
A large-scale comparative analysis of Coding Standard
conformance in Open-Source Data Science projects

Andrew J. Simmons
Deakin University

Applied Artificial Intelligence Inst.
Geelong, VIC, Australia

a.simmons@deakin.edu.au

Scott Barnett
Deakin University

Applied Artificial Intelligence Inst.
Geelong, VIC, Australia

scott.barnett@deakin.edu.au

Jessica Rivera-Villicana
Deakin University

Applied Artificial Intelligence Inst.
Geelong, VIC, Australia

jessica.riveravillicana@deakin.edu.au

Akshat Bajaj
Deakin University

Applied Artificial Intelligence Inst.
Geelong, VIC, Australia

akshat.bajaj@deakin.edu.au

Rajesh Vasa
Deakin University

Applied Artificial Intelligence Inst.
Geelong, VIC, Australia

rajesh.vasa@deakin.edu.au

ABSTRACT
Background: Meeting the growing industry demand for Data Sci-
ence requires cross-disciplinary teams that can translate machine
learning research into production-ready code. Software engineer-
ing teams value adherence to coding standards as an indication
of code readability, maintainability, and developer expertise. How-
ever, there are no large-scale empirical studies of coding standards
focused specifically on Data Science projects. Aims: This study in-
vestigates the extent to which Data Science projects follow code
standards. In particular, which standards are followed, which are
ignored, and how does this differ to traditional software projects?
Method: We compare a corpus of 1048 Open-Source Data Science
projects to a reference group of 1099 non-Data Science projects
with a similar level of quality and maturity. Results: Data Science
projects suffer from a significantly higher rate of functions that
use an excessive numbers of parameters and local variables. Data
Science projects also follow different variable naming conventions
to non-Data Science projects. Conclusions: The differences indicate
that Data Science codebases are distinct from traditional software
codebases and do not follow traditional software engineering con-
ventions. Our conjecture is that this may be because traditional
software engineering conventions are inappropriate in the context
of Data Science projects.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories.
KEYWORDS
Open-source software, data science, machine learning, code style,
code smells, code quality, code conventions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEM ’20, October 8–9, 2020, Bari, Italy
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7580-1/20/10. . . $15.00
https://doi.org/10.1145/3382494.3410680

ACM Reference Format:
Andrew J. Simmons, Scott Barnett, Jessica Rivera-Villicana, Akshat Bajaj,
and Rajesh Vasa. 2020. A large-scale comparative analysis of Coding Stan-
dard conformance in Open-Source Data Science projects. In ESEM ’20: ACM
/ IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM) (ESEM ’20), October 8–9, 2020, Bari, Italy. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3382494.3410680

1 INTRODUCTION
Software that conforms to coding standards creates a shared under-
standing between developers [14], and improves maintainability
[8, 19]. Consistent coding standards also enhances the readability
of the code by defining where to declare instance variables; how
to name classes, methods, and variables; how to structure the code
and other similar guidelines [17].

A growing trend in the software industry is the inclusion of Data
Scientists on software engineering teams to build predictive models,
analyze product and customer data, present insights to business
and to build data engineering pipelines [13]. Data Scientists may
not follow common coding standards as they often come from non-
software engineering backgrounds where software engineering
best practices are unknown. Furthermore, a Data Scientist focuses
on producing insights from data and building predictive models
rather than on the inherent quality attributes of the code. In this
context of a mixed team of Data Scientists and Software Engineers,
team members must collaborate to produce a coherent software
artefact and a consistent coding standard is essential for cohesive
collaboration and to maintain productivity. However, currently it
is unknown if Data Scientists follow common coding standards.

Recent studies have focused on conformance of coding standards
applied to application categories [4, 21, 32] and has not considered
the inherent technical domain [5] of Data Science. For example,
Data Science applications may follow implicit or undocumented
guidelines for 1) describing mathematical notation when imple-
menting algorithms , e.g. “X” is often used as the input matrix in
statistics, 2) define domain specific constructs such as a “models”
folder for storing predictive models, and 3) writing vectorised code
rather than using an imperative style to improve performance. Thus,
general coding standards may not be applicable to Data Science
code.

ar
X

iv
:2

00
7.

08
97

8v
2

 [
cs

.S
E

]
 2

8
Ju

l 2
02

0

https://doi.org/10.1145/3382494.3410680
https://doi.org/10.1145/3382494.3410680

ESEM ’20, October 8–9, 2020, Bari, Italy Simmons et al.

While research into improving the predictive accuracy of ma-
chine learning algorithms for Data Science has flourished, less atten-
tion has been paid to the the software engineering concerns of Data
Science. Industry has reported growing architectural debt in ma-
chine learning, well beyond that experienced in traditional software
projects [27]. While the primary concern is “hidden” system-level
architectural debt, there may also be observable symptoms such as
dead code paths due to rapid experimentation [27].

In this study we conduct an empirical analysis to investigate
the discrepancies in conformance to coding standards between
Data Science projects and traditional software engineering projects.
The novel contributions of this research are threefold. First, to the
best of the authors’ knowledge this is the first large scale (1048
Open-Source Python Data Science projects and 1099 non-Data
Science projects) empirical analysis of coding standards in Data
Science projects. Second, we empirically identify differences in
coding standard conformance between Data Science and non-Data
Science projects. Finally, we investigate the impact of usingmachine
learning frameworks on coding standards. Our study focuses on
Python projects as this is the most popular language for Open-
Source Data Science projects on GitHub [7].

Our work contributes empirical evidence towards understanding
phenomena that data science teams experience anecdotally, and
lays the foundation for future research to provide guidelines and
tooling to support the unique nature of Data Science projects.

2 MOTIVATING EXAMPLE
As a motivating example for our research, consider Naomi, a Data
Scientist working with a team of other Data Scientists and Software
Engineers to build a predictive model that will be deployed as part of
the backend for a web application. She finds a recent research paper
in the field and implements the latest algorithm using Python due
to the availability of machine learning frameworks [7]. However,
during automated code review Naomi finds out that her code does
not adhere to the coding standards enforced by the web framework
used within Naomi’s company. A snippet of the kind of code written
by Namoi is shown in Figure 1.

Figure 1: Example code snippet from a machine learning
loop taken from an Open-Source project1

The team realises that there are exceptions to the coding stan-
dards they have put in place but would like to formally define these
standards for consistency across the organisation. They also do not
have any guidelines for implementing Data Science specific coding
standards or where these standards should be applied. To assist
Noami’s team we investigate the answers to the following research
questions (RQ):

RQ1. What is the current landscape of Data Science projects? (Age,
LOC, Cyclomatic Complexity, Distributions)

RQ2. How does adherence to coding standards differ between Data
Science projects compared to traditional projects?

