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Abstract
We give a new fpt algorithm testing isomorphism of n-vertex graphs of tree width k in time
2k polylog(k) poly(n), improving the fpt algorithm due to Lokshtanov, Pilipczuk, Pilipczuk, and
Saurabh (FOCS 2014), which runs in time 2O(k5 log k) poly(n). Based on an improved version of
the isomorphism-invariant graph decomposition technique introduced by Lokshtanov et al., we
prove restrictions on the structure of the automorphism groups of graphs of tree width k. Our
algorithm then makes heavy use of the group theoretic techniques introduced by Luks (JCSS 1982)
in his isomorphism test for bounded degree graphs and Babai (STOC 2016) in his quasipolynomial
isomorphism test. In fact, we even use Babai’s algorithm as a black box in one place. We give a
second algorithm which, at the price of a slightly worse run time 2O(k2 log k) poly(n), avoids the
use of Babai’s algorithm and, more importantly, has the additional benefit that it can also be
used as a canonization algorithm.
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1 Introduction

Already early on in the beginning of research on the graph isomorphism problem (which asks
for structural equivalence of two given input graphs) a close connection to the structure and
study of the automorphism group of a graph was observed. For example, Mathon [11] argued
that the isomorphism problem is polynomially equivalent to the task of computing a generating
set for the automorphism group and also to computing the size of the automorphism group.
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67:2 An Improved Isomorphism Test for Bounded-Tree-Width Graphs

With Luks’s polynomial time isomorphism test for graphs of bounded degree [10], the
striking usefulness of group theoretic techniques for isomorphism problems became apparent
and they have been exploited ever since (e.g. [2, 12, 15, 13]). In his algorithm, Luks shows
and uses that the automorphism group of a connected graph of bounded degree, after a
vertex has been fixed, has a very restricted structure. More precisely, the group is in the class
Γk of all groups whose composition factors are isomorphic to a subgroup of the symmetric
group Sym(k).

Most recently, Babai’s quasipolynomial time algorithm for general graph isomorphism [1]
adds several novel techniques to tame and manage the groups that may appear as the
automorphism group of the input graphs.

A second approach towards isomorphism testing is via decomposition techniques (e.g.
[3, 5, 7]). These decompose the graph into smaller pieces while maintaining control of the
complexity of the interplay between the pieces. When taking this route it is imperative to
decompose the graph in an isomorphism-invariant fashion so as not to compare two graphs
that have been decomposed in structurally different ways.

A prime example of this strategy is Bodlaender’s isomorphism test [3] for graphs of
bounded treewidth. Bodlaender’s algorithm is a dynamic programming algorithm that takes
into account all k-tuples of vertices that separate the graph, leading to a running time
of O(nk+c) to test isomorphism of graphs of tree width at most k.

Only recently, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh [9] designed a fixed-
parameter tractable isomorphism test for graphs of bounded tree width which has a running
time of 2O(k5 log k) poly(n). This algorithm first “improves” a given input graph G to a
graph Gk by adding an edge between every pair of vertices between which more than
k pairwise internally vertex disjoint paths exist. The improved graph Gk isomorphism-
invariantly decomposes along clique separators into clique-separator free parts, which we
will call basic throughout the paper. The decomposition can in fact be extended to an
isomorphism-invariant tree decomposition into basic parts, as was shown in [4] to design a
logspace isomorphism test for graphs of bounded tree width. For the basic parts, Lokshtanov
et al. [9] show that, after fixing a vertex of sufficiently low degree, is it possible to compute
an isomorphism-invariant tree decomposition whose bags have a size at most exponential in k
and whose adhesion is at most O(k3). They use this invariant decomposition to compute a
canonical form essentially by a brute-force dynamic programming algorithm.

The problem of computing a canonical form is the task to compute, to a given input
graphG, a graphG′ isomorphic toG such that the outputG′ depends only on the isomorphism
class of G and not on G itself.

The isomorphism problem reduces to the task of computing a canonical form: for two
given input graphs we compute their canonical forms and check whether the canonical forms
are equal (rather than isomorphic).

As far as we know, computing a canonical form could be algorithmically more difficult
than testing isomorphism. It is usually not very difficult to turn combinatorial isomorphism
tests into canonization algorithms, sometimes the algorithms are canonization algorithms in
the first place. However, canonization based on group theoretic isomorphism tests is more
challenging. For example, it is still open whether there is a graph canonization algorithm
running in quasipolynomial time.

Our Results
Our main result is a new fpt algorithm testing isomorphism of graphs of bounded tree width.

I Theorem 1. There is a graph isomorphism test running in time 2k polylog(k) poly(n), where
n is the size and k the minimum tree width of the input graphs.
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In the first part of the paper, we analyze the structure of the automorphism group of a
graph G of tree width k. Following [9] and [4], we pursue a two-stage decomposition strategy
for graphs of bounded tree width, where in the first step we decompose the improved graph
along clique separators into basic parts. We observe that these basic parts are essential
for understanding the automorphism groups. We show (Theorem 8) that with respect to a
fixed vertex v of degree at most k, we can construct for each basic graph H an isomorphism-
invariant tree decomposition of width at most 2O(k log k) and adhesion at most O(k2) where,
in addition, each bag is equipped with a graph of small degree which is defined in an
isomorphism-invariant way and gives us insight about the structure of the bag. In particular,
using Luks’s results [10], this also restricts the structure of the automorphism group.

