
Why Research on Test-Driven Development is Inconclusive?
Mohammad Ghafari

University of Bern
mohammad.ghafari@inf.unibe.ch

Timm Gross
University of Bern

timm.gross@id.unibe.ch

Davide Fucci
Blekinge Institute of Technology

davide.fucci@bth.se

Michael Felderer
University of Innsbruck

michael.felderer@uibk.ac.at

ABSTRACT
[Background] Recent investigations into the effects of Test-Driven
Development (TDD) have been contradictory and inconclusive.
This hinders development teams to use research results as the basis
for deciding whether and how to apply TDD. [Aim] To support
researchers when designing a new study and to increase the applica-
bility of TDD research in the decision-making process in industrial
context, we aim at identifying the reasons behind the inconclusive
research results in TDD. [Method] We studied the state of the art
in TDD research published in top venues in the past decade, and
analyzed the way these studies were set up. [Results] We identified
five categories of factors that directly impact the outcome of studies
on TDD. [Conclusions] This work can help researchers to conduct
more reliable studies, and inform practitioners of risks they need
to consider when consulting research on TDD.

KEYWORDS
Test-Driven Development; TDD; test-first; industry-academia col-
laboration; threats to validity; literature review, empirical software
engineering

ACM Reference Format:
Mohammad Ghafari, Timm Gross, Davide Fucci, and Michael Felderer. 2020.
Why Research on Test-Driven Development is Inconclusive?. In ESEM ’20:
ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM) (ESEM ’20), October 8–9, 2020, Bari, Italy. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3382494.3410687

1 INTRODUCTION
Test-driven development (TDD) is a development technique—initially
proposed twenty years ago [2]—in which failing tests are written
before any code is added or changed. This technique emphasizes
small iterations and interleaved refactoring [27].

In the scientific literature, experts usually emphasize the positive
effects of TDD [7, 38, 39]. This technique has become an integral
part of the software engineering curriculum in universities [24].
When looking at the discourse around TDD in the grey literature,
such as practitioners’ blog posts or discussions, it becomes appar-
ent that TDD has attracted great attention from practitioners—for
instance, the “TDD” tag on Stack Overflow has 4.7k watchers.

ESEM ’20, October 8–9, 2020, Bari, Italy
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ESEM ’20: ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM)
(ESEM ’20), October 8–9, 2020, Bari, Italy, https://doi.org/10.1145/3382494.3410687.

The motivation for this work is to provide software companies
a road map for the introduction of TDD in their policies based on
the current state of research. However, before that can happen,
practitioners need to be made aware of the TDD research results,
which are often inconclusive and oftentimes contradictory [22].

Although it is often claimed that TDD improves code quality
(e.g., results in fewer bugs and defects), one of the largest systematic
studies in this domain [30] shows that improvement in some studies
is not significant, and that the claimed code quality gains are much
more pronounced in “low-rigor” and “low-relevance” studies [20].
Research has also studied the impact of TDD on the productivity of
software developers—e.g., in terms of generation of new code and
effort required to fix bugs. Some studies, for example Kollanus [25],
claim that quality is increased at the price of degraded productivity;
whereas some others, such as Bissi et al. [5], argue that existing
studies are inconclusive as, for example, experiments in an academic
context are different from an industrial context.

These contradictions make it impossible to categorically provide
evidence on the usefulness and effectiveness of TDD. Therefore,
in this paper, we focus on identifying major factors that render
findings in this field inconclusive and hinder the applicability of
TDD research in the decision-making process in industrial context.
Consequently, we answer the following research question: “What
factors can contribute to inconclusive research results on TDD?”

To answer our research question, we studied, from the lens of a
practitioner, the state of the art in TDD research. We investigated
contradictory results in this domain by studying secondary studies
that organize the large body of research in the field.We then focused
on primary studies published in top journals and conferences in
the past decade. We compared several studies that investigated sim-
ilar phenomena (e.g., internal or external code quality) to identify
factors that may contribute to inconclusive results in TDD.

We identified five categories of factors concerning how studies
are set up that contribute to this problem. These categories are TDD
definition, participants, task, type of project, and comparison. We
found that the exact definition of TDD that a study follows is not
always clear; the participants of the studies are often newcomers
to this technique; experiments mainly focus on code generation
in greenfield projects, and the opportunities to adopt TDD in an
existing codebase is not investigated; the baseline practice against
which TDD is compared should be agile; and finally, exploration
of the long-term benefits and drawbacks of TDD has not received
enough attention in the literature.

ar
X

iv
:2

00
7.

09
86

3v
1

 [
cs

.S
E

]
 2

0
Ju

l 2
02

0

https://doi.org/10.1145/3382494.3410687
https://doi.org/10.1145/3382494.3410687

ESEM ’20, October 8–9, 2020, Bari, Italy Ghafari, et al.

In summary, this paper is the first to survey factors related to
inconclusive results in TDD research. We believe it has important
implications for both researchers and practitioners. It paves the
way for researchers to conduct more reliable studies on TDD, and
alert practitioners of important factors that they should consider
when seeking advise from research in this area.

The rest of this paper is structured as follows. In Section 2, we
explain the methodology we followed to conduct this study. In
Section 3 we present our findings. We discuss the implications
of this research for practitioners and researchers in Section 4. In
Section 5, we discuss the threats to validity of this work, and we
conclude the paper in Section 6.

2 METHODOLOGY
We conducted a literature study to compile a list of factors that are
responsible for diverging research results and hinder the applica-
bility of TDD research in practice. We were interested in threats
that have an explicit impact on TDD and excluded those that, for
instance, are inherent to the type of a study such as hypothesis
guessing or evaluation apprehension in controlled experiments.

We followed three main steps. Firstly, we studied literature re-
views that concern TDD to acquaint ourselves with the state of
research in this area, and to build an overview of the diverging re-
sults. We followed backward snowballing to obtain a list of primary
studies from these literature reviews that were published from 2009
to 2017. Secondly, we analyzed these primary studies to identify rea-
sons for inconclusive research into TDD. Thirdly, we went through
the proceedings of several top journals/conferences, and collected
papers published after the latest review study (i.e., from 2018 to
April 2020) to capture the most recent work in the field. In the
following we discuss these steps in detail as shown in Figure 1.