RQ3. Where do coding standard violations occur within Data Sci-
ence projects?

3 BACKGROUND AND RELATEDWORK
3.1 Coding standards
Coding standards, also known as code conventions and coding style,
have been developed under the premise that consistent standards
such as inline documentation, class and variable naming standards
and organisation of structural constructs improve readability, assist
in identifying incorrect code, and are more likely to follow best
practices. These attributes are associated with improved maintain-
ability [22, 30], readability [8] and understandability [19] in general;
however, certain practices may have negligible or even negative
effect [14].

In this paper, we specifically discuss Python coding standards,
given that this is the preferred language for Data Science projects
[7]. The Style Guide for Python Code, known as PEP 8, includes
standards regarding code layout, naming standards, programming
recommendations and comments [24]. In addition, standards for
Python also cover package organisation and the use of virtual envi-
ronments [3]. The Python community also strives to have a single
way of doing things as defined in the ‘Zen of Python’ [1] so fo-
cus on analysing the official style guide for Python, PEP 82. Static
analysis tools for Python programs is notoriously difficult due to
the dynamic type system where types are determined at run-time
rather than at compile time.

3.2 Mining of coding standards
Allamanis et al. designed a tool to infer code style based on ex-
amples in a domain and to recommend suggestions on how to
improve the code consistency [2]. Markovtsev et al. later presented
a fully-automated approach powered by a decision tree forest
model [16]. Zhu et al. performed a study on the use of folders
in software projects and its possible relationships with project pop-
ularity [31]. Using the premise that conventions will make code
easier to read, understand and maintain, Smit et al. defined a metric
for “convention adherence” and analysed a set of projects to study
consistency among teams regarding their code conventions [28]. Jar-
czyk et al. devised metrics for a project’s popularity and the quality
of user support by (virtual or remote) team members. These metrics
were used to analyse possible correlations between project quality

1https://github.com/shuyo/iir/blob/master/activelearn/mmms.py#L18
2https://www.python.org/dev/peps/pep-0008/

A large-scale comparative analysis of Coding Standard conformance in Open-Source Data Science projects ESEM ’20, October 8–9, 2020, Bari, Italy

and the characteristics of the team that developed it [12]. Raghu-
raman et al. performed a quantitative analysis on the relationship
between UMLmodel design and the quality of the project according
to the number of issues in its repository. Their findings report that
projects that were designed with UML have fewer software defects
than projects designed without UML [26]. The ecosystem for anal-
ysis of static programming languages is mature; however, analysis
of dynamic programming languages such as Python presents chal-
lenges. In our work, we analyse the Python programming language
as this has become the lingua franca for Data Science teams.

3.3 Mining of Python repositories
Bafatakis et al. used Pylint to analyse code-style conformance of
Python snippets shared on the Stack Overflow question-answer
website, and studied the relationship between code-style and vote
score [4]. Omari and Martinez curated a corpus of 132 open source
Python projects and analysed their Pylint scores and cyclomatic
complexity [20]. Their corpus includes machine learning reposito-
ries; however, it is dominated by web frameworks and all topics
were analysed together as part of the same group. Biswas et al.
formed a corpus of Data Science projects written in Python and
made the dataset available using the Boa infrastructure [6]; how-
ever, as the Boa infrastructure only holds the abstract syntax tree
rather than the underlying source code, their dataset cannot be
used to analyse presentation related style violations as is.

As Biswas et al. claimed to provide “the first dataset that includes
Data Science projects written in Python” [6], but do not provide a
means for measuring presentation related aspects of code style; to
the best of our knowledge, we provide the first large-scale empiri-
cal investigation to specifically examine the extent to which Data
Science projects written in Python follow code standards.

4 EMPIRICAL STUDY DESIGN
To investigate the current landscape of data science projects (RQ1),
we sought to use an established corpus of high-quality Data Science
Projects. For this, we reuse the Boa Data Science corpus of 1558
Open-Source Python projects curated from GitHub by Biswas et
al. [6] and recently presented at the Mining Software Repositories
(MSR2019) conference. However, we encountered two obstacles in
attempting to reuse the existing corpus as-is. Firstly, Biswas et al.
represent project code in the form of an abstract syntax tree for
querying using the Boa platform. This discards the software syn-
tax, which may hold valuable insights about developer behaviours
[29]. Secondly, understanding the unique aspects of Data Science
projects requires a baseline of non-Data Science projects to contrast
them against. As such, we curated a secondary corpus of non-Data
Science projects, while controlling for project quality and project
maturity in order to ensure a meaningful comparison of how ad-
herence to coding standards differs between the two corpora (RQ2).
A subset of the projects in the Data Science corpus were inves-
tigated at a deeper level to examine how coding standards vary
betweenmodules within projects (RQ3). The high level study design
is presented in Figure 2.

Figure 2: Study Design

Results of the analysis, including raw logs of all detected code
violations and source code to reproduce all results in this paper are
made publicly available.3

4.1 Formation of corpora
Figure 3 shows the number of project repositories available (1558
projects in the Boa Data Science corpus, and 10551 potential non-
Data Science projects available on GitHub), and how we curated a
selection of 1048 Data Science projects and 1102 Non-Data Science
projects for further analysis.

4.1.1 Data Science Corpus. For each project in the Boa Data Sci-
ence corpus, we fetched project metadata, such as the repository
URL, current number of project stars, forks, issues, and commit-
ters, from the GitHub API. We were unable to fetch metadata from
GitHub for six (0.4%) of the projects listed in the Boa Corpus. This
can occur due to projects on GitHub being renamed, deleted, or
marked private by their owners after the publication of the Boa
Data Science Corpus. We were able to retrieve full source code
for all projects available via the GitHub API; however, we needed
to manually download and extract six of the projects that could
not be cloned using the Git client (as the downloaded zip archives
did not include the project Git history, these six repositories were
excluded from the age calculation and assumed to follow the same
distribution as the other repositories in the corpus).

3https://doi.org/10.6084/m9.figshare.12377237.v2

https://doi.org/10.6084/m9.figshare.12377237.v2

ESEM ’20, October 8–9, 2020, Bari, Italy Simmons et al.