Our construction is based on a similar construction of an isomorphism-invariant tree
decomposition in [9]. Compared to that construction, we improve the adhesion (that is, the
maximum size of intersections between adjacent bags of the decomposition) from O(k3) to
O(k2). More importantly, we expand the decomposition by assigning a group and a graph to
each bag.

Using these groups, we can prove that Aut(H)v (the group of all automorphisms of H that
keep the vertex v fixed) is a Γk+1 group. This significantly restricts possible automorphism
groups. Moreover, using the graph structure assigned to each bag, we can also compute
the automorphism group of a graph of tree width k within the desired time bounds. The
first, already nontrivial step towards computing the automorphism group, is a reduction
from arbitrary graphs of tree width k to basic graphs. The second step reduces the problem
of computing the automorphism group of a basic graph to the problem of computing the
automorphism group of a structure that we call an expanded d-ary tree. In the reduction,
the parameter d will be polynomially bounded in k. Then as the third step, we can apply a
recent result [6] due to the first three authors that allows us to compute the automorphism
groups of such expanded d-ary trees. This result is heavily based on techniques introduced
by Babai [1] in his quasipolynomial isomorphism test. In fact, it even uses Babai’s algorithm
as a black box in one place.

We prove a second result that avoids the results of [6, 1] and even allows us to compute
canonical forms, albeit at the price of an increased running time.

I Theorem 2. There is a graph canonization algorithm running in time 2O(k2 log k) poly(n),
where n is the size and k the tree width of the input graph.

Even though it does not employ Babai’s new techniques, this algorithm still heavily
depends on the group theoretic machinery. As argued above, the design of group theoretic
canonization algorithms often requires extra work, and can be slightly technical, compared to
the design of an isomorphism algorithm. Here, we need to combine the group theoretic can-
onization techniques going back to Babai and Luks [2] with graph decomposition techniques,
which poses additional technical challenges and requires new canonization subroutines.

2 Preliminaries

Graphs. We use standard graph notation. All graphs G = (V,E) considered are undirected
finite simple graphs. We denote an edge {u, v} ∈ E by uv. Let U,W ⊆ V be subsets of
vertices. We write E(U,W ) for the edges with one vertex in U and the other vertex from W ,
whereas E(U) are the edges with both vertices in U . By N(U), we denote the neighborhood
of U , i.e., all vertices outside U that are adjacent to U . For the induced subgraph on U ,
we write G[U ], whereas G − U is the induced subgraph on V \ U . A rooted graph is a
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67:4 An Improved Isomorphism Test for Bounded-Tree-Width Graphs

triple G = (V,E, r) where r ∈ V is the root of the graph. For two vertices v, w ∈ V we
denote by distG(v, w) the distance between v and w, i.e. the length of the shortest path
from v to w. The depth of a rooted graph is the maximum distance from a vertex to the
root, that is, depth(G) = maxv∈V distG(r, v). The forward-degree of a vertex v ∈ V is
fdeg(v) = |{w ∈ N(v) | dist(w, r) = dist(v, r) + 1}|. Note that |V | ≤ (d+ 1)depth(G) where
d = maxv∈V fdeg(v) is the maximal forward-degree.

Separators. A pair (A,B) where A∪B = V (G) is called a separation if E(A\B,B \A) = ∅.
In this case we call A ∩B a separator. A separation (A,B) is an (L,R)-separation if L ⊆ A
and R ⊆ B and in this case A ∩ B is called an (L,R)-separator. A separation (A,B) is a
called a clique separation if A ∩B is a clique and A \B 6= ∅ and B \A 6= ∅. In this case we
call A ∩B a clique separator.

Tree Decompositions. A tree decomposition of a graph G is a pair (T, β), where T is a
rooted tree and β : V (T )→ Pow(V (G)) is a mapping into the power set of V (G) such that:
1. for each vertex v ∈ V (G), the set {t ∈ V (G) | v ∈ β(t)} induces a nonempty and

connected subtree of T, and
2. for each edge e ∈ E(G), there exists t ∈ V (T ) such that e ⊆ β(t).
Sets β(t) for t ∈ V (T ) are called the bags of the decomposition, while sets β(s) ∩ β(t) for
st ∈ E(T ) are called the adhesions sets. The width of a tree decomposition T is equal to
its maximum bag size decremented by one, i.e. maxt∈V (T ) |β(t)| − 1. The adhesion width of
T is equal to its maximum adhesion size, i.e. maxst∈E(T ) |β(s) ∩ β(t)|. The tree width of a
graph, denoted by tw(G), is equal to the minimum width of its tree decompositions.

A graph G is k-degenerate if every subgraph of G has a vertex with degree at most k. It
is well known that every graph of tree width k is k-degenerate.