In the first step, we looked at secondary studies on TDD. We
mainly based our work on nine secondary studies reported in a
recent meta literature study [22]. We used these secondary studies
(see Table 1) to get an overview of the state of research on TDD,
and to acquaint ourselves with the diverging results discussed in
previous work.

From these literature reviews we followed backward snowballing
to identify potential primary studies to include in this analysis. We
did not select studies published earlier than 2009. The decision
to focus on publications in the past decade was mainly due to
our limited resource that we prioritized on more recent body of
knowledge in the field.

We then started with the second step, the iterative identification
and refinement of the factors that contribute to diverging outcomes
in research on TDD. In order to achieve this, we had to reason about
explicit and implicit threats to validity of TDD studies. However, the
way each studywas reported varied.We, the first two authors of this
paper, read each study thoroughly, filled in a data extraction form,
and resolved any conflict by discussion. We picked one primary
study and analyzed its goals, setup, execution, findings, and threats
to validity. We compared studies that investigated similar goals, for
instance, assessing the impact of TDD on internal or external code
quality. We then used the results of our analysis to firstly, refine
our list categories of factors, either by adding a new category or by
sharpening an existing category, and to secondly provide examples

of the existing categories. Next, we picked another primary study
and repeated this process.

The selection process for the next paper chosen to be analysed
was based on two criteria. First, we preferred studies that were
cited multiple times and for which the abstract sounded relevant
(e.g., it explains a comparative study or measures the impact of
TDD). Secondly, we tried to keep a balance between the different
types of studies such as experiments, case studies, and surveys.

To determine when to stop the iteration, we used a criterion of
saturation — i.e., we stopped adding new primary studies once the
inclusion of a new one did not reveal a new threat nor provided any
additional information regarding one of the identified categories
of factors. Table 2 lists ten carefully selected examples of primary
studies that we analyzed in this step.

In the third step, we reflected on recent studies in the field.
We browsed the proceedings of top-tier conferences and issues of
journals from 2018 to April 2020 to include papers published after
the latest TDD review study.1 We searched for the terms “TDD”,
“test driven”, “test-driven”, “test first”, and “test-first” in several top-
tier journals/conferences. Particularly, we looked at six Journals
(IEEE Transactions on Software Engineering, Empirical Software
Engineering, Software Testing, Verification, and Reliability Journal,
Journal of Systems and Software, Information and Software Tech-
nology, and Journal of Software: Evolution and Process); the pro-
ceedings of eight Software Engineering Conferences (International
Conference on Software Engineering, International Conference on
Automated Software Engineering, Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software
Engineering, International Conference on Software Analysis, Evo-
lution and Reengineering, International Conference on Software
Maintenance and Evolution, International Symposium on Empirical
Software Engineering and Measurement, International Conference
on Evaluation and Assessment in Software Engineering, and In-
ternational Conference on Mining Software Repositories); two top
testing conferences (International Conference on Software Testing,
Verification and Validation, International Symposium on Software
Testing and Analysis); and three Software Process Conferences
(International Conference on Agile Software Development, Interna-
tional Conference on Software and Systems Process, International
Conference on Product-Focused Software Process Improvement).
This process resulted in only ten new papers listed in table 3. We
studied each paper in depth, similarly to the primary studies in the
previous step, to check whether we can obtain a new insight.

3 RESULTS
There have been many investigations into understanding the out-
come of TDD in software development. Nevertheless, the under-
standing of the different outcomes of TDD is still inconclusive due
to several reasons lying in the way previous studies were set up. In
this section we discuss these outcomes and factors responsible for
contradictory understanding, which is summarized in Figure 2.

1 We mainly selected top relevant journals from the ISI listed journals, and consulted
the core conference ranking to identify relevant venues with at least A ranking.

Why Research on Test-Driven Development is Inconclusive? ESEM ’20, October 8–9, 2020, Bari, Italy

Secondary
studies

yes

no

New
insight?

yes

More
papers	to
check?

Content
analysis

Exploring	top
venues

Primary
studies

[2018-2020]

yes

noIs	it	relevant?

Content
Analysis

no

Factors

In-depth
analysis

Pick
the	next	studySnowballing

End

Start

Primary
studies

[2009-2017]

Figure 1: The methodology of our literature review.

Table 1: The secondary studies we analyzed in the first step

Authors Title
Karac and Turhan [22] What Do We (Really) Know about Test-Driven Development?
Bissi et al. [5] The effects of test driven development on internal quality, external quality and productivity: A systematic review
Munir et al. [30] Considering rigor and relevance when evaluating test driven development: A systematic review
Rafique and Misic [33] The Effects of Test-Driven Development on External Quality and Productivity: A Meta-analysis
Causevic et al. [8] Factors Limiting Industrial Adoption of Test Driven Development: A Systematic Review
Shull et al. [39] What Do We Know about Test-Driven Development?
Turhan et al. [47] How Effective is Test-Driven Development?
Kollanus [25] Test-Driven Development - Still a Promising Approach?
Siniaalto [40] Test driven development: empirical body of evidence

3.1 Outcomes
In general, TDD promises to improve developer productivity and
three dimensions of code quality, namely internal and external code
quality as well as test quality [3]. External code quality is usually
relevant for the users and is measured in terms of how well the code
covers and implements the requirements or user stories. Internal
code quality is only relevant for developers and describes how well
the code is structured, how complex it is to understand or how
maintainable it is.

There are several ways tomeasure internal (code and test) quality
(see Table 4). For instance, Shull et al. [39] reviewed studies that
measured code quality in terms of metrics such as coupling and

cohesion, complexity, and density. They reported mixed results
with some papers measuring better and others measuring worse
internal code quality.

In terms of test quality, research has explored the quality of tests
by measuring mutation scores (i.e., the bug detection ability of the
tests) and code coverage (i.e., the degree to which the source code
of a program is executed when a test suite runs). For example, To-
sun et al. [45] conducted an experiment with 24 professionals and
found that unit-test cases developed in TDD have a higher mutation
score and branch coverage, but less method coverage than those
developed in ITL. Their findings contradicts earlier findings that
were mostly conducted with students [28].

ESEM ’20, October 8–9, 2020, Bari, Italy Ghafari, et al.

