located
by our technique. The results show that our technique can properly trace feature revisions
to their implementation, reaching traces with 100% precision and 98% recall on average
for the three analyzed subject systems, taking on average around 50 seconds for locating
feature revisions per variant used as input.
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1 Introduction

The development of large-scale software systems relies on Version Control Systems (VCSs),
which offer sophisticated tool support for implementing, maintaining and evolving pro-
jects [85]. VCSs are essential for tracking the evolution of software systems over time.
However, in addition to evolutionary changes, i.e., revisions, software systems are also sub-
ject to re-configuration as different combinations of features are relevant to different users.
Such systems are known as Software Product Lines (SPLs), which are families of software
products that share a common platform and can be distinguished by a set of features [154].
SPLs are typically realized as Highly-Configurable Software Systems (HCSSs), which use
preprocessor directives, e.g., #IFDEFs; load-time parameters and conditional execution,
e.g., simple IFs; or build systems to generate different product variants [137]. HCSSs aim
to satisfy the requirements of different customers and environmental restrictions such as
different hardware devices [192]. HCSSs need support to evolve over time, e.g., when fixing
bugs or extending existing features, but also to evolve in space, e.g., when adding new
features or configuration options. However, it has been shown that existing VCSs do not
provide adequate support regarding the evolution in space [21,99,105].

Research in the field of HCSSs focuses mainly on solving problems related to the evolution
in space. For instance, approaches for re-engineering legacy systems into SPLs typically
consider that variants diverge only in terms of the different features they implement [12].
Unfortunately, this assumption rarely holds in practice as variants diverge both in space
(different feature combinations) and time (different revisions of features) [71]. Assume an
engineer aims to create a variant that uses older revisions of specific features. To avoid
analyzing large portions of the project history the engineer needs to remember the exact
point in time when the variant existed containing exactly these features in the exact revision.
Despite the tools provided by the VCSs, this still remains a manual activity. In this context,
techniques supporting such re-engineering and mining tasks are required.

Feature location techniques map system artifacts to features. These techniques support
the understanding, maintenance, and evolution of features [12]. However, while existing
feature location techniques primarily address variability in space [40, 166], they are not
as useful when features evolved over time, leading to divergent implementations [21]. To
overcome this limitation, this work presents an automated technique to trace feature
revisions to their implementation in variants that evolved independently of each other. Our
technique considers possible combinations of features and all revisions made over time.

The contributions of this work are: (i) a technique for locating feature revisions in a set
of variants; (ii) an analysis of feature evolution over time in three preprocessor-based SPLs;
and (iii) a replication package1 containing the used data set, the implementation for mining
ground truth variants, and the implementation of the feature revision location technique.

2 Motivation

To motivate the need of locating feature revisions, we rely on the feature HAVE_SSH1 of
LibSSH2. HAVE_SSH1 was introduced in Commit c65f56ae3, comprising five source code files
and approximately 600 lines of source code. Analyzing the history of this feature, we can
observe that it has eight revisions. In some commits, only small changes over time were
observed, as, for example, in Commit d40f16d44, where the developers modified eight files,
removing two source code files of HAVE_SSH1. On the other hand, in Commit f23685f95, in

1https://github.com/jku-isse/SPLC2020-FeatureRevisionLocation
2Analysis based on the first 50 commits of LibSSH: gitlab.com/libssh/libssh-mirror
3gitlab.com/libssh/libssh-mirror/-/commit/c65f56aefa50a2e2a78a0e45564526ecc921d74f
4gitlab.com/libssh/libssh-mirror/-/commit/d40f16d48ec1ed9670c20ffaad1005c59a689484
5gitlab.com/libssh/libssh-mirror/-/commit/f23685f92b91aa53546a81bf7793c38a45df15d3
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Figure 1: Feature Revision Location Overview.

addition to HAVE_SSH1, another feature (DEBUG_CRYPTO) also changed over time, and two
new features (HAVE_PTY_H and HAVE_STDINT_H) were introduced, characterizing the system
evolution in space. Overall, the revisions of HAVE_SSH1 happened together with revisions of
13 other features, impacting 73 source code files. These changes were composed of 2627
additions and 1223 deletions of lines of code. Let us assume an engineer wants to recover
a version of HAVE_SSH1 at a specific point in time, for example, from Commit 5f7c84f96.
The engineer has to analyze 29 files, 1339 additions, and 188 deletions, which shows the
complexity of dealing with variable systems evolving over time. This problem increases
significantly if the system is not managed by a version control system and not already
implemented as a product line based on features as in the above example. In the worst
case, variants are maintained independently as clones without proper revision management.

A unified mechanism for managing system evolution in space and time at the level of
features would thus significantly ease the maintenance and evolution of system variants.
However, this is a challenging task as already pointed out in existing literature [21]. In this
context, we stress the need of managing system variants over time at the level of feature
revisions and to ease the management of features and their revisions. Therefore, we present
a feature revision location technique capable of mapping implementation artifacts to a
certain feature at a certain point in time.

3 Feature Revision Location

This section presents our automated feature revision location technique, which is the main
contribution of this work. We first give an overview and introduce basic data structures
as well as input (i.e., variants) and output (i.e., traces) of the feature revision location
technique. Then, we explain the trace computation in detail. Finally, we discuss the
implementation and optimizations of the technique.

3.1 Overview and Data Structures

Figure 1 shows an overview of our feature revision location technique. As input it receives
a set of variants, each consisting of a configuration, i.e., a set of feature revisions, and an
implementation. As output it computes a set of traces, each mapping a presence condition
to implementation artifact fragments.

Consequently, we assume the following to be known for every variant: (i) the implement-
ation; (ii) the set of features, i.e., the configuration; (iii) the revision of every feature. The
last assumption is difficult to satisfy in an extractive product line adoption scenario, where
clones have been maintained independently over a long period of time, as the necessary
information must be retrieved first. However, in a reactive product line engineering scenario,
where new variants are incorporated into the product line incrementally, this assumption
can be satisfied with reasonable effort. Furthermore, variation control systems [99, 105],

6gitlab.com/libssh/libssh-mirror/-/commit/5f7c84f900b81e3bbff55378f8170ddf150daf9c
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whose goal is to support the user when making changes to a product line, can satisfy the
assumption and even profit from our feature revision location technique.

We now describe the concepts and data structures of our technique in detail.

Variants (Input). The input is a set of variants V . A variant v ∈ V is a pair (F,A), where
F is a set of feature revisions and A is a set of implementation artifacts. As an example
consider a set of three variants V = {v1, v2, v3} shown in Table 1.

Table 1: Input Example: Set of Variants V = {v1, v2, v3}.

Variant vi Feature Revisions vi.F Artifacts vi.A

v1 {A1,B1,¬C} {a1, a2, a3}
v2 {A1,B2,¬C} {a1, a2, a4}
v3 {¬A,B2, C1} {a4, a5, a6, a7}

Features and Revisions. Every feature f exists in multiple revisions r, denoted as fr, where
f and r are arbitrary unique identifiers for the feature and the revision, respectively. Two
variants v1 and v2 with the same feature f have the same revision r of feature f , i.e., feature
revision fr, if the feature is implemented in the exact same way in both variants. Absent,
i.e., negated, features are not labeled with a revision. While the absence of a feature can
influence the implementation of a variant, it makes no sense to label negated features with
a specific revision. A feature is either present (in a specific revision) or simply absent. For
example, variant v1 in Table 1 has features A and B, each in revision 1. Variant v2 has the
same features, but feature B is implemented differently, e.g., a bug fix might have been
applied to feature B in variant v2 but not in v1, and thus gets another revision assigned.

Implementation Artifacts. A variant’s implementation consists of a set of artifacts that are
organized in a hierarchical tree structure which we refer to as artifact tree. An artifact
can represent a folder, a file, or any other element of a variant’s implementation. For
example, in the case of source code, an artifact could represent a class, a method, or a
single statement. We assume that any two artifacts a1, a2 can be compared for equivalence
(a1 ≡ a2), as follows: two artifacts a1, a2 ∈ A are equivalent (a1 ≡ a2) if a1 and a2 are
equal (a1 = a2) and their parent artifacts are equivalent , i.e., their position in the artifact
tree is the same.

Traces (Output). The goal of our feature revision location technique is to compute a presence
condition C for every artifact a. The output therefore is a set of traces T . A trace t ∈ T is
a pair (C,A) that maps a set of artifacts A to a presence condition C. Table 2 presents an
example solution of a set of six traces T = {t1, t2, t3, t4, t5, t6} that match the set of variants
V in Table 1. However, this is not a unique solution as alternative sets of traces exist that
also match the set of variants V . The three variants in V are not sufficient to determine a
unique set of traces. For example, the trace t1 could also have a more restrictive condition
A1 ∧¬C while trace t2 could also have a less restrictive condition A1. For the three variants
in set V this would make no difference. However, it would affect other variants that may
potentially be created in the future. The actual output of our feature revision location
technique shown in Table 3 therefore contains all clauses that satisfy the criterion for
inclusion (see Equation C.1), even if initially redundant. For example, the condition in t1
could be simplified to just A1. However, since the input variants were not sufficient to be
certain that the actual condition cannot be A1 ∧ ¬C it is still included in the condition.

3.2 Trace Computation

Based on the above data structures, we now explain how the traces and presence conditions
are computed.
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Table 2: Solution Example: Set of Traces T = {t1, t2, t3, t4, t5, t6}.

Trace ti Presence Condition ti.C Artifacts ti.A

t1 A1 {a1}
t2 A1 ∧ B1∨2 {a2}
t3 B1 {a3}
t4 B2 {a4}
t5 C1 {a5, a6}
t6 ¬A ∧ B1∨2 {a7}

Table 3: Output Example: Set of Traces T = {t1, t2, t3, t4}.

Trace ti Presence Condition ti.C Artifacts ti.A

t1 A1 ∨ (A1 ∧ ¬C) ∨ (A1 ∧ B1∨2) {a1, a2}
t2 B1 ∨ (B1 ∧ ¬C) ∨ (A1 ∧ B1) {a3}
t3 B2 {a4}
t4 C1 ∨ (¬A ∧ C1) ∨ (B2 ∧ C1) {a5, a6, a7}

Presence Conditions. We compute the presence condition C for every artifact a in the form
of a disjunctive normal form (DNF) formula, whose literals are features (actually a set of
feature revisions as we will show). A DNF formula is a disjunction of clauses, where a clause
is a conjunction of literals. We treat presence conditions as a set of such clauses. Every
clause can be considered as a feature interaction, i.e., a static interaction of the features
contained in the clause. This aligns with previous research in feature algebra [107], feature
location [102], or the analysis of variable systems [4,53]. We denote the set of all conjunctive
clauses that can be formed given a set of feature revisions v.F of variant v as clauses(v.F ).
For example, clauses({A1,B1,¬C}) = {A1,B1,A1 ∧ B1,A1 ∧ ¬C,B1 ∧ ¬C,A1 ∧ B1 ∧ ¬C}.
Whether a clause c is part of a presence condition C for an artifact a depends on some
fairly intuitive ideas that have already been proven to work very well for simple feature
location [129, 138]. In this work we build upon these ideas and extend them to feature
revisions. In the following, we first discuss the ideas based on features, ignoring revisions
for the time being.

Criterion for Inclusion of Clause in Condition. For a clause c to be contained in a presence
condition C of an artifact a, the artifact a must be contained in every variant v ∈ V that
contains the clause c (c ∈ clauses(v.F )) and there must be at least one variant in V that
contains clause c.

c ∈ C ⇔ (∀v ∈ V : c ∈ clauses(v.F ) =⇒ a ∈ v.A) ∧
(∃v ∈ V : c ∈ clauses(v.F ))

(C.1)

Criterion for Likely Clause. Our technique additionally provides a smaller and more specific
set of clauses C ′ that is a subset of C to which the artifacts are more likely tracing than to
others. This is based on our observation that, in practice, presence conditions with a logical
OR between features are much less likely to occur than ones with a logical AND [129].
Therefore, a clause c′ is contained in the set of likely clauses C ′ if all variants that have
clause c′ also have artifact a (inclusion criterion as above), and in addition, all variants
that have artifact a also have clause c′ (additional criterion).

c′ ∈ C ′ ⇔ (∀v ∈ V : c′ ∈ clauses(v.F ) ⇐⇒ a ∈ v.A) ∧
(∃v ∈ V : c′ ∈ clauses(v.F ))

(C.2)
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Algorithm 1 Trace Computation
1: function computeTraces(V )
2: C ←

⋃
v∈V clauses(v.F )

3: A←
⋃

v∈V clauses(v.A)
4: T ← {}
5: for each a ∈ A do
6: C ′ ← {}
7: for each c ∈ C do
8: if (∀v ∈ V : c ∈ clauses(v.F ) ⇐⇒ a ∈ v.A) then
9: C ′ ← C ′ ∪ {c}

10: end if
11: end for
12: if C ′ = {} then
13: for each c ∈ C do
14: if (∀v ∈ V : c ∈ clauses(v.F ) =⇒ a ∈ v.A) then
15: C ′ ← C ′ ∪ {c}
16: end if
17: end for
18: end if
19: t← (C ′, a)
20: T ← T ∪ {t}
21: end for
22: return T
23: end function

Adding Revisions. Extending the previous ideas to revisions is then straightforward. Only
one revision of a feature can be present in any given variant. In other words, if a feature
f is present in a variant v it is present in exactly one revision r. Therefore, the set of
revisions of a feature literal in a clause is the union of all revisions r of feature f that were
present when the artifact a was present. Literals in clauses of a presence condition now do
not refer to single features anymore, but to a set of feature revisions.

Steps for Trace Computation. Algorithm 1 shows the steps of the trace computation. It
receives as input a set of variants V . It then computes the sets of all clauses C (Line 2) and
all artifacts A (Line 3 in the input variants V . Subsequently, it computes for every artifact
a ∈ A (Line 5) a trace t with conditions C ′ and artifact a (Line 19) that is added to the set
of traces T (Line 20) that is returned (Line 22). The set of clauses C ′ receives all clauses
c ∈ C that satisfy the inclusion criterion of likely clauses in Equation C.2 (Lines 7-11).
If there are no such traces (Line 12) it receives all clauses c ∈ C that satisfy the regular
inclusion criterion in Equation C.1 (Lines 13-17).

3.3 Implementation and Optimizations

When applying the aforementioned concepts in practice, we perform the following optimiza-
tions:

Feature Interaction Limit. We limit the maximum size of clauses in presence conditions,
i.e., the number of feature literals in a conjunction, which corresponds to the number of
interacting features, to a threshold based on previous empirical research [51, 53]. This
provides a major improvement to the scalability of the approach, otherwise, i.e., without a
constant threshold, the number of clauses would grow exponentially with the number of
features. While the threshold can be freely configured, for the evaluation presented in this
paper it was set to at most three interacting features.
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Negated Feature Literals. We do not label negated feature literals with a revision. While
the absence of a feature can influence other features and thus have an effect on the
implementation of a variant [107], it makes no sense to have a clause containing only
negated features and to label negated features with a specific revision.

Artifact Clusters. We do not consider every artifact individually, but rather cluster artifacts,
i.e., group artifacts together, that never appeared without each other in any variant and
assign presence conditions to those clusters instead of every individual artifact. For example,
artifacts a1 and a2 in the set of variants V in Table 1 always appear together and never
without each other. We therefore group them instead of treating them individually, as
shown in Table 4.

Artifact Sequence Alignment. Our technique relies on the ability to compare any two
implementation artifacts for equivalence. In cases where two sibling artifacts a1 and a2
(i.e., artifacts with the same parent) are not unique, the order of the artifacts is important
when determining equivalence. This is the case, for instance, if the same statement appears
multiple times inside a method. In such cases an alignment of the artifact sequences must be
performed. We adapted a Longest Common Subsequence (LCS) algorithm [35] to perform
multi-sequence alignment for comparing more than two variants [51, 103], e.g., if they have
the same method whose statements must be aligned.

Artifact Adapters. We keep the technique independent of the types of implementation
artifacts by utilizing artifact type specific adapters that are responsible for parsing respective
files and generating the generic artifact tree structure consisting of folders, files, and further
file type specific artifacts. The only requirement is that artifacts can be uniquely identified
and compared for equivalence.

Element Counters. We count for every clause c in how many input variants it was contained,
for every artifact cluster a in how many input variants it was contained, and for every
pair (c, a) of clause and artifact cluster in how many input variants both were contained
together. These counters are sufficient to evaluate the above criterion for inclusion of
clauses in presence conditions (see Equation C.1). This has the advantage that it works
incrementally, i.e., new input variants can be added whenever necessary simply by increasing
the respective counters. Hence, already computed traces do not have to be recomputed
when a new variant is encountered. Instead, the counters are simply increased and the
existing presence conditions trimmed, i.e., clauses removed for which the above conditions
do not hold anymore.

Table 4 presents an abstract example of the counters that match the set of variants V
in Table 1. The rows list the four artifact clusters with the total number of appearance
in variants. The columns list (a subset of) the clauses ci ∈

⋃
v∈V clauses(v.F ) with the

total number of appearance in variants, sorted by the number of literals (i.e., interacting

Table 4: Implementation Example: Subset (cut off right) of Counters for Artifact Clusters
(rows) and Clauses (columns).

A B C A ∧ B B ∧ C
2 3 1 2 1
A1 B1 B2 C1 A1 ∧ B1 A1 ∧ B2 B2 ∧ C1
2 1 2 1 1 1 1

a1, a2 2 2 1 1 0 1 1 0
a3 1 1 1 0 0 1 0 0
a4 2 1 0 2 1 0 1 1

a5, a6, a7 1 0 0 1 1 0 0 1
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features), first in total without considering revisions, and then per revision. Each cell
contains the number of times that the artifact cluster and the clause appeared together
in a variant. For example, artifacts a1 and a2 appear in two variants. The clause A1 also
appeared in two variants. Finally, the artifacts and the clauses appeared together also in
two variants. Therefore, the criterion for likely clauses (see Equation C.2) is satisfied.

4 Evaluation

This section presents the research questions and the method adopted for evaluating our
feature revision location technique. We introduce the input data set, explain the process
adopted to obtain the ground truth used for comparison, and describe the metrics used to
evaluate our technique.

4.1 Research Questions

The evaluation of our feature revision location technique was guided by two research
questions (RQs), presented below. The next subsections describe the methodology used to
answer the RQs.

RQ1. Can the proposed technique locate feature revisions from a set of existing
variants? In this RQ we aim to evaluate how effective our technique is for locating feature
revisions in existing variants of HCSSs obtained from VCSs.

RQ2. Can new variants be composed with feature revisions located by our
technique? The goal of this RQ is to investigate if we can use artifacts, i.e., feature
revisions, located by our technique from existing variants to compose new variants.

4.2 Method

The methodology followed to evaluate our feature revision location technique and answer
the RQs is illustrated in Figure 2. We started by mining ground truth variants (step 1)
from changes of features in HCSSs in VCSs (cf. Section 4.4). We then applied our feature
revision location technique to the ground truth variants (step 2, cf. Section 3). The process
of locating feature revisions was performed incrementally with the input variants. Thus, as
long as we had different input variants, we used them for locating feature revisions with
our technique, which continuously created new and/or refined existing traces. After having
located feature revisions from all existing input variants, we used the computed traces
to compose variants (step 3) by joining the artifacts of the desired configurations. Next,
we compared the composed variants with the corresponding ground truth variants, i.e.,
containing the same configuration (step 4). The comparison of variants was performed by
comparing each composed artifact with each ground truth artifact file-by-file and line-by-line.
For computing differences, we used a library for performing the comparison operations
between textual data7. Finally, we compute metrics (step 5) to quantify missing relevant
information or surplus information retrieved (cf. Section 4.5).

4.3 Data Set

The evaluation of the proposed technique relies on three open source HCSSs [96] using the
VCS Git (see Table 5): (i) Marlin, a variant-rich open-source embedded firmware for 3D
printers8; (ii) SSH library, a Robot Framework test library for SSH and SFTP network

7https://github.com/java-diff-utils/java-diff-utils
8https://github.com/MarlinFirmware/Marlin
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Figure 2: Methodology for evaluating our feature revision location technique.

Table 5: Overview of the subject systems.

System Release Since LoC Features Revisions
Marlin 2.0 2011 281355 37 144
LibSSH 0.9 2005 110590 49 129
SQLite 3.7.4 2000 173714 7 55

protocols9; and (iii) SQLite, a library that implements an SQL database engine10. We tried
to avoid bias by choosing three different application domains. Furthermore, each system
has a considerable history of development and use in research [57, 64, 85, 88, 96, 118,191].
Moreover, we choose systems of different sizes, which we measured by counting the total
number of lines of code of their last release (excluding blank lines and comments). We used
variants from the first Git commits from the main trunk ordered by date of each system to
avoid bias in choosing a specific interval of commits. Despite our technique can be adopted
for any number of variants, our implementation currently has scalability limitations for
high number of feature revisions. Thus, we used variants mined from the first 50 commits,
which give enough feature revisions to apply and evaluate the ability of our technique for
locating feature revisions.