Groups. For a function φ : V → V ′ and v ∈ V we write vφ for the image of v under φ, that is,
vφ = φ(v). We write composition of functions from left to right, e.g, v(σρ) = (vσ)ρ = ρ(σ(v)).
By [t] we denote the set of natural numbers from 1 to t. By Sym(V ) we denote the symmetric
group on a set V and we also write Sym(t) for Sym([t]). We use upper case Greek letters
∆,Φ,Γ,Θ and Ψ for permutation groups.

Labeling cosets. A labeling coset of a set V is a set of bijective mappings τ∆ where τ
is a bijection from V to [|V |] and ∆ is a subgroup of Sym(|V |). By Label(V ), we denote
the labeling coset τ Sym(|V |). We say that τ∆ is a labeling subcoset of a labeling coset ρΘ,
written τ∆ ≤ ρΘ, if τ∆ is a subset of ρΘ and τ∆ forms a labeling coset again. Sometimes
we will choose a single symbol to denote a labeling coset τ∆. For this will usually use the
Greek letter Λ. Recall that Γk denotes the class of all finite groups whose composition factors
are isomorphic to subgroups of Sym(k). Let Γ̃k be the class of all labeling cosets Λ = τ∆
such that ∆ ∈ Γk.

Orderings on sets of natural numbers. We extend the natural ordering of the natural
numbers to finite sets of natural numbers. For two such sets M1,M2 we define M1 ≺ M2
if |M1| < |M2| or if |M1| = |M2| and the smallest element of M1 \M2 is smaller than the
smallest element of M2 \M1.
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Isomorphisms. In this paper we will always define what the isomorphisms between our
considered objects are. But this can also be done in a more general context. Let φ : V → V ′.
For a vector (v1, . . . , vk) we define (v1, . . . , vk)φ as (vφ1 , . . . , v

φ
k ) inductively. Analogously, for

a set we define {v1, . . . , vn}φ as {vφ1 , . . . , vφn}. For a labeling coset Λ ≤ Label(V ) we write
Λφ for φ−1Λ. In the paper we will introduce isomorphisms Iso(X,X ′) for various objects
X and X ′. Unless otherwise stated these are all φ : V → V ′ such that Xφ = X ′ where we
apply φ as previously defined. For example, the isomorphism between two graphs G and G′
are all φ : V → V ′ such that Gφ = G′ which means that G has an edge uv, if and only if G′
has the edge uφvφ.

3 Clique separators and improved graphs

To perform isomorphism tests of graphs of bounded tree width, a crucial step in [9] is to
deal with clique separators. For this step the concept of a k-improved graph is the key.

I Definition 3 ([9]). The k-improvement of a graph G is the graph Gk obtained from G by
connecting every pair of non-adjacent vertices v, w for which there are more than k pairwise
internally vertex disjoint paths connecting v and w. We say that a graph G is k-improved
when Gk = G.

A graph is k-basic if it is k-improved and does not have any separating cliques. In
particular, a k-basic graph is connected.

We summarize several structural properties of Gk.

I Lemma 4 ([9]). Let G be a graph and k ∈ N.
1. The k-improvement Gk is k-improved, i.e., (Gk)k = Gk.
2. Every tree decomposition (T, β) of G of width at most k is also a tree decomposition of

Gk.
3. There exists an algorithm that, given G and k, runs in O(k2n3) time and either correctly

concludes that tw(G) > k, or computes Gk.

Since the construction of Gk from G is isomorphism-invariant, the concept of the improved
graph can be exploited for isomorphism testing and canonization. A k-basic graph has severe
limitations concerning its structure as we explore in the following sections. In the canonization
algorithm from [9] a result of Leimer [8] is exploited that says that every graph has a tree
decomposition into clique-separator free parts, and the family of bags is isomorphism-invariant.
While it is usually sufficient to work with an isomorphism-invariant set of bags (see [14]) we
actually require an isomorphism invariant decomposition, which can indeed be obtained.

I Theorem 5 ([8],[4]). There is an algorithm that, given a connected graph G, computes
a tree decomposition (T, β) of G, called clique separator decomposition, with the following
properties.
1. For every t ∈ V (T ) the graph G[β(t)] is clique-separator free (and in particular connected).
2. Each adhesion set of (T, β) is a clique.
3. |V (T )| ∈ O(|V (G)|).
4. For each bag β(t) the adhesion sets of the children are all equal to β(t) or the adhesion

sets of the children are all distinct.
The algorithm runs in polynomial time and the output of the algorithm is isomorphism-
invariant (w.r.t. G).
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67:6 An Improved Isomorphism Test for Bounded-Tree-Width Graphs

4 Decomposing basic graphs

In this section, we shall construct bounded-width tree decompositions of k-basic graphs of
tree width at most k. Crucially, these decompositions will be isomorphism-invariant after
fixing one vertex of the graph. Our construction refines a similar construction of [9].

Let us define three parameters cS, cM, and cL (small, medium and large) that depend on k:
cS := 6(k+1) ∈ O(k), cM := cS+cS(k+1) ∈ O(k2) and cL := cM+2(k+1)

(
cM
k+2
)2 ∈ 2O(k log k).

The interpretation of these parameters is that cM will bound the size of the adhesion sets
and cL will bound the bag size. The parameter cS is used by the algorithm which in certain
situations behaves differently depending on sets being larger than cS or not.