Table 2: Examples of the primary studies collected in the second step

Authors Title
Pančur and Ciglaric [32] Impact of test-driven development on productivity, code and tests: A controlled experiment
Fucci et al. [14] A Dissection of the Test-Driven Development Process: Does It Really Matter to Test-First or to Test-Last?
Dogša and Batic [10] The effectiveness of test-driven development : an industrial case study
Fucci and Turhan [16] A Replicated Experiment on the Effectiveness of Test-first Development
Thomson et al. [44] What Makes Testing Work: Nine Case Studies of Software Development Teams
Romano et al. [35] Findings from a multi-method study on test-driven development
Buchan et al. [7] Causal Factors, Benefits and Challenges of Test-Driven Development: Practitioner Perceptions
Scanniello et al. [38] Students’ and Professionals’ Perceptions of Test-driven Development: A Focus Group Study
Beller et al. [4] Developer Testing in The IDE: Patterns, Beliefs, And Behavior
Bannerman and Martin [1] A multiple comparative study of test-with development product changes and their effects on team speed

and product quality

Table 3: The primary studies collected in the third step

Authors Title
Karac et al. [23] A Controlled Experiment with Novice Developers on the Impact of Task Description Granularity on

Software Quality in Test-Driven Development
Tosun et al. [46] Investigating the Impact of Development Task on External Quality in Test-Driven Development: An

Industry Experiment
Borle et al. [6] Analyzing the effects of test driven development in GitHub
Fucci et al. [15] A longitudinal cohort study on the retainment of test-driven development
Kazerouni et al. [24] Assessing Incremental Testing Practices and Their Impact on Project Outcomes
Santos et al. [37] Improving Development Practices through Experimentation : an Industrial TDD Case
Tosun et al. [45] On the Effectiveness of Unit Tests in Test-driven Development
Santos et al. [36] Does the Performance of TDD Hold Across Software Companies and Premises? A Group of Industrial Experiments on TDD
Romano et al. [34] An Empirical Assessment on Affective Reactions of Novice Developers When Applying Test-Driven Development
Sundelin et al. [43] Test-Driving FinTech Product Development: An Experience Report

Table 4: Measurement of internal code and test quality

Complexity Pančur and Ciglaric [32], Dogša and Batic [10], Bannerman and
Martin [1], Tosun et al. [46]

Code coverage Tosun et al. [45], Pančur and Ciglaric [32], Kazerouni et al. [24],
Thomson et al. [44], Borle et al. [6], Bannerman and Martin [1]

Mutation score Tosun et al. [45], Pančur and Ciglaric [32]
None Fucci et al. [14], Fucci et al. [15], Fucci and Turhan [16], Santos

et al. [37], Beller et al. [4], Karac et al. [23]

In terms of external quality and developer productivity, previous
research has mostly investigated new code generation (e.g., ac-
cepted user stories and time to implement them). For instance,
Marchenko et al. [29] interviewed eight participants who used
TDD at Nokia-Siemens Network for three years. The participants
stated that the team confidence with the code base is improved,
which is associated with improved productivity. Fucci et al. [15] con-
ducted an experiment with students over a period of five months
and showed that adoption of TDD only results in writing more
tests; otherwise it has neither statistically significant effect on the
external quality of software products nor on the developersâĂŹ
productivity.

We noted that TDD research has looked at bugs and code main-
tainability as static indicators for external and internal quality,

respectively. However, in practice, their costs would be manifested
to the full extent only once software is in use. Especially, we rarely
found studies on the maintainability of tests and their co-evolution
with production code. One reason might be that many people do
not consider TDD as a testing technique per se, but as a design
technique [3]. However, Sundelin et al. [43] studied a financial soft-
ware under development for eight years, and found that the size
of tests grows much faster than of production code. Therefore, it
is necessary to clean, refactor, and prioritize tests to manage this
grows.

Why Research on Test-Driven Development is Inconclusive? ESEM ’20, October 8–9, 2020, Bari, Italy

Participants

Task

Type	of	Project

Comparison

Code	Quality

Factors

Test

Productivity

Outcomes

InternalTDD	Definition

Individual

Team

TDD	Study

External

Figure 2: Factors contributing to the inconclusive outcomes
in research on TDD.

Research often deals with short-term impact of TDD rather
than its long-term benefits and drawbacks, which manifest
themselves once the software is in use. This is especially the
case for quality of test suites.

3.2 Factors
We identified five categories of factors, namely TDD definition,
participants, task, type of project, and comparison that influence
the outcome of TDD research. In the following, we present these
categories in detail.

3.2.1 TDD definition. The steps defining TDD and how strictly
they are followed is very important for a study. There are two com-
mon TDD styles: one is classical TDD, where there is almost no
design upfront and developers just drive the entire implementation
from the tests; and the other one is where developers know the
design before developing [21]. In effect, developers often adopt
a combination of these styles depending on the problem domain.
However, we noted that a commonly shared definition of TDD
is missing. What TDD means is mostly boiled down to writing
tests prior to production code, and its other characteristics have not
received similar attention. For example, some studies measure refac-
toring explicitly and even use it to assess how much participants
adhere to TDD, while others are not concerned with refactoring,
even though it is supposed to be a key part of TDD [3].

There are a few recent studies that investigated how testing
is actually done “in the wild”. Beller et al. [4] observed the work
of 2,443 software developers over 2.5 years and discovered that
developers who claim to do TDD, neither follow it strictly nor for
all their modifications. They found that only 2.2% of sessions with
test executions contain strict TDD patterns. Borle et al. [6] showed
that TDD is practiced in only 0.8% of the 256,572 investigated public
GitHub projects which contain test files.

There is a variety of TDD definitions. Its exact meaning, the
underlying assumptions, and how strictly one follows it are not
well-explained in previous studies.

3.2.2 Participants selection. Studies who recruit their participants
from companies tend to have fewer participants than studies done
with students. One can see that from Table 5, which shows the
numbers of participants in industrial and academic studies. In par-
ticular, studies with professionals usually have a maximum of 20
participants, whereas studies with students have in several cases
40+ participants.

We observed that experiments are mostly conducted as part
of exercises in a one-semester course with students, whereas in
industry they are often part of an intensive course with professional
participants lasting a couple of days (see Table 6). Nevertheless,
anecdotal [39] as well as empirical evidence [38] suggest that when
introducing TDD to developers, the benefits manifest themselves
only after an initial investment and a ramp-up time. We noted that
studies with participants who are proficient in TDD prior to the
start of experiments, for example [7], are in the minority. We even
observed studies, for example [46], where participants were asked
to follow TDD right after only a short introduction.