Figure 3: Curation of Projects

We needed to discard one repository in the corpus for tech-
nical reasons (we discovered that one of the files in the project
was triggering a bug in Pylint that caused our analysis pipeline
to hang indefinitely). Three of the projects were excluded as they
contained no Python (.py) code files; while use of Python was a
criteria checked by Biswas et al., it is possible that the Python files
had since been deleted in the most recent version, or that the project
had been replaced by another. Finally, we restricted the analysis
to only Python 3 compatible projects. Python version 3 introduces
major, backwards-incompatible changes to the Python language,
which has impacted the entire Python ecosystem. Limiting the
analysis to a single Python version helps to prevent confounding
factors that would be introduced by mixing different Python ver-
sions. Furthermore, Python 2 is no longer supported, and recent
versions of code analysis tools such as Pylint have dropped support
for Python 2 code. To detect the Python version, we attempted to
parse each Python (.py) file using both Python 2.7.13 and Python
3.6.5. If at least as many files can be parsed using Python 3 as can be
parsed using Python 2, then we consider the project to be Python 3
compatible. It is also possible that repositories may include some
Python files that cannot be parsed with either version of Python:
this can occur due to syntax errors committed to the repository; use
of syntax features only recently introduced in the latest versions of
Python; or due to inclusion of special syntax intended for alterna-
tive environments such as Jupyter Notebooks. We included such

repositories in the analysis, but only processed files in the reposi-
tory that were compatible with Python 3 analysis tools (specifically,
Pylint).

4.1.2 Traditional (Non-Data Science) Corpus. To identify a corpus
of traditional software repositories, we use the same project quality
criteria that Biswas et al. [6] used to construct the Boa Data Science
corpus, but negate any keywords relating to Data Science. As this
corpus contains all types of projects other than Data Science, we
will refer to it as the “non-Data Science corpus”. Following Biswas
et al. we select projects having at least 80 stars4 on GitHub (as an
indication of community acceptance of the project quality), and that
are not forked. In contrast to Biswas et al., we check that the project
description does not match any of their Data Science keywords, but
still verify that the project has a non-empty description. Biswas et
al. do an additional check that the project imports a common Data
Science library. We considered negating this check; however, as
their list includes some common libraries that could be used outside
of a Data Science context (e.g. matplotlib, a general purpose data
visualisation library), we decided to include projects regardless of
their imports, so long as they weren’t already included as part of
Biswas et al.’s corpus.

Due to limitations imposed by the GitHub search API (search
query results are limited to return at most 1000 repositories), we
ran our search query against GHTorrent [10] (an archive of GitHub
metadata). As Biswas et al. [6] do not state the time of their query,
nor how they overcame the GitHub API limits, we chose to use
the ght_2018_04_01 GHTorrent dump available via Google Big-
Query5. This query led to the identification of 10551 repositories.
Of these, we were able to retrieve current metadata for 9882 reposi-
tories directly from the GitHub API, but unable to fetch 669 (6.8%).
Gousios notes limitations in the way that GHTorrent collects data
from GitHub [10] (e.g. that GHTorrent additively collects data from
GitHub, but GitHub does not report deletions) that may explain why
some repositories were listed in GHTorrent, but not available from
GitHub. These effects would have been exasperated by repository
changes since the time of the data dump. We were able to success-
fully obtain full source code for all the repositories for which the
GitHub API returned metadata (albeit that two of these repositories
needed to be manually extracted from zip archives). We removed a
further 38 repositories that were already present in the Boa Data
Science Corpus; while in theory our query should have excluded
these, it may have been due to changes in Data Science keywords
in the project description between the time of the GHTorrent dump
and the time that Biswas et al. constructed the Boa Data Science
Corpus.

As Data Science has recently undergone rapid growth [7], it is
also necessary to consider the maturity of projects in our non-Data
Science set in order to ensure a meaningful comparison with Data
Science projects. To achieve this, we only included projects that
according to the GitHub API had been created in 2016 or later.
However, we found cases of mature projects that matched this
criterion due to being recently migrated to GitHub. Thus as an
4GitHub allows users to star a project, thus serving as an indication to other users
of the project’s popularity and community acceptance. While stars may be subject
to some manipulation, for the purpose of this paper we only use stars as a means to
ensure that the Data Science and non-Data Science corpora are of a similar nature.
5https://ghtorrent.org/gcloud.html

https://ghtorrent.org/gcloud.html

A large-scale comparative analysis of Coding Standard conformance in Open-Source Data Science projects ESEM ’20, October 8–9, 2020, Bari, Italy

additional measure we define a project’s age as the number of days
between the first commit in the Git log and the most recent commit
to the default branch, and restrict the selection to projects under
1500 days old (approx. 4.1 years). This reduced the non-Data Science
set to 1519 repositories. After removing projects that contained no
Python files, or were not Python 3 compatible, we were left with
1102 non-Data Science repositories (as discussed in subsection 4.4,
a further three were discarded in the coding standard analysis stage
as they didn’t contain any files that could be analysed).

4.2 Overview of Corpora
Figure 4 shows survival plots (1 - cumulative distribution function)
of the distribution of project stars and project age (after selection).
To quantify the differences between the two corpora, we use the
two-sample Kolmogorov–Smirnov (K–S) statistic (computed using
SciPy version 1.4.16), which is defined as the maximum vertical
difference between the two curves in the survival plots, and can
be used to test the null hypothesis that the samples from the two
corpora are drawn from the same statistical distribution.

The distribution of stars in both corpora is almost identical; the
two-sample K–S statistic is 0.06, which represents only a weakly
significant (p=0.03) difference beyond what would be expected by
chance if drawn from the same distribution. In contrast, despite our
attempt to restrict the age of non-Data Science projects to match
that of the Data Science corpora, it is only an approximate fit (K–S
statistic of 0.19). The mean age of the selected projects in the Data
Science Corpus was 671 days, whereas after selection, the mean age
of projects in the Non-Data Science corpus was 743 days. We could
have imposed additional selection criteria on the Non-Data Science
corpus to bring the age distribution closer; however, this would have
reduced the size of the dataset and further shifted the distribution
away from the underlying population of non-Data Science projects.
Our intent was to ensure both corpora have similar project quality
and maturity characteristics to permit a meaningful comparison
of coding standards between the corpora rather than to perfectly
control all characteristics.

4.3 Collecting project metrics
In addition to project stars and age (defined in subsubsection 4.1.1),
we examined how these relate to a broad range of project-level
metrics such as forks, issues, contributors, lines of code, and cy-
clomatic complexity in order to understand the current landscape
of Data Science projects. The number of project forks, open is-
sues, and contributors were retrieved through the GitHub API
along with the number of stars when constructing the corpus. After
cloning the repositories, we calculated the non-blank Lines Of
Code (LOC) for all Python files (anything ending in the .py exten-
sion). The advantage of the non-blank lines of code metric is that
the metric is easy to define (all lines of code, including comments,
other than lines that consist entirely of whitespace) and reproduce
[15]. It is also fast to calculate (even for thousands of repositories),
and doesn’t require parsing the source code. We used Radon [25]
to computeMcCabe’s cyclomatic complexity; [18] the number
of linearly independent paths through the code, equivalent to the
number of decisions in a code block plus 1 [18].
6https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html

Figure 4: Survival plots showing controlled characteristics
(stars, age) of the projects in the DS corpus and the Non-
DS corpus (after selection). Stars were controlled for almost
perfectly; however, age differences were only partially con-
trolled for.

