
Java Cryptography Uses in the Wild
Mohammadreza Hazhirpasand

University of Bern
Bern, Switzerland

Mohammad Ghafari
University of Bern
Bern, Switzerland

Oscar Nierstrasz
University of Bern
Bern, Switzerland

ABSTRACT
[Background] Previous research has shown that developers com-
monly misuse cryptography APIs. [Aim] We have conducted an ex-
ploratory study to �nd out how crypto APIs are used in open-source
Java projects, what types of misuses exist, and why developers make
such mistakes. [Method] We used a static analysis tool to analyze
hundreds of open-source Java projects that rely on Java Cryptog-
raphy Architecture, and manually inspected half of the analysis
results to assess the tool results. We also contacted the maintainers
of these projects by creating an issue on the GitHub repository of
each project, and discussed the misuses with developers. [Results]
We learned that 85% of Cryptography APIs are misused, however,
not every misuse has severe consequences. Developer feedback
showed that security caveats in the documentation of crypto APIs
are rare, developers may overlook misuses that originate in third-
party code, and the context where a Crypto API is used should be
taken into account. [Conclusion] We conclude that using Crypto
APIs is still problematic for developers but blindly blaming them
for such misuses may lead to erroneous conclusions.

KEYWORDS
Java cryptography, security, empirical study

ACM Reference format:
Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nierstrasz.
2016. Java Cryptography Uses in the Wild. In Proceedings of , ACM, 2020
(ESEM), 6 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Cryptography is the primary mechanism for data protection in
all privacy and security-sensitive services available in the digital
world. Nevertheless, cryptography APIs (or “crypto APIs”) are not
easy to use for developers. A recent study reported that 72% of Java
projects on GitHub su�er from at least one crypto misuse such as
weak algorithm selection, short encryption key size, or obsolete
function calls [5].

�e lack of proper security-related hints in the common informa-
tion sources for developers aggravates this issue. Oracle’s o�cial
online documentation of the Java Cryptography Architecture (JCA)
is mostly limited to the explanation of each API and its parameters,
and it rarely explains caveats about secure con�guration of the
APIs. For example, the constructor of the PBEKeySpec class asks
for an iterationCount parameter that speci�es how many times
the password is hashed to derive a crypto key [12]. Unfortunately

ESEM, ACM
© 2016 ACM. �is is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. �e de�nitive Version of Record was published in
Proceedings of , 2020, h�p://dx.doi.org/10.1145/nnnnnnn.nnnnnnn.

the documentation does not indicate the minimum recommended
value for this parameter.

Non-o�cial documentation also su�ers from similar issues. �ere
are many cryptography questions on the Stack Over�ow website,
but the answers may be out of date, or the proposed solutions may
not consider security implications. For instance, only fewer than
20% of examined posts suggest a secure solution to implement SSL
certi�cate checks, and a considerable number of developers did not
comprehend the security concept of coding options, e.g., disabling
the CSRF token [9].

Researchers actively a�empt to improve the current state of us-
ing crypto APIs. For instance, a study of crypto uses in open-source
projects claims that none of the factors such as the number or fre-
quency of crypto-related code commits, or the number of projects
that developers are involved in, correlate with developer perfor-
mance in this domain [5]. An experiment with 53 developers shows
that API-integrated security hints help 73% of developers to write
more secure code [4]. In the same vein, researchers have provided
developers with an interactive web platform to access correct uses
of crypto APIs [6]. �ere also exist several static analysis tools
such as CryptoLint [2], and CogniCrypt [7] to help developers spot
crypto API misuses in programs.