The fact that both practitioners and students have quite similar
TDD experience (i.e., they have undergone very little training in
TDD) does not necessarily imply that when practicing TDD the
outcomes of the two subject groups are also similar. Professionals’
competencies, for instance to develop tests and design software,
may influence their performance when practicing TDD. For in-
stance, Santos et al. [36] conducted four industrial experiments in
two different companies, and reported that the larger the experience
with unit testing and testing tools, the better developers perform
in terms of external quality in ITL than in TDD. Latorre [26] found
that in unit test-driven development, junior developers are not able
to discover the best design, and this translates into a performance
penalty since they need to revise their design choices more fre-
quently than skilled developers. Romano et al. [34] investigated
the affective reactions of novice developers to the development
approach and reported that novices seem to like a non-TDD devel-
opment approach more than TDD, and that the testing phase makes
developers using TDD less happy. Suleman et al. [42] conducted
an early pilot study with students who experienced TDD in an
introductory programming course. They found that students do not
necessarily experience the immediate benefits of TDD, and that this
TDD is perceived to be more of a hindrance than a help to them.

Studies participants (i.e., students and professionals) have little
prior TDD experience, ranging generally from a couple of days
to a couple of months.

3.2.3 Task selection. The number as well as the types of performed
tasks are important. Tasks that are synthetic are easily comparable,
for example, in terms of complexity. Nevertheless, they do not
resemble tasks assigned during the course of a real-world project.
We observed that most studies were concerned with one and up
to four synthetic tasks, such as coding katas. Table 7 shows which
studies used what kind of tasks. Surprisingly, synthetic tasks are
dominant in experiments conducted in industrial settings.

ESEM ’20, October 8–9, 2020, Bari, Italy Ghafari, et al.

Table 5: Population of participants in studies with students and professionals

Less than 20 participants 21-40 participants More than 40 participants
Industrial Romano et al. [35], Buchan et al.

[7], Scanniello et al. [38], Santos
et al. [37], Tosun et al. [46]

Tosun et al. [45], Dogša and
Batic [10], Fucci et al. [14]

Academic Romano et al. [35], Scanniello
et al. [38]

Thomson et al. [44] Pančur and Ciglaric [32], Kaze-
rouni et al. [24], Fucci and
Turhan [16], Karac et al. [23]

Table 6: TDD experience

<1 week Tosun et al. [45], Fucci et al. [14], Thomson et al. [44], Santos
et al. [37], Tosun et al. [46]

1 week - 0.5 years Fucci et al. [15], Kazerouni et al. [24], Romano et al. [35], Scan-
niello et al. [38], Dogša and Batic [10],
Fucci and Turhan [16], Karac et al. [23]

0.5 years - 1 year Pančur and Ciglaric [32]
more Buchan et al. [7]

Table 7: Synthetic tasks vs. real-world tasks

Synthetic task Romano et al. [35], Fucci and Turhan [16], Tosun et al. [45],
Pančur and Ciglaric [32], Karac et al. [23], Tosun et al. [46],
Fucci et al. [14], Santos et al. [37], Fucci et al. [15], Kazerouni
et al. [24]

Real task Thomson et al. [44], Dogša and Batic [10]

The granularity as well as the complexity of a task, e.g., whether
it is related to other parts of a software and whether developers
are familiar with the task, may impact the TDD outcomes. For in-
stance, [23] investigated the effect of task description granularity
on the quality (functional correctness and completeness) of soft-
ware developed in TDD by novice developers (precisely graduate
students), and reported that more granular task descriptions sig-
nificantly improve quality. Latorre [26] showed that experienced
developers who practice TDD for a short while become as effective
in performing “small programming tasks” as compared to more tra-
ditional test-last development techniques. However, many consider
TDD as a design technique [3], but how much design is involved
in a small task is debatable. Moreover, the suitability of TDD may
differ not only for different tasks, but also for different parts in a
software—i.e., one might apply TDD to implement features in more
critical parts of the code base and do not apply it for less critical
parts.

Finally, previous literature is mostly concerned with code gen-
eration, and exploring how TDD performs during bug-fixing or
large-scale refactoring has not received enough attention. For in-
stance, Marchenko et al. [29] interviewed a team of eight developers
who adopted TDD at Nokia-Siemens Network for three years. The
team reported that TDD was not suitable for bug fixing, especially
for bugs that are difficult to reproduce or for quick “hacks” due to
the testing overhead.

Synthetic, non-real world tasks are dominant. Research does
not cover the variety of tasks to which TDD can be applied.

3.2.4 Type of Project. In agile software development, developers
are often involved in changing existing code, either during bug
fixing or to implement changing requirements. Therefore, whether
the studies are concerned with projects developed from scratch
(i.e., greenfield), or with existing projects (i.e., brownfield) plays a
role.2 Brownfield projects are arguably closer to the daily work of
a developer, and generalizing the results gathered from greenfield
projects to brownfield projects may not be valid. Nevertheless,
brownfield projects are under-represented in existing research (see
Table 8).

We believe that the application of TDD in an existing codebase
depends on the availability of a rich test suite and the testability
of a software — i.e., how difficult it is to develop and run tests [17].
In legacy systems that lack unit test cases, TDD may not be ap-
plicable as developers are deprived of the quick feedback from
tests on changes. However, understanding how TDD performs in
brownfield projects that comprise regression test suites is a research
opportunity that needs to be explored.

Research mostly focuses on greenfield projects rather than
brownfield projects. Accordingly, the opportunity to apply TDD
in an existing codebase is unclear.

2Creating a new functionality in an existing project that is largely unrelated to the
rest of the project is still a greenfield project.

Why Research on Test-Driven Development is Inconclusive? ESEM ’20, October 8–9, 2020, Bari, Italy

Table 8: Green- vs. brownfield projects

Greenfield Tosun et al. [45], Pančur and Ciglaric [32], Fucci et al. [14], Fucci
et al. [15], Kazerouni et al. [24], Romano et al. [35],
Thomson et al. [44], Dogša and Batic [10], Fucci and Turhan
[16], Santos et al. [37], Karac et al. [23], Tosun et al. [46]

Brownfield Buchan et al. [7], Scanniello et al. [38]

3.2.5 Comparisons. Factors that are actually responsible for the
benefits of TDD vary. For instance, research has shown that, when
measuring quality, the degree of iteration of the process is more
important than the order in which the test cases are written [14].
In a recent study, Karac et al. [23] suggest that the success of TDD
is correlated with the sub-division of a requirement into smaller
tasks, leading to an increase in iterations.