4.4 Collecting coding standard violations
Pylint [23] is a tool to perform a series of error checks, attempt
to enforce coding standards (as per PEP 8, discussed previously),
and find code smells (i.e., suspicious code that may be an indication
of deeper problems in the system [9]). Pylint analyses code and
displays a set of messages, categorised as convention violations,
refactors for code smells, errors or bugs, warnings for Python spe-
cific problems, and fatal errors that prevented Pylint from further
processing. We executed Pylint on each module (file) of each repos-
itory in order to count the number of code standard violations of
each type. Any files that could not be analysed (e.g. due to using
or importing invalid syntax, broken symbolic links, or triggering
internal Pylint issues) were removed from this stage of the analysis
(including removal from the LOC counts to ensure they did not
distort the frequency of warnings per LOC). This resulted in three
non-Data Science repositories being discarded completely, leaving
a total of 1048 Data Science repositories and 1099 non-Data Science
repositories.

While many of the coding standards enforced by Pylint are con-
figurable, we left these as their default values to reflect the commu-
nity standards. Pylint gives the ability to ignore unwanted warning
types, but for our purposes we included all warning types in the
analysis then grouped them at the most detailed level. This allowed
us to identify precisely which warning types are significant.

4.5 Analysing module-level import graph
We used the Python FindImports library7 to extract the direct depen-
dencies (imports) of each module (file). To detect unit tests, imports
were checked against a list of common Python testing frameworks
(unittest, pytest, unittest2, mock). We checked the remaining mod-
ules against a the same list of Data Science libraries as Biswas et al.
[6] (machine learning, visualisation, and data wrangling libraries).

7https://pypi.org/project/findimports/

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html
https://pypi.org/project/findimports/

ESEM ’20, October 8–9, 2020, Bari, Italy Simmons et al.

5 RESULTS
5.1 (RQ1) What is the current landscape of

Data Science projects?
In this section, we investigate the Data Science landscape through
the lens of the project level metrics described in subsection 4.3,
while controlling for the project stars (as an indicator of commu-
nity acceptance) and age (as an indicator of project maturity) as
described in subsection 4.2 to ensure a meaningful comparison
between the Data Science corpus and the non-Data Science corpus.
The resultant distributions are presented in Figure 5.

Figure 5: Survival plots showing characteristics of the
projects selected for the DS corpus and the control group.

Lines of code was greater in the Data Science corpus. When
manually examining the results, we found cases of projects that
encoded data files as Python code in order to make data easy to

access from Python, which may explain some of the difference,
particularly in the tail of the distribution.

For each project, cyclomatic complexity was calculated for each
method or function, then averaged to provide a score for that project
(projects without any methods or functions were excluded from the
analysis). Cyclomatic complexity is similar in both corpora (K–S
statistic=0.06, p=0.05). This was an unexpected result, as implemen-
tations of machine learning algorithms are an important component
of Data Science projects, which one would intuitively expect to
result in a higher cyclomatic complexity caused by nested loops
and branches. A potential explanation is the use of frameworks and
vectorised code that will tend to flatten out loops.

The number of open issues shows no significant differences
(K–S statistic=0.03, p=0.6) between Data Science and non-Data
Science projects. While our selection process attempts to control
the distribution of stars and age, we did not make any attempt to
manipulate the distribution of open issues. The finding that open
issues were also similar between the projects is an indication that
the Data Science and non-Data Science corpora are of a similar
quality and maturity.

Data Science projects had a lower number of contributors than
non-Data Science projects, but had a higher number of forks. This
is consistent with a development workflow whereby data scientists
copy/fork each other’s code/models, then work alone or in small
teams to tune it to their use case. However further investigation
would be needed to confirm whether this is the case.

RQ1 summary.Compared to other projects of similar qual-
ity (stars) and maturity (age), Data Science projects on GitHub
have the same number of open issues and less contributors, but
are forked more often and, surprisingly, have similar average
cyclomatic complexity to non-Data Science projects.

5.2 (RQ2) How does adherence to coding
standards differ between Data Science
projects compared to traditional projects?

We analysed all files in each repository with Pylint (version 2.4.4)
and computed the number of coding standard violations per non-
blank LOC. Pylint checked source code for 229 different types of
code standard violations. We then examined differences in the error
distribution between Data Science repositories compared to non-
Data Science repositories.

Due to the sparse nature of code violations, many (or in some
cases most) repositories contained zero violations of a particular
type, whereas those that contained violations tended to do so with
an extreme frequency (e.g. projects that used non-standard format-
ting could trigger multiple violations per line). As such, a two-sided
Mann-Whitney U-test (computed using SciPy version 1.4.18) was
selected to detect differences in the distributions, as it is a non-
parametric test that depends only on the ranking (ordering) of
values rather than their absolute quantities. To guard against data
dredging (an inflated number of false positives as a consequence of
performing many comparisons), we apply Bonferroni correction as
8https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.
html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html

A large-scale comparative analysis of Coding Standard conformance in Open-Source Data Science projects ESEM ’20, October 8–9, 2020, Bari, Italy

Table 1: Coding standard violations (warnings / non-blank LOC) found to significantly differ between DS repositories and
Non-DS repositories. Largest values of mean and median highlighted in bold