The bound cM ∈ O(k2) improves the corresponding bound cM ∈ O(k3) in [9]. However,
the more significant extension of the construction in [9] is that in addition to the tree
decomposition we also construct both an isomorphism-invariant graph of bounded forward-
degree and depth and an isomorphism-invariant Γk+1-group associated with each bag.

The weight of a set S ⊆ V (G) with respect to a (weight) function w : V (G) → N is∑
v∈S w(v). The weight of a separation (A,B) is the weight of its separator A ∩ B. For

sets L,R ⊆ V (G), among all (L,R)-separations (A,B) of minimal weight there exists a
unique separation with an inclusion minimal A. For this separation we call A∩B the leftmost
minimal separator and denote it by SL,R(w). Moreover, we define SL,R = SL,R(1) where 1
denotes the function that maps every vertex to 1.

For U ⊆ V (G) we define a weight function wU,k such that wU,k(u) = k for all u ∈ U and
wU,k(v) = 1 for all v ∈ V \ U . Given a weight function w, using Menger’s theorem and the
Ford-Fulkerson algorithm it is possible to compute SL,R(w). The following lemma generalizes
Lemma 3.2 of [9]. Through this generalization we obtain the adhesion bound O(k2) for our
decomposition.

I Lemma 6. Let G be a graph, let S ⊆ V (G) be a subset of vertices, and let {Ti ⊆ V (G)}i∈[t]
and {wi : V (G)→ N}i∈[t] be families where each Ti is a minimum weight (Li, Ri)-separator
with respect to wi for some Li, Ri ⊆ S. Let w : V (G)→ N be another weight function such
that for all i ∈ [t]:
1. w(v) = wi(v) for all v ∈ V (G) \ S, and
2. w(v) ≥ wi(v) for all v ∈ V (G).
Let D := S ∪

⋃
i∈[t] Ti. Suppose that Z is the vertex set of any connected component of G−D.

Then w(N(Z)) ≤ w(S).

The lemma can be used to extend a set of vertices S that is not a clique separator to a
set D in an isomorphism-invariant fashion while controlling the size of the adhesion sets of
the components of G−D. It will be important for us that we can also extend a labeling coset
of S to a labeling coset of D and furthermore construct a graph of bounded forward-degree
and depth associated with D and S.

I Lemma 7. Let k ∈ N and let G be a graph that is k-improved. Let S ⊆ V (G) and let
Λ ≤ Label(S) be a labeling coset such that
1. ∅ ( S ( V (G),
2. |S| ≤ cM,
3. S is not a clique,

4. G− S is connected,
5. S = NG(V (G) \ S), and
6. Λ ∈ Γ̃k+1.

There is an algorithm that either correctly concludes that tw(G) > k, or finds a proper
superset D of S and a labeling coset Λ̂ ≤ Label(D) and a connected rooted graph H with the
following properties:
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(A) D ) S,
(B) |D| ≤ cL,
(C) Λ̂ ∈ Γ̃k+1,

(D) if Z is the vertex set of any connected
component of G−D, then |N(Z)| ≤ cM,

(E) D ⊆ V (H), depth(H) ≤ k + 3 and
fdeg(v) ∈ kO(1) for all v ∈ V (H).

The algorithm runs in time 2O(k log k)|V (G)|O(1) and the output (D, Λ̂, H) is isomorphism-
invariant (w.r.t. the input data G,S,Λ and k).

Here, the output of an algorithm A is isomorphism-invariant if all isomorphisms between
two input data (G,S,Λ, k) and (G′, S′,Λ′, k′) extend to an isomorphism between the output
(D, Λ̂, H) and (D′, Λ̂′, H ′) (an isomorphism between (G,S,Λ, k) and (G′, S′,Λ′, k′) is a
mapping φ : V (G) → V (G′) such that (G,S,Λ, k)φ = (G′, S′,Λ′, k′) where we apply φ as
defined in the preliminaries).

Proof. We consider two cases depending on the size of S.
Case |S| ≤ cS: Let I := {({x}, {y}) | x, y ∈ S, x 6= y, xy /∈ E(G)} and let D = S ∪⋃

(L,R)∈I SL,R(wL∪R,k+1). We set w := wS,k+1 and then we have the following for every
vertex set Z of a connected component of G−D by Lemma 6.

|N(Z)| ≤ w(N(Z))
6
≤ w(S) ≤ cS(k + 1) ≤ cM.

For every xy /∈ E(G) there is a ({x}, {y})-separator of size at most k disjoint from {x, y},
because G is k-improved. Thus |D| ≤ |S| + k|S|2 ≤ cS + kc2

S ≤ cL. Moreover, since
G − S is connected and S = NG(V (G) \ S), for all distinct x, y ∈ S every minimum
weight ({x}, {y})-separator contains a vertex that is not in S. It follows that D 6= S.

Case cS < |S| ≤ cM: Let I := {(L,R) | |L| = |R| ≤ k + 2, |SL,R| ≤ k + 1} and D =
S ∪

⋃
(L,R)∈I SL,R.