Previous research has shown that a lot of the superiority of
TDD in existing studies is the result of a comparison with a coarse-
grained waterfall process[32]. Nevertheless, TDD is an agile tech-
nique and should be compared with fine-grained iterative tech-
niques, such as iterative test last (ITL), that share similar charac-
teristics. This means not only we do not know what exactly is
responsible for the observed benefits of TDD, but also that the
benefits we measure depend on what we compare TDD against.

Table 9 shows examples of what the analyzed studies compare
TDD to. “Test last” (TL) describes that the tests are written after the
production code without specifying when exactly. “Iterative test
last” (ITL) is similar in that the tests are written after the production
code is implemented, but it is supposed to have the same iterative-
ness as TDD. This means in ITL a small code change is written
and the tests are written immediately afterwards. The category
“Your way” means that there is no guideline and developers should
decide, if ever, when and how they write tests. Finally, the category
“TDD” compares TDD to itself in different settings. For instance,
the performance impact the granularity of task description has on
TDD [23].

There may be more factors at play when comparing two tech-
niques. For instance, a recent work has shown that testing phase
makes novice developers using TDD less happy [34]. In the same
vein, students perceive TDD more of an obstacle than a help [42].
The affective reactions of developers may not have an immediate
impact on the outcome of TDD, but exploring the consequences
over the long run is necessary to draw fair conclusions.

The benefits of TDD may not be only due to writing tests first
and, therefore, it should be compared to other Agile techniques.

4 DISCUSSION
The promise of TDD is that it should lead to more testable and
easier to modify code [3]. This makes it appealing from an indus-
trial perspective, as developers spend half of their time dealing
with technical debt, debugging, and refactoring with an associated
opportunity cost of 85$ billion [41]. Nevertheless, the empirical
evidence on TDD is contradictory, which hinders the adoption of
this technique in practice.

Causevic et al. [8] explored the reasons behind the limited in-
dustrial adoption of TDD, and identified seven factors, namely

increased development time, insufficient TDD experience/knowl-
edge, lack of upfront design, domain and tool specific issues, lack
of developer skill in writing test cases, insufficient adherence to
TDD protocol, and legacy code. Munir et al. [30] investigated how
the conclusions of existing research change when taking into ac-
count the relevance and rigor of studies in this field. They found
that studies with a high rigor and relevance scores show clear re-
sults for improvement in external quality at the price of degrading
productivity.

We have built on previous work by exploring the latest state of
the research in this domain. We identified factors that contribute
to diverging results when studying TDD, and highlighted research
opportunities that improve the applicability of research results for
practitioners. In particular, we found that the exact definition of
TDD that a study follows is not always clear; the participants of
the studies are often newcomers to this technique and experiments
with TDD proficient participants are in a minority; experiments
mainly focus on code generation in greenfield projects, and the
opportunities to adopt TDD in an existing codebase is not investi-
gated; the baseline practice against which TDD is compared should
share similar agile characteristics; and exploration of the long-term
benefits and drawbacks of TDD, especially how to manage the
large body of test cases generated in TDD, has not received enough
attention in the literature.

This work has implications for both practitioners deciding on
the adoption of TDD and researchers studying it. We discuss these
implications in the following.

Implications for practitioners. We propose a list of known factors
for practitioners to take into account when making a decision about
TDD. The factors are tuned for practitioners as their interest can
be different from the one constituting the phenomena studied in
research. For example, although a studymay investigate the effect of
TDD on maintainability (i.e., an important aspect for a practitioner),
it does so in a greenfield project (i.e., irrelevant for the practitioners’
everyday situation). Therefore, the factors can be used as a support
for practitioners navigating the (vast) scientific TDD literature and
can be used to filter results interesting for their specific cases.

In general, industry practitioners are concerned that a low partic-
ipation of professionals as subjects reduces the impact of software
engineering research [11]. For practitioners, it is difficult to make
a decision based on a group of students benefiting from TDD. Al-
though CS graduates and entry-level developers are assumed to
have similar skills [11], practitioners basing their decision to in-
clude TDD in their set of practices using the Participants factor
need to be aware that motivations between these two types of
participants are different [12]. Practitioners need to be also aware
that designing experiments with students is vastly easier compared
to professionals (e.g., due to ease of recruitment). Therefore, it is

ESEM ’20, October 8–9, 2020, Bari, Italy Ghafari, et al.

Table 9: What TDD is compared to

Iterative test last Tosun et al. [45], Pančur and Ciglaric [32], Kazerouni et al. [24],
Fucci et al. [14], Santos et al. [37], Tosun et al. [46]

Test last Dogša and Batic [10], Fucci and Turhan [16], Bannerman and
Martin [1], Fucci et al. [14]

Your way Fucci et al. [15], Thomson et al. [44], Romano et al. [35], Santos
et al. [37], Beller et al. [4], Buchan et al. [7],
Scanniello et al. [38], Borle et al. [6]

TDD Karac et al. [23]

unwise to disregard potential insights gained from study with stu-
dents. Notably, the correct application of TDD requires training
and practice [24], but the current investigations are manily based
on the observation of practitioners (either professional or not) who
often received a short crash course in TDD. Santos et al. [36] have
shown that the larger the experience with unit testing and testing
tools, the more developers outperform in ITL than in TDD.

Implications for researchers. The factors presented in this study
can serve as the basis for the development of guidelines on how
to design TDD studies that result in converging results. Similarly,
researchers wanting to perform TDD studies—independently from
their goal—need to prioritize the factors presented in this paper to
be relevant for practice.

One factor we deem important for scientific investigation of
TDD is Comparison—i.e., the baseline practice against which TDD
is compared. The IT landscape was different when the Agile method-
ologies, including TDD, were first proposed [2, 3]. Not only the
technologies, such as testing frameworks and automation infrastruc-
ture were not as mature as they are today, but also the development
paradigms were mostly akin to the waterfall model, often without
any explicit testing during development. But now, 20 years later, it
is necessary to re-evaluate what factors of TDD we study and what
we compare TDD to.