Pylint warning (per non-blank LOC) DS mean DS median Non-DS mean Non-DS median p-value

too-many-locals 0.34% 0.28% 0.16% 0.06% 1.10 · 10−59
import-error 2.73% 2.07% 1.83% 1.16% 2.02 · 10−45
too-many-arguments 0.33% 0.26% 0.19% 0.08% 3.12 · 10−42
invalid-name 9.88% 7.73% 6.94% 4.86% 1.31 · 10−26
broad-except 0.03% 0.00% 0.13% 0.00% 8.94 · 10−20
bad-indentation 6.58% 0.00% 2.24% 0.00% 1.23 · 10−14
consider-using-enumerate 0.05% 0.00% 0.03% 0.00% 7.06 · 10−14
missing-class-docstring 0.43% 0.26% 0.73% 0.44% 6.17 · 10−13
trailing-whitespace 1.59% 0.05% 1.05% 0.00% 1.43 · 10−12
missing-function-docstring 2.56% 2.31% 3.26% 2.94% 6.02 · 10−12
unsubscriptable-object 0.04% 0.00% 0.02% 0.00% 7.44 · 10−12
inconsistent-return-statements 0.03% 0.00% 0.07% 0.00% 1.35 · 10−10
wrong-import-position 0.32% 0.00% 0.18% 0.00% 2.54 · 10−9
bad-whitespace 5.43% 0.53% 4.90% 0.15% 2.68 · 10−9
too-many-instance-attributes 0.11% 0.05% 0.08% 0.02% 4.82 · 10−9
unnecessary-comprehension 0.03% 0.00% 0.02% 0.00% 7.74 · 10−9
missing-final-newline 0.12% 0.00% 0.20% 0.00% 1.11 · 10−8
unused-variable 0.38% 0.23% 0.33% 0.14% 8.46 · 10−8
ungrouped-imports 0.05% 0.00% 0.04% 0.00% 1.81 · 10−7
too-few-public-methods 0.17% 0.08% 0.36% 0.12% 4.04 · 10−7
too-many-public-methods 0.00% 0.00% 0.01% 0.00% 6.24 · 10−7
missing-module-docstring 0.82% 0.65% 1.17% 0.74% 7.03 · 10−7
too-many-statements 0.07% 0.03% 0.06% 0.00% 1.78 · 10−6
attribute-defined-outside-init 0.42% 0.01% 0.24% 0.00% 2.05 · 10−6
line-too-long 2.54% 1.64% 2.08% 1.02% 3.45 · 10−6
bad-continuation 2.17% 0.51% 2.22% 0.34% 5.88 · 10−6
bad-option-value 0.004% 0.00% 0.002% 0.00% 8.38 · 10−6
consider-using-dict-comprehension 0.007% 0.00% 0.003% 0.00% 1.32 · 10−5
trailing-newlines 0.09% 0.00% 0.07% 0.00% 4.00 · 10−5
invalid-unary-operand-type 0.003% 0.00% 0.001% 0.00% 8.94 · 10−5
reimported 0.024% 0.00% 0.018% 0.00% 1.37 · 10−4

a conservative counter-measure. We set a significance threshold of
p < 0.05/229 ≈ 2.2 · 10−4.

A table of the Pylint warning types that had significantly dif-
ferent frequencies between Data Science applications compared
to other projects is provided in Table 1. The table shows that the
top five most significant differences were: too-many-locals, import-
error, too-many-arguments, invalid-name, and broad-except. The
distributions of key warnings are compared visually in Figure 6.

Data Science projects (mean of 0.34% warnings/LOC) trigger the
too-many-locals warning an order of magnitude more frequently
than non-Data Science projects (mean of 0.16% warnings/LOC). By
default, Pylint triggers the too-many-localswarningwhen a function
of method contains more than 15 variables. As function arguments
count towards this limit, it is related to the too-many-arguments
warning which triggers when a function definition contains more
than five parameters. Combined with our findings from RQ1, this
implies that Data Science projects tend to incorporate functions
with many variables; however, not necessarily a high cyclomatic

complexity. A possible cause is models with multiple hyperparame-
ters that are either hard-coded as variables in the function definition
or passed to the the function as individual parameters rather than
being stored in a configuration object.

Data Science projects also contained more frequent violations
of Pylint’s variable naming rules. Pylint will flag variables that
are improperly capitalised (e.g. local variables are expected to be
lowercase) or were too short (e.g. single letter variable names other
than loop variables). This may conflict with mathematical notations,
e.g. upper case "X" for an input matrix.

The import-error difference and bad-option-value warnings are
artifacts due to Pylint that should be ignored. As we did not attempt
to install individual project dependencies into the environment, the
larger number of import-errors triggered by Data Science projects
are more likely an indication that they are importing external li-
braries more frequently.

broad-except warning represents cases where a try-catch state-
ment is used to catch a general (overly broad) exception rather than
a particular type. This warning was more common in non-Data

ESEM ’20, October 8–9, 2020, Bari, Italy Simmons et al.

Figure 6: Survival plots comparing Data Science coding stan-
dard violation frequency to non-Data Science projects.

Science projects. However, the difference could also be explained
by Data Science projects that fail to use exceptions handling at
all. Similarly, themissing-class-docstring,missing-function-docstring,
andmissing-module-docstring warnings were more common in non-
Data Science projects; however, it is unclear whether this is due
to worse documentation or a consequence of an Object-Oriented
design with shorter modules and more common use of classes and
functions.

RQ2 summary. Data Science projects contain over twice
as many cases (per line of code) of functions/methods with
excessive numbers of local variables. Data Science projects
contain more frequent violations (per line of code) of variable
naming standards than non-Data Science projects.

5.3 (RQ3) Where do coding standard violations
occur within Data Science projects?

In this section, we examine how coding standard violations vary
within projects. We first label any modules that import unit testing
libraries as Unit Test. The remaining modules are checked to see if
they import any Data Science or Machine Learning libraries (e.g.

Figure 7: Survival plots for selection of coding standard vi-
olations within projects, categorised based on module im-
ports.

tensorflow) and labelled as either Uses DS Library or Does not use
DS Library (the three categories are mutually exclusive).

To prevent the analysis from becoming swamped by large reposi-
tories with manymodules, an intermediate average is calculated per
category (Unit Test, etc.) for each repository, such that the repository
contributes one data point per category to the final distribution. For
this research question, we only analyse Data Science repositories
that contain a combination of all three categories (290 repositories).
The final breakdown of the results is presented in Figure 7.

The plot of too-many-locals confirms that the violations are in-
deed coming frommodules that import a Data Science library. How-
ever, other code in the repository does not appear to be affected.

The plot of invalid-name shows that the naming violations are
frequent in modules that imports Data Science libraries. However,
other code in the repository, such as unit tests, also seem to be af-
fected. This indicates that the naming violations spread throughout
Data Science repositories.

The majority of code was defined in modules that imported Data
Science libraries (median of 3706 non-blank LOC) in contrast to
unit testing testing code (median 746 non-blank LOC) and other
code (median 1604 non-blank LOC).

A large-scale comparative analysis of Coding Standard conformance in Open-Source Data Science projects ESEM ’20, October 8–9, 2020, Bari, Italy

RQ3 summary. Overuse of local variables appears to be
confined to modules that directly import Data Science libraries.
In contrast, non-conforming variable names in Data Science
projects occur throughout the entire project. The majority
of Data Science code is defined in modules that import Data
Science libraries.