The properties of D follow from similar arguments as in the first case. The fact that
I is nonempty follows from the existence of a balanced separation (for details see [9]).
Next, we show how to find Λ̂ in both cases. To each x ∈ D \ S we associate the set
Ax := {(L,R) ∈ I | x ∈ SL,R}. Two vertices x and y occur in exactly the same separators if
Ax = Ay. In this case we call them equivalent and write x ≡ y. Let A1, . . . , At ⊆ D \ S be
the equivalence classes of “≡”. Since each x is contained in some separator of size at most
k + 1 we conclude that the size of each Ai is at most k + 1.

For each labeling λ ∈ Label(S) we choose an extension λ̂ : D → {1, . . . , |D|} such that
λ̂|S = λ and for x, y ∈ D\S we have xλ̂ < yλ̂ if Aλx ≺ Aλy . (Recall that ≺ is the linear order of
subsets of N as defined in the preliminaries). Inside each equivalence class Ai, the ordering is
chosen arbitrarily. Define Λ̂ := ({idS}× Sym(A1)× . . .× Sym(At)) · {λ̂ | λ ∈ Λ} ≤ Label(D).
By construction the coset Λ̂ does not depend on the choices of the extensions λ̂. Since
|Ai| ≤ k + 1 for all 1 ≤ i ≤ t we conclude that Λ̂ ∈ Γ̃k+1, as desired.

It remains to explain how to efficiently compute Λ̂. For this we simply remark that it
suffices to use a set of extensions M ⊆ Λ such that Λ is the smallest coset containing all
elements of M (i.e., we can use a coset analogue of a generating set). We conclude that Λ̂
can be computed in polynomial time in the size of I.

Last but not least, we show how to construct the graph H. The Case |S| ≤ cS is easy
to handle. In this case we define H as the complete graph on the set D ∪ {r} where r is
some new vertex, which becomes the root of H. The forward-degree of r is bounded by
|D| which in turn is bounded by kO(1). We consider the Case cS < |S| ≤ cM. We define
V (H) := {(L,R) | L,R ⊆ S, |L| = |R| ≤ k+2}∪D. Clearly, we have I ⊆ V (H). For the root
we choose (∅, ∅) ∈ V (H). We define the edges E(H) := {(L,R)(L′, R′) | L ⊆ L′, R ⊆ R′, |L|+
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1 = |R|+1 = |L′| = |R′|}∪{x(L,R) | x ∈ D,x ∈ SL,R, (L,R) ∈ I}. Since for each pair (L,R)
there are at most |S|2 different extensions (L′, R′) with |L|+ 1 = |R|+ 1 = |L′| = |R′| and
since each separator SL,R contains at most k+1 vertices, we conclude that the forward-degree
of each vertex in H is bounded by |S|2 + k+ 1 ∈ kO(1). The depth of H is at most k+ 3. J

A labeled tree decomposition (T, β, α, η) is a 4-tuple where (T, β) is a tree decomposition
and α is a function that maps each t ∈ V (T ) to a labeling coset α(t) ≤ Label(β(t)) and η is
a function that maps each t ∈ V (T ) to a graph η(t).

The previous lemma can be used as a recursive tool to compute our desired isomorphism-
invariant labeled tree decomposition.

I Theorem 8. Let k ∈ N and let G be a k-basic graph and let v be a vertex of degree at
most k. There is an algorithm that either correctly concludes that tw(G) > k, or computes a
labeled tree decomposition (T, β, α, η) with the following properties.
1. the width of (T, β) is bounded by cL,
2. the adhesion width of (T, β) is bounded by cM,
3. the degree of T is bounded by kc2

L and the number of children of t with common adhesion
set is bounded by k for each t ∈ V (T ),

4. |V (T )| is bounded by O(|V (G)|),
5. for each bag β(t) the adhesion sets of the children are all equal to β(t) or the adhesion

sets of the children are all distinct. In the former case the bag size is bounded by cM,
6. for each t ∈ V (T ) the graph η(t) = Ht is a connected rooted graph such that β(t) ∪

β(t)2 ⊆ V (Ht) and for each adhesion set S there is a corresponding vertex S ∈ V (Ht),
depth(Ht) ∈ O(k) and fdeg(v) ∈ kO(1) for all v ∈ V (Ht), and

7. α(t) ∈ Γ̃k+1.
The algorithm runs in time 2O(k2 log k)|V (G)|O(1) and the output (T, β, α, η) of the algorithm
is isomorphism invariant (w.r.t. G, v and k). Furthermore, if we drop Property 7 as a
requirement, the triple (T, β, η) can be computed in time 2O(k log k)|V (G)|O(1).

Here, the output of an algorithm A is isomorphism-invariant, if all isomorphisms between
two input data extend to an isomorphism between the output. More precisely, an isomorphism
φ ∈ Iso((G, v, k), (G′, v′, k′)) extends to an isomorphism between (T, β, α, η) and (T ′, β′, α′, η′)
if there is a bijection between the tree decompositions φT : V (T ) → V (T ′) and for each
node t ∈ V (T ) a bijection between the vertices of graphs φt : V (η(t))→ V (η′(φT (t))) which
extends φ, i.e. φt(x) = xφ for all x ∈ β(t) ∪ β(t)2 ∪ 2β(t) where we naturally apply φ as
defined in the preliminaries. Furthermore, these extensions define an isomorphism between
the output data, i.e. for all nodes t ∈ V (T ) we have that β(t)φ = β′(φT (t)), α(t)φ = α′(φT (t))
and η(t)φt = η′(φT (t)).