We noted that research has mostly focused on short terms ben-
efit (if any) of TDD, while it does not concentrate on how TDD
impacts downstream activities in the software development life-
cycle—e.g., system testing [31]. Similarly, understanding effects
such as the actual maintenance costs that manifest themselves only
when the software is in use has not received enough attention in
research. Especially, test suites could grow faster than production
code in TDD [43], but we have not seen any study that concern
managing tests.

Final remarks. The major software testing venues do not seem
to be interested in TDD—e.g., no papers were published at the past
two editions of ICST3, ISSTA4, ICSE5, and FSE6 nor submitted to
STVR7 between 2013 and 2020 [31]. We believe that addressing
these factors is necessary for a renaissance of TDD in the research
community after the initial 15 years of inconclusive evidence.

3International Conference on Software Testing
4International Symposium on Software Testing and Analysis
5International Conference on Software Engineering
6International Conference on the Foundations of Software Engineering
7Software Testing, Verification, and Reliability Journal

It is noteworthy that the list of factors we presented in this paper,
although grounded in the existing literature, is not exhaustive as
several other factors apply specifically to industry. For instance,
factors such as Agility of a company [18], testing polices [19], and
developers’ work load have not received attention in research on
TDD. We believe that conducting general and convincing studies
about TDD is hard, however, if TDD research is to be relevant for
decision makers, more in-depth research is necessary to provide a
fair account of problems in TDD experiments.

5 THREATS TO VALIDITY
We relied on several secondary studies to obtain a list of research on
TDD which is as exhaustive as possible. We then manually browsed
top and relevant journals/conferences to include recent papers.
However, there is always risk of omitting relevant papers when
performing a literature study. We mitigated the risk in two ways.
First, we clearly defined and discussed what primary studies fit the
scope of our study, and conducted a pilot study to examine our
decision criteria on whether or not to include a paper based on an
iterative saturation approach. Secondly, a random set of 15 excluded
papers were examined independently by a second researcher to
minimize the risk of missing important papers.

The secondary studies used as a starting point in our process
are Systematic Reviews and Meta-analyses which mainly aggre-
gate evidence from quantitative investigations, such as controlled
experiments. Conversely, none of the secondary studies presented
an aggregation of qualitative investigations, such as thematic or
narrative synthesis [9]. Although this can result in a set of primary
studies skewed towards one type of investigation, we made sure
that each factor is reported in studies following both qualitative
and quantitative research methodologies.

We sorted primary studies, published until 2017, according to
number of citations. We acknowledge that due to such a criterion,
we may have failed to include more recent studies as they had less
time to be cited. For more recent primary studies that we collected
manually, published from 2018 to 2020, we included all the papers.

We had to understand, from the lens of practitioners, why re-
search results on TDD are diverging and under which circumstances
the results may not be generalizable to real-world context. We
treated papers as artifacts to be understood through qualitative
literature analysis [13], and tried to truthfully make connections
between studies. In order to mitigate the risk of missing or misin-
terpreting information from a study, we designed a data extraction
form and discussed it together to develop a shared understanding.
We ran a pilot study with five randomly selected primary studies

Why Research on Test-Driven Development is Inconclusive? ESEM ’20, October 8–9, 2020, Bari, Italy

to make sure that we all agree on the extracted information. Fi-
nally, through constant iterations, we further mitigated the risk of
missing information in our analysis and oversimplifying the results.
The use of saturation in our analysis made sure that we did not
prematurely stop including more entries and that the categories of
factors were stable.

6 CONCLUSIONS
We discussed the salient factors that are responsible for diverging
results in research on TDD, and hinder the applicability of TDD
research for practitioners. These factors, extracted from literature,
concern TDD definition, participants, task, type of project, and
comparison.

We found that TDD is mainly boiled down to writing tests first,
and how strictly its other characteristics such as refactoring is fol-
lowed is not well-explained in previous research; studies are mostly
conducted with subjects who are not proficient in TDD; studies in
brownfield projects with real-world tasks are in a minority; a large
body of research has compared TDD against traditional develop-
ment techniques; and finally, we noticed a lack of attention to the
long-term effect of TDD.

We discussed the implications of this work for researchers study-
ing TDD, and for practitioners seeking to adopt this technique. We
hope that this work paves the way to conduct studies that produce
more converging results in this field.

ACKNOWLEDGMENT
The authors greatly appreciate the feedback from Prof. Oscar Nier-
strasz and the anonymous reviewers.

REFERENCES
[1] Steve Bannerman and Andrew Martin. 2011. A multiple comparative study of

test-with development product changes and their effects on team speed and
product quality. Empirical Software Engineering 16 (2011), 177–210. https:
//doi.org/10.1007/s10664-010-9137-5

[2] Kent Beck. 1999. Extreme Programming Explained: Embrace Change. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[3] Kent Beck. 2002. Test-Driven Development By Example. Addison-Wesley Longman,
Amsterdam.

[4] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. 2019. Developer Testing in the IDE: Patterns, Beliefs,
and Behavior. IEEE Transactions on Software Engineering 45, 3 (2019), 261–284.
https://doi.org/10.1109/TSE.2017.2776152

[5] Wilson Bissi, Adolfo Neto, and Maria Emer. 2016. The effects of test driven
development on internal quality , external quality and productivity : A systematic
review. Information and Software Technology 74 (2016), 45–54. https://doi.org/
10.1016/j.infsof.2016.02.004

[6] Neil Borle, Meysam Feghhi, Eleni Stroulia, Russ Greiner, and Abram Hindle. 2018.
Analyzing the effects of test driven development in GitHub. Empirical Software
Engineering 23, 4 (2018), 1931–1958.

[7] Jim Buchan, Ling Li, and Stephen G Macdonell. 2011. Causal Factors , Benefits
and Challenges of Test-Driven Development : Practitioner Perceptions. 2011 18th
Asia-Pacific Software Engineering Conference (2011), 405–413. https://doi.org/10.
1109/APSEC.2011.44

[8] Adnan Causevic, Daniel Sundmark, and Sasikumar Punnekkat. 2011. Factors
Limiting Industrial Adoption of Test Driven Development: A Systematic Review.
Proceedings - 4th IEEE International Conference on Software Testing, Verification,
and Validation, ICST 2011 (2011), 337–346. https://doi.org/10.1109/ICST.2011.19

[9] Daniela S Cruzes, Tore Dybå, Per Runeson, and Martin Höst. 2015. Case stud-
ies synthesis: a thematic, cross-case, and narrative synthesis worked example.
Empirical Software Engineering 20, 6 (2015), 1634–1665.