In this work, we conduct an exploratory study to understand
the current state of crypto API usage in open-source Java projects.
In contrast to previous work, we investigate this topic at the API
level i.e., we explain which APIs are problematic and what types
of misuses prevail. We also contacted developers of these APIs to
uncover the reasons underlying these misuses. In particular, we
used the CogniCrypt static analysis tool to analyze hundreds of Java
projects that rely on JCA APIs, and manually checked almost half
of the results to understand the extent to which the tool result is
reliable. We observed that crypto misuses are common; particularly,
the majority of APIs (i.e., 13 of 15) were misused at least once.
For instance, MessageDigest, the most prevalent JCA API in the
projects, was misused in 92% of the cases. Our manual investigation
revealed that the tool result is highly (i.e., 93%) reliable, however,
in e�ect, the implications of a misuse depend on factors such as
where and how the application is intended to be used. For instance,
a crypto misuse that makes so�ware vulnerable when running on a
network may be used only locally. We prepared a publicly available
dataset, called CryptoMine, containing the details of the analysis,
e.g., project name, �le name, API name, and line number.1 We
created issues on the GitHub repository of 216 projects to inform
developers about crypto misuses. We collected feedback concerning
140 issue reports, and two authors of this paper reviewed and
classi�ed them into nine major categories, e.g., uncertain developers,
non-security context, or lack of developer knowledge. Analyzing
the developer responses revealed that in many cases developers
are well-informed about the right usage of crypto APIs, but the
1h�p://crypto-explorer.com/cryptomine

ar
X

iv
:2

00
9.

01
10

1v
1 

 [
cs

.C
R

] 
 2

 S
ep

 2
02

0

http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn
http://crypto-explorer.com/cryptomine


ESEM, 2020, ACM Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nierstrasz

speci�c code context may force them to misuse certain crypto APIs.
However, other developers may be uncertain about correct API
usage since security caveats in the crypto API documentation are
scarce, or they used a third-party code that contained a misuse.

In the remainder of this paper, we describe the methodology
of our work in section 2. �en, we describe the current status of
the dataset and responses of developers in section 3. We point out
potential threats to the validity of this work in section 4, and discuss
related work in section 5. We conclude the paper in section 6.

2 METHODOLOGY
We followed a few main steps to analyze Java projects, build the
CryptoMine dataset, and collect developer feedback on the crypto
misuses. We explain these steps in the following.

2.1 Searching, downloading, and compiling
We start with a set of projects that use JCA APIs and were identi�ed
in previous work [8]. We use GitHub APIs to fetch the collabo-
rators of these projects and check what other Java projects they
contributed to, which helps us to collect more projects. Next, we use
the GitHub search code API to check whether a Java project uses
any of the JCA APIs, such as MessageDigest, Cipher, or KeyStore.
�e GitHub search code API limits the number of requests to 30 per
minute, therefore we execute this phase in parallel with di�erent
GitHub accounts. If the project is forked, then we clone the original
repository. Forked projects signi�cantly increase the chance of
having duplicate projects in the dataset. We also did not limit our
search criteria based on the number of project forks or stars, as
we were only interested in collecting crypto API uses regardless
of factors such as project size, popularity, or the degree of recent
activity.

We compile each project in preparation for the static analysis
phase. We use a bash script to check for the existence of the build �le
(POM) in the project’s path and then proceed to compile the project
using Maven. We exclude any projects that cannot be compiled due
to unresolved dependencies.

2.2 Analysis
We use an open-source static analysis tool called CogniCrypt, which
detects known misuses of JCA APIs [7]. It uses a set of rules to an-
alyze method-call pa�erns, parameter constraints, and secure com-
positions of cryptography-related classes. We chose CogniCrypt as
it supports a wide range of APIs, is open-source, and relies on an
extensive rule set created by crypto experts. We extended the tool
to collect and report information regarding at what line number
each API is used and in which user-de�ned method the API use
occurred.

We feed each project’s binary code (i.e., .class �les) to CogniCrypt.
Most projects are analyzed within 10 minutes. Accordingly, we
abort lengthy analyses that take more than 15 minutes. Ultimately,
48 analyses were terminated.

For every successful analysis, we use the GitHub API to obtain
general information regarding each project, i.e., the number of stars,
the number of forks, the creation and the last updated date of the
project.

2.2.1 Schema. We use a bash script to extract information from
the generated analysis reports with the help of regular expressions.
We present the extracted values in the CryptoMine dataset as a
comma-separated CSV �le. Each record describes a single crypto
API use. Table 1 presents each �eld and its description in a record.
Each data record represents meta-information about a crypto API
use in a project such as line number of the API use, Java �le path
containing the API use, or project’s address on GitHub.