I Remark. We later use the isomorphism-invariance of the labeled tree decomposition
(T, β, α, η) from the previous theorem in more detail. Let t ∈ V (T ) be a non-root node and
let S ⊆ V (G) be the adhesion set to the parent node of t and let It = (Tt, βt, αt, ηt) be the
decomposition of the subtree rooted at t and Gt the graph corresponding to It. Then ηt is
isomorphism-invariant w.r.t. Tt, βt, Gt and S.

5 Coset-Hypergraph-Isomorphism

After having computed isomorphism-invariant tree decompositions in the previous sections
we now want to compute the set of isomorphisms from one graph to another in a bottom up
fashion. Let G1, G2 be the two input graphs and suppose we are given isomorphism-invariant
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tree decompositions (T1, β1) and (T2, β2). For a node t ∈ V (Ti) we let (Gi)t be the graph
induced by the union of all bags contained in the subtree rooted at t. The basic idea is to
compute for all pairs t ∈ V (T1), t′ ∈ V (T2) the set of isomorphisms from (G1)t to (G2)t′ (in
addition the isomorphisms shall also respect the underlying tree decomposition) in a bottom
up fashion.

The purpose of this section is to give an algorithm that solves this problem at a given
bag (assuming we have already solved the problem for all pairs of children of t and t′). Let
us first give some intuition for this task. Suppose we are looking for all bijections from β1(t)
to β2(t′) that can be extended to an isomorphism from (G1)t to (G2)t′ . Let t1, . . . , t` be the
children of t and t′1, . . . , t′` the children of t′. Then we essentially have to solve the following
two problems. First, we have to respect the edges appearing in the bags β1(t) and β2(t′). But
also, every adhesion set β(t) ∩ β(ti) has to be mapped to another adhesion set β(t′) ∩ β(t′j)
in such a way that the corresponding bijection (between the adhesion sets) extends to an
isomorphism from (G1)ti to (G2)t′

j
. In order to solve this problem we first consider the case

in which the adhesion sets are all distinct and define the following abstraction.
An instance of coset-hypergraph-isomorphism is an 8-tuple I = (V1, V2,S1,S2, χ1, χ2,F , f)

such that
1. Si ⊆ Pow(Vi),
2. χi : Si → N is a coloring,
3. F = {ΘS ≤ Sym(S) | S ∈ S1}, and
4. f = {τS1,S2 : S1 → S2 | S1 ∈ S1, S2 ∈ S2 such that χ1(S1) = χ2(S2)} such that

a. every τS1,S2 ∈ f is bijective, and
b. for every color i ∈ N and every S1, S

′
1 ∈ χ−1

1 (i) and S2, S
′
2 ∈ χ−1

2 (i) and θ ∈ ΘS1 , θ
′ ∈

ΘS′
1
it holds that

θτS1,S2(τS′
1,S2)−1θ′τS′

1,S
′
2
∈ ΘS1τS1,S′

2
. (N)

The instance is solvable if there is a bijective mapping φ : V1 → V2 such that
1. S ∈ S1 if and only if Sφ ∈ S2 for all S ∈ Pow(V1),
2. χ1(S) = χ2(Sφ) for all S ∈ S1, and
3. for every S ∈ S1 it holds that φ|S ∈ ΘSτS,Sφ .
In this case we call φ an isomorphism of the instance I. Moreover, let Iso(I) be the set of
all isomorphisms of I. Observe that property (N) describes a consistency condition: if we
can use σ1 to map S1 to S2, σ2 to map S′1 to S2, and σ3 to map S′1 to S′2, then the mapping
σ1σ

−1
2 σ3 can be used to map S1 to S′2. As a result the set of all isomorphisms of the instance

I forms a coset, that is Iso(I) = Θφ for some Θ ≤ Sym(V1) and φ ∈ Iso(I).
In the application in the main recursive algorithm, the sets Vi = β(ti), the hyperedges

Si are the adhesion sets of ti (and we will also encode the edges appearing in the bag in
this way), and the cosets ΘS1τS1,S2 tell us which mappings between the adhesion sets S1
and S2 extend to an isomorphism between the corresponding subgraphs. The colorings χ1
and χ2 are used to indicate which subgraphs can not be mapped to each other (and also to
distinguish between the adhesion sets and edges of the bags which will both appear in the
set of hyperedges).

The next Lemma gives us one of the central subroutines for our recursive algorithm.

I Lemma 9. Let I = (V1, V2,S1,S2, χ1, χ2,F , f) be an instance of coset-hypergraph-isomor-
phism. Moreover, suppose there are isomorphism-invariant rooted graphs H1 = (W1, E1, r1)
and H2 = (W2, E2, r2) such that
1. Vi ∪ Si ⊆Wi,
2. fdeg(w) ≤ d for all w ∈Wi,
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3. depth(Hi) ≤ h, and
4. |S| ≤ d for all S ∈ Si
for all i ∈ {1, 2}. Then a representation for the set Iso(I) can be computed in time 2O(h·(log d)c)

for some constant c.