4.4 Mining Ground Truth Variants

Ground truth variants cannot come from only a single point in time. Thus, in order to
have input variants that contain features at different points in time, we extract variants of
a system whenever a feature evolved over time, i.e., was changed via a Git commit [132].
To explain each step of the methodology for mining ground truth, we will use the example
shown in Figure 3. Let us consider that the code of the file before the change in line 12 was
added in a specific point in time called T1. Later, a second commit was performed at point

9https://gitlab.com/libssh/libssh-mirror
10https://github.com/sqlite/sqlite
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		#include	"header.h"	
		#if	A
				#define	B	2
				#define	C	9
		#endif
		#if	Z
				#define	D
		#endif
		#if	Y
				<code>
				#if	X(B,C)	>	Z
-					<code1>
+					<code2>
				#endif
		#endif

		#define	Z	3
		<code>
		#if	Z	>	2
				#define	X(m,n)	m+n
		#endif

1
2
3
4
5
6
7
8
9
10
11
12
12
13
14

Variants	T1	and	T2

BASE.1
Y.2

BASE.1
Y.1

BASE.1
A.1

BASE.1

Figure 3: Mining changes over time to generate ground truth variants to evaluate our
feature revision location technique.

in time T2, where the code of line 12 changed. We identify the possible features in these
two points in time. In this example, three features are introduced in point T1 (BASE, A,
Y) and one existing feature changed in point T2 (Y revision 2). We used this information
to create our ground truth variants used as input for our technique for locating feature
revisions in five steps, described next.

Identify feature literals. To identify possible features, we classify all annotated literals of
the system along all Git commits analyzed. We distinguish external, internal and transient
literals. External literals can only be set externally to configure variants. In Figure 3 A
and Y are external literals. Internal literals are defined at some point in the code via a
#define directive. In Figure 3 the literals B, C, X and Z are internal. In commit #111 of
LibSSH the file wrapper.c contains 15 conditional blocks (#ifdefs), from which only four
expressions contain an external feature (DEBGU_CRYPTO). The conditional block with feature
HAS_BLOWFISH, for example, is an internal feature defined in the beginning of the file inside
the conditional block of an external feature (HAVE_OPENSSL_BLOWFISH_H). We considered
literals as features only if they were external in all revisions.

Resolving macros in conditions. For each analyzed Git commit, we start preprocessing
the annotated code respective to macro functions (macros that can accept parameters and
return values). The output of this step is the code from the specific commit with all macros
in conditions resolved, i.e., the macro code is expanded to the degree where the conditions
of the conditional statements only consist of literals. After expanding macros in conditions,
all #define and #include statements and conditional blocks remain in the code, as they
can modify the resulting code of the variants. In Figure 3 the only line that will change
after processing this step is the line 11, which is replaced by #if 2 + 9 > Z.

Compute changes. For each Git commit n we create a tree structure with the conditional

11gitlab.com/libssh/libssh-mirror/-/commit/c65f56aefa50a2e2a78a0e45564526ecc921d74f
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blocks to determine the differences between the actual commit and the previous n-1. In
case of the first Git commit of the project, we consider all files inserted as the difference.
From the differences we can get the tree node reflecting the changes. In case that any
external feature changed or differences are in non-code files, e.g., binary, BASE is considered
the changed feature, i.e., for every code added/removed in the body of the project that
does not belong to an external feature the root feature BASE is considered as the changed
node. In Figure 3 a new file was added at point T1 in addition to its include file. At point
T2 we just have the change in line 12 of the main file. For example, in LibSSH commit #1
added 78 new files, commit #212 removed 8 files, while commit #313 comprised changes of
lines added and removed in different files.

Compute configurations. Every changed node is then used to generate a variant that contains
the code activated by this node. We used the Choco solver14 to provide the first possible
solution for a given constraint to activate the conditional blocks. To find a configuration for
the preprocessor that activates the desired block of code, we need to obtain an assignment
for all the annotated literals that are part of the condition of the block. The basic idea
here is to create a set of constraints that are then handed over to a solver. Overall, the
constraint we build consists of three parts, which will be explained using the example in
Figure 3. Firstly, we retrieve the local condition closest to the changed code, which in
the example at point T2 is: 2 + 9 > Z. The second part is the entire condition of the
desired block, which is a conjunction of all parent conditions. We obtain it by walking up
the tree, starting from the changed node, which will be: Y && (2 + 9 > Z). The feature
implications make the third part used to create and apply a mapping of all internal literals
to just external literals. In Figure 3, it can be seen that A defines B=2 and C=9, and BASE
defines B=3, which means that we can map the code block to BASE and Y and A. The process
of traversing the tree to build the feature implications works as follows: we read until
the end of the file. When a #define is found, we take the condition of the block which
it is part of. With this information, we build an implication chain. Before handing this
chain to the solver, we filter out the ones that are not necessary for the currently processed
node to reduce the work for the solver. We do it by recursively analyzing the literals of
the conditional expressions that define other literals. If they were defined at some point,
we build their queue of implications too. For example, in Figure 3 we do not add to the
queue of implications the feature Z implying D in line 7 as this feature does not influence to
activate the changed block of code (lines 11-13). We just need the implications of features
implying Z, B and C. In commit #1 of LibSSH, as mentioned before, the conditional block
annotated with feature HAS_BLOWFISH is defined inside another conditional block of the
external feature HAVE_OPENSSL_BLOWFISH_H. In the example of this block of code changed,
we will have a queue of implications for feature HAS_AES, HAS_BLOWFISH and OLD_CRYPTO
as they are defined over the file wrapper.c. However, we just send to the solver the queue
of implications of feature HAS_BLOWFISH which contains the necessary condition to define
this internal feature ((HAVE_OPENSSL_BLOWFISH_H) && (BASE)).

The constraints built by the queue of implications are then handed to the solver. If the
solver finds no solution, it means that the part of code we wanted to activate is dead and
there is no configuration that can activate that block. If a solution is found, we validate that
all the literals that get assignments are really external by filtering out all other assigned
literals. If the set of assignments is not empty at that point, we obtained a configuration for
a valid variant. Before using these variants as ground truth for evaluating our technique it
is essential to know what features should be marked as changed for the respective changed
node and thus treated as a feature revision. We assume the features annotated closest to a
change are the ones having caused it. Therefore, we get a solution using the local condition

12gitlab.com/libssh/libssh-mirror/-/commit/d40f16d48ec1ed9670c20ffaad1005c59a689484
13gitlab.com/libssh/libssh-mirror/-/commit/55846a4c7b09af2d105c7f7dfd0a43aab2f6e5a5
14https://github.com/chocoteam/choco-solver
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without any implications.
In case this does not obtain any potentially changed features, meaning that there are

no positive external features in the closest condition, we repeat the same process with the
parent conditions until we find a positive external feature from the solution. In the worst
case, the outcome is that we reach the node corresponding to BASE, which is trivially a
positive solution. In Figure 3 one of the variants from T1 was BASE which is the feature
assigned for the code of the header file and of lines 6-8, as it just contain internal features.
Another variant at time T1 will be related to the block of code in the main file in lines 2-5,
which contains feature A and BASE. Still in time T1 we have a variant with feature Y and
BASE from remaining lines of code 9-14. In time T2 we just have a new variant regarding
the change in line 12 which contains a new revision of the feature Y (the closest external
feature) and the previous revision of the feature BASE from time T1. Regarding LibSSH,
we could see in the first 50 commits analyzed that 49 features were introduced and over
their changes a total of 129 revisions were identified, resulting in 129 variants.

Generate ground truth variants. After performing these previous steps, we are able to
generate the ground truth variants by partially preprocessing the code. Finally, the solution
found by the Choco solver for the configuration is used to retrieve the variant, which from
now on is ready to be used as input for locating feature revisions. Figure 3 illustrates the
variants mined with a set of feature revisions from the changes over time T1 and T2.

4.5 Metrics

The precision, recall, and F1 score measure how well information is retrieved by a system
in relation to the relevant information [190]. They are commonly used to evaluate feature
location techniques [34, 116, 129]. In order to assess how effective our technique is to
correctly locate and not missing any relevant artifacts, we analyzed if the stored traces
allow to retrieve the artifacts belonging to a specific feature revision. We applied the
aforementioned metrics by comparing artifacts of feature revisions composed by the traces
of our technique with the artifacts of the ground truth. We used two levels of granularity,
due to the feature evolution analyzed, and the different kinds of files that existed in the
subject systems (C/C++, binary and text files): (i) file-level comparison of two complete
files by matching their content; (ii) line-level comparison of two code files. The precision of
the file-level comparison is the percentage of correctly composed files, i.e., retrieved files
with entire content matching the relevant ones. The recall measures the total percentage
of entire matching of all composed files relative to the all relevant files. Regarding line-
level comparison, precision is the percentage of correctly retrieved lines while recall is the
percentage of matched lines retrieved relative to the total of relevant lines.

Furthermore, we also measured the runtime of our technique. The experiments were
performed on a HP EliteBook laptop, with an Intel® Core™ i7-8650U processor (1.9GHz,
4 cores), 16GB of RAM, SSD storage, and Windows 10 operating system.

5 Results and Discussion

This section presents an empirical analysis of the feature evolution in space and time from
the three subject systems. We present and discuss the results obtained with our feature
revision location technique and answer the two RQs.

Analysis of feature evolution in space and time in subject systems. We present in Figure 4
the evolution in space and time, i.e., the features introduced/changed in the first 50 Git
commits of three systems. The blue line in a row represents the time between the inclusion
of a feature in the Git repository and the last revision of that feature. The first red diamond
in a blue line represents the inclusion of a feature and the other ones along the lines
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are feature revisions. First, analyzing system evolution in space, we can see the feature
evolution of the Marlin system in Figure 4a. After the product started with Git commit
#1 with just BASE, the second Git commit introduced 18 new features. Furthermore,
additional new features were included in the following commits: #13 (+5), #14 (+5), #19
(+1), #22 (+4), #27 (+1), #31 (+1), and #50 (+1). For the LibSSH system shown in
Figure 4b the initial version started in Git commit #1 with 16 features. Then, there were
four evolution-in-space changes (Git commits #12, #20, #34, and #38) including 33 new
features. In case of the SQLite system shown in Figure 4c, the first commit had no files, so
just in the second commit we have feature code introduced. Along the commits analyzed,
commit #2 had six features introduced of the total of seven existing until Git commit #50.
The remaining feature appeared in Git commit #7. For every feature revision along the 50
Git commits, there was no evolution in time because changes were introduced only in BASE
code. Thus, over few Git commits, we can also see that many features change over time
besides BASE. By looking to Figure 4a we can observe a great density of feature revisions in
20 Git commits (between #13 and #33), adding 93 feature revisions, which represent 65%
of all revisions. The evolution in time by feature revision can have much impact in HCSSs
product configurations. For example, the commit #16 of Marlin changed nine different
features and commit #38 in LibSSH included four new features and changed five other
ones. This evolution in time and space makes engineering tasks complex. Suppose an
engineer needs to recover an older version of feature ADVANCE before commit #31, keeping
the change of other features. This would require great effort and would be error prone,
since other current variants of Marlin system could be still using the newer version of that
feature. Considering these three subject systems, we see different magnitudes of software
systems’ variability in time.

Locating feature revisions with our technique. The results related to the quality [65] of our
technique for locating feature revisions are shown in Table 6. The precision for the three
subject systems was 100% at the file and line level of granularity. Recall values are almost
all optimal (retrieving 95% up to 99% of the total relevant artifacts). The values of F1,
which consider both precision and recall, are between 97% and 99%, what shows that our
technique is reliable to locate feature revisions by a given set of variants in different space
configurations and in many points in time.

The false negative lines in Marlin were about 3,138 from a total of 1,460,533 relevant
lines over 144 compared variants (min: 0, max: 163, mean: 21.79 per variant). From false
negative lines, 774 are comment lines. Those false negative lines were caused by incorrect
traces since Git commit #31, which were part of feature revisions evolved up to the last Git
commit analyzed. In LibSSH, 1,470 lines were missing over all 129 composed variants (min:
0, max: 106, mean: 13.02 per variant) of a total of 4,344,801 relevant lines. Those false
negative lines were incorrect traces of artifacts and feature revisions since Git commit #10.
In SQLite, three lines were false negatives on composed variants corresponding to the Git

Table 6: Average precision, recall and F1 metrics of composed artifacts per system.

Subject System Granularity Precision Recall F1

Marlin Files 1.00 0.95 0.97
Lines 1.00 0.99 0.99

LibSSH Files 1.00 0.99 0.99
Lines 1.00 0.99 0.99

SQLite Files 1.00 0.99 0.99
Lines 1.00 0.99 0.99

All Files 1.00 0.98 0.99
Lines 1.00 0.99 0.99
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Figure 4: Marlin, LibSSH and SQLite evolution in space and time on the first 50 commits
on Git VCS.
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commit #37, resulting in 39 false negative lines over all 55 composed variants (min: 0, max:
3, mean: 0.71 per variant) among a total of 727,387 relevant lines. The false negatives were
caused by incorrect alignments performed by the LCS algorithm. An adapter with a more
fine-grained tree structure for the specific programming language may contribute to a more
precise alignment and higher precision and recall.

RQ1. Can the proposed technique locate feature revisions from a set of
existing variants? Our technique proved to be effective for locating feature revisions
in the used data set, with high values for the measures of precision, recall and F1. The
proposed technique correctly located the artifacts in an automated way, which can help
developers to easily perform this task and save time.

Composing variants with new configurations of existing feature revisions. Table 7 shows the
values of precision, recall, and F1 from comparison of artifacts (file and line levels) of the
ground truth and our composed variants. Our technique retrieves artifacts with precision of
100% and recall of 93%-99% at file-level granularity. At line-level granularity, the average
precision is 100% for SQLite and 99% for the other two. Recall is 99% for the three subject
systems. All values for F1 are greater than 96%, almost the same as the minimum F1
achieved when comparing the artifacts of composed variants with the ones from the input
variants (97%).

For Marlin, within a total of 496769 relevant lines, 1782 were false negative lines and from
these, 394 are just comment lines. In the case of LibSSH, 684 lines were false negatives, five
of which are comment lines, from a total of 1661585 relevant lines. In case of SQLite, 39
lines were missing in the composed files from a total of 727897 relevant lines of ground truth
files. The false negative lines were missed due to some wrong traces caused by incorrect
alignments of lines with the LCS algorithm. False positive lines were composed in variants
from Marlin (four lines added) and LibSSH (19 lines added) systems. The false positive
lines in the composed variants are caused by feature interactions in the configurations,
which we randomly chose without considering whether a selected feature excludes parts
of code that can be in other features when preprocessing ground truth variants. This can
result in an invalid configuration, where the preprocessed variant as ground truth is missing
artifacts. As an example, the random variant generated in Git commit #12 of LibSSH,
which contains the features HAVE_SSH1, DEBUG_CRYPTO, HAVE_PTY_H and BASE.

Listing C.1 shows that when preprocessing a variant with feature HAVE_SSH1 defined,
the ground truth variant will contain Line 2 and not Line 4. Only when this feature is not
defined Line 4 will be present in the variant. Our feature revision location technique then
mapped the artifact from Line 2 to presence conditions containing feature HAVE_SSH1 and
Line 4 to presence conditions containing BASE and other features from the respective point

Table 7: Average precision, recall and F1 metrics of composed artifacts for random config-
urations per system.

Subject System Granularity Precision Recall F1

Marlin Files 1.00 0.93 0.96
Lines 0.99 0.99 0.99

LibSSH Files 1.00 0.95 0.98
Lines 0.99 0.99 0.99

SQLite Files 1.00 0.99 0.99
Lines 1.00 0.99 0.99

All Files 1.00 0.96 0.98
Lines 0.99 0.99 0.99
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1 #ifdef HAVE_SSH1
2 option ->ssh1allowed =1;
3 #else
4 option ->ssh1allowed =0;
5 #endif

Listing C.1. code snippet from LibSSH, file options.c.

in time. Thus, our composed variant with the combination of features will contain artifacts
of both #ifdefs and #else blocks that are missing in the ground truth variant.

RQ2. Can new variants be composed with feature revisions located by our
technique? The traces computed by our technique proof useful for creating new variants
with random configurations, still achieving high values for the measures of precision,
recall and F1. Our feature revision location technique can therefore support tasks such as
extractive SPLE.

Performance of our feature revision location technique. The performance of our technique is
shown in Figure 5. It took around 50 seconds on average, and even in the worst cases not
longer than 200 seconds. As expected, the runtime for locating feature revisions increases
with the number of feature revisions because the number of artifacts and features is greater
to refine the traces. As Marlin and LibSSH subject systems have more feature revisions
to be located, they presented outliers that were probably caused by the garbage collector
unexpectedly slowing down the application. Although SQLite has fewer feature revisions,
the size of artifacts that have been changed is such as big as in the other systems. Thus,
independently of the number of feature revisions, the size of artifacts can slow the process
to refine traces.
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Figure 5: Runtime of feature revision location per variant.
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6 Threats to Validity

The threats to construct validity are related to the study setup. Firstly, the scenarios used
to validate our technique contain changes to features, but we did not have data on the
type of evolution, e.g, performance improvement, new hardware support, bug fixing, etc.
Secondly, the methodology chosen to evaluate our technique was based on variants in space
and time created by a configuration of features in specific changes of annotated code in the
Git commits we analyzed. This was necessary since there was no ground truth we could
use. To mitigate this threat, we generated new variants with different configurations of
feature revisions (not used as input) randomly chosen for the points in time analyzed.

A threat to internal validity is the limitation of the underlying tools that could have
affected our results. We used our own developed tool to compose variants. However, our
developed tool is available for further comparison and was widely used in previous works
where it successfully composed variants [51, 52,56,97].

A threat to external validity is the generalization of the results. Our evaluation was
conducted with a subset of commits from three Git projects. The three selected target
systems are from different domains and have different sizes with different behaviors in terms
of how often their features change along the Git commits, so we believe that the results
cover diverse enough scenarios.

7 Related Work

The idea of creating software versions started when important dimensions of evolution such
as revisions and variants were introduced. Conradi et al. [32] defined revisions as a software
versions that evolve along the time dimension. In this context, our feature revision location
technique can help to get the feature variability along the time dimension. However, the
evolution of variable software systems is still a challenge. While product line engineering
requires new tools and processes, VCSs do not scale with the number of variants and require
the consolidation of cloned variants into a product line. Moreover, evolving a product line
is more complex than evolving single variants [21]. Indeed, VCSs and the annotation-based
preprocessors are still widely used as a variability mechanism for handling a high number
of revisions and variants. To improve on the current situation, variation control systems, a
special kind of VCSs with a focus on variant management rather than revision management,
have been developed [99,105].

In order to support the extractive adoption of SPLs by reusing existing variants as
the basis for the core assets several feature location techniques have been proposed [13].
However, the feature revision concept is still untreated among feature location techniques in
the literature [13, 34, 40, 129,138,166]. As suggested by Hinterreiter et al. [71], maintaining
revisions of individual features may help to understand the evolution history of a variant and
capture ongoing changes. Thus, with our automated technique, developers can re-engineer
a system for feature-oriented development and manage evolution in the time dimension by
means of feature revisions.

8 Conclusions and Future Work

To the best of our knowledge, existing feature location techniques are limited to one certain
point in time. Due to this limitation, this paper highlights the importance of feature
location in both space and time and introduce a new automated feature revision location
technique, allowing practitioners reason about variants in different points of time. Our
results showed that our feature revision location technique can locate the features’ artifacts
with a precision of 100% at file-level and line-level granularity and a recall of, at least, 95%
at file-level and 99% at line-level granularity. Regarding the performance of our feature
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revision location technique, we reported that it took on average 50 seconds to trace artifacts
to feature revisions for each input variant. Even if manual completion is necessary, it will
not require extensive code additions or deletions by a developer. Thus, our automated
technique can aid developers re-engineering software systems into SPLs at the level of
feature revisions, thereby saving time and effort. Hence, facilitating the management of
system variability in space and time by the possibility of composing variants with feature
revisions.