6 DISCUSSION
In this section we use the technical domain as a lens to interpret our
findings [5] as our study focused on the specific technical domain of
Data Science. Our study found that Data Science projects are forked
more often and have lower number of contributors which would
indicate greater software reuse amongst Data Scientists. This is
consistent with Data Science specific tasks such as data preparation,
statistical modelling, and training machine learning models.

Compared to other projects of similar community acceptance
and maturity, Data Science projects showed significantly higher
rates of functions that use an excessive number of parameters (too-
many-arguments) and local variables (too-many-locals).

Our module-level analysis confirms that this appears in code that
imports machine learning libraries, but does not appear to affect
other modules in the application. Despite the excessive number of
local variables and parameters, the average cyclomatic complexity
of functions in Data Science projects appeared similar to that of
non-Data Science projects. This suggests that machine learning
frameworks and libraries are effective in helping Data Scientists
avoid branching and looping constructs, but not in managing the
excessive number of variables associated with model parameters
and configuration.

Variable naming conventions in Data Science projects also differ
from those used in other projects, as evidenced by the higher fre-
quency of Pylint (invalid-name) warnings. In contrast to the other
warnings, the variable naming differences appear to permeate the
entire Data Science code base.

6.1 Implications
In this subsection we present the implications of our research.

6.1.1 Software teams should be aware that Data Scientists may be
following unconventional coding standards. Our findings indicate
that Data Science code follows different coding standards so this
information should be taken into consideration when establishing
team wide standards.

6.1.2 Further investigation to evaluate the case for Data Science
aware coding standards needed. Answers to RQ2 and RQ3 indicate
that Data Science projects do not follow coding conventions to
the same extent as a non-Data Science project. This raises at least
two additional research questions ‘Do Data Scientists follow Data
Science specific coding standards?’ and ‘Why does conformance
to coding standards differ between Data Science projects and non-
Data Science projects?’ To approach the first question we plan
to do a qualitative analysis of the data collected in this paper to
derive potential Data Science specific coding standards before an

evaluation with practitioners. To better understand Data Scientists
attitude to coding standards we propose a large scale survey.

6.1.3 Study the impact of variable naming conventions in Data Sci-
ence projects on readability. A recent study indicated that short
variable names take longer to comprehend [11] which may not
hold for Data Science code when trying to comprehend the details
of an algorithm implementation written to resemble math notation.
Our study found that Data Science projects follow different coding
standards than non-Data Science projects (RQ2) which potentially
impacts readability.

6.1.4 Develop richer tools to support empirical software engineering
research involving Python source code. We found that Radon hangs
on large Python files, and encounteredmultiple issues with Pylint as
described in section 7.With Python’s dominance in the Data Science
space and continuing popularity in the Open-Source community
[4] the need for tools to aid empirical software engineering research
is going to grow.

6.1.5 Further study of conformance to Python idioms by Data Scien-
tists. The Python community is well known for the ‘Zen of Python’
a set of high-level coding conventions and recent work has set
about cataloguing these conventions [1]. While our work indicated
a discrepancy between coding standards in Data Science projects
compared to non-Data Science projects, Python specific idioms not
detected by Pylint may still have frequently been used.

7 THREATS TO VALIDITY
7.1 Internal validity
7.1.1 Confounding variables. As seen in Figure 5, our dataset in-
cludes a diversity of projects with a wide spread of lines of code.
As such, it is vital to correct for the number of lines of code in the
project when reporting the number of code style violations. We do
this by reporting the number of violations per line of code. How-
ever, this may not be suitable for all warning types. For example, as
imports only occur once at the top of the file, import related errors
may not increase linearly with the number of lines of code (in our
analysis we exclude import errors). Similarly, for errors related to
functions (e.g. “too-many-arguments”), it may be more appropriate
to normalise by the number of functions rather than the lines of
code.

7.1.2 Assumption of independence. An assumption in our calcu-
lation of statistical significance is that the data-points are inde-
pendent. This assumption can be violated if the data contains du-
plicated repositories. As a guard against this, we excluded forked
repositories, as noted in subsubsection 4.1.2. However, during our
investigation, we came across some instances where the exact same
code violation was repeated across multiple repositories due to
partial sharing of code that had been copied from another reposi-
tory then modified. Another threat is that the same developer may
be involved in multiple projects. As such, the probability that the
patterns observed in our paper are coincidental (i.e. false positives)
may be higher than suggested by the p-values due to projects that
share code and/or authors.

ESEM ’20, October 8–9, 2020, Bari, Italy Simmons et al.

7.1.3 Robustness to outliers. Some repositories contained non-
project related code, such as dependencies copied directly into
the repository, or even entire Python virtual environments. Further-
more, some repositories encoded data as Python files, leading to
source files with over 50,000 lines of code. Only the maximum disk
limit enforced by GitHub limits what a repository can contain, so
any single repository has the potential to arbitrarily distort averages
though committing irrelevant directories containing large Python
files. To limit the extent to which any one repository can affect the
results, subsection 5.2 treats all repositories with equivalent weight
(regardless of how many files they contain), and reports the median
as this is more robust to outliers than the mean (but unfortunately
is not suited for rare error types, for which the median is zero).
The module-level analysis in subsection 5.3 also limits the impact
of large repositories containing irrelevant modules by averaging
over all files in a repository of a certain category (Unit Test, Uses DS
Library, or Does not use DS Library) such that each repository only
contributes a single data-point for each category. Unfortunately
however, the module-level analysis may be affected by uneven
group sizes (e.g. if the Uses DS Library category contains longer/-
more files that the Does not use DS Library category, then there is a
greater chance that it will contain at least one line that produces
a warning, and thus has a greater chance of producing a positive,
albeit small, warnings per LOC score). As such the distributions
presented in this section need to be interpreted with caution; the
median of the resultant distribution may be distorted due to uneven
group sizes, but the mean of the resultant distribution (mean of
means) will not be biased by group size.

7.1.4 Validity of Pylint. Pylint uses the current Python environ-
ment in order to resolve imports and detect coding errors such
as calling a non-existent method or passing the wrong number of
arguments. As such, the Pylint results may be influenced by which
Python packages were installed in the Python environment—for
example, if the project depends on a newer version of a library
than what is installed in the Python environment, it may lead to
warnings related to use of newer methods that do not appear in
the installed version of the library. However, given the diversity
of projects analysed (some of which did not specify dependencies,
or only did so via a README file), it was impractical to reliably
determine and install dependencies for the projects analysed. To
ensure a fair comparison, we used a clean Python environment
containing only essential packages needed for data extraction (find-
imports, pylint, radon, and their dependencies). A consequence of
this decision is that certain Pylint checks (such as import-error)
should be ignored.