Here, isomorphism-invariant means that for every isomorphism φ ∈ Iso(I) there is an
isomorphism φH from H1 to H2 such that vφ = vφH for all v ∈ V1 and {vφ | v ∈ S} = SφH

for all S ∈ S1.
The proof of this lemma is based on the following theorem.

I Theorem 10 ([6]). Let x, y : V → Σ be two strings, let Γ ≤ Sym(V ) be a Γd-group and
γ ∈ Sym(V ). Then one can compute a representation of the set of all permutations γ′ ∈ Γγ
mapping x to y in time nO((log d)c) for some constant c where n = |V |.

Actually, we shall only need the following corollary. A rooted tree T = (V,E, r) is d-ary
if every node has at most d children. An expanded rooted tree is a tuple (T,C) where
T = (V,E, r) is a rooted tree and C : L(T )2 → rg(C) is a coloring of pairs of leaves of T
(L(T ) denotes the set of leaves of T ). Isomorphisms between expanded trees (T,C) and
(T,C ′) are required to respect the colorings C and C ′.

I Corollary 11. Let (T,C) and (T ′, C ′) be two expanded d-ary trees and let Γ ≤ Aut(T )
and γ ∈ Iso(T, T ′). Then one can compute a representation of the set {φ ∈ Γγ | (T,C)φ =
(T ′, C ′)} in time nO((log d)c) for some constant c.

Proof sketch of Lemma 9. The proof essentially proceeds in three steps. First, the two
graphs Hi (i = 1, 2) are extended by adding a vertex (Si, v) for every Si ∈ Si, v ∈ Si which
is connected to the vertex Si. Moreover, we compute the tree unfoldings Ti of both extended
graphs.

Then, in the second step, we compute the set of isomorphisms γ from T1 to T2 such
that for every S ∈ S1 the set {S} × S is mapped to ({S} × S)γ according to the restrictions
given by the cosets from the instance I. This is possible since all the sets may be mapped
independently of each other. In particular, at this point, identical elements v ∈ V1 appearing
in different sets S, S′ ∈ S1 may be mapped to different elements v′, v′′ ∈ V2.

To resolve this problem we use the coloring on the pairs of leaves of T1 and T2 to encode
which elements in the tree unfolding correspond to identical elements in the original graph.
The set of isomorphisms respecting these additional constraints can be computed using
Corollary 11. J

Looking at the properties of the tree decompositions computed in Theorem 5 and 8 we
have for every node t that either the adhesion sets to the children are all equal or they are
all distinct. Up to this point we have only considered the problem that all adhesion sets are
distinct (i.e. the coset-hypergraph-isomorphism problem). Next we consider the case that all
adhesion sets are equal. Towards this end we define the following variant.

An instance of multiple-colored-coset-isomorphism is a 6-tuple I = (V1, V2, χ1, χ2,F , f)
such that
1. χi : [t]→ N is a coloring,
2. F = {Θi ≤ Sym(V ) | i ∈ [t]}, and
3. f = {τi,j : V1 → V2 | i, j ∈ [t] such that χ1(i) = χ2(j)} such that

a. every τi,j ∈ f is bijective, and
b. for every color i ∈ N and every j1, j

′
1 ∈ χ−1

1 (i) and j2, j
′
2 ∈ χ−1

2 (i) and θ ∈ Θj1 , θ
′ ∈ Θj′

1

it holds that

θτj1,j2τ
−1
j′

1,j2
θ′τj′

1,j
′
2
∈ Θj1τj1,j′

2
. (N2)
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The instance is solvable if there is a bijective mapping φ : V1 → V2 and a π ∈ Sym(t) such
that
1. χ1(i) = χ2(π(i)) for all i ∈ [t], and
2. for every i ∈ [t] it holds that φ ∈ Θiτi,π(i).
The set Iso(I) is defined analogously.

I Lemma 12. Let I = (V1, V2, χ1, χ2,F , f) be an instance of multiple-colored-coset-isomor-
phism. Then a representation for the set Iso(I) can be computed in time

min((|V1|!|F|)O(1), |F|!O(1)2O((log |V1|)c)).

6 The isomorphism and the canonization algorithm

6.1 The isomorphism test
Before describing the main algorithm we need to state the following auxiliary lemma.

I Lemma 13. Let G = (D,E) be a graph of tree width at most k and let H be a rooted
graph such that D ⊆ V (H). Then, one can compute an isomorphism-invariant rooted graph
H ′ such that
1. H is an induced subgraph of H ′,
2. fdegH′(w) ≤ max{d, k + 1}+ 1 for all w ∈ V (H ′) where d = maxw∈V (H) fdegH(w),
3. depth(H ′) ≤ depth(H) + k + 2, and
4. for every clique C ⊆ D there is a corresponding vertex C ∈ V (H ′)
in time 2O(k) · |V (H)|O(1).