We hope with our results to inspire researchers and tool builders to work with feature
revisions, treating feature evolution in space and time and encourage them to improve
our technique, which can be compared with common metrics and available ground truth
used in our work. As future work, we want to conduct more experiments with industrial
systems and from different domains and consider other programming languages such as
Java. Furthermore, we will improve the scalability of our technique implementation for
dealing with the growth of feature revisions. Then, we will seek on how to provide an
independent mechanism for enabling the management of variants with any combination of
feature revisions.
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Abstract Software companies commonly develop and maintain variants of systems, with
different feature combinations for different customers. Thus, they must cope with variability
in space. Software companies further must cope with variability in time, when updating
system variants by revising existing software features. Inevitably, variants evolve ortho-
gonally along these two dimensions, resulting in challenges for software maintenance. Our
work addresses this challenge with ECSEST (Extraction and Composition for Systems
Evolving in Space and Time), an approach for locating feature revisions and composing
variants with different feature revisions. We evaluated ECSEST using feature revisions
and variants from six highly configurable open source systems. To assess the correctness
of our approach, we compared the artifacts of input variants with the artifacts from the
corresponding composed variants based on the implementation of the extracted features.
The extracted traces allowed composing variants with 99-100% precision, as well as with
97-99% average recall. Regarding the composition of variants with new configurations, our
approach can combine different feature revisions with 99% precision and recall on average.
Additionally, our approach retrieves hints when composing new configurations, which are
useful to find artifacts that may have to be added or removed for completing a product.
The hints help to understand possible feature interactions or dependencies. The average
time to locate feature revisions ranged from 25 to 250 seconds, whereas the average time
for composing a variant was 18 seconds. Therefore, our experiments demonstrate that
ECSEST is feasible and effective.
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1 Introduction

Software system families can evolve in two dimensions: (i) evolution in space, when new
product variants need to be customized, and (ii) evolution in time, when features of
existing individual product variants need to be modified over time [185]. Throughout the
life cycle of software systems, the creation of different product variants is unavoidable
due to the diversity of functional and non-functional customer requirements in different
market segments, usage scenarios, and platforms, leading to evolution in space. In the time
dimension, each product variant continuously evolves, resulting in multiple revisions of the
variant. Evolution in this dimension is the result of customers requiring enhancements, bug
fixes, or scalability issues requiring implementation changes [121].

A software product line (SPL) can encompass evolution in space by systematically
managing and tailoring many variants of a software system. An SPL consists of a platform
with a set of defined and managed features, each implementing functionality and behavior
visible to the end-user [154]. The SPL approach initially requires high upfront investment
compared to traditional single system development, but in the long run pays off with high
numbers of features and product variants [185]. SPLs also evolve over time due to bug fixes,
refactoring, or enhancing modifications of features or the code of existing variants [71, 132].

Features of product variants derived from an SPL can be modified to quickly meet
customer demands. However, if modifications are not propagated to the SPL platform, they
can hardly be reused in other products. For instance, if a particular change is required for a
new hardware device acquired by a customer, reusing this new version of the feature in other
variants can rapidly become cumbersome. As a result, software companies not only have to
deal with different product variants but also with different revisions of product variants and
even different revisions of features over time. Analogous to sequential versions of software
systems, i.e., revisions [104], we adopt the concept of feature revisions as implementation
modifications over time that lead to new feature versions. Despite this practical need of
different feature versions, there is currently no straightforward solution for the challenging
problem of integrating the management and evolution of system families in space and
time [21].

Nowadays, software engineers use distinct approaches and tools to deal with these
dimensions of evolution. An example is the combination of an SPL with a version control
system (VCS) providing capabilities to track changes [31]. However, developers need to
combine additional mechanisms and tools when evolving system families in space and time.
Variability mechanisms are often specific for realizing variability in certain types of artifacts,
e.g., AspectJ for Java or preprocessor annotations for text files [104]. A well-known example
is the Linux kernel, which combines several variability management techniques [30] to
provide an integrated software platform keeping variability information consistent across
different types of artifacts [21]. Linux relies on a variant-aware build system [24], an
interactive configurator tool [179], and a variability model representation [25]. In addition
to its build rules encoded in Makefiles, the Linux kernel is implemented with preprocessor
directives to customize its features and to control the compilation of entire source files or
fragments [150]. Still, the system is hosted in a VCS to keep track of changes over time1.

Most existing mechanisms for variability management have a strong impact on software
development, as they require adding annotations to the source code, or assume certain
programming paradigms (such as feature-oriented or aspect-oriented programming). These
variability mechanisms require manual placement of variation points and their concrete
realization is usually specific for a certain type of artifact (e.g., AspectJ for Java) [104]. The
vast majority of industrial SPLs are realized with preprocessor directives [8, 119]. However,
they do not support revision management, which is usually handled by VCSs to preserve
the evolution history [26]. Although preprocessor directives can be used in combination

1https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux
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with VCSs, they have received strong criticism regarding the separation of concerns, error
proneness, and code obfuscation [119]. Furthermore, preprocessor directives are limited to
managing system variability of textual files. System families, however, rarely consist of only
a single type of artifact [99]. Furthermore, while VCSs support evolution in time at the file
or directory level, they do not provide adequate support for evolution in space as shown
recently [21,85,99,104]. Thus, the current combination of tools in practice, unfortunately,
does not allow to comprehensively and uniformly handle variants and revisions [71,104,127].

Variation control systems (VarCSs) have been proposed to address these challenges, as
discussed in a recent survey [104]. A VarCS supports system development based on features,
reducing the complexity of changing variants and easing the maintenance and evolution of
revisions by alleviating developers from manually editing variation points and integrating
the changes [104]. For instance, the VarCS ECCO2 supports the evolution of arbitrary types
of artifacts [134] based on plug-in architecture [104]. However, developers are still concerned
to replace popular and mature mechanisms, such as the combination of SPLs and VCS,
with VarCSs providing proprietary repositories and unfamiliar operations. That is why
annotation-based preprocessors combined with VCS are still the most popular variability
mechanism [104].

Based on the limitations and needs for properly dealing with the evolution of systems in
space and time at the level of features, this paper extends previous work [134] on feature
revision location implemented in ECCO to recover information of the system evolution over
time at the feature level. We present and evaluate ECSEST (Extraction and Composition
for Systems Evolving in Space and Time), an approach for aiding system evolution in space
and time by locating feature revisions and composing variants with different combinations
of features and their revisions. ECSEST thus not only supports the analysis of software
systems evolving in space and time by locating feature revisions, but also allows the
composition of new products by using the located feature revisions.

As a novelty to support the composition of new products, ECSEST introduces a strategy
to provide hints about feature interactions and possibly missing or surplus feature revisions
for a configuration. This eases system development and the composition of new products
based on new combinations of features and their revisions. Hence, ECSEST can aid
the evolution of software families at both levels of domain engineering and application
engineering [8]. For example, it supports the domain implementation and product derivation
by reusing and combining artifacts that correspond to feature revisions.

Specifically, in this paper we extend our previous work [134] as follows:

• Composition of product variants based on feature revisions: We present an approach
for composing variants and provide further details of the feature revision location. We
include an illustrative example to show how our approach supports system evolution
in space and time and how it is implemented in ECCO2. Additionally, we further
extended our approach with hints showing possible conflicts and interactions between
feature revisions when composing new configurations.

• Support for C language artifacts: We developed a new adapter, i.e., a new ECCO
plug-in, using a fine-grained tree structure to perform feature revision location, while
our previous work [134] was using a text plug-in. Our new plug-in improves the
analysis of artifact equivalence when computing traces by analyzing differences in the
abstract syntax tree (AST) of feature revisions. Thus, it also enables the evaluation
of the evolution of C source code. Although our approach is independent of artifact
type, the new plug-in makes our approach easily adoptable in practice, given the high
number of SPLs implemented in C.

2https://github.com/jku-isse/ecco
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• Evaluation with additional systems and more feature revisions: We extended our
empirical evaluation by applying our approach to more systems from different domains.
We now locate feature revisions and compose new configurations with the located
feature revisions from six systems. Our analysis includes more points in time, leading
to more feature revisions and more product variants. We thus mined more Git
commits of more C preprocessor-based systems and included more system variants in
our replication package3.

• Enhanced analysis: To evaluate the approach of this extended work, we now compute
the runtime performance of composing variants with feature revisions besides precision,
recall, and extraction time. Further, we computed new metrics for the hints retrieved
when composing new products. These metrics indicate conflicts and interactions
when composing product variants with different combinations of feature revisions.
We computed further metrics allowing an in-depth analysis of feature evolution at
the implementation level. These metrics count the different AST nodes used by our
plug-in to store the artifacts of feature revisions.

The remainder of this paper is structured as follows. Section 2 presents background
information. Section 3 discusses the motivation for our research and the problems we aim
to address. Section 4 explains our ECSEST approach. Section 5 presents the research
questions of our evaluation, as well as the methodology, subject systems, the metrics used in
our experiments, and relevant implementation aspects. Section 6 summarizes and discusses
the results. Section 7 discusses threats to validity and Section 8 presents related research.
Finally, Section 9 concludes the paper and outlines future work.

2 Background

Variability in space and time is the consequence of collectively developing and maintaining
families of software systems [171]. Software systems need to evolve due to developer
mistakes and unpredictable future requirements. Variability in space means that different
co-existing functional assets of a software system exist at a specific point in time. Variability
in time means that different revisions of a functionality, i.e., an asset or a set of assets,
exist at different points in time [154]. This section discusses existing concepts, approaches,
techniques, and tools to deal with evolution in space and/or time.

Software Product Lines. SPLs provide systematic reuse of assets through the development
of a common core and a set of features satisfying customer needs of a particular market
segment [30]. The main advantages of systematic reuse in SPLs are the reduction of
development costs and the time-to-market, and an increase in software quality [117,154].
However, adopting an SPL strategy requires expensive up-front investment [114] for defining
the SPL scope and product portfolio offered by a software company [156]. Further, it is
necessary to define which set of features and which set of domain artifacts can be reused
for product composition.

A product, therefore, is composed of a set of artifacts that realize the set of features
constituting a valid software system [46]. A new product variant is needed when no existing
variant implements the requested features, or when some of the features were modified
to update existing variants. Thus, the composed product variant will contain the same
features, but not the same implementation as before [59]. In this context, feature location
techniques can ease evolution and maintenance tasks [20].

Feature Location. Features are the building blocks of SPLs and are defined as a user-visible
functionality of the system [8]. Feature location aims at finding the artifacts responsible

3http://doi.org/10.5281/zenodo.4555199
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for implementing specific system functionalities. Additionally, feature location is used
during the incremental change process to determine where a change should be done in
the code and to find the affected code. Thus, feature location techniques have been used
for maintenance and evolution tasks, as well as for analyzing the impact of changes [40].
Feature location has received significant attention in the research community and many
(semi-)automated techniques have been proposed [13, 34, 166], which can be classified
into four categories: (i) dynamic feature location techniques examine the system during
runtime and retrieve feature information through execution traces of constructed scenarios,
where the feature to be located is exercised [34]; (ii) static feature location techniques
rely on the source code structure to find feature code [40]; (iii) textual feature location
techniques use textual analysis to find feature code, such as information retrieval and
natural language processing analysis [34]; and (iv) hybrid feature location techniques
combine several strategies [40,124,128]. Our approach adopts static analysis to compare
the artifacts and feature revisions of existing system variants (see Section 4).

Version and Variation Control. VCSs have been used to manage system evolution in time.
A version control system, a.k.a revision control system, tracks incremental versions (or
revisions) of files and directories over time [31]. VCSs allow the implementation of systems
in a collaborative way, i.e., a system can be developed in parallel by multiple developers
who can later explore the change history. Parallel development of software features is
commonly handled in VCSs either with branching mechanisms or optimistic methods,
such as copy-modify-merge, workspaces, and transactions [111]. However, as explained,
developers not only have to maintain and evolve revisions of a software system but also
need to maintain different products of an SPL [32]. Therefore, the evolution of software
systems can be characterized with a two-dimensional view with variants incrementing along
one axis and revisions incrementing through time along the other axis [111].

Cloning variants via branching or forking mechanisms of VCSs offers only limited support
for system families because variations are not managed at a fine-granular level based
on features or a similar concept [104]. As a consequence, multiple products need to be
maintained, which leads to high maintenance efforts [171]. Even branching models [111] for
feature development require developers to manually edit variation points and to manually
integrate changes. Further, as the feature is developed in isolation, it is no longer available
once merged into the system branch. Hence, branching mechanisms do not offer adequate
support for understanding and maintaining the evolution in space and time of system
variants.

VCSs and SPLs are thus widely used in combination to support variability and evolu-
tion [21]. Annotation-based SPLs combined with VCSs allow customizing different products
with preprocessor directives. However, with this variability mechanism features can be
delimited only in text files, and an SPL rarely consists of only a single type of artifact [104].
Furthermore, VCSs enable the versioning of the whole platform and can recover and keep
track of changes of lines and files but not at the level of features [21]. Therefore, maintenance
and evolution tasks require manual analysis of tangled features in multiple files and blocks of
code. This is a cumbersome and complex task since preprocessor directives are error-prone
and hamper code comprehension [119,127].

Some VarCSs offer support for feature development of software systems over time by
transactionally editing and automatically integrating the features back into the variant-rich
system [104]. In a survey, Linsbauer et al. [104] identified six VarCSs that can offer visible
operations, such as externalization, modification, and internalization in a transactional way.
Three VarCSs support revisions of the whole system, while only ECCO supports feature
revisions [134]. It also provides support for different programming language and artifact
types and can thus version any kind of artifact. Thus, ECCO has capabilities to aid the
maintenance and evolution of a software system family at the level of features with no
extra costs. Previous studies [51,52,56,128,129,134] already showed satisfactory evaluation
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results using ECCO in the context of SPLs and software system evolution.

3 Motivation

In an SPL the evolution in time is more complex than evolving single variants. For
instance, developers need to consider all variants at the same time when using preprocessor
directives [121]. Although annotation-based SPLs can be versioned in VCSs, the evolution
in time is tracked for the whole platform at coarse granularity [21, 104, 127, 131]. Even
if systematic reuse is realized by annotation-based SPLs in VCSs, manual analysis and
propagation of changes of feature revisions in different releases of a system are highly
challenging. An example can be seen in SQLite4, a C-language library implementing the
most widely used database engine in the world. The feature SQLITE_TEST was modified for
the release branch-3.9 5. The same set of changes, i.e., the feature revision SQLITE_TEST
committed in the release branch-3.9, had to be propagated to three newer releases: branch-
3.18, branch-3.19, and branch-3.22. This example confirms that features have different
implementations, with different behaviors at different points in time, which is of interest
for developers combining different revisions of a feature in existing configurations.

We illustrate the challenges of evolving the source code of a real system implemented
with preprocessor directives in Git VCS. For that, we consider LibSSH6, a C multiplatform
library implementing the SSHv2 protocol on the client and server-side. We used our
mining tool [131,132] to retrieve LibSSH’s feature revisions from all 5022 commits, covering
48 releases and around 16 years of development. The analysis shows significant system
evolution in both space and time. Over the system life cycle, 511 features were introduced,
302 were changed at least once, representing a total of 6242 feature revisions, also including
the changes of the system core as feature revisions. Dealing with all releases of a system and
considering the huge configuration space with feature revisions leads to complex maintenance
tasks. Usually, multiple features change in a single commit, and commit messages not
always reflect the changes performed [67]. Finding which parts of the source code of
specific annotated features are causing problems and should be changed requires deep
developer’s knowledge, in particular if other developers do not comprehend earlier design
decisions [89,141], mainly when many developers are involved in open-source projects.

Regarding feature evolution, we present an analysis of the features with the highest
number of revisions in the LibSSH system. The feature WITH_SERVER changed in 21 releases,
resulting in a total number of 241 feature revisions. In this case, 21 system releases contain
this feature, i.e., each possible configuration including this feature could have 241 different
implementations, if we consider all commits of its development. However, even if a developer
has to analyze a smaller number of feature revisions, the code has to be manually analyzed
and retrieved. We analyzed some of the commits changing WITH_SERVER: usually multiple
files and lines of source code changed in a single commit and also between releases of the
system, thus resulting in different implementations of the feature at different points in time.
Some of the changes represent bug fixes, e.g., commits 3b8c4dc77 and 9546b20d8, some
represent new system functionality, e.g., commits b9b7174d9 and 9b2eefe610, implemented
by this feature, some represent deletions of functionality of this feature, e.g., commits
55846a4c11 and 636432e412. Furthermore, we analyzed how many files and lines were part

4https://www.sqlite.org/index.html
5https://www.sqlite.org/src/info/7b4583f932ff0933
6Analysis based on all commits of all releases of LibSSH: https://gitlab.com/libssh
7https://gitlab.com/libssh/commit/3b8c4dc
8https://gitlab.com/libssh/commit/9546b20
9https://gitlab.com/libssh/commit/b9b7174

10https://gitlab.com/libssh/commit/9b2eefe
11https://gitlab.com/libssh/commit/55846a4
12https://gitlab.com/libssh/commit/636432e
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of the feature implementation in the first and last releases of the system. The feature was
first added in two source code files and comprised 119 lines, while it covered 30 source code
files and 4734 lines in the last release.

Now, suppose a software company has a product with a configuration containing a couple
of features and needs to use another specific revision of the feature WITH_SERVER. If the
SPL is implemented in a VCS, a developer may have to rely on documentation describing
the kinds of changes performed in different commits of the feature WITH_SERVER, which
is usually not available. Thus, the developer would have to manually select the feature
code, then, copy and paste it to specific configuration releases. To retrieve another feature,
for instance the feature HAVE_SSH1 at a specific point in time from commit 5f7c84f913, the
developer would need to analyze 29 files, 1339 additions, and 188 deletions. Thus, this
manual task is very time-consuming, even more so if multiple features are committed at a
single point in time, which is common in practice: for instance, the revisions of the feature
HAVE_SSH1 in the first 50 commits happened together with revisions of 13 other features
impacting 73 source code files. Therefore, in this context, ECSEST aids maintenance and
evolution tasks in annotation-based SPLs in VCSs by retrieving information of the system
evolution in space and time at the feature granularity [131].

4 ECSEST Approach

We now present details of ECSEST (Extraction and Composition for Systems Evolving in
Space and Time), our approach supporting software systems evolving in space and time.
Figure 1 presents an overview of ECSEST. We first outline the feature revision location
for extraction in Section 4.2 (Step 1 in Figure 1), i.e., to map feature revisions to artifacts
from existing software system variants. Locating feature revisions is an incremental process,
which receives as input a product implementation and a configuration characterizing its
features at a specific point in time. This step creates new traces and refines existing ones
in the ECCO repository for every new input variant. We explain our approach for variant
composition in Section 4.3 (Step 2 in Figure 1), which requires as input a configuration
provided by the user and the output traces stored in the ECCO repository created when
locating feature revisions. The variant composition results in the product implementation
and a file with hints to help the product completion. In the following, we give details of
the data structures and processes of the feature revision location and variant composition.

4.1 Data Structures

Variants (Input). A variant v ∈ V is a pair (F,A), where F is a set of feature revisions and
A is a set of implementation artifacts.

Features and Revisions. Every feature f exists in multiple revisions r, denoted as fr, where
f and r are arbitrary unique identifiers for the feature and the revision, respectively. Two
variants v1 and v2 with the same feature f have the same revision r of feature f , i.e., feature
revision fr, if the feature is implemented in the exact same way in both variants.

Implementation Artifacts. A variant’s implementation consists of a set of artifacts that are
organized in a hierarchical tree structure, which we refer to as artifact tree. An artifact can
represent a folder, a file, or any other element of a system’s implementation. For example,
in case of C source code, an artifact could represent a file, a field, a function, a block or
a line of code inside a function, a header, or a define statement. We assume that any
two artifacts a1, a2 can be compared for equivalence (a1 ≡ a2) as follows: two artifacts
a1, a2 ∈ A are equivalent (a1 ≡ a2) if a1 and a2 are equal, e.g., textually equal in the case

13https://gitlab.com/libssh/commit/5f7c84f
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Figure 1: The ECSEST approach overview.

of programming artifacts (a1 = a2) and their parent artifacts are equivalent, i.e., their
position in the artifact tree is the same. Thus, for programming artifacts, we compare if
two nodes contain the same text-based artifact and if they have the same parent nodes.
Here the same rule applies, parent nodes are equivalent if they are syntactically equal.

Traces (Output). The goal of our approach for feature revision location is to compute a
presence condition C for every artifact a. The output therefore is a set of traces T . A
trace t ∈ T is a pair (C,A) that maps a set of artifacts A to a presence condition C. The
traces can abstract where a feature is implemented, e.g., in which files and lines; as well
as abstract feature interactions, i.e., artifacts that always appear together when specific
feature revisions are present in a configuration. Furthermore, traces show which artifacts
are common between feature revisions.