[10] Tomaž Dogša and David Batic. 2011. The effectiveness of test-driven development:
An industrial case study. Software Quality Journal 19 (2011), 643–661. https:
//doi.org/10.1007/s11219-011-9130-2

[11] Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jürgen Münch,
Andreas Jedlitschka, and Markku Oivo. 2018. Empirical software engineering

experts on the use of students and professionals in experiments. Empirical
Software Engineering 23, 1 (2018), 452–489.

[12] Robert Feldt, Thomas Zimmermann, Gunnar R. Bergersen, Davide Falessi, An-
dreas Jedlitschka, Natalia Juristo, Jürgen Münch, Markku Oivo, Per Runeson,
Martin Shepperd, Dag I. K. Sjøberg, and Burak Turhan. 2018. Four commen-
taries on the use of students and professionals in empirical software engi-
neering experiments. Empirical Software Engineering 23, 6 (2018), 3801–3820.
https://doi.org/10.1007/s10664-018-9655-0

[13] Uwe Flick. 2009. An Introduction to Qualitative Research. SAGE Publications.
[14] Davide Fucci, Hakan Erdogmus, Burak Turhan, Markku Oivo, and Natalia Juristo.

2017. A Dissection of the Test-Driven Development Process: Does It Really
Matter to Test-First or to Test-Last? IEEE Transactions on Software Engineering
43, 7 (2017), 597–614.

[15] Davide Fucci, Simone Romano, Maria Teresa Baldassarre, Danilo Caivano,
Giuseppe Scanniello, Burak Turhan, and Natalia Juristo. 2018. A Longitudi-
nal Cohort Study on the Retainment of Test-Driven Development. Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM 2018 (2018). https://doi.org/10.1145/3239235.3240502

[16] Davide Fucci and Burak Turhan. 2013. A Replicated Experiment on the Effec-
tiveness of Test-First Development. In 2013 ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement, Baltimore, Maryland, USA,
October 10-11, 2013. IEEE, 103–112. https://doi.org/10.1109/ESEM.2013.15

[17] Mohammad Ghafari, Markus Eggiman, and Oscar Nierstrasz. 2019. Testability
First!. In 2019 ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM). 1–6.

[18] Christina Hansson, Yvonne Dittrich, Björn Gustafsson, and Stefan Zarnak. 2006.
How agile are industrial software development practices? Journal of systems and
software 79, 9 (2006), 1295–1311.

[19] Theodore D Hellmann, Abhishek Sharma, Jennifer Ferreira, and Frank Maurer.
2012. Agile Testing: Past, Present, and Future–Charting a Systematic Map of
Testing in Agile Software Development. In 2012 Agile Conference. IEEE, 55–63.

[20] Martin Ivarsson and Tony Gorschek. 2011. A Method for Evaluating Rigor and
Industrial Relevance of Technology Evaluations. Empirical Softw. Engg. 16, 3
(June 2011), 365âĂŞ395. https://doi.org/10.1007/s10664-010-9146-4

[21] Daniel Kahneman. 2015. Thinking, fast and slow. Farrar, Straus and Giroux.
[22] Itir Karac and Burak Turhan. 2018. What Do We (Really) Know about Test-

Driven Development ? IEEE Software 35 (2018), 81–85. https://doi.org/10.1109/
MS.2018.2801554

[23] Itir Karac, Burak Turhan, and Natalia Juristo. 2019. A Controlled Experiment with
Novice Developers on the Impact of Task Description Granularity on Software
Quality in Test-Driven Development. IEEE Transactions on Software Engineering
(2019).

[24] Ayaan M. Kazerouni, Clifford A. Shaffer, Stephen H. Edwards, and Francisco
Servant. 2019. Assessing Incremental Testing Practices and Their Impact
on Project Outcomes. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education. ACM, New York, NY, USA, 407–413. https:
//doi.org/10.1145/3287324.3287366

[25] Sami Kollanus. 2010. Test-Driven Development - Still a Promising Approach?. In
2010 Seventh International Conference on the Quality of Information and Commu-
nications Technology. IEEE, 403–408. https://doi.org/10.1109/QUATIC.2010.73

[26] Roberto Latorre. 2014. Effects of Developer Experience on Learning and Applying
Unit Test-Driven Development. IEEE Transactions on Software Engineering 40, 4
(2014), 381–395. https://doi.org/10.1109/TSE.2013.2295827

[27] Lech Madeyski. 2010. Test-driven development : an empirical evaluation of agile
practice. Springer-Verlag, Heidelberg New York.

[28] Lech Madeyski. 2010. The impact of Test-First programming on branch coverage
and mutation score indicator of unit tests : An experiment. Information and
Software Technology 52, 2 (2010), 169–184. https://doi.org/10.1016/j.infsof.2009.
08.007

[29] Artem Marchenko, Pekka Abrahamsson, and Tuomas Ihme. 2009. Long-Term
Effects of Test-Driven Development A Case Study. (2009), 13–22.

[30] Hussan Munir, Misagh Moayyed, and Kai Petersen. 2014. Considering rigor
and relevance when evaluating test driven development: A systematic review.
Information and Software Technology 56, 4 (2014), 375–394. https://doi.org/10.
1016/j.infsof.2014.01.002

[31] Jeff Offutt. 2018. Why don’t we publish more TDD research papers? Software
Testing, Verification and Reliability 28, 4 (2018), e1670. https://doi.org/10.1002/
stvr.1670 arXiv:https://www.onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1670
e1670 STVR-18-0033.