Here, isomorphism invariant means that every isomorphism φ ∈ Iso(H1, H2), which
naturally restricts to an isomorphism from G1 to G2, can be extended to an isomorphism
from H ′1 to H ′2.

I Theorem 14. Let k ∈ N and let G1, G2 be connected graphs. There is an algorithm that
either correctly concludes that tw(G1) > k, or computes the set of isomorphisms Iso(G1, G2)
in time 2O(k(log k)c)|V (G)|O(1) for some constant c.

Proof sketch. The first step is to decompose the given graphs. Notice that the decomposition
techniques in Theorem 8 can only be applied to k-basic graphs, i.e. k-improved and clique-
separator free. Therefore, we proceed as follows. First, we consider the k-improvement Gk1
and Gk2 of G1 and G2, respectively. We build the clique-separator decompositions of the
k-improvements using Theorem 5. Secondly, we refine each (k-basic) bag of the decomposition
by constructing a labeled decomposition for each bag using Theorem 8. (In fact, we need to
fix a vertex in order to apply Theorem 8. For this reason we are just able to construct a
family of decompositions in each k-basic bag. But it turns out, that we are also able to handle
this. Also note that we use the version of Theorem 8 that runs in time 2O(k log k)|V (G)|O(1)

and omits the labeling cosets α(t).) The crucial point is that in our final decomposition the
size of each bag is bounded by cL ∈ 2O(k log k) and more importantly each bag is assigned to
a graph that restricts possible automorphisms of the corresponding graph structure. More
precisely each bag β(t) is assigned to a graph η(t) of bounded degree such that V (η(t))
contains the vertices of β(t), the edges of β(t) and also the adhesion sets of t. In fact, we
also need to embed the clique separators of the outer decomposition into the graph η(t).
However, this can be achieved using Lemma 13.

From now on, we start to compute isomorphisms preserving the decompositions T1 and T2
in a bottom up fashion. (In order to compute edge-preserving bijections, we need to consider
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the edges of G1 and G2 rather than the “improved” edges in Gk1 and Gk2). The decomposition
of both graphs have a root bags denoted t1 and t2, respectively. Both roots have children
t11, . . . , t1` and t21, . . . , t2`. By Tji we denote the decomposition rooted at tji and consisting
of all bags that are descendants of tji. By using a dynamic programming approach we assume
that the isomorphisms from T1i to T2i′ are already computed. To compute the isomorphisms
from T1 to T2 we use our subroutine, namely coset-hypergraph-isomorphism, which is defined
and algorithmically solved in Section 5. For a moment, assume that all adhesion sets of t1
(and t2, respectively) are distinct. We restrict the computed isomorphisms from T1i to T2i′

to their corresponding adhesions sets of t1 and t2, respectively. These restrictions are used
to define F and f. The edge relation can also be encoded in F and f. More precisely, we add
each edge uv ∈ E(β1(t1)) and u′v′ ∈ E(β2(t2)) to S1 and S2, and define Θuvτuv,u′v′ as the set
of bijections mapping uv to u′v′. The colorings χ1 and χ2 help to define the right instance,
e.g. they distinguish the edges from the adhesion sets in S1 and S2, respectively. Finally, we
solve the instance (β1(t1), β2(t2),S1,S2, χ1, χ2,F , f) with the algorithm from Lemma 9. In
case all adhesion sets are equal we simply use Lemma 12 instead. J

I Remark. The degree of the polylogarithmic term (i.e. the constant c) in the running time
of the previous theorem is related to the corresponding constant in Babai’s quasipolynomial
time isomorphism test [1]. Since the constant that Babai’s algorithm achieves is not specified
in [1], we also do not specify the constant.

6.2 Canonization
We briefly describe how to adapt our techniques to obtain an algorithm which computes a
canonization for a given graph of tree width of at most k. Since Babai’s quasipolynomial
time algorithm [1] only tests isomorphism of two given input graphs and can not be used for
canonization purposes, we need to replace the methods introduced in Section 5. To achieve
this we still use group theoretic techniques, but compared to isomorphism the machinery is
quite lengthy and technical.

I Theorem 15. There is a graph canonization algorithm running in time 2O(k2 log k) poly(n),
where n is the size and k the tree width of the input graph.

Proof sketch. The basic approach for the canonization algorithm is very similar to the
approach presented in Theorem 14. One of the main differences is how the algorithm gets
its insight into the structure of the bags of the decomposition of the k-basic graphs. In the
isomorphism algorithm the graph η(t) serves as a tool to exploit the structure of each bag t.
For the canonization algorithm we instead use the fact that each bag can be guarded with a
labeling coset α(t) of bounded composition-width.

We then define the corresponding variant of the coset-hypergraph-isomorphism problem
suited for canonization. For the algorithm we assume that, instead of graphs of small degree
and depth, we get a labeling coset of composition width at most k + 1. This problem can
then be solved in time nO(k) using the group theoretic techniques from [2, 12, 15] where n
denotes the number of vertices (i.e. the number of vertices in a single bag in the application
in the main canonization algorithm). Since the bag size is bounded by 2O(k log k) this gives
the overall running time of 2O(k2 log k) poly(n). J
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