4.2 Feature Revision Location

For extraction of the evolution in space and time, the first step of our approach locates
feature revisions (see Figure 1). The input of the step is a set of variants V , with each variant
v consisting of a configuration, i.e., a set of feature revisions F , and an implementation, i.e.,
a set of artifacts A. This is an incremental step where the existing traces T (output) stored
in a repository are refined for every new input variant. A trace t consists of a presence
condition C for a (set of) artifact(s). The input, as we explain in Figure 3, for instance, can
be a partial configuration of a variant, containing the set of feature revisions that changed
in a specific commit. The commits of a system in a VCS thus represent points in time
of new revisions of features. As output, our approach retrieves a set of traces T ′, each
mapping the implementation artifact fragments to a presence condition. Every artifact is
then mapped to a (set of) feature revision(s). This is necessary for composing the variants
later on, i.e., when joining all artifacts in a product, the configuration must include the
feature revisions containing the artifacts of the required core and functionalities.

ECSEST is independent of the artifact type by using a common structure for data in
the location process. Thus, our approach can locate feature revisions in any artifact type if
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Figure 3: Input variants of our approach for the two dimensions of variability analysis.

provided the input for our internal data structure. The approach can be extended with
plug-ins (adapters) as long as different implementation languages and kinds of artifacts
can be represented in a tree structure. In Figure 2 we show the tree structure of the new
plug-in implemented for parsing C source code artifacts. The tree structure adopted here is
due to the type of artifacts of our ground truth variants used to evaluate our approach. For
example, our approach already supports plug-ins for Java, text, UML models, PNG images,
and LilyPond music artifacts, as shown in previous work [62,128,129,134].

Figure 3 shows the analysis of two dimensions: space and time of existing system
variants for obtaining input variants necessary for the feature revision location process. For
characterizing different points in time, i.e., when features were changed, numbers are added
incrementally to the features’ name. Figure 3 depicts such a situation: at a specific point
in time T1, the software system was developed from scratch. For T1 we know that the
features of the system were in their first revision and thus assigned the revision number 1.
At the second point in time T2, we see a change of a specific feature (FeatY), which already
existed at T1. Thus, the revision number of the feature was incremented to 2.
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In Figure 3, we can also see that each variant contains a feature called BASE, which
represents the common code of the variants and represents the core of an SPL, i.e., parts of
the system not related to features of the SPL. However, the core of the system is subject
to frequent changes, and thus knowing the versions of the common code is also important
for managing and evolving the system artifacts. Therefore, the core of the system is also
mapped to a feature revision, which can have any name, but is represented here as the
feature BASE. The feature revision location then analyzes in how many variants a feature
revision appears, in how many variants a (set of) artifact(s) appears, and in how many
variants a pair of feature revision(s) and a (set of) artifact(s) appear together. In this way,
all artifacts are mapped to feature revisions.

Trace Computation

Based on the aforementioned data structures, we now explain how the traces and presence
conditions are computed based on the running example shown in Table 1. This example was
extracted from a code snippet from file connect.c of the commit c65f56ae14 (Listing D.1).
Listing D.2 shows the code of a variant v1 containing features BASE and HAVE_POLL (Lines 1,
2, 4, 8, 9, 11, 12 and 23 from Listing D.1) at point T1. Listing D.3 shows the code of
a variant v2 containing BASE and absence of the features HAVE_SELECT and HAVE_POLL
(Lines 1, 2, 6, 8, 9, 20, 21 and 23 from Listing D.1) at point T1. Listing D.4 shows the code
of a variant v3 containing the features BASE and HAVE_SELECT (Lines 1, 2, 6, 8, 9, 14-18 and
23 from Listing D.1 at point T1). Listing D.5 shows the code of a variant v4 containing BASE
at point T1 and HAVE_SELECT at point T2, where the Line 15 from Listing D.1 changed.

1 #include <stdio.h>
2 int ssh_fd_poll(SSH_SESSION *session){
3 #ifdef HAVE_POLL
4 struct pollfd fdset;
5 #else
6 struct timeval sometime;
7 #endif
8 if(session ->data_to_read)
9 return(session ->data_to_read);

10 #ifdef HAVE_POLL
11 fdset.fd=session ->fd;
12 (...)
13 #elif HAVE_SELECT
14 (...)
15 if (select(session ->fd+1,&descriptor ,NULL ,NULL ,& sometime) <0) {
16 ssh_set_error(NULL ,SSH_FATAL ,"select: %s",strerror(errno));
17 return -1;
18 }
19 #else
20 #error This system does not have poll() or select ()
21 return 0;
22 #endif
23 }

Listing D.1. Code snippet from file connect.c from LibSSH in commit c65f56ae.

14https://gitlab.com/libssh/commit/c65f56a
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Table 1: Input: Set of variants V = {v1, v2, v3, v4} and their respective feature revisions
vi.F .

Variant vi Feature Revisions vi.F Artifacts vi.A

v1 {HAVE_POLL1, BASE1} Listing D.2
v2 {BASE1} Listing D.3
v3 {HAVE_SELECT1, BASE1} Listing D.4
v4 {HAVE_SELECT2, BASE1} Listing D.5

1 #include <stdio.h>
2 int ssh_fd_poll(SSH_SESSION *session){
3 struct pollfd fdset;
4 if(session ->data_to_read)
5 return(session ->data_to_read);
6 fdset.fd=session ->fd;
7 (...)
8 }

Listing D.2. Variant v1: BASE and HAVE_POLL at point T1.

1 #include <stdio.h>
2 int ssh_fd_poll(SSH_SESSION *session){
3 struct timeval sometime;
4 if(session ->data_to_read)
5 return(session ->data_to_read);
6 #error This system does not have poll() or select ()
7 return 0;
8 }

Listing D.3. Variant v2: BASE at point T1.

1 #include <stdio.h>
2 int ssh_fd_poll(SSH_SESSION *session){
3 struct timeval sometime;
4 if(session ->data_to_read)
5 return(session ->data_to_read);
6 (...)
7 if(select(session ->fd+1,&descriptor ,NULL ,NULL ,& sometime) <0){
8 ssh_set_error(NULL ,SSH_FATAL ,"select: %s", strerror(errno));
9 return -1;

10 }
11 }

Listing D.4. Variant v3: BASE and HAVE_SELECT at point T1.

1 #include <stdio.h>
2 int ssh_fd_poll(SSH_SESSION *session){
3 struct timeval sometime;
4 if(session ->data_to_read)
5 return(session ->data_to_read);
6 (...)
7 if(select(session ->fd + 1, &rdes ,&wdes ,&edes , &sometime) <0) {
8 ssh_set_error(NULL ,SSH_FATAL ,"select: %s", strerror(errno));
9 return -1;

10 }
11 }

Listing D.5. Variant v4: BASE at point T1 and HAVE_SELECT at point T2.
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Presence Conditions. We compute the presence condition C for every artifact a in the form
of a disjunctive normal form (DNF) formula, whose literals are features, i.e., a set of feature
revisions as we will show. A DNF formula is a disjunction of clauses, where a clause is a
conjunction of literals. We treat presence conditions as a set of such clauses. Every clause
can be considered a feature interaction, i.e., a static interaction of the features contained in
the clause. This aligns with previous research in feature algebra [107], feature location [102],
and the analysis of variable systems [4, 53]. We denote the set of all conjunctive clauses
that can be formed given a set of feature revisions v.F of variant v as clauses(v.F ).

Whether a clause c is part of a presence condition C for an artifact a depends on five
intuitive rules that have already been proven to work properly for feature location [129].
Given two variants v1 and v2 of a system:

1. Common artifacts in v1 and v2 likely trace to common features.

2. Artifacts in v1 and not v2 likely trace to features that are in v1 and not v2, and vice
versa.

3. Artifacts in v1 and not v2 cannot trace to features that are in v2 and not v1, and vice
versa.

4. Artifacts in v1 and not v2 can at most trace to features that are in v1, and vice versa.

5. Artifacts in v1 and v2 can at most trace to features that are in v1 or v2.

In our work, we build upon these rules and extend them to feature revisions. In the
following, we first discuss the rules based on features, ignoring revisions for the time being.
We now describe the criterion and two resulting equations based on the aforementioned
five rules for including a clause in a presence condition, which composes the traces between
artifacts and feature revisions.

Criterion for the Inclusion of a Clause in a Condition. For a clause c to be contained in
a presence condition C of an artifact a, the artifact a must be contained in every variant
v ∈ V that contains the clause c (c ∈ clauses(v.F )) and there must be at least one variant
in V that contains clause c.

c ∈ C ⇔ (∀v ∈ V : c ∈ clauses(v.F ) =⇒ a ∈ v.A) ∧
(∃v ∈ V : c ∈ clauses(v.F ))

(D.1)

Criterion for Likely Clause. Our approach additionally provides a smaller and more specific
set of clauses C ′, that is a subset of C, to which the artifacts are more likely tracing than
to others. This is based on our observation that, in practice, presence conditions with a
logical OR between features are much less likely to occur than conditions with a logical
AND [129]. Therefore, a clause c′ is contained in the set of likely clauses C ′ if all variants
that have clause c′ also have artifact a (inclusion criterion Equation D.1). In addition, all
variants that have artifact a also have clause c′ (additional criterion).

c′ ∈ C ′ ⇔ (∀v ∈ V : c′ ∈ clauses(v.F ) ⇐⇒ a ∈ v.A) ∧
(∃v ∈ V : c′ ∈ clauses(v.F ))

(D.2)

Adding Revisions. Extending the previous ideas to revisions is then straightforward. Only
one revision of a feature can be present in any given variant. In other words, if a feature
f is present in a variant v, it is present in exactly one revision r. Therefore, the set of
revisions of a feature literal in a clause is the union of all revisions r of feature f that were
present when the artifact a was present. Literals in clauses of a presence condition now do
not refer to single features anymore but to a set of feature revisions.
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Steps for Trace Computation. Algorithm 2 shows the steps of the trace computation. This
algorithm receives as input a set of variants V and computes the sets of all clauses C
(Line 2) and all artifacts A (Line 3) in the input variants V . Subsequently, it computes
for every artifact a ∈ A (Line 5) a trace t with conditions C ′ and artifact a (Line 19) that
is added to the set of traces T (Line 20) that is returned (Line 22). The set of clauses C ′

receives all clauses c ∈ C that satisfy the inclusion criterion of likely clauses in Equation D.2
(Lines 7-11). If there are no such traces (Line 12) it receives all clauses c ∈ C that satisfy
the regular inclusion criterion in Equation D.1 (Lines 13-17).

Algorithm 2 Trace Computation
1: function computeTraces(V )
2: C ←

⋃
v∈V clauses(v.F )

3: A←
⋃

v∈V clauses(v.A)
4: T ← {}
5: for each a ∈ A do
6: C ′ ← {}
7: for each c ∈ C do
8: if (∀v ∈ V : c ∈ clauses(v.F ) ⇐⇒ a ∈ v.A) then
9: C ′ ← C ′ ∪ {c}

10: end if
11: end for
12: if C ′ = {} then
13: for each c ∈ C do
14: if (∀v ∈ V : c ∈ clauses(v.F ) =⇒ a ∈ v.A) then
15: C ′ ← C ′ ∪ {c}
16: end if
17: end for
18: end if
19: t← (C ′, a)
20: T ← T ∪ {t}
21: end for
22: return T
23: end function

Now, to better understand the definitions, let us recall the running example (Listing D.1).
The computation of traces consists of computing new, or updating existing, ones after the
artifacts alignment for equivalence. The variants v3 and v4 have equivalent artifacts under
the function ssh_fd_poll(SSH_SESSION *session). When the variant is used as input,
the comparison for artifacts equivalence is performed between the Lines from Listings D.4
and D.5. Then, as feature revision location is an incremental process, the existing traces
in the repository from the equivalent artifacts have to be updated. The updated traces
thus include this new feature revision in the clauses of the traces containing the equivalent
artifacts. In the incremental feature revision location, after input variant v4, the old artifact
in Line 7 from variant v3 is traced solely to the feature revision HAVE_SELECT1. Also, a new
trace is created for the new code in Line 7 from Listing D.5 to the new feature revision
HAVE_SELECT2.

Mapping feature revisions to artifacts can be challenging when a set of variants is not
sufficient to determine a unique set of traces. We thus have to consider more restrictive
traces by adding negated features in presence conditions to represent artifacts of a variant
that do not appear when specific features are present. A feature absent in a configuration
can influence the implementation of a variant [107].

Our approach uses presence conditions to map artifacts and feature revisions with negated
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features when a specific artifact only exists in a variant with a specific feature absent in
the configuration. We use logical negation (¬) to express an absent feature. Despite a
variant configuration contains a feature either present in a specific revision or simply absent,
our approach can trace artifacts with presence conditions containing positive and negated
features. The final set of clauses clauses(v.F ) contains all positive features and negated
features. Negated features in presence conditions are not labeled with a revision, which
indicates that a specific artifact only appears in a variant when the feature negated in the
presence condition is not present in the variant configuration. On the other hand, presence
conditions containing positive features indicate that an artifact is present in a variant if at
least one of the clauses is satisfied with the set of feature revisions of a variant configuration.
For the last assumption, it does not matter if features of the other clauses of a presence
condition are absent in the configuration.

In our example, a developer does not have to indicate the absence of the features
HAVE_SELECT and HAVE_POLL with a logical negation (¬) in an input configuration of a
variant (such as variant v2), as including BASE in the configuration is sufficient. However,
when preprocessing the variant, our approach computes traces for the specific artifacts that
do not belong to the feature BASE, i.e., the core of the system, but are part of a variant
when a specific feature is not part of the configuration. For example, in an #if and #else
conditional compilation, the #else block artifacts of a system will be part of a variant only
when a feature of the #if is absent in the configuration, similar to an #if !(Feature).
However, including BASE in the configuration cannot guarantee that the #else part will be
in the variant as the feature from the #if part also has to be absent in the configuration.
This is why only adding positive feature revisions in clauses is not sufficient for creating
traces to artifacts that are part of a variant only when specific features are present and
specific features are absent. In such cases, different possible traces can affect the variants
created in the future.

The output of the feature revision location for our running example shown in Table 2
contains all clauses that satisfy the criterion for inclusion, even if initially redundant.
For example, the condition in t1 could be simplified to just HAVE_POLL1. However, since
the input variants were not sufficient to be certain that the actual condition cannot be,
HAVE_POLL1 ∧ ¬HAVE_SELECT it is still included in the condition.

Optimization Aspects. We do not consider every artifact individually, but cluster artifacts
that never appear without each other in any variant and assign presence conditions to those
clusters instead of every individual artifact. For example, since the artifacts from Lines 1-2,

Table 2: Output: Set of Traces T = {t1, t2, t3, t4, t5, t6, t7}.

Trace ti Presence Condition ti.C Artifacts ti.A

t1 F31 ∨ (F31 ∧ F11) ∨ (F31 ∧ ¬F2) ∨ (F31 ∧ F11
∧ ¬F2)

Lines 4,11-12 (LD.1)

t2 F21 ∨ (F21 ∧ ¬F3) ∨ (F21 ∧ F11) ∨ (F21 ∧ F11
∧ ¬F3)

Line 15 (LD.1)

t3 F11 ∧ ¬F2 ∧ ¬F3 Lines 20-21 (LD.1)
t4 F21∨2 ∨ (F21∨2 ∧ ¬F3) ∨ (F21∨2 ∧ F11) ∨

(F21∨2 ∧ F11 ∧ ¬F3)
Lines 14,16-18 (LD.1)

t5 F11 Lines 1-2,8-9,23 (LD.1)
t6 F11∧ ¬F3 Line 6 (LD.1)
t7 F22 ∨ (F22 ∧ ¬F3) ∨ (F22 ∧ F11) ∨ (F22 ∧ F11

∧ ¬F3)
Line 7 (LD.5)

L = Listing; BASE = F1; HAVE_SELECT = F2; HAVE_POLL = F3.
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8-9 and 23 in our running example in Listing D.1 always appear together and never without
each other, they are grouped in one artifact cluster instead of treating them individually.

We use counters to evaluate the above criterion for inclusion of clauses (Equation D.1)
in presence conditions. For every clause c, we count in how many input variants it was
contained, for every artifact cluster a in how many input variants it was contained, and for
every pair (c, a) of clause and artifact cluster in how many input variants both were contained
together. This has the advantage that it works incrementally, i.e., new input variants can
be added whenever necessary, simply by increasing the respective counters. Hence, already
computed traces do not have to be recomputed when a new variant is encountered. Instead,
the counters are simply increased and the existing presence conditions are trimmed by
removing the clauses for which the above conditions do not hold anymore.

Table 3 presents the counters of our running example that match the set of variants V in
Table 1. The rows list the nine artifact clusters with the total number of appearances in
variants. The columns list (a subset of) the clauses ci ∈

⋃
v∈V clauses(v.F ) with the total

number of appearance in variants, sorted by the number of literals, i.e., interacting features
first in total without considering revisions, and then per revision. Each cell contains the
number of times that the artifact cluster and the clause appear together in a variant. For
example, artifacts from Lines 1, 2, 8, 9 and 23 in Listing D.1 appear in four variants. The
clause F1, which represents the feature revision BASE, also appears in four variants. Finally,
the artifacts and the clause appear together also in four variants. Therefore, the criterion
for likely clauses (Equation D.2) is satisfied. The cells in Table 3 highlighted with gray
color indicate pairs of feature revision(s) and artifact(s) that always appear together in
input variant(s).

The correct presence conditions shown in Table 2 can only be created with the additional
criterion for likely clause (Equation D.2). This shows why trivial, i.e., less restrictive presence
conditions are not complete and can result in different traces. For example, trace t1 has a
presence condition containing a disjunction of four clauses: (HAVE_POLL1) ∨ (HAVE_POLL1∧¬
HAVE_SELECT) ∨ (BASE ∧ HAVE_POLL1)∨ (BASE ∧ HAVE_POLL1 ∧ ¬ HAVE_SELECT). The first
clause is obtained by the criterion for likely clause because artifacts from Lines 4,11-12
in Listing D.1 are contained in every variant that contains the feature HAVE_POLL1 and
all variants that have artifacts from Lines 4,11-12 in Listing D.1 also have the feature
HAVE_POLL1. The second clause is also created with the criterion for likely clause, where
all variants that have artifacts from Lines 4,11-12 in Listing D.1 also have feature BASE1.
Although artifacts from Lines 4,11-12 are not from BASE1, BASE1 was present in the variants

Table 3: Implementation Example: Subset (cut off right) of Counters for Artifact Clusters
(rows) and Clauses (columns).

F1 F2 F3 F1 ∧ F2 F1 ∧ F3
4 2 1 2 1

F11 F21 F22 F31 F11 ∧ F21 F11 ∧ F22 F11 ∧ F31
4 1 1 1 1 1 1

Lines 1-2,8-9,23 (L1) 4 4 1 1 1 1 1 1
Lines 4,11-12 (L1) 1 1 0 0 1 0 0 1

Line 6 (L1) 3 3 1 1 0 1 1 0
Line 7 (L5) 1 1 0 1 0 0 1 0
Line 15 (L1) 1 1 1 0 0 1 0 0

Lines 14,16-18 (L1) 2 2 1 1 0 1 1 0
Lines 20-21 (L1) 1 1 0 0 0 0 0 0

L = Listing; BASE = F1; HAVE_SELECT = F2; HAVE_POLL = F3.
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containing these artifacts. That is what we show in the counter table for storing this
information (Table 3), while the third clause is created because all absent features for
a specific artifact are negated in our approach. Thus the third clause (HAVE_POLL1 ∧ ¬
HAVE_SELECT) has the feature HAVE_SELECT negated because this feature does not appear
in variants with the artifacts from Lines 4,11-12 in Listing D.1. The fourth clause is the
most restrictive condition, combining the previous clauses.

Analyzing the second row of Table 3 shows that the artifacts from Lines 4, 11-12 are
present in one variant, where BASE1 is present. However, BASE1 is present in four variants.
When looking at the other columns of the second row of the Table 3, we can see that the
feature revision HAVE_POLL1 is also present in one variant, only in the one containing the
artifacts from Lines 4, 11-12 from Listing D.1. Therefore, we know the feature revision
HAVE_POLL1 must be traced to Line 4 and our final presence condition contains the feature
revision BASE1, as Line 4 appears only once and in a variant containing also the feature
BASE1 in its configuration. Thus, the first clause is less restrictive and the fourth clause is the
most restrictive condition of the presence condition of the trace t1. If another input variant
would exist with only the feature revision HAVE_POLL1, and containing Lines 4, 11-12 from
Listing D.1, the trace t1 would be refined and its presence condition would be (HAVE_POLL1)
∨ (HAVE_POLL1 ∧¬HAVE_SELECT) ∨ (HAVE_POLL1 ∧¬BASE) ∨ (HAVE_POLL1 ∧¬HAVE_SELECT
∧¬BASE). Having a clause in a presence condition with ¬BASE does not mean that this
feature must not exist in the configuration of a variant containing the respective trace
artifact, but that BASE was absent in a variant where the respective trace artifact appears
and was thus not mapped to the artifact. Hence, BASE would not be a mandatory feature
for having these artifacts in a variant.