As Pylint is popular in the Python community, projects that use
Pylint (or a similar linting library) as part of their Continuous Inte-
gration (CI) are likely to have few (or no) warnings. Furthermore,
source files may include “# pylint:” comments that can instruct
Pylint to ignore warnings for that file. Thus our results may reflect
whether projects used a linting system rather than developer com-
mitment to code quality. However, Pylint identified at least one
warning in nearly all repositories, indicating that Pylint is either
not being widely used by repositories in the corpus, or that projects
do not have all Pylint checks turned on.

Pylint also has known bugs relating to false positives. The Pylint
issue tracker currently contains 104 open bugs (and 318 closed bugs)
reporting or relating to a “false positive”. As this paper examines
differences in the number of code standard violations, false positives
will not undermine the analysis if they are triggered consistently
across all projects. Unfortunately however, false positives can be
triggered by Python features such as type hints, leading to counter
intuitive results where use of features such as type hints (designed
to promote better code) has the potential to trigger more warnings.

7.1.5 Identification of Data Science repositories. We relied on Biswas
et al. [6] for the identification of Data Science repositories, and
negated their query to identify non-Data Science repositories. How-
ever, as an automated approach, it is possible that some traditional
projects appear in the Data Science corpus, and vice versa. Never-
theless, as our study focuses on examining the differences between
these groups, the observed differences are still meaningful so long
as the Data Science corpus contains a higher proportion of Data
Science projects than the non-Data Science corpus. The effect of
imperfect identification will be to reduce the observed strength of
the differences. In future work we intend to manually perform a
qualitative analysis of the corpora to form a more complete picture
of their contents.

7.2 External validity
Our analysis was limited to Open-Source Data Science projects on
GitHub. Additional research is needed to test whether our results
generalise to closed-source Data Science projects undertaken for
commercial reasons, in which there is the ability for managers to
enforce top-down processes across the entire development team.

8 CONCLUSION
In this study we conduct the first large-scale empirical investiga-
tion to examine the extent to which Open-Source Data Science
projects follow coding standards. Our results provide empirical evi-
dence in support of our hypothesis that Data Science projects show
differences in coding standards when compared to other projects.
Specifically, we found that Open-Source Data Science projects in
the corpus contain twice as many cases of functions/methods with
excessive numbers of local variables and also contain more frequent
violations of variable naming standards.

Through pursuing this line of research, we aim to identify barri-
ers to communication within inter-disciplinary teams arising from
differing norms, and restore the sense of shared ownership over the
entire end-to-end Data Science workflow. Future work will involve
qualitative analysis to identify causal links for our findings and
an evaluation with practitioners to determine practically relevant
coding standard violations. Our research provides an initial indica-
tion that the technical domain of Data Science may require specific
coding standards. These coding standards could be used to inform
development of a software linting tool tailored to the needs of Data
Science projects.

ACKNOWLEDGMENTS
The authors would like to thank Nikhil Bhat and the Surround
development team for assistance with extracting the project metrics
used in this paper, and acknowledge the Pylint project contributors.

A large-scale comparative analysis of Coding Standard conformance in Open-Source Data Science projects ESEM ’20, October 8–9, 2020, Bari, Italy

REFERENCES
[1] Carol V. Alexandru, JosÃľ J. Merchante, Sebastiano Panichella, Sebastian Proksch,

Harald C. Gall, and Gregorio Robles. 2018. On the usage of pythonic idioms. In
2018 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. Association for Computing Machinery
(ACM), 1–11. https://doi.org/10.1145/3276954.3276960

[2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-
ing natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering - FSE 2014. ACM Press,
New York, New York, USA, 281–293. https://doi.org/10.1145/2635868.2635883

[3] Brian Allbee. 2018. Hands-On Software Engineering with Python: Move beyond
basic programming and construct reliable and efficient software with complex code.
Packt Publishing Ltd.

[4] Nikolaos Bafatakis, Niels Boecker, Wenjie Boon, Martin Cabello Salazar, Jens
Krinke, Gazi Oznacar, and Robert White. 2019. Python Coding Style Compliance
on Stack Overflow. In Proceedings of the 16th International Conference on Mining
Software Repositories (2019), 210–214. https://doi.org/10.1109/MSR.2019.00042

[5] Scott Barnett. 2017. Extracting Technical Domain Knowledge to Improve Software
Architecture. Ph.D. Dissertation. Swinburne University of Technology.

[6] Sumon Biswas, Md Johirul Islam, Yijia Huang, and Hridesh Rajan. 2019. Boa
Meets Python: A Boa Dataset of Data Science Software in Python Language. In
2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), Margaret-Anne D Storey, Bram Adams, and Sonia Haiduc (Eds.). IEEE,
577–581. https://doi.org/10.1109/MSR.2019.00086

[7] Houssem Ben Braiek, Foutse Khomh, and Bram Adams. 2018. The open-closed
principle of modern machine learning frameworks. In Proceedings of the 15th
International Conference onMining Software Repositories - MSR ’18, Andy Zaidman,
Yasutaka Kamei, and Emily Hill (Eds.). ACM Press, 353–363. https://doi.org/10.
1145/3196398.3196445

[8] Rodrigo Magalhes Dos Santos and Marco AurÃľlio Gerosa. 2018. Impacts of
coding practices on readability. Proceedings - International Conference on Software
Engineering (2018), 277–285. https://doi.org/10.1145/3196321.3196342

[9] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[10] Georgios Gousios. 2013. The GHTorent dataset and tool suite. In 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE, 233–236. https:
//doi.org/10.1109/MSR.2013.6624034

[11] Johannes C Hofmeister, Janet Siegmund, and Daniel V Holt. 2019. Shorter iden-
tifier names take longer to comprehend. Empirical Software Engineering 24, 1
(2019), 417–443.