[32] Matjaž Pančur and Mojca Ciglaric. 2011. Impact of test-driven development on
productivity, code and tests: A controlled experiment. Information and Software
Technology 53, 6 (2011), 557–573. https://doi.org/10.1016/j.infsof.2011.02.002

[33] Yahya Rafique and Vojislav Misic. 2013. The Effects of Test-Driven Development
on External Quality and Productivity: A Meta-Analysis. IEEE Transactions on
Software Engineering 39, 6 (2013), 835–856. https://doi.org/10.1109/TSE.2012.28

[34] Simone Romano, Davide Fucci, Maria Teresa Baldassarre, Danilo Caivano, and
Giuseppe Scanniello. 2019. An Empirical Assessment on Affective Reactions

https://doi.org/10.1007/s10664-010-9137-5
https://doi.org/10.1007/s10664-010-9137-5
https://doi.org/10.1109/TSE.2017.2776152
https://doi.org/10.1016/j.infsof.2016.02.004
https://doi.org/10.1016/j.infsof.2016.02.004
https://doi.org/10.1109/APSEC.2011.44
https://doi.org/10.1109/APSEC.2011.44
https://doi.org/10.1109/ICST.2011.19
https://doi.org/10.1007/s11219-011-9130-2
https://doi.org/10.1007/s11219-011-9130-2
https://doi.org/10.1007/s10664-018-9655-0
https://doi.org/10.1145/3239235.3240502
https://doi.org/10.1109/ESEM.2013.15
https://doi.org/10.1007/s10664-010-9146-4
https://doi.org/10.1109/MS.2018.2801554
https://doi.org/10.1109/MS.2018.2801554
https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1109/QUATIC.2010.73
https://doi.org/10.1109/TSE.2013.2295827
https://doi.org/10.1016/j.infsof.2009.08.007
https://doi.org/10.1016/j.infsof.2009.08.007
https://doi.org/10.1016/j.infsof.2014.01.002
https://doi.org/10.1016/j.infsof.2014.01.002
https://doi.org/10.1002/stvr.1670
https://doi.org/10.1002/stvr.1670
http://arxiv.org/abs/https://www.onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1670
https://doi.org/10.1016/j.infsof.2011.02.002
https://doi.org/10.1109/TSE.2012.28

ESEM ’20, October 8–9, 2020, Bari, Italy Ghafari, et al.

of Novice Developers When Applying Test-Driven Development. In Product-
Focused Software Process Improvement, Xavier Franch, TomiMännistö, and Silverio
Martínez-Fernández (Eds.). Springer International Publishing, Cham, 3–19.

[35] Simone Romano, Davide Fucci, Giuseppe Scanniello, Burak Turhan, and Natalia
Juristo. 2017. Findings from a multi-method study on test-driven development.
Information and Software Technology 89 (2017), 64–77. https://doi.org/10.1016/j.
infsof.2017.03.010

[36] Adrian Santos, Janne Järvinen, Jari Partanen, Markku Oivo, and Natalia Juristo.
2018. Does the Performance of TDD Hold Across Software Companies and
Premises? A Group of Industrial Experiments on TDD. In Product-Focused Soft-
ware Process Improvement. Springer International Publishing, Cham, 227–242.

[37] Adrian Santos, Jaroslav Spisak, Markku Oivo, and Natalia Juristo. 2018. Improv-
ing Development Practices through Experimentation: An Industrial TDD Case.
In 25th Asia-Pacific Software Engineering Conference, APSEC 2018, Nara, Japan,
December 4-7, 2018. 465–473. https://doi.org/10.1109/APSEC.2018.00061

[38] Giuseppe Scanniello, Simone Romano, Davide Fucci, Burak Turhan, and Natalia
Juristo. 2016. Students’ and Professionals’ Perceptions of Test-driven Devel-
opment: A Focus Group Study. In Proceedings of the 31st Annual ACM Sympo-
sium on Applied Computing (SAC ’16). ACM, New York, NY, USA, 1422–1427.
https://doi.org/10.1145/2851613.2851778

[39] Forrest Shull, Grigori Melnik, Burak Turhan, Lucas Layman, Madeline Diep, and
Hakan Erdogmus. 2010. What Do We Know about Test-Driven Development?
IEEE Softw. 27, 6 (Nov. 2010), 16âĂŞ19. https://doi.org/10.1109/MS.2010.152

[40] Maria Siniaalto. 2006. Test driven development: empirical body of evidence. Agile
Software Development of Embedded Systems (2006).

[41] Stripe.com. 2018. The Developer Coefficient. Technical Report. https://stripe.com/
files/reports/the-developer-coefficient.pdf, last accessed on 15.12.2019.

[42] Hussein Suleman, Stephan Jamieson, and Maria Keet. 2017. Testing Test-Driven
Development. In ICT Education, Janet Liebenberg and Stefan Gruner (Eds.).
Springer International Publishing, Cham, 241–248.

[43] Anders Sundelin, Javier Gonzalez-Huerta, and Krzysztof Wnuk. 2018. Test-
Driving FinTech Product Development: An Experience Report. In Product-Focused
Software Process Improvement. Springer International Publishing, Cham, 219–226.

[44] Christopher D Thomson, Mike Holcombe, and Anthony J H Simons. 2009. What
Makes Testing Work : Nine Case Studies of Software Development Teams. In 2009
Testing: Academic and Industrial Conference - Practice and Research Techniques.
167–175. https://doi.org/10.1109/TAICPART.2009.12

[45] Ayse Tosun, Muzamil Ahmed, Burak Turhan, and Natalia Juristo. 2018. On
the Effectiveness of Unit Tests in Test-Driven Development. In Proceedings of
the 2018 International Conference on Software and System Process (ICSSP âĂŹ18).
Association for Computing Machinery, New York, NY, USA, 113âĂŞ122. https:
//doi.org/10.1145/3202710.3203153

[46] Ayse Tosun, Oscar Dieste, Sira Vegas, Dietmar Pfahl, Kerli Rungi, and Natalia
Juristo. 2019. Investigating the Impact of Development Task on External Quality
in Test-Driven Development: An Industry Experiment. IEEE Transactions on
Software Engineering (2019).

[47] Burak Turhan, Lucas Layman, Madeline Diep, Hakan Erdogmus, and Forrest
Shull. 2010. How Effective is Test-Driven Development? In Making Software.
Number October. O’Reilly Media, 624.

https://doi.org/10.1016/j.infsof.2017.03.010
https://doi.org/10.1016/j.infsof.2017.03.010
https://doi.org/10.1109/APSEC.2018.00061
https://doi.org/10.1145/2851613.2851778
https://doi.org/10.1109/MS.2010.152
https://stripe.com/files/reports/the-developer-coefficient.pdf
https://stripe.com/files/reports/the-developer-coefficient.pdf
https://doi.org/10.1109/TAICPART.2009.12
https://doi.org/10.1145/3202710.3203153
https://doi.org/10.1145/3202710.3203153

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	3.1 Outcomes
	3.2 Factors

	4 Discussion
	5 Threats to Validity
	6 Conclusions
	References