4.3 Variant Composition

For a given configuration containing a set of feature revisions, we compute a checkout
operation, similar to the checkout in a VCS [32]. The checkout operation retrieves a working
copy of the content from a repository. Thus, the checkout operation joins the artifacts of
the feature revisions from a repository in order to compose a system variant.

Composition. We compose a variant v from a set of traces T given a configuration F (set of
feature revisions). First, the set of traces T ′ selected from the set of all traces T :

T ′ = {t | t ∈ T ∧ clauses(v.F ) ∩ t.C ̸= 0} (D.3)

The final resulting variant v is then given as v = (F,A), where A is the set of artifacts:

A =
⋃
t∈T ′

t.A (D.4)

The developer is responsible for selecting a valid configuration to compose a valid variant.
We do not consider variability models, which define a set of choices and their dependencies
for obtaining configurations [161], but rather focus on feature revision location and variant
composition. The composition thus generates a product variant and a file with hints of
the traces containing possible surplus and/or missing clauses used to compose the variant.
With these hints, developers can analyze which artifacts may need to be added and/or
removed for completing the product variant. The file with hints contains the trace identifier
(hash code), which can be used to look in the ECCO repository which artifacts belong to a
stored trace.

As an example, consider selecting feature revisions HAVE_POLL1, HAVE_SELECT1 and BASE1
to compose a variant. The traces t1, t2, t4, t5 (Table 2) corresponding to these feature
revisions will be retrieved from the repository and their artifacts will be joined in order to
create a variant. These traces are considered in the set of traces T ′ because at least one
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clause of the presence condition is satisfied (clauses are split with the ∨ logical operator).
For example, t1 contains a clause with F31, which represents the feature HAVE_POLL and is
one of the features of the configuration. However, this combination of feature revisions has
feature interactions, as we can see in Listing D.1. Then, when composing the variant we
also get the hints, which we will explain next.

Computation of Hints. To provide the artifacts for a variant, we retrieve the existing traces
with at least one clause from the disjunction of clauses in a presence condition containing
the feature revision(s) of the configuration. Traces containing clauses with negated features
that are in the configuration are not considered in the set of traces T ′ selected to compose
a variant, i.e., the artifacts of a trace will not be included in the variant, while every other
trace with the positive feature(s) will. If a configuration contains a feature revision that
does not exist in the repository, the composed variant will contain only the artifacts of
other existing feature revisions in the configuration. Then, with the composed variant, a
hint will be retrieved with Missing Clauses because no traces exist for unknown feature
revisions in the repository. Also, a missing trace can be retrieved if a feature interaction
of a configuration is missing in the existing set of traces because no trace containing the
needed implementation yet exists. Therefore, the set of potential Missing Clauses H− for a
composed variant v with a configuration F is:

H− = clauses(v.F ) \
⋃
t∈T ′

t.C (D.5)

From the set of of selected clauses for composition, we can determine one or more Surplus
Clauses H+ as follows:

H+ =
⋃
t∈T ′

t.C \ clauses(v.F ) (D.6)

From a trace containing multiple clauses, when a clause of a trace contains a feature
revision that should be part of a variant and some clauses of the trace contain feature
revisions that are not present in the configuration, our approach issues a hint on surplus
clauses. This means that all artifacts of the trace were added as artifacts of the variant.
However, not all clauses contained in the trace contain only the feature revisions of the
configuration, which can result in potential surplus artifacts in the variant from the other
feature revisions and show possible feature interactions and/or dependencies due to the
artifacts in common. As explained before, our approach computes a presence condition for
a (set of) artifact(s) containing a disjunction of clauses. The trace is added to compose
a product variant for every presence condition containing a feature revision in one of its
clauses, unless there is at least one feature existing in the configuration that is negated in
the less restrictive clause of the presence condition. In this case, the trace is not added for
composing a variant, which can have missing artifacts.

The hints retrieved by our approach will inform the surplus clauses followed by the trace
identifier that can have artifacts surplus and should not be in the variant. The hints retrieved
by the new configuration (HAVE_SELECT2, HAVE_POLL1, BASE1) to compose a variant, used
as example, contains some of the clauses of the trace t1 and t4 as Surplus Clauses. Trace
t1 is selected to compose the variant because it contains a clause with HAVE_POLL1 and
another with BASE1∧ HAVE_POLL1 from the existing ones in the presence condition of t1.
However, two clauses are Surplus Clauses: (HAVE_POLL1∧ ¬HAVE_SELECT) and (BASE1∧
HAVE_POLL1∧ ¬HAVE_SELECT), as they correspond to artifacts that never appear together
within the artifacts of all existing revisions of the feature HAVE_SELECT. The same happens
with trace t4, which results in hints for possible surplus artifacts, because some of the
artifacts of the input variant containing the feature revision HAVE_SELECT2 did not appear
with some artifacts of the input variant containing the feature revision HAVE_POLL1. The
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hints can help developers that need to manually remove part of the artifacts of a specific
trace from the composed variant, if the new combination of feature revisions has conflicts
when used together.

5 Evaluation

We now present the research questions and the methodology adopted for evaluating the
ECSEST approach. This evaluation covers both feature revision location in variants of
software systems evolving in space and time as well as SPL evolution by reusing the located
feature revisions for automatically composing new variants. We introduce the input dataset,
i.e., the characteristics of our subject systems. Then, we explain the process adopted
to obtain a ground truth dataset used for evaluating ECSEST ’s efficiency for locating
feature revisions and composing variants. Finally, we describe the metrics used to evaluate
ECSEST.

5.1 Research Questions

The evaluation of ECSEST was guided by five research questions (RQs):

RQ1. To what extent do features evolve in space and time? This RQ investigates
how features evolve in space and time in real systems to show the practical relevance and
implications of our approach for evolving software systems in space and time at the level of
feature revisions.

RQ2. To what extent does ECSEST support feature revision location of existing
variants that evolved in space and time? We evaluate how effective ECSEST is for
locating feature revisions in existing families of software systems that evolved over time.

RQ3. How effective is ECSEST for composing new variants with feature
revisions? We investigate if ECSEST can effectively compose new variants by joining
artifacts traced to feature revisions with our feature revision location approach from a set
of system variants that have evolved in space and time.

RQ4. How useful are the hints suggested by ECSEST for completing new
variants and finding feature interactions when creating new configurations? We
estimate how helpful the hints provided by ECSEST are for the manual completion of new
variants.

RQ5. What is ECSEST ’s performance for extracting feature revisions and
composing variants? This RQ answers the execution time of our approach for performing
feature revision location per variant and for composing a variant.

5.2 Method

Figure 4 illustrates the methodology we followed to evaluate ECSEST. We investigated
both the feature revision location and the composition of variants with feature revisions.
We started by mining ground truth variants (Step 1) from feature revisions in preprocessor-
based SPLs in VCSs (cf. Section 5.4). We then applied our feature revision location
approach to input product variants obtained from the ground truth generation (Step 2).
The input variants are the ones generated from existing configurations, and the remaining
ground truth variants are the ones generated with new configurations, which we used later
on to compare the composed variants with new configurations. For variants with new
configurations, we randomly choose a set of feature revisions existing for each point in time.
The step of locating feature revisions was performed incrementally with the input variants.
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Figure 4: Methodology for evaluating ECSEST to support software systems evolving in
space and time.

Thus, as long as we had different input variants, we used them for locating feature revisions
with ECSEST, which continuously created new and/or refined existing traces.

After locating the feature revisions from all existing input variants, we used the computed
traces to compose variants with existing configurations and with a new combination of
feature revisions (Step 3) by joining the artifacts of the desired feature revisions. Next, we
compared the composed variants with the corresponding ground truth variants containing
the same configuration (Step 4). The comparison of variants was performed by comparing
each composed artifact with each ground truth artifact both file-by-file and line-by-line (cf.
Section 5.5). To compute differences of the artifacts of input and composed variants, we
implemented a Java program for performing the comparison operations between textual
data using a Java diff library15. Finally, we computed metrics (Step 5) to quantify missing
relevant information or surplus information retrieved in relation to the variants composed
from existing configurations (cf. Section 5.5). We also computed metrics for the hints
retrieved when composing new configurations of possible surplus or missing source code of
feature revisions in new configurations of variants composed.

5.3 Dataset

The evaluation of the proposed approach relies on six open source preprocessor-based
SPLs [96] using the VCS Git. Table 4 presents details of the SPLs: (i) Marlin, a variant-
rich open-source embedded firmware for 3D printers16; (ii) LibSSH, a multiplatform C
library implementing the SSHv2 protocol on client and server side17; (iii) SQLite, a library
implementing an SQL database engine18; (iv) Irssi, an internet relay chat client program

15https://github.com/java-diff-utils/java-diff-utils
16https://github.com/MarlinFirmware/Marlin
17https://gitlab.com/libssh/libssh-mirror
18https://github.com/sqlite/sqlite
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Table 4: Overview of the subject systems.

System Since LoC Commits Features Feature Revisions Input Variants
Marlin 2011 281355 52 151 106 191
LibSSH 2005 110590 400 44 538 577
SQLite 2000 173714 337 36 388 424
Irssi 2007 85325 400 30 414 441
Bison 2002 39904 240 134 272 310
Curl 1999 22490 350 84 422 485

for Linux19; (v) Bison, a general-purpose parser generator20; and (vi) Curl, a command-line
tool for transferring data specified with URL syntax. We try to reduce bias by choosing
different application domains. Furthermore, each system has a considerable history of
development and use in research [57,64,85,88,96,118,191]. Moreover, we choose systems of
different sizes, which we measured by counting the total number of lines of code of their
last release (excluding blank lines and comments). We used variants from the first Git
commits from the main trunk ordered by the date of each system to avoid bias in choosing
a specific interval of commits.

The number of variants we mined (last column in Table 4) is the largest one that we
could use as input for each subject system given the memory limitation of the used Java
Virtual Machine (JVM) to store and manipulate data. Specifications of the machine used
to run the experiments are given in Section 5.5. The number of variants used as input
is influenced by the number of artifacts of a system and the degree of artifacts evolution,
which determines how many traces and feature revisions have to be stored and manipulated.
Therefore, for our evaluation we used input variants from a large number of commits and
of more than one release for some of the systems. This is a considerable extension to our
previous work [134], since we now apply ECSEST to more systems, covering more Git
commits and many more variants with different features at different points in time for each
system. The variability thus comes from the Git commits. The changes vary from lines in a
file to multiple files affected. Some commits introduce new feature revisions, some commits
change existing feature revisions, while some commits introduce new feature revisions and
change existing ones in parallel. This mining process is presented in Section 6.1.

5.4 Mining Ground Truth Variants from Evolution in Space and Time

Our evaluation needs ground truth variants containing feature revisions, i.e., variants
that contain features with different implementations at different points in time. We thus
extracted variants of preprocessor-based SPLs in VCSs whenever a feature evolved in time,
i.e., was changed via a Git commit [132]. Figure 5 illustrates the time dimension (Git
commits) on the y-axis and the space dimension representing the multiple features that
originated from multiple variants, which are in the x-axis. The different colors of the edges
represent different points in time of features. For every change in a Git commit, we mined
feature revisions that were then used to preprocess the variants. Finally, we used the
resulting variants as ground truth to represent software systems with different features’
artifacts at different points in time.

Although our approach can locate feature revisions in any type of artifact of system
variants, even without a variability mechanism, we choose preprocessor-based SPLs in
VCSs as input variants because they are widely used to deal with system evolution in
space and time [21]. Therefore, every time a feature changes in a Git commit we generate

19https://github.com/irssi/irssi
20https://github.com/akimd/bison
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Figure 5: The changes of Git commits represent the evolution of features in time in VCSs.
They resulted in a set of feature revisions, which are used to create ground truth variants
for the ECSEST evaluation.

variants containing a new feature revision for simulating our incremental step of locating
feature revisions whenever a feature has a new implementation. In summary, our approach
for generating the ground truth consists of getting changes from one commit to another
for a set of Git commits. This approach can be computationally expensive but is well
suited for precisely locating feature revisions. To cover all changes, a set of configurations
is determined by a constraint satisfaction problem (CSP) solver. For each configuration
composed of external features, we preprocess the version of the system in the specific
commit, which results in an input variant for evaluating ECSEST. Next, we explain this
process in detail.

We use the example in Figure 6, which contains a corner case with a feature interaction
and a feature implication to explain the methodology for mining the ground truth variants.
Let us consider the code of the file main.c presented in Figure 6 before performing the
change in Line 12 at the point in time called T1. Then, changes of a second commit (point
in time T2) can be seen in Line 12 of the file main.c in Figure 6. We identify the possible
features in these two points in time. In this example, three features are introduced in point
T1 (BASE, A, Y) and one existing feature changed in point T2 (Y revision 2). Based on that,
the mining process is as follows.

Identifying feature literals. As our target systems do not have a variability model available,
we used the following strategy to identify possible features. We first classified all feature
literals, i.e, macros annotated to characterize features of the system along all Git commits
analyzed. For this, we distinguished external, internal, and transient feature literals.
External feature literals can only be set externally to configure variants from the compiler
command line. In Figure 6, the feature literals A and Y are external. Internal feature literals
are defined at some point in the code via a #define directive. Thus, we can see in Figure 6,
that the feature literals B and C defined in main.c as well as the feature literals X and Z
defined in header.h are internal.

We considered feature literals as system features only if they were external in all Git
commits analyzed. We cannot ensure that all identified external feature literals are actually
features of the system. However, according to Berger et al. [22], features are also used for
testing and debugging purposes. In addition, our approach enables the manual setting of
system features if the set of features is known. Our ground truth generator approach is
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Figure 6: Mining feature revisions from changes in time in preprocessor-based SPLs.

limited to systems that do not consider dependencies in Kconfig and Makefiles such as the
Linux Kernel system [132].

Resolving macros in conditions. For each analyzed Git commit, we started preprocessing the
annotated code to find macros that can accept parameters and return values. The output of
this step is the code from the specific commit with all macros in conditions resolved, i.e., the
macro code is expanded to the degree where the conditions of the conditional statements
only consist of feature literals. This step is necessary because we need only macros and their
values in the expressions of conditional blocks to correctly collect all possible features from
conditions. Obtaining these values from expressions and functions is important to build up
the constraints and to retrieve a possible solution via a CSP Solver. After expanding macros
in conditions, all #define and #include statements and conditional blocks remained in
the code, as they can modify the resulting code of the variants. On the right of Figure 6,
we see that the highlighted Line 11 is the only one that changed after this step replacing
#if X(B,C) > Z with #if 2 + 9 > Z.

Computing changes. For each Git commit n we created a tree structure for representing
variability in source code, as shown in Figure 7. Files at a certain point in time are
represented either by SourceNodes or BinaryNodes. The SourceNodes contain child nodes
each with the content of a source code file, e.g., .c/.cpp. A SourceNode has as a root
node BASE that emulates the feature BASE, which contains ConditionalNodes as much as
needed to represent each #ifdef in a file. DefineNodes represent the location in a file of
#define and #undef preprocessor statements, while IncludeNodes represent the #include
preprocessor statements in a file. The tree nodes are used to determine the differences
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Figure 7: Structure for computing Git commit differences to analyze changes in annotated
blocks of code.

between an actual commit and its previous one according to Git-diff21. The adopted tree
structure has a higher level of abstraction, i.e., for every annotated block, a child stores its
content in its respective node category, e.g., conditional nodes, define nodes, and include
nodes. This makes our mining process computationally less expensive. We adopted the
changes at Git-diff granularity, i.e., files and lines, to be able to easily inspect the correctness
of the generated ground truth variants according to changes of features annotated in Git
VCS.

The choice of inspecting changes from consecutive commits was to avoid bias in choosing
specific commits to generate variants as any change results in new feature revision(s) as
input for our approach to generate variants. Therefore, in case of the first Git commit of
the project, we consider all files inserted as the difference. From the differences, we can get
the tree node reflecting the changes. In case any external feature changed or differences
are detected in non-code files, e.g., binary, BASE is considered the changed feature, i.e., for
every code added/removed in the body of the project that does not belong to an external
feature the root feature, i.e., BASE is considered as the changed node. Figure 6 shows two
files, the header file (on top of the figure indicated by an arrow) and the file containing 14
lines on the bottom of the figure. At point T1 we have these two files, and at point T2 the
main file (the file on the bottom of the Figure 6) has been changed in Line 12.

Computing configurations. Every changed node was then used to generate a variant
containing the code activated by this node. We used the Choco solver22 library to provide
the first possible solution for a given constraint to activate the conditional blocks. To find
a configuration for the preprocessor that activates the desired block of code, we obtain an
assignment for all the annotated feature literals that are part of the condition of the block.
We then create a set of constraints that are handed over to a solver. The constraints we
build consist of three parts, which will be explained using the example in Figure 6. Firstly,
we retrieve the local condition, i.e., the condition of the closest conditional block to the

21https://git-scm.com/docs/git-diff
22https://github.com/chocoteam/choco-solver
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changed code. As mentioned before, point T1 is the code of the file main.c before the
change in Line 12, and point in time T2 is when the change was performed in the code
of Line 12 of the file main.c (Figure 6). Thus, the logic formula of the local condition in
the example at point T2 is: 2 + 9 > Z. The second part is the global condition of the
desired block, which is a conjunction of all parent conditions, i.e., all conditional blocks
wrapping the closest conditional block. We obtain it by walking up the tree, starting from
the changed node, which in our example results in a global condition with logic formula:
Y ∧ (2 + 9 > Z).

The feature implications make the third part used to create and apply a mapping of
all internal feature literals to just external feature literals. We thus traverse the tree to
build the feature implications. For example, in Figure 6, we can be seen that A defines
B=2 (Line 3, main.c) and C=9 (Line 4, main.c), and BASE defines Z=3 as there is no
conditional block wrapping Line 1 in the file header.h. Thus, BASE implies header.h and
the features that activate the code block that changed (Line 12) are X, B, C, and Z, which
are defined by features A and BASE. Still, when walking up the file we see that there is
an outermost code block with a condition expression involving the feature Y (Lines 9-14),
which wraps the changed block. The feature implications are mathematically defined as
follows: (A =⇒ (B = 2)) ∧ (A =⇒ (C = 9)) ∧ (BASE =⇒ (Z = 3)). The conjunction
of all these parts, local and global condition and implications, are the logic expression to
the problem constraint that can be handed to the solver: (A =⇒ (B = 2)) ∧ (A =⇒
(C = 9)) ∧ (BASE =⇒ (Z = 3)) ∧ Y ∧ (2 + 9 > Z). The solution assigned that satisfies
this formula is then: BASE = TRUE ∧ Y = TRUE ∧ A = TRUE. We thus know that
these features must be selected to include the changed block of code in a variant.

If the solver finds no solution, the part of code we want to activate is dead as no
configuration can activate it. If a solution can be found, we validate that all feature
literals with assignments are external. If the set of assignments are not empty at this
point, we obtain a configuration for mining a variant. Before using these variants as ground
truth for evaluating ECSEST, it was essential to know what features should be marked
as changed for the respective changed node and thus be treated as a feature revision. We
assumed the features annotated closest to a change as the ones that caused it. Therefore,
we got a solution using only the local condition without any implications. In cases where a
local condition contains more than one feature to activate a particular changed block of
code, nothing affects the ground truth generator approach because the constraint is built
considering all the features of the conditional block. Then, the CSP solution is retrieved
according to the constraints and can assign the change to more than one feature. Therefore,
depending on the feature interactions in more complex conditional expressions comprising
several features, it might happen that a changed block of code is assigned to more than one
feature revision.

In case the solution did not retrieve any potentially changed feature, meaning that there
were no positive external features in the closest condition, we repeated the same process
with the parent conditions until we find a positive external feature from the solution. In
the worst case, we reached the node corresponding to BASE, which is trivially a positive
solution.

Generating ground truth variants. After these previous steps, we generated the ground
truth variants by partially preprocessing the code. Finally, the solution found by the Choco
solver for the configuration was used to retrieve the variant, which could be used as input
for locating feature revisions. Figure 5 illustrates the variants mined with a set of feature
revisions from the changes in time T1 and T2.
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5.5 Metrics

We present and discuss the metrics we used for the evaluation of our approach. We first
computed metrics characterizing system evolution in space and time in real systems to
show the need of such approach at the level of feature revisions. Thus, we computed feature
revision characteristics showing the feature evolution over time, related to their source code
artifacts. We continued by computing the metrics for evaluating the ECSEST approach.
Furthermore, we computed metrics to evaluate ECSEST for composing new variants with
a new combination of feature revisions. Additionally, we also measured runtime metrics to
evaluate the performance for locating feature revisions and composing variants.

The Feature Evolution Metrics are computed to show the number of new features
introduced and the number of features that were changed over the life cycle of a system. Thus,
they indicate the feature evolution of the ground truth variants used in our experiments.

• FeaturesIntroduced . Number of new features introduced over the Git commits ana-
lyzed.