[12] Oskar Jarczyk, Błażej Gruszka, Szymon Jaroszewicz, Leszek Bukowski, and Adam
Wierzbicki. 2014. GitHub Projects. Quality Analysis of Open-Source Software. In
International Conference on Social Informatics. 80–94. https://doi.org/10.1007/978-
3-319-13734-6_6

[13] Miryung Kim, Thomas Zimmermann, Robert Deline, and Andrew Begel. 2018.
Data scientists in software teams: State of the art and challenges. IEEE Trans-
actions on Software Engineering 44, 11 (11 2018), 1024–1038. https://doi.org/10.
1109/TSE.2017.2754374

[14] Taek Lee, Jung Been Lee, and Hoh Peter In. 2015. Effect analysis of coding
convention violations on readability of post-delivered code. IEICE Transactions
on Information and Systems E98D, 7 (2015), 1286–1296. https://doi.org/10.1587/
transinf.2014EDP7327

[15] Brian A. Malloy and James F. Power. 2019. An empirical analysis of the transition
from Python 2 to Python 3. Empirical Software Engineering 24, 2 (2019), 751–778.
https://doi.org/10.1007/s10664-018-9637-2

[16] Vadim Markovtsev, Waren Long, Hugo Mougard, Konstantin Slavnov, and Egor
Bulychev. 2019. Style-Analyzer: Fixing Code Style Inconsistencies with Inter-
pretable Unsupervised Algorithms. In 2019 IEEE/ACM 16th International Confer-
ence on Mining Software Repositories (MSR). IEEE, 468–478. https://doi.org/10.
1109/MSR.2019.00073

[17] Robert C Martin. 2009. Clean code: a handbook of agile software craftsmanship.
Pearson Education.

[18] T.J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software Engi-
neering SE-2, 4 (12 1976), 308–320. https://doi.org/10.1109/TSE.1976.233837

[19] Ruchuta Nundhapana and Twittie Senivongse. 2018. Enhancing understandability
of objective C programs using naming convention checking framework. Lecture
Notes in Engineering and Computer Science 2237 (2018), 314–319.

[20] SafwanOmari andGinaMartinez. 2020. Enabling Empirical Research: ACorpus of
Large-Scale Python Systems. In Proceedings of the Future Technologies Conference
(FTC) 2019, Kohei Arai, Rahul Bhatia, and Supriya Kapoor (Eds.). Springer Inter-
national Publishing, 661–669. https://doi.org/10.1007/978-3-030-32523-7_49

[21] Aggelos Papamichail, Apostolos V. Zarras, and Panos Vassiliadis. 2020. Do People
Use Naming Conventions in SQL Programming?. In SOFSEM 2020: Theory and
Practice of Computer Science. 429–440. https://doi.org/10.1007/978-3-030-38919-
2_35

[22] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. 2011. A simpler model
of software readability. In Proceedings of the 8th working conference on mining

software repositories. 73–82.
[23] pylint. [n.d.]. Pylint - code analysis for Python | www.pylint.org. https://www.

pylint.org/
[24] python.org. 2019. PEP 8 – Style Guide for Python Code | Python.org. https:

//www.python.org/dev/peps/pep-0008/
[25] Radon. 2018. Radon 2.4.0 documentation. https://radon.readthedocs.io/en/latest/
[26] Adithya Raghuraman, Truong Ho-Quang, Michel R V Chaudron Chalmers,

Alexander Serebrenik, and Bogdan Vasilescu. 2019. Does UML Modeling As-
sociate with Lower Defect Proneness?: A Preliminary Empirical Investigation.
16th International Conference on Mining Software Repositories (2019). https:
//pypi.org/project/langdetect/

[27] D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-FranÃğois Crespo, and Dan Den-
nison. 2015. Hidden Technical Debt in Machine Learning Systems. In Advances in
Neural Information Processing Systems. 2503–2511. http://papers.nips.cc/paper/
5656-hidden-technical-debt-in-machine-learning-systems.pdf

[28] Michael Smit, Barry Gergel, H. James Hoover, and Eleni Stroulia. 2011. Code
convention adherence in evolving software. In 2011 27th IEEE International Con-
ference on Software Maintenance (ICSM). IEEE, 504–507. https://doi.org/10.1109/
ICSM.2011.6080819

[29] Diomidis Spinellis. 2011. elytS edoC. IEEE Software 28, 2 (2011), 103–104. https:
//doi.org/10.1109/MS.2011.31

[30] Avram Joel Spolsky. 2008. More Joel on software: further thoughts on diverse
and occasionally related matters that will prove of interest to software developers,
designers, and managers, and to those who, whether by good fortune or ill luck,
work with them in some capacity. Apress.

[31] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. 2014. Patterns of folder use and
project popularity: A case study of GitHub repositories. In Proceedings of the
8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM, 30.

[32] Weiqin Zou, Jifeng Xuan, Xiaoyuan Xie, Zhenyu Chen, and Baowen Xu. 2019.
How does code style inconsistency affect pull request integration? An exploratory
study on 117 GitHub projects. Empirical Software Engineering 24, 6 (2019), 3871–
3903.

https://doi.org/10.1145/3276954.3276960
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1109/MSR.2019.00042
https://doi.org/10.1109/MSR.2019.00086
https://doi.org/10.1145/3196398.3196445
https://doi.org/10.1145/3196398.3196445
https://doi.org/10.1145/3196321.3196342
https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.1007/978-3-319-13734-6_6
https://doi.org/10.1007/978-3-319-13734-6_6
https://doi.org/10.1109/TSE.2017.2754374
https://doi.org/10.1109/TSE.2017.2754374
https://doi.org/10.1587/transinf.2014EDP7327
https://doi.org/10.1587/transinf.2014EDP7327
https://doi.org/10.1007/s10664-018-9637-2
https://doi.org/10.1109/MSR.2019.00073
https://doi.org/10.1109/MSR.2019.00073
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1007/978-3-030-32523-7_49
https://doi.org/10.1007/978-3-030-38919-2_35
https://doi.org/10.1007/978-3-030-38919-2_35
https://www.pylint.org/
https://www.pylint.org/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://radon.readthedocs.io/en/latest/
https://pypi.org/project/langdetect/
https://pypi.org/project/langdetect/
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://doi.org/10.1109/ICSM.2011.6080819
https://doi.org/10.1109/ICSM.2011.6080819
https://doi.org/10.1109/MS.2011.31
https://doi.org/10.1109/MS.2011.31

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background and Related Work
	3.1 Coding standards
	3.2 Mining of coding standards
	3.3 Mining of Python repositories

	4 Empirical Study Design
	4.1 Formation of corpora
	4.2 Overview of Corpora
	4.3 Collecting project metrics
	4.4 Collecting coding standard violations
	4.5 Analysing module-level import graph

	5 Results
	5.1 (RQ1) What is the current landscape of Data Science projects?
	5.2 (RQ2) How does adherence to coding standards differ between Data Science projects compared to traditional projects?
	5.3 (RQ3) Where do coding standard violations occur within Data Science projects?

	6 Discussion
	6.1 Implications

	7 Threats to Validity
	7.1 Internal validity
	7.2 External validity

	8 Conclusion
	Acknowledgments
	References