• FeaturesChanged . Number of features changed over the Git commits analyzed.

The Feature Revision Metrics are computed to characterize the differences of the source
code of different revisions of a feature in terms of AST nodes. These metrics represent the
variability existing in the ground truth variants used to evaluate our approach. We thus
count the number of AST nodes used to represent the feature revisions artifacts by our
adapter for C language artifacts. Each of the following metrics counts the number of a
specific AST node within the source code of a feature revision.

• Header . Number of header files.

• Define. Number of defines.

• Field . Number of field/struct declarations.

• Function. Number of functions.

• If . Number of if conditions.

• For . Number of for loops.

• Do. Number of do loops.

• Switch. Number of switch conditions.

• Case. Number of case statements.

• While. Number of while loops.

• Problem. Number of problem blocks not recognized in the C AST.

Feature Revision Location Metrics. Precision, recall, and F1-score measure how well
information is retrieved by a system in relation to the relevant information [190]. They are
commonly used to evaluate feature location techniques [34, 116,129]. In order to assess the
effectiveness of ECSEST to correctly locate and not miss any relevant artifacts, we analyzed
if the stored traces allow retrieving the artifacts belonging to a specific feature revision. We
applied the aforementioned metrics by comparing artifacts of feature revisions composed by
the traces of ECSEST with the artifacts of the ground truth (see Section 5.4). We used
two levels of granularity, due to the feature evolution analyzed, and the different kinds of
files that existed in the subject systems (C, binary and text files): file-level comparison of
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two complete files by matching their content; line-level comparison of two code files. As the
C files from the input variants used for the feature revision location consist of source code
after resolving preprocessor directives, the composed variants also contain the C source
code files with preprocessor directives resolved. Thus, the comparison is performed on the
C source code files after resolving preprocessor directives.

Precision of the file-level comparison is the percentage of correctly composed files, i.e.,
retrieved files with entire content matching the relevant ones. Recall measures the total
percentage of entire matching of all composed files relative to all relevant files. Regarding
line-level comparison, precision is the percentage of correctly retrieved lines, while recall is
the percentage of matched lines retrieved relative to the total of relevant lines.

• PrecisionFileLevel . The percentage of correctly retrieved files in relation to the total
retrieved.

• RecallFileLevel . The percentage of correctly retrieved files in relation to the total
ground truth ones.

• F1ScoreFileLevel . The percentage of the weighted average of Precision and Recall at
the file level.

• PrecisionLineLevel . The percentage of correctly retrieved lines in relation to the total
retrieved.

• RecallLineLevel . The percentage of correctly retrieved lines in relation to the total
ground truth ones.

• F1ScoreLineLevel . The percentage of the weighted average of Precision and Recall
at the line level.

Hint Metrics. To estimate the usefulness of the hints to complete new variants we used the
ArtifactsRatio indicating for how many new variants with hints it might be necessary to
add and/or remove artifacts. Measuring the InteractionsRatio shows the ratio of variants
with hints that say there is no trace with this new combination. This can help to analyze
feature interactions as two specific feature revisions that never appeared together often
cannot co-exist in the same configuration. The ArtifactsRatio is used to present how
helpful our hints can be for showing possible feature interactions when composing a product
with a new combination of feature revisions never used before. Thus, we evaluate if
hints with surplus/missing artifacts are the result of possible feature interactions or an
invalid configuration. Therefore, the correctness of the approach for composing variants is
measured by precision and recall from comparing artifacts of a composed variant with the
corresponding ground truth variant.

• ArtifactsRatio. The percentage of the number of new variants composed with hints
that have artifacts missing/surplus in relation to the total of new variants with hints.

• InteractionsRatio. The percentage of the number of new variants composed with
hints that have feature interactions and retrieved missing/surplus artifacts in relation
to the total number of new variants.

As mentioned in Section 4, the invalid configurations used to compose a variant can
retrieve invalid variants due to feature interactions. However, our approach is designed to
trace artifacts to feature revisions and use them to compose variants. Thus, our evaluation
aims to quantify the correctness of the traces computed and the feasibility of using our
approach for composing new variants or new product revisions with feature revisions
containing updated implementation. In this way, if artifacts are retrieved correctly, valid
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configurations will result in valid variants. Our evaluation does not focus on analyzing if
valid configurations are created but on whether our approach can correctly locate feature
revisions and compose variants given a configuration with feature revisions. Despite already
providing some hints, we need to improve our approach to help users to compose valid and
consistent configurations with the evolution over time. We plan to improve our approach in
future work to analyze the evolution of dependencies and interactions in the source code of
feature revisions, as shown by Feichtinger et al. [48].

Performance Metrics. To run the experiments we used a machine with an Intel® Core™
i7-6700U processor (3.4GHz, 4 cores), 32GB of RAM, SSD storage, and the Windows 10
operating system. Thus, under this capacity circumstances we measured the approach
performance:

• ExtractionTime. The time in seconds for locating feature revisions, i.e., for extraction
of mappings of feature revisions to artifacts from a variant.

• CompositionTime. The time in seconds for composing a new variant, i.e., the time
needed to retrieve traces from a set of feature revisions and compose their artifacts in
order to generate a variant.

Regarding the performance metrics, we are interested only in evaluating ECSEST and
not the process of mining the ground truth. The mining process was just necessary to create
the ground truth and input variants for the evaluation. We thus evaluate our approach
supporting the evolution of annotation-based SPLs in VCSs by locating feature revisions
and composing variants.

5.6 Implementation Aspects

We implemented ECSEST on top of the VarCS ECCO2 and performed some optimizations
to implement the concepts of our approach presented in Section 4.

Feature Interaction Limit. We limited the maximum size of clauses in presence conditions,
i.e., the number of feature literals in a conjunction, which corresponds to the number of
interacting features, to a threshold based on previous empirical research [51, 53]. This
provides a major improvement to the scalability of the approach, as otherwise the number
of clauses would grow exponentially with the number of features.

The threshold can be freely configured, however, for the evaluation presented in this
paper it was set up to three interacting features, which strikes a reasonable balance
between computational effort and quality of results [51, 53]. Considering higher-order
feature interactions would yield only very little additional gain while significantly increasing
cost, similar to t-wise interaction testing of product lines. Using a threshold of feature
interactions limits higher orders of feature interactions in a clause in the set of clauses of a
trace.

Artifact Sequence Alignment. The artifact equivalence is performed by an adaptation of the
Longest Common Subsequence (LCS) algorithm [35] to perform multi-sequence alignment
for comparing more than two variants [51,103], e.g., if they have the same method whose
statements must be aligned.

Artifact Adapters. We keep the approach independent of the types of implementation
artifacts by utilizing artifact type specific adapters that are responsible for parsing respective
files and generating the generic artifact tree structure consisting of folders, files, and further
file type-specific artifacts. The only requirement is that artifacts can be uniquely identified
and compared for equivalence. In this work, we used the Eclipse CDT23, i.e., a C/C++
Development Tooling for implementing the adapter for parsing our target systems artifacts.

23https://www.eclipse.org/cdt/
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The approach itself is implemented with the Java programming language and the data
storage and manipulation depend on the JVM memory. The more nodes have to be created
to store uncommon artifacts, the higher is the memory consumption. This is why we use
fine-grained parsing to store the artifacts. With this new plug-in, compared to our previous
work [134], we can locate more feature revisions because of the reuse of the tree structure
nodes for storage and manipulation of traces and feature revisions in the repository.

6 Results and Discussion

This section discusses the results of our empirical analysis of the feature evolution in space
and time from the six subject systems. Based on the results and analysis, we provide
answers for the five posed RQs.
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analyzed for each system.
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6.1 Feature evolution in space and time

Figure 8 summarizes the evolution in space and time, i.e., the number of features introduced
and changed over the range of Git commits for each of the six systems. The blue line
represents the evolution in space, i.e., the number of new features introduced, while the
red line represents the evolution in time, i.e., the number of revisions of already existing
features. First, regarding evolution in space, Figure 8(a) shows the feature evolution of the
Marlin system. After the product started with Git commit #1 with just feature BASE, the
second commit introduced 16 new features. Then, later in Git commit 51, 109 new features
were introduced. Furthermore, additional new features were included in four Git commits.
For the LibSSH system, shown in Figure 8(b), the initial version started in Git commit
#1 with 13 features. Then, there were ten changes affecting the evolution in space in the
400+ commits analyzed resulting in a total of 39 new features. In case of SQLite, shown
in Figure 8(c), after the first Git commit introducing only the feature BASE, four features
were added in the second commit. Along the commits analyzed, within 11 commits 33 new
features introduced. Regarding the evolution over time, there were 29 Git commits with
feature revisions. In the Irssi system (Figure 8(d)), six features were added in Git commit
#2, eight in Git commit #32 and 10 features in Git commit #162. In three other commits
evolving the system in space, only one feature was introduced. Over time, usually, one
feature changed, with exceptions in eight Git commits, ranging from two up to five features
introduced in the same commit. Regarding Bison, shown in Figure 8(e), features were
introduced in 14 Git commits. The evolution over time resulted in 270 feature revisions
over the 241 commits analyzed, ranging from one to four revisions per commit. In the Curl
system (Figure 8(f)), 46 features were introduced in the first Git commit of the project.
The next evolution in space happened in 10 Git commits. The evolution over the 350 Git
commits resulted in 422 feature revisions, with the highest number of revisions (15) in a
single commit happening in Git commit #189.

From the analysis of system evolution over time of these six systems, we observed that
many features change over time besides the feature that represents the core of the system,
i.e., the feature BASE. For Marlin, 22 different features changed in the Git commits analyzed.
In the LibSSH and Curl systems, 30 features evolved over their Git commits analyzed. For
the SQLite system, 24 features changed, and for the commits analyzed in the Irssi and
Bison systems, 12 and 13 different features changed, respectively.

The evolution over time by feature revision can strongly impact product configurations
of configurable software systems. For example, LibSSH had six features changed and four
introduced in Git commit #38. This evolution in space and time in a single commit makes
engineering tasks complex. Suppose an engineer needs to recover an older version of a
specific feature introduced before commit #38, keeping the change of other features. This
would require great effort and would be error-prone since other current variants of the
LibSSH system could be still using the newer version of that feature. Considering these six
subject systems with different domains, we can see that features have been introduced and
changed frequently during their development, which would benefit from a mechanism to
handle feature revisions, such as the ECSEST approach.

Regarding feature evolution, we considered not only functional features because according
to Berger et al. [22], in the industrial systems features are also needed for testing, debugging,
build, optimization, deployment, simulation, or monitoring. These atypical features can
be introduced for the optimization of non-functional aspects. Therefore, features such
as YYDEBUG from the Curl system (shown in Figure 9(f)), indirectly realize customer
requirements. An interesting example of a feature revision that have to be reused in
previous revisions of the SQLite system can be seen in the feature SQLITE_TEST24, which
evolved meaning that its change had to be applied in four releases of the system: branch-3.9,

24https://www.sqlite.org/src/info/7b4583f932ff0933
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branch-3.18, branch-3.19 and branch-3.22.
In Figure 9, we show the evolution of the C artifacts in the AST of the feature revisions

that most often changed over the Git commits analyzed for each target system without
considering the BASE feature. The number of AST nodes of the feature HAVE_SSH1 from
the LibSSH system (Figure 9(b)) has constant changes, but the number of fields increased
significantly in its second revision. This is also the case for the feature SQLITE_TEST from
SQLite and the feature MSDOS from the Bison system in revision 6 (Figures 9(c) and (e)),
and for the feature ADVANCE from Marlin in revision 4 (Figure 9(a)). The evolution over
time of the feature SQLITE_TEST from the SQLite system (Figure 9(c)) shows an increasing
number of AST nodes up to its sixth revision. After that, the AST nodes remain constant
in terms of numbers per node type, and in case of field nodes, the number decreases in the
twelfth revision of the feature SQLITE_TEST. The feature __GNUC__ from the Irssi system
(Figure 9(d)) has not been changed regarding the number of AST nodes over the three
revisions, with the exception of the number of problem statements/blocks and defines AST
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nodes, which increased during the second revision. For example, for the feature YYDEBUG
from the Curl system (Figure 9(f)) the number of header files, define, field, if, and for AST
nodes increased in its fourth revision. In the fifth revision, for example, 14 header files were
removed from its implementation.

Knowing which commits have new feature revisions can make it easier for developers to
find a specific revision of a feature. The chart on Figure 9(a), for example, shows that the
fourth revision of ADVANCE from the Marlin system substantially changed compared to its
predecessor. We analyzed the Git commit 094afe725 and saw from the commit message
that a merge was performed. A developer added 12 new files, changed eight, and removed
two files that affected the source code of the feature ADVANCE, and hence, the behavior of
how the movement of the printer is done with linear acceleration. For every new revision of
this feature, the movement is affected. In the ninth revision (Git commit 65934ee26) many
changes were performed in the planner source code, which influences the buffers movement
commands and manages the acceleration profile plan.

We now use the feature YYDEBUG from the Curl system as an example. The revisions of
this feature are from five different releases of the system. This feature is used for debugging
purposes and contains many fprintf calls to print the debug messages in a file. Thus,
depending on the revision selected, different debug messages are printed. If developers want
to use the revision of this feature to get more debug messages and combine it with features
of another release, it can be supported with ECSEST instead of manually retrieving the
Git commits of the feature revision and release. Besides that, developers will need to work
manually copy, paste and modify the code of the release with the code of the desired feature
revision.

With the analysis of feature revisions and their number of AST nodes over time in Figure 8,
we can see that feature evolution happens over time, because the source code changes cover
more than single lines and also affect header files, defines, fields, conditions, and loops.
Thus, if a developer wants to use, for example, an older revision of a specific feature with
the previous revisions of other features, ECSEST eases the process of combining features
with different revisions to obtain their different source code, thus producing different system
behaviors.

RQ1. To what extent do features evolve in space and time? We could see
in the mined ground truth variants that multiple features are substantially changed and
introduced in single commits, showing the need for our approach support. By analyzing
the AST nodes of the feature revisions with ECSEST, we could also see that the results of
the feature evolution are meaningful.

6.2 Locating feature revisions.

The results of ECSEST for locating feature revisions are shown in Table 5. The precision
for the six subject systems was 100% at file level and 99% at line level, except for the Bison
system, which was 100% at line level too. The recall values ranged from 92% up to 99% at
file level and were 99% at line level for all systems. The values of F1, which consider both
precision and recall, are between 96% and 99% at file level and 99% at line level, showing
that ECSEST reliably locates feature revisions by a given set of variants in different space
configurations and in many points in time. Overall, when computing the average of all
systems shows that precision and recall stay above 97% at file level and 99% at line level.

Although in this work we developed an adapter more fine-grained for the specific syntax
of the C programming language, there are still issues: some deleted lines are shown in the
example from a code snippet in Listing D.6, with comments after a source code statement.
Our adapter was not developed to capture this kind of comment split into multiple lines.

25https://github.com/Marlin/commit/094afe7c1065d5663628b389f27687a5f465abb8
26https://github.com/Marlin/commit/65934eee9c6ae792c708bc1cea9996c8a5df67f5
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Table 5: Average precision, recall and F1-score metrics of composed artifacts per system.

Subject System Granularity Precision Recall F1-Score

Marlin FileLevel 1.00 0.95 0.98
LineLevel 0.99 0.99 0.99

LibSSH FileLevel 1.00 0.99 0.99
LineLevel 0.99 0.99 0.99

SQLite FileLevel 1.00 0.97 0.98
LineLevel 0.99 0.99 0.99

Bison FileLevel 1.00 0.99 0.99
LineLevel 1.00 0.99 0.99

Curl FileLevel 1.00 0.92 0.96
LineLevel 0.99 0.99 0.99

Irssi FileLevel 1.00 0.99 0.99
LineLevel 0.99 0.99 0.99

All FileLevel 1.00 0.97 0.99
LineLevel 0.99 0.99 0.99

It thus ignores Lines 2 and 3, which are false negatives in the composed variant when
comparing it with the input variant. False positives are due to some lines that are split
into multiple lines by our adapter when reading the source code. For example, Listing D.7
shows a Do Block followed by the If Block and followed by the While Block at the same
line. The parser gets the statement and adds the Do Block in a new line, the If Block in
another line, and the While Block in a third line due to our tree structure for parsing the
artifacts in specific types of AST nodes (Figure 2). Therefore, the source code retrieved is
correct but retrieved in more lines. Therefore, in the end, if we look for the total amount of
lines of all variants of the systems we could easily get a higher number of lines in these
specific cases as explained in the Listings D.6 and D.7.

1 str = buf; /* Default buffer to use when we write the
2 buffer , it may be changed in the flow below
3 before the actual storing is done. */

Listing D.6. Code snippet from Curl, file download.c.

1 do { if (...) {...} } while (0);

Listing D.7. Code snippet from LibSSH, file client.c.
There were only 350 false negative lines and about 300 false positive lines in the Marlin

system from a total of 692,001 relevant lines across all 191 compared variants. In the
LibSSH system, 39 lines were missing and 151 were surplus over all 577 composed variants
of a total of 8,191,428 relevant lines. In the SQLite system, 358 lines were false positives
and 152 were false negative lines in all 424 composed variants from a total of 4,187,636
relevant lines. In the Irssi system, 725 were inserted lines and 789 were missing lines from
a total of 7,549,177 relevant lines. In the Bison system, there were no inserted lines and
only three missing lines from 1,799,181 relevant lines. In the Curl system, there were 241
inserted lines and 5,163 deleted lines from a total of 4,556,535 relevant lines. Despite not
having 100% of precision and recall, as explained before, the few false positives and false
negatives resulted from comment lines ignored when parsing the C source code files or
different alignments, which did not change the code semantically. Furthermore, compared
to a traditional VCS, evolution is tracked at the level AST nodes of feature revisions, not
at the level of text lines or entire files.
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RQ2. To what extent does ECSEST support feature revision location of
existing variants that evolved in space and time? ECSEST proved to be effective
for locating feature revisions in the used dataset, with high values for the measures of
precision, recall, and F1-score. The approach correctly located the artifacts in an automated
way, hence, it may support developers to locate feature revisions and understand their
implementation in systems evolving in space and time, even in cases with many feature
revisions.

6.3 Composing variants with new configurations of existing feature
revisions

Table 6 shows the precision, recall, and F1-score from the comparison of artifacts (file
and line levels) of the ground truth and our composed variants according to the random
configurations generated for the Git commits analyzed. ECSEST retrieves artifacts with
100% precision and 92%-99% recall at file-level granularity. At line-level granularity, the
average precision and recall are 99% for all systems, with an exception for the recall of the
system Bison that is 100%. All values for F1 are greater than 96% at file level, and as well
as the F1 achieved at line level with the F1 achieved from the input variants, all systems
have 99% F1 from random configurations.

For the Marlin system, within a total of 133,161 relevant lines, 64 were inserted and
67 were missing lines. For the LibSSH system, 1002 were inserted lines and 97 lines were
deleted lines, from a total of 5,433,889 relevant lines. For the SQLite system, zero were
false negative lines and 369 were false positive lines in the composed variants with random
configurations from a total of 3,375,242 relevant lines of ground truth random variants.
The false positive lines in the composed variants are caused by feature interactions in the
chosen configurations, which we randomly chose without considering whether a selected
feature excludes parts of code that can be in other features when preprocessing ground
truth variants. Therefore, when the random combination of feature revisions resulted in an
invalid configuration, the ground truth variant cannot be correctly preprocessed, and thus,
has missing artifacts. An example of an invalid random configuration generated in our
evaluation is the random variant generated in Git commit #12 of LibSSH, which contains
the features HAVE_SSH1, DEBUG_CRYPTO, HAVE_PTY_H and BASE.

Table 6: Average Precision, Recall and F1 − Score metrics of composed artifacts for random
configurations per system at FileLevel and LineLevel .

Subject System Granularity Precision Recall F1-Score

Marlin FileLevel 1.00 0.96 0.98
LineLevel 0.99 0.99 0.99

LibSSH FileLevel 1.00 0.99 0.99
LineLevel 0.99 0.99 0.99

SQLite FileLevel 1.00 0.99 0.99
LineLevel 0.99 0.99 0.99

Bison FileLevel 1.00 0.99 0.99
LineLevel 0.99 1.00 0.99

Curl FileLevel 1.00 0.92 0.96
LineLevel 0.99 0.99 0.99

Irssi FileLevel 1.00 0.99 0.99
LineLevel 0.99 0.99 0.99

All FileLevel 1.00 0.97 0.99
LineLevel 0.99 0.99 0.99
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1 #ifdef HAVE_SSH1
2 option ->ssh1allowed =1;
3 #else
4 option ->ssh1allowed =0;
5 #endif

Listing D.8. Code snippet from LibSSH, file options.c.

Listing D.8 shows that when preprocessing a variant with feature HAVE_SSH1 defined,
the ground truth variant will contain Line 2 and not Line 4. Only when this feature is not
defined Line 4 will be present in the variant. Our feature revision location approach correctly
mapped the artifact from Line 2 to presence conditions containing feature HAVE_SSH1 and
Line 4 to presence conditions containing BASE and other features from the respective point
in time. However, the ground truth variant does not contain artifacts of both #ifdefs and
#else blocks, hence, not matching with the composed variant. Curl random variants were
composed with 208 inserted lines and 3,787 deleted lines among a total of 3,266,773 relevant
lines. The randomly composed variants from the Bison system retrieved 54 inserted lines
and no deleted lines from a total of 1,412,709 relevant lines. From a total of 6,972,575
relevant lines in the Irssi system, 786 lines were inserted in the randomly composed variants
and 1,017 lines were deleted.

We did not test the approach’s capability for combining feature revisions from different
points in time due to limitations of our ground truth generator. However, the efficient
feature revision location assures that feature revisions are correctly traced. In addition,
our results of precision and recall for composing new variants only presented lower values
when invalid configurations were used due to feature interactions. We did not evaluate if
valid configurations can be retrieved, but if our approach can correctly compose variants
with the located feature revisions. Our focus is on supporting the feature evolution of
annotation-based SPLs in VCSs as variability models of our target systems were not
available.

RQ3. How effective is ECSEST for composing new variants with feature
revisions? The traces computed by ECSEST proved to be useful for creating new variants
with random configurations, still achieving high values for the measures of precision, recall,
and F1-score. ECSEST can be used to support tasks to compose new variants from an
SPL with a set of feature revisions.

As explained above and in Section 4, false negatives and false positives can be retrieved
in the variants depending on how features are annotated in the ground truth variants and
which feature revisions are combined when composing a new configuration that did not
exist so far. However, the false positives and negatives can be identified easier with the
hints retrieved by ECSEST when composing a new variant. It can happen that in some
composed variants, no artifacts are missing/surplus and the hints file can either have no
hints retrieved or can present hints even there are no feature revision interactions. In the
last case, the hints are retrieved because some of the feature revisions of the configuration
never appeared together in the input variants.

Table 7 shows the ArtifactsRatio indicating that the retrieved hints are useful for all
systems with exception of the hints retrieved for the Bison system. For Bison, only a few
false positives were retrieved from the new variants, which are almost all false positives
caused by the AST nodes used to store the source code in a tree structure. Thus, the false
positives in the Bison system do not stem from the algorithm for locating feature revisions,
and most of them were not retrieved due to feature interactions, as we see when comparing
which artifacts were surplus in relation to the ground truth.

Analyzing the InteractionsRatio, the hints with missing traces were most useful for
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Table 7: Hints Metrics.

Subject System ArtifactsRatio InteractionsRatio
Marlin 88% 90%
LibSSH 38% 88%
SQLite 75% 37%
Bison 2% 66%
Curl 100% 100%
Irssi 60% 83%
All 60.5% 77%

finding artifacts surplus/missing for Marlin (90%) but not as useful for SQLite (37%). In
SQLite, this means that despite having new configurations with feature revisions never
used together previously, most of the new configurations can be combined and might not
have feature interactions. For the Bison system, 66% of the hints with missing traces really
pointed to new configurations with surplus artifacts, which means some of them have been
useful to find that some features should not be used together.

Although hints were obtained for Marlin, SQLite, and Irssi, they do not reflect actual
missing or surplus artifacts. The missing or surplus artifacts were retrieved due to the
differences found when parsing the C source code. For example, the SQLite system has
77 surplus lines due to feature interactions used in the random configurations from the
total false positive lines retrieved. In the Curl system hints have been more useful for
finding surplus/missing artifacts (100% ArtifactsRatio) and alerting for missing/surplus
artifacts because all new variants have feature interactions due to feature revisions never
used together.

RQ4. How useful are the hints suggested by ECSEST for completing new
variants and finding feature interactions when creating new configurations?
The retrieved hints support the completion of a variant by showing clauses of the presence
conditions used to compose a configuration that has feature revisions not included in the
configuration. Furthermore, it makes aware of possible interactions of feature revisions,
when combining feature revisions that were never used together in a configuration.

6.4 Performance of ECSEST to locate feature revisions and compose
variants

The performance of ECSEST to extract features from systems evolving in space and time
(ExtractionTime) is shown in Figure 10. The least time a variant took for extraction of
feature revisions is the minimum value on the left side of each system box plot. While the
highest time for extracting feature revisions of a variant can be seen in the maximum value,
excluding outliers, on the right side of each box plot. On average, the analysis took around
83 seconds for Bison, 250 seconds for Curl, 25 seconds for Irssi, 249 seconds for LibSSH,
88 seconds for Marlin, and 212 seconds for SQLite. In the worst case, it took around 15
minutes for the Curl and LibSSH systems, which are the systems with the highest number
of variants in relation to the other systems.

As expected, the runtime for locating feature revisions increases with the number of
feature revisions and artifacts because the number of artifacts and features is greater to
refine the traces. Thus, the time to create new and update traces, increases for every new
input variant. For the Marlin system, the outliers (represented in Figure 10 by circles)
were caused by Git commit #52, because of the huge number of features introduced (56)
and the necessary refinement of the traces of BASE for every input variant. In addition, it
takes a long time for every new input variant to extract what is new and update from what
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Figure 10: ExtractionTime for feature revision location per variant.

is already in the repository. For SQLite the longer extraction time compared to Irssi is
probably caused by the huge number of artifacts that had to be compared.

Thus, independently of the number of feature revisions, the size of artifacts can impact
the time to refine traces. Another thing that impacts the time to refine traces is the
complexity of the tree structure nodes used to store the artifacts in the repository. It is our
implementation limitation, and as many more different artifacts from one commit to another
in the input variants, many more tree nodes are created to store this information in a tree
structure. In a real scenario, developers may limit the number of commits and variants
to extract feature revisions, using only the desired ones for new combination of feature
revisions. Further, despite developers may need to wait, using the ECSEST approach does
not require developers’ time and effort, which they can use in parallel to complete other
higher-level tasks and decision making.

The CompositionTime for composing a new variant, i.e., joining the artifacts from traces
of a set of feature revisions, is presented in Figure 11. Similar to box plots in Figure 10,
the least time to compose a variant with feature revisions is the minimum value on the left
side of each system box plot, while the highest time for composing a variant with feature
revisions can be seen in the maximum value, excluding outliers, on the right side of each
box plot. For the system with the best runtime performance, it took around two seconds
on average per variant. For the system with the worst average, it took around 45 seconds
per variant. Some of the outliers (represented in Figure 11 by circles) in the systems are
due to the warm-up effect of the JVM. After the warm-up effect, the time remains constant
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Figure 11: CompositionTime for composing each variant.

to compose variants.
For the LibSSH and Curl systems, we had some outliers for which it took up to seven

minutes to compose a variant (Figure 11). When comparing the time between systems, we
see that it is higher in repositories containing more traces and feature revisions because
many clauses from many traces need to be analyzed to join the artifacts into a variant.
However, the number of artifacts is also a factor that influences the composition time. For
example, the Bison system has the smallest number of artifacts compared to the other
systems (see Table 5) and also the smallest time to compose variants. However, the Curl
system is smaller than the Irssi system in terms of artifacts, but took more time to compose
variants because it has more feature revisions, hence, more input variants, which results
in a higher number of traces. Thus, more time is needed to compose a variant with high
numbers of feature revisions and artifacts.

Regarding the composition time, the composition requires that the extraction process
was already performed. Despite the extraction time, only new variants with new feature
revisions have to be analyzed in our incremental process of locating feature revisions, i.e.,
the approach uses existing variants and refines existing and creates new traces only when
needed. Optimizations of the runtime performance can be performed in the implementation
aspects of the approach to store the artifacts and the counter table for mapping feature
revisions to artifacts. Still, the composition time in the worst case only took seven minutes,
while the approach could save significant effort of manually copying and pasting artifacts
for composing variants or for propagating changes of features.
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RQ5. What is ECSEST ’s performance for extracting feature revisions and
composing variants? The automated approach to locate feature revisions and composing
variants with ECSEST may save time in recovering feature information and maintenance
and evolution tasks. The average time for extraction for our target systems ranged from
25 to 250 seconds per variant, whereas the average time for composing a variant ranged
from two to 45 seconds.

7 Threats to Validity

We discuss the threats to the validity of our evaluation using the taxonomy of Wohlin et
al. [193]. We also describe how we mitigated possible threats.

The threats to construct validity are related to the study setup. Firstly, the scenarios used
to validate our approach contain changes to features, but we did not have data on the actual
type of evolution, e.g, performance improvement, new hardware support, bug fixing, etc.
However, the Git commit hashes of every variant and revisions of the features are available
in our dataset for future replications and deeper analysis. Secondly, the methodology chosen
to evaluate our approach was based on variants in space and time created by a configuration
of features in specific changes of annotated code in the Git commits we analyzed. This was
necessary since there is no ground truth available with variants containing feature revisions.
To mitigate this threat and to demonstrate the efficiency of our approach, we generated
new variants with different configurations of feature revisions, which were not used as input
and randomly chosen for the points in time we analyzed.

Another constructive threat can be related to the correctness of our mining ground
truth approach. To mitigate this threat, we manually inspected the ground truth variants
generated for the first 50 Git commits of each target system. Yet, regarding the sufficient
variability of the ground truth variants, we used variants from Git commits containing
introduced and changed features. Furthermore, we also presented some results of how
representative the feature evolution of the mined ground truth variants is for the real
systems we used.

A further threat to construct validity is the new combinations of feature revisions, as we
do not ensure that they are type-safe. However, as mentioned, our approach is intended for
tracing feature revisions to artifacts and using the revisions to compose variants. Thus it is
the user’s responsibility to select valid configurations. Our aim in this work is to analyze if
the mapping between feature revisions and artifacts is performed correctly, and if the variant
composition approach works. Hence any valid configuration will be correctly composed
when every feature revision is correctly traced and the variant composition results in the
expected artifacts. Furthermore, work by Feichtinger et al. [48], presents an approach to
inform engineers about possible inconsistencies between code-level dependencies to feature
models. Thus, we can improve our approach in future work by using a similar analysis to
the variant composition.

A threat to internal validity is the limitation of the underlying tools that could have
affected our results. We implemented our approach in ECCO, in which source code is
available and was used in previous works [51, 52, 56, 97, 129] that shows its efficiency to
extract features and compose variants. We also used our developed adapter to parse the C
source code and to write it back when composing variants. Although we did not compile the
resulting code of the composed variants, we validated the correct composition of artifacts
with smaller examples and subsets of the dataset. Furthermore, our implementation is also
available for further comparison and to reduce possible bias in our results.

A threat to external validity is related to our findings be generalized beyond the cases we
considered. Despite we conducted our evaluation with only six systems, these systems are
from different domains and have different sizes with different behaviors in terms of how
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often their features change along the Git commits. Furthermore, the range of Git commits
analyzed for each system varies, which makes our analysis valid for systems with a higher
number of feature revisions. To mitigate bias in relation to the number of Git commits
we used for each system, we performed a triage specifically for each system, allowing us
to define how far we could go with the memory limitations of our machine used to run
the experiments. We thus believe that our results cover diverse enough scenarios and our
approach can support a large number of feature revisions.

From the perspective of conclusion validity, a threat can be related to the metrics we
used to evaluate our approach effectiveness. However, precision, recall, and F1-score are
efficient to measure how correct is the information retrieved [190]. Furthermore, they are
commonly used to evaluate feature location techniques [34,116,128,129], and hence, can
make easier the comparison of our results.

8 Related Work

Many existing solutions for evolution in space consider only variability in space, such as
SPL, and require integration with a VCS to manage the evolution of software systems in
time [21]. Thus, there is a lack of dedicated and mature tools supporting system evolution
in both dimensions for tracing and developing features over time [3]. Considering both
dimensions, Ananieva et al. [3] presented a conceptual model, which proposes a unified
terminology for tools managing variability in space and time. The conceptual model aims
at clarifying communication between researchers and developers for understanding and
comparing existing tools, and for preventing duplicated tool development.

Regarding existing tools for software system evolution in space and time, ECCO was
presented by Fischer et al. [51] as an extraction and composition tool for re-engineering
cloned system variants into SPL. After mapping all existing features to artifacts, developers
can select the desired set of features to compose a new product variant and also provide hints
for manual completion of which software artifacts would need adaptation. Then, ECCO
was built upon the checkout/commit workflow for distributed software development [100].
It evolved to extract variability information from system variants computing traces of
not only single features but also feature interactions and absence of features, non-unique
traces, and dependencies between traces [103]. ECCO has also been used in a large-scale
industrial case study [68]. In this work, we present a significant extension to the tool, with
a feature revision location [134] and composition of variants to support system evolution
and comprehension of feature evolution.

Superimposition of Models (SuperMod) [172] is a tool for evolving model and implement-
ation of SPLs in a conceptual framework for integrating revision and variation control of
model-driven software projects [173]. Similar to VCSs, SuperMod is based on a workspace
repository, where the user can store and edit the files of source code and modeling of
all revisions and variants of an SPL. Thus, the workspace is populated with the feature
model and the model artifacts belonging to a revision of the SPL. The tool allows artifacts
and feature models to co-evolve. The SPL is evolved in iterations via commit/checkout
operations, similarly to VCSs. SuperMod allows collaborative development, where each
user works with a local repository and can copy and update the central remote repository.
One of the tool limitations is that there is no possibility of working with different artifacts
than model and text files. Furthermore, there are some adoption barriers to migrating the
SPLs from external tools.

DeltaEcore [175] is a tool for capturing variability in space by automatically defining delta
languages for a variety of languages relevant for SPLs and software ecosystems (SECOs).
These delta languages can be textual, graphical, or use any other representation, and are
required for software systems that consist of multiple artifacts, such as design models,
source code, configuration files, or documentation. Thus, the tool is able to derive syntax
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and semantics for custom delta languages from a specific source language’s meta-model.
Furthermore, the tool supports editing, parsing, and interpreting a generated delta language,
which can be integrated into a mechanism for composing variants of an SPL or SECO.
Despite the tool supports variability model based on a Hyper Feature Model (HFM) [174],
which depicts the dependencies and incompatibilities of features version ranges of SPLs, it
is limited to the evolution of system families in time, because it does not support to evolve
artifacts and/or features.

A recent survey by Linsbauer et al. [104] describes existing VarCSs and their essential
differences, the challenges, and insights for the future generation of tools to support the
development of system families evolving in space and time. Among the challenges mentioned,
the externalization expression of which functionalities (variable artifacts) are part of a
variant can become cognitively complex to handle because a high number of revisions and
variants can exist and a million thousand features. For instance, the Linux kernel has
15,000+ features (configuration options), which some of them can have 3 values: “yes",
“no", or “module", with an estimated number of 315,000 possible variants of Linux [153]. It
is still unclear when and for what developers would have advantages by using a VarCS in
such a context. Thus, it is important to conduct studies on what characteristics a VarCS
should have to help to deal with systems evolving in space and time. This includes the
types of artifacts VarCSs should allow to create and manipulate, the kind of operations
they should support, and features ensuring usability to deal with the cognitive complexity
involved. In this direction, studies are needed to investigate the ECCO VarCS capabilities
in more detail. For example, evaluating if its characteristics and operations are useful and
can be performed efficiently to support the evolution of system families. Our study shows
ECCO’s current utility and suggests for improvements, which can serve as a basis for new
studies and the development of tools for software system variability and evolution.

An approach to support the composition of new variants based on opportunistic reuse,
namely clone-and-own methodology, is presented by Ghabach et al [59]. It supports
mappings between features and artifacts in an automated and incremental way. The paper
also discusses possible scenarios, constraints and cost estimation for operations to compose
new variants using clone-and-own. The scenarios are given by three hints: (i) clone and
retain, when developers clone an artifact and can retain it as it is, without modifying its
implementation; (ii) clone and remove, when developers may clone an artifact instance,
and have to remove from it the implementation artifacts that are not required by the
configuration; and (iii) extract and add, when developers extract from product artifact
implementation of feature required by the configuration and add it to a cloned new variant
under composition. The mapping of features and composition hints and cost estimation is
defined by means of correlations, indicating the coexistence of a feature and an artifact, or
a feature and an artifact. Thus, this approach, similar to ours for locating features from
existing system variants, is independent of the artifacts types. However, ECSEST is able
to locate features at different points in time. Regarding the composition of new variants,
ECSEST can also use existing cloned variants to compose new products. In addition,
ECSEST can easily retrieve the variant in an automated way by informing the set of feature
revisions desired in the configuration. Our hints can help developers to determine if the
variants generated in an automated way have possible remaining or missing artifacts. The
results from our feature revision location technique [134] show that our approach maps
features to their artifacts with high precision and recall, which means that less effort is
needed to tailor a variant, as fewer removals and additions are necessary when composing
variants with new configurations.

But4Reuse [114] is an approach for migrating software variants into an SPL by constructing
its feature model. Also, a unified, generic, and extensible framework is proposed to create
benchmarks of feature location techniques and enable users, developers, and researchers to
analyze and compare different techniques [115]. However, the approach does not permit
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an incremental evolution of the SPL, and the feature location approach is not able to
locate feature revisions. Furthermore, although it is not the focus of our work, we also
present a mining tool to generate ground truth variants. Then, ground truth variants can
be generated with our mining tool and the ones already used in our work are available too.
Also, future work on locating feature revisions and re-engineering software system variants
with multiple revisions can benefit of our ground truth generator.

9 Conclusions and Future Work

Existing feature location techniques are limited to analyzing specific system snapshots at one
certain point in time. To address this limitation, this paper demonstrated the importance
of feature location in both space and time and introduced an automated approach for
feature revision location, which allows to reason about features in different points of time
and supports software systems evolving in space and time. The results show that our
approach can locate the features’ artifacts with a precision of 100% at file-level and ≥
99% at line-level granularity, as well as a recall of 97% at file-level and 99% at line-level
granularity. The incorrect information retrieved is due to the different syntactic structures
of the semantic of a source code. Regarding the performance of our feature revision location
approach, we reported that it took on average in the worst case 250 seconds and in the
best case 25 seconds to trace artifacts to feature revisions for each input variant.

For composing a new variant, our approach took around 18 seconds on average of all
systems to compose a variant. Even if manual completion is necessary, it will not require
extensive code additions or deletions by a developer. The hints provided by our approach
make it easier to find possible artifacts to be added or removed based on the presenting
missing and surplus clauses containing the feature revisions and traces with conflicts and/or
that do not exist in the repository. Thus, our automated approach can aid developers to
evolve and maintain software systems at the level of feature revisions, thereby saving time
and effort. Hence, it facilitates the management of system variability in space and time by
composing variants with feature revisions easily and in a reasonable time. It also supports
combining feature revisions that never were combined previously. Therefore, ECSEST
provides additional functionalities than commit messages in Git VCS, such as location of
feature revisions and combination of feature revisions from different commits.

We hope that our results will inspire researchers and tool builders to work with feature
revisions to treat feature evolution in space and time, and will also encourage them to address
current VarCSs limitations and/or improve other existing variability tools combined with a
strategy for dealing with the evolution in time. We encourage future work comparisons
with our work to reuse ECSEST approach’s strength, or fulfill remaining gaps, and improve
its weaknesses/limitations by the use of common metrics, such as precision and recall, and
by the dataset available27 containing the ground truth used.

As future work, we want to conduct more experiments with industrial systems and
from different domains, considering other programming languages such as Java, and other
different artifact types. We also want to evaluate ECSEST for managing clones in product
line engineering with feature revisions, using operations such as a Git VCS pull and push,
but using a distributed ECCO repository for feature revisions to aid the implementation of
system variants with feature revisions [69]. In addition, we plan to improve our approach
for dealing with evolution of dependencies and interactions in the source code of feature
revisions, similar to Feichtinger et al. [48], to automatically check for inconsistencies between
feature revisions and their implementation when composing new configurations. Concluding,
our future biggest goal is to provide an independent mechanism for enabling the management
of variants with any combination of feature revisions.

27http://doi.org/10.5281/zenodo.4555199
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Abstract Software companies need to provide a large set of features satisfying functional
and non-functional requirements of diverse customers, thereby leading to variability in
space. Feature location techniques have been proposed to support software maintenance
and evolution in space. However, so far only one feature location technique also analyses
the evolution in time of system variants, which is required for feature enhancements and
bug fixing. Specifically, existing tools for managing a set of systems over time do not
offer proper support for keeping track of feature revisions, updating existing variants, and
creating new product configurations based on feature revisions. This paper presents four
challenges concerning such capabilities for feature (revision) location and composition of
new product configurations based on feature/s (revisions). We also provide a benchmark
containing a ground truth and support for computing metrics. We hope that this will
motivate researchers to provide and evaluate tool-supported approaches aiming at managing
systems evolving in space and time. Further, we do not limit the evaluation of techniques
to only this benchmark: we introduce and provide instructions on how to use a benchmark
extractor for generating ground truth data for other systems. We expect that the feature
(revision) location techniques maximize information retrieval in terms of precision, recall,
and F-score, while keeping execution time and memory consumption low.
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1 Introduction

Software companies have to tailor and maintain variants of software systems co-existing
simultaneously to serve different customers and new requirements. Variants of a system
are composed of variable assets related to different features that realize the variability of a
system [14]. The system variants reflect different configurations and have been described as
variability in space [174,189]. Variability in time, on the other hand, results from the need of
modifying variants due to enhancements, for example, to address new customer requirements
or changes to the environment, such as alternative hardware or the optimization of non-
functional properties [189]. Thus, over the system life cycle, the introduction of new features
in existing variants, a.k.a evolution in space can be required. Further, features can be
subject to failures or unwanted behaviors and bug fixes have to be done, introducing new
revisions of features, which is referred to as evolution in time [174]. Furthermore, the
evolution in time results in variant revisions, which are sequential versions of a variant,
containing different artifacts for the same configuration, i.e., a set of features [21,104].

The aforementioned scenarios lead to many system variants that need to be managed
and evolved in parallel. This highly increases the workload of developers. Furthermore,
keeping system variability consistent across different types of artifacts manually is an
error-prone task [104]. Software product line (SPL) approaches have been adopted by
engineers for systematic variability management and reuse of the core assets and features’
artifacts, thereby accelerating the production of variants and reducing the effort and costs
for maintaining and creating products [84]. Regarding the transition of existing systems to
an SPL, feature location is the first and one of the most essential tasks of the re-engineering
process to migrate a family of existing system variants into an SPL [12].

Despite feature location and SPLs cover the space dimension, they do not address the
time dimension [21]. SPLs by themselves do not provide proper management of evolution
in time and engineers have to adopt additional mechanisms and tools. SPLs are frequently
managed in version control systems (VCSs), which track changes of a system over time [31].
However, current VCSs have support for managing the versions of variants but not for
managing versions of features. Some pieces of work point out the need for an SPL to have
a portfolio to reflect potential versions of a feature, i.e., the feature revisions that co-exist,
which can be reused for creating different variants [21, 104,134].

Existing feature location techniques can locate features of a system [40, 128, 157] or a
set of systems [1, 129], but only at one point in time. Although there are some feature
location techniques considering the space dimension, they have limitations as presented
in our previous work [128]. Still, regarding the time dimension, there is only one feature
revision location technique able to retrieve traces of feature revisions [134], which is in
the early stages of development, with sub-optimal results, and limitations in terms of the
number of feature revisions that can be located.

We thus stress the need of introducing new, or improving existing, feature (revision)
location techniques by describing four challenges to be solved by the research community
and tool developers. These challenges are concerned with locating features at one point in
time as well as at multiple points in time (Section 2). Yet, the proposed feature (revision)
location techniques support engineers in creating new configurations based on the traced
features and their revisions. By proposing these challenges, we aim to motivate researchers
and tool developers to optimize and address the limitations of existing techniques and to
develop more efficient mechanisms for managing systems evolving in space and time.

Evaluating solutions for the challenges with a common benchmark can enable future
work comparisons [128]. For this purpose, we contribute with both a benchmark and a
ground truth extractor1 for evaluating these techniques. Thus, the benchmark contains:

1https://github.com/GabrielaMichelon/git-ecco/tree/challenge
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(i) a ground truth dataset2 with variants from three C open-source systems evolving in
space and time with their respective configurations at one point and multiple points in
time; (ii) tool utilities1 to evaluate the efficiency of feature (revision) location techniques
that compute automatically three metrics: precision, recall, and f-score.

The remainder of this paper is structured as follows. Section 2 presents the motivation
and challenges of this paper. Section 3 provides detailed information on the benchmark.
We discuss the scenarios and metrics for evaluating solutions and briefly explain the ground
truth extractor. Section 4 concludes the paper.

2 The Challenges

To describe our challenges, we now present the background of feature (revision) location
techniques. Then we explain the importance of these techniques, their current limitation,
and observed complexity, or lack of studies, which makes the challenges interesting.

2.1 Feature Location

A feature can be a functional or non-functional requirement that represents a software
system’s functionality [40]. Let’s use the Marlin system, open-source firmware for 3D
printers, as an example. It has features for linear acceleration, control of the temperature
to melt the filament or buzzer sounds for warning signals [88]. Some of the features are
optional, i.e., not all products of a system have to include them. These optional features are
thus units of variability responsible for changing the system’s functionality and behavior.

Marlin is an annotated SPL, however, according to a study from Krüger et al. [88], not all
optional features are used in variation points, e.g., #ifdef preprocessor directives. During
maintenance and evolution, developers need the complete locations of features, which can
be outside the annotations. This requires manual work that could be automated by feature
location techniques. Furthermore, feature location techniques are helpful not only for the
software maintenance and evolution tasks as well as for the re-engineering process of cloned
software systems into SPLs [12,163].

There already exists a large number of feature location techniques, which use, e.g, textual,
static, or dynamic analyses, or combinations thereof [40,128]. Despite many feature location
techniques available, results can be compromised by the number of existing software systems
when using a comparison-based static analysis for re-engineering existing software systems
into SPLs [129], for example. Yet, the quality results of textual analysis are highly-dependent
on index terms and queries, while the results from the dynamic analysis are very sensitive
to how scenarios and features are executed [128]. Nonetheless, feature location techniques
have different evaluations, metrics, and ground truth data sets, making it difficult for
practitioners to decide which one is most appropriate for them [163]. Further, some of the
work proposing feature location techniques cannot be reproduced because of not available
material, which makes it difficult to compare existing feature location techniques with
improvements addressing their limitations [128,163].

Therefore, more common benchmarking frameworks for evaluating feature location
techniques have been suggested [116]. Currently, there is a benchmark proposed by
Martinez et al. [116] based on the ArgoUML system, which is implemented in Java.
However, differences in source code entities between different languages have a strong
impact on feature location [167]. Yet, there are few benchmarks available that can be used
to apply feature (revision) location to C-preprocessor-based systems. A benchmark for
C software systems would ease the proposal and evaluation of feature (revision) location
techniques because C is widely used for realizing SPLs with preprocessor directives [119].
We thus now present our first challenge:

2http://doi.org/10.5281/zenodo.4586774
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Challenge 1: Feature location at one point in time. We aim to motivate researchers
and tool developers to evaluate existing or new feature location techniques based on
systems developed in C or C++, using a common benchmark enabling the studies’
reproducibility and comparison.

We also want to motivate the development of approaches for automation of the reuse of
features for composing new configurations. We thus present our second challenge:

Challenge 2: Composition of new product configurations with a set of features.
We evaluate if the proposed feature location approaches for C/C++ systems can be used
to compose new configurations with the traces retrieved to simplify and accelerate the
composition of not yet existing variants of a system.

2.2 Feature Revision Location

A feature revision represents the change of the implementation artifacts associated with
a feature at a specific point in time [71, 132]. Previous studies [21, 71, 132, 134] stress
the need to manage system variants over time at the level of feature revisions. Even if
a software system already manages its features as an SPL, maintenance and evolution
will introduce changes, affecting the implementation of the system’s features, which may
become inconsistent across the existing variants. This makes changes increasingly hard to
understand and propagate to variants at any time a feature has to be revised [42]. In the
literature and practice, there is no unified mechanism to deal with the evolution of systems
in space and time [21]. While we presented a feature revision location technique for software
systems evolving in space and time in our previous work [134], there are some limitations
that need yet to be addressed. For instance, a higher number of feature revisions could be
traced with less memory consumption and higher effectiveness in retrieving information.
We thus present the third challenge to motivate researchers and tool developers to improve
our feature revision location technique or propose new ones overcoming current limitations.

Challenge 3: Feature revision location at multiple points in time. We expect
solutions with feature revision location techniques to automate the process of mapping
implementation artifacts to feature revisions for every existing different implementation
of a feature at multiple points in time.

Aiming to motivate better and unified mechanisms and tools for system evolution in
space and time, we present our fourth challenge. It is intended to use the feature revision
location technique solution from the third challenge as an extractive approach [12] for
re-engineering existing variants’ versions by systematically reusing feature revisions. By
raising initial solutions for systematic reuse in software systems evolving in space and time
to the level of features, developers and engineers can benefit not only when propagating
bug fixes and refactoring but also when creating new configurations with different behaviors
of the same feature.

Challenge 4: Composition of new product configurations with a set of feature
revisions. We expect solutions that can automate the reuse of existing feature revisions
of a system in order to compose different configurations with the different implementations
of features at different points in time.

3 Benchmark

Our benchmark can be used for evaluating and comparing feature (revision) location
techniques for the C programming language with an established set of metrics1 and dataset2
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from available open-source systems.

3.1 Subject Systems

Our benchmark is composed of preprocessed SPLs implemented in combination with version
control systems, which keep a history of the changes over time and enable us to generate
ground truth variants with features from multiple points in time. The systems are LibSSH,
Irssi, and Marlin. These systems have been used in previous studies [57, 64, 90, 96, 118,
132, 134], and are managed in Git repositories. We thus believe they are representative
target systems to be used to evaluate feature (revision) location techniques. The LibSSH3

system is a multi-platform C library implementing the SSHv2 protocol on the client- and
server-side. This project was initiated in 2005 and now has around 5000 commits in the
master branch. The Marlin4 system is a variant-rich open-source embedded firmware for
3D printers created in 2011 and with currently around 15000 commits. The Irssi5 system is
an internet relay chat client for Linux with around 6000 commits since 1999.

3.2 Evaluation Scenarios

Variants with Features. The scenarios for evaluating solutions for Challenge 1 are from
variants containing a set of features from one release, i.e., the state of the system after the
last commit of a release in the repository. We designed 13 scenarios (Table 1) of each system
with a specific number of variants, where scenarios 1-10 have 1-10 input configurations and
scenario 11 has 100, scenario 12 has 200, and scenario 13 has 300 input configurations.

For Challenge 2, we make available 50 new configurations that do not exist in any one of
the scenarios to evaluate the solutions.

Table 1: Scenarios to feature revision location.

Number of Features
Scenario Number of Variants LibSSH Marlin Irssi
1 1 65 41 26
2 2 91 56 32
3 3 99 61 37
4 4 102 65 40
5 5 104 65 40
6 6 104 67 40
7 7 104 67 41
8 8 104 67 41
9 9 104 67 41
10 10 104 67 41
11 100 104 67 41
12 200 104 67 41
13 300 104 67 41

Variants with Feature Revisions. The scenarios for evaluating solutions for Challenge 3 are
from variants containing a set of feature revisions from 400 points in time, i.e., from the
first 400 Git commits of the master branch. We designed nine scenarios (Table 2) for each
system according to a specific number of Git commits, by varying the number of variants
for each system. For both all systems, we present scenarios that consist of locating feature

3https://gitlab.com/libssh/libssh-mirror
4https://github.com/MarlinFirmware/Marlin
5https://github.com/irssi/irssi
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Table 2: Scenarios for feature revision location.

LibSSH Marlin Irssi
S C V F R V F R V F R
1 1 14 14 0 1 1 0 7 7 0
2 5 22 14 8 19 13 6 11 7 4
3 10 32 14 18 24 13 11 16 7 9
4 15 40 15 25 37 16 20 21 7 14
5 50 111 34 77 81 16 64 65 15 50
6 100 182 34 148 333 130 179 84 16 101
7 200 322 39 283 463 135 303 170 28 209
8 300 458 40 418 579 139 413 341 28 314
9 400 575 40 536 683 142 514 441 28 414

S = Scenario; C = Number of Git commits; V = Number of variants; F = Number of
features; R = Number of feature revisions.

revisions from 1 point in time to up 400 points in time. Furthermore, we make available an
additional scenario for the LibSSH system with a set of 6730 variants, resulting in 6596
feature revisions from 103 features, thereby covering the entire evolution of the master
branch.

For Challenge 4, we make available one new configuration for each point in time where
solution proponents can combine different feature revisions for all the scenarios presented
in this work.

3.3 Format of the Proposed Solutions

The ground truth is composed of a set of variants and no traces, which allows for multiple
valid traces. Then, the solutions for all challenges have to show as result the variants
composed with the mappings of each feature (revision) to its artifacts that are part of a
configuration, i.e., the artifacts that form the input and new product configurations of
the ground truth. Additionally, we expect the result files from the metrics computed (see
Section 3.4).

3.4 Metrics

In this section, we present the metrics suggested to evaluate the feature (revision) location
technique regarding its quality (correctness) and performance (scalability). The correctness
must be computed based on the comparison between the ground truth variants with
corresponding retrieved ones obtained after performing the feature (revision) location.

Correctness. To evaluate the effectiveness of the feature revision location technique, i.e.,
the quality of its search results, we adopt efficient and frequently used information retrieval
metrics precision (P) and recall (R) [112,163] (cf. Equations E.1 and E.2). Furthermore,
we also adopt the F-score (F), i.e., the harmonic average between precision and recall, as
a single value equally balancing precision and recall (cf. Equation E.3) and assessing the
techniques’ effectiveness [41].

We used two levels of granularity due to the granularity of the ground truth extraction.
The variants can be obtained from lines that have been added/removed/changed in C source
code, binary, or text files from Git commits. Therefore, the metrics can be computed at the
granularity of file-level and line-level: The file-level comparison checks if two complete files
(ground truth and retrieved) match their content; while the line-level analysis compares
every line of source code of two files (ground truth and retrieved).
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Precision (Equation E.1) is the relation of the true positives (TP), i.e., the correctly
retrieved files, which entire content matches, and false positives (FP), i.e., the files that
their entire content does not match. At the line-level, TP are the lines of source code that
match related to the lines of source code retrieved by the technique that does not exist in
the ground truth variants.

Precision =
TP

TP + FP
(E.1)

Recall (Equation E.2) is the relation of the false negatives (FN), i.e., the files or lines of
source code that exist in the ground truth variant but were not retrieved by the technique.

Recall =
TP

TP + FN
(E.2)

The F-score (Equation E.3) is the harmonic average of precision and recall.

F-Score = 2 ∗ Precision ∗Recall

Precision+Recall
(E.3)

Instructions on how to use our tool utils for computing automatically these metrics are
available in our Git repository1.

Scalability. To evaluate the scalability of the feature (revision) location technique, we expect
proponents to compute runtime and memory consumption, reporting the specification of
the infrastructure used to run the proposed solutions. These metrics can help to compare
and improve techniques regarding the time complexity and space complexity, i.e., how much
time a technique takes to locate features (revisions) for each variant and how much memory
is necessary to locate features and their revisions for a specific number of variants.

3.5 Ground Truth Extractor

The ground truth extractor and instructions on how to use it are available in our Git
repository1. We now explain how our extractor mines features and feature revisions to
generate a ground truth. Our explanation relies on a small running example shown in
Listing E.1, where we use the first Git commit of the Marlin system.

We first need the set of features of a system defined to be able to preprocess variants.
Then, we make available the possibility of setting up manually the set of existing features
of a system in our extractor or computing features automatically based on our approach to
identifying features.

Identifying features. From a specific range of Git commits, we analyze all macros used in
preprocessor directives. The macros used in the #ifdefs directives are candidates to be part
of the features of the system. We also analyze the macros used in #define directives, which
we discard from being features of the system. Therefore, the macros considered features
are the ones that have never been used in #define directives in the range of Git commits
analyzed.

In the case of our running example (Listing E.1), the possible feature candidates are
the macros CONFIGURATION_H, ADVANCE, MOTHERBOARD, and __AVR_ATmega644P__. In the
next analysis, we look for define directives and eliminate the macros CONFIGURATION_H
and MOTHERBOARD. Thus, the set of features we consider is composed of features ADVANCE,
__AVR_ATmega644P__ and BASE. The feature called BASE is the feature containing the core
of the system. The BASE can be represented by the files that are not source code files,
and all code of conditional blocks, i.e., #ifdefs with macros that are not part of the set of
features, for example, the conditional block from Lines 1-9 in Listing E.1. Now we have the
set of features to preprocess the variants or to start the process of mining feature revisions.
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6 #ifndef CONFIGURATION_H
7 #define CONFIGURATION_H
8 #define MOTHERBOARD 5
9 #ifdef ADVANCE

10 #define EXTRUDER_ADVANCE_K 0.02
11 #endif
12 #endif
13
14 #if MOTHERBOARD == 1
15 #ifndef __AVR_ATmega644P__
16 #error
17 #endif
18 #endif

Listing E.1. Code snippet adapted from file Configurations.h from the first Git commit
750f6c3 of the Marlin system.

Mining feature revisions. Mining feature revisions consists of finding features, which were
affected by changes to their implementation in some Git commits, with lines added, changed,
or removed at specific points in time. For this analysis, we consider all conditional blocks,
all #define directives, and also the blocks and directives from the top of the file including
recursively all the ones in header files, i.e., files used in the #include directives. We create
then a set of constraints to represent the conditions that must be satisfied to execute a
specific line of source code (see [132, 134]). For example, Line 3 in Listing E.1 will be
executed if the macro CONFIGURATION_H is not defined. In this example, we then know that
CONFIGURATION_H is not a feature and the conditional block of the macro CONFIGURATION_H
belongs to the BASE.

However, in more complex cases, let us suppose the macro MOTHERBOARD is not defined
on Line 3 in Listing E.1 and there is another file containing a conditional block with a
feature that is defining a value 1 for the macro MOTHERBOARD. Thus, the conditional block
from Line 9-13 would belong to that specific feature defining MOTHERBOARD, instead of
belonging to the BASE feature. Yet, another example is the macro MOTHERBOARD defined
in two locations: on Line 3 in Listing E.1 and in another file as we mentioned. We thus
consider the conditional block of the macro MOTHERBOARD as part of the closest feature,
which in this example is BASE. We use the closest feature because the MOTHERBOARD value
would have already been replaced by the value on Line 3, which is part of the feature BASE
before preprocessing the block of Lines 9-13 in Listing E.1. Finally, when preprocessing
the source code, the lines of the conditional block of the macro MOTHERBOARD would be
executed from the code of the feature BASE.

A feature revision then is a feature that is introduced or changed when comparing one
point in time to another. We thus get a range of Git commits and compare the first commit
with the second, the second commit with the third, and so on. The comparison consists
of analyzing for each line of source code added, removed, or changed between two Git
commits, which features are part of it. The feature(s) is/are then selected to preprocess
a variant, which contains the artifacts of at least the feature BASE and possible other
feature(s). Thus, from the features used to preprocess a variant, only the closest feature
will have an increment in its revision, i.e., in the number that proceeds the name of the
feature, which represents kind of a new version of a feature revision.

Taking into account that all the lines from Listing E.1 were added, we have three variants
representing the changes of this point in time. One is a variant containing the feature
revision BASE.1 with the number 1 as it is the first revision of the feature BASE. The
preprocessed result comprises Lines 2, 3, and 5 from Listing E.1. A second variant contains
the feature revisions BASE.1 and ADVANCE.1. The result from preprocessing comprises
Lines 2 and 3 from Listing E.1. The third variant containing the feature revisions BASE.1
and __AVR_ATmega644P__ has then Lines 2, 3 and 11 from Listing E.1. This same process
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repeats for every change over all artifact files of a system for every Git commits of a selected
range. More details of the approach we used to create variants with feature revisions are
shown in our previous work [132,134].

We used the ChocoSolver6 to implement our benchmark extractor and to automate the
analysis of building correctly the set of constraints and getting correct solutions, i.e, the
features to be selected or excluded to execute a specific line of source code. We chose this
solver because it enables us to get basic arithmetic operations and comparisons of numeric
values in the range of integer or double despite basic logic operations and Boolean values,
which would not be possible with an SAT solver, for example.

4 Conclusion

We presented four challenges relevant for feature (revision) location techniques to motivate
the proposal of solutions for better mechanisms and tools to support the evolution of
systems in space and time. We made available a benchmark for comparing future work for
supporting reproducibility. It contains a dataset and tool utilities for computing metrics.
The dataset comprises a set of variants and their configurations to be used as input for the
techniques and a set of variants and their configurations to be used as new configurations.
This allows to evaluate if the resulting traces can be used to compose variants with a new
set of features and feature revisions.

The ground truth of features at one point in time was generated by preprocessing SPLs
with our benchmark extractor, as well as the ground truth of feature revisions from multiple
points in time. The ground truth extractor for generating variants with feature revisions
was also used in our previous studies [132,134], which mines previously the feature revisions
of a range of Git commits from the SPLs in Git version control systems. Thus, although the
benchmark comprises three systems, our ground truth extractor can be used to generate
ground truth data sets and variants for any point in time.
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