Table 1: Fields of each API use in CryptoMine

Field Description
ps url project’s address on GitHub
Star count number of stars of a project
Fork count number of forks of a project
Creation date creation date of a project
Updated date last updated date of a project
Last visited the last time we checked a project
File path �le path containing a crypto use
S object status of a use (0 means a misuse, otherwise it is 1)
API name name of the crypto API
Line number line number of the crypto use

User method the user-de�ned method where the crypto
API use is

Misuse type

A string referring to the type of the
crypto misuse (wrong type, wrong object,
wrong constraint, incomplete operation,
incomplete order)

Misuse desc the description of the crypto misuse

Manual check the manually checked status of an API use
(Accepted, Rejected, Unvalidated)

�e user method �eld provides information about the user-de�ned
function where a crypto API use exists.

�e misuse type �eld can represent any of the following �ve
types provided by the static analysis tool. �e “wrong type” means
when a developer incorrectly uses a certain reference type. For
instance, the constructor of PBEKeySpec requires the password
to be passed as a character array, and should not be as a string
object. �e “wrong object” occurs when an object is passed to
another object but not in the correct way to ful�ll expected security
requirements. �e “wrong constraint”, which is a common misuse
type, occurs when a developer selects wrong values for integer
or string objects to pass to a crypto API, like key sizes, algorithm
names, or iteration counts. �e “incomplete operation” indicates the
whole path for the desired cryptographic purpose is not ful�lled, e.g.,
failing to call PBEKeySpec.clearPassword(). Finally, the “incomplete
order” shows that the expected method call sequence to be made is
incorrect, e.g., failing to call to init() in the Cipher API.

�e misuse desc �eld explains for what reason, which is provided
by the tool, a crypto API use violates CogniCrypt’s rules. �e
“manual check” �eld indicates the manual cross-validation status
of an API use. In case of approval, i.e., agreement with the tool, we
set the value of the �eld to Accepted, otherwise, the value is set to
Rejected. Non-validated records are indicated by Unvalidated. Lastly,
interested researchers can request to receive the cloned version of
the projects.



Java Cryptography Uses in the Wild ESEM, 2020, ACM

2.2.2 Manual investigation. Two authors of this paper manually
checked 1280 records of CryptoMine (48% of the dataset). �ey
relied on their expertise and the CrySL rules provided by the static
analysis tool. �e CrySL rules determine the secure uses of a crypto
API. �e reviewers examine the 1280 records separately and �nally
cross-check their individual judgments. In case of con�icts, they
refer to the tool’s rules and discuss them.

2.3 Contacting the developers
To understand the reasons behind the misuses, we contacted 216
maintainers of repositories on GitHub, which represents a sample
size with a 95% con�dence level and 5% margin of error. For each
repository, we opened an issue on the GitHub page, explained our
objectives for reporting crypto misuses, provided an explanation for
each misuse, and pinpointed the a�ected Java �les, associated line
numbers and API names. We waited 20 days for responses from the
developers of repositories, and then we manually extracted their
responses. �erea�er, two authors of this paper reviewed each
response to determine the key message of each response. Finally,
they cross-checked their �ndings and, in case of a con�ict, they
revisited the concerned response.

3 RESULTS
In this section we �rst report on the current status of crypto API
uses in open-source projects, and then present the key messages of
developer feedback.

3.1 �e state of crypto uses
We investigated the use of 15 JCA APIs in 489 projects. We found
that only two projects are completely healthy, and a staggering 487
projects su�er from at least one crypto misuse. �e mean of the
project forks is 139, and the median value is 7.5. �e mean of the
project stars is 348, and the median value is 5.

Among the manually investigated records, 74 records (6%) were
�agged as rejected, which means according to the tool’s rules and
the opinions of reviewers they are mistakenly marked as misuses.
For instance, before using the sign method in the Signature API, a
developer needs to call either the initSign or the update method.
However, in some cases, developers used the update method in a
loop, while the automatic analysis could not recognize it.

Figure 1 summarizes the uses vs. misuses of each of these APIs as
well as the total number of each API use in parenthesis. Developers
seemingly have severe di�culties in using more than half of the
APIs whose correct uses were less than 51%. For instance, �e
correct uses of �ve APIs namely, SecretKeySpec, IvParameter-
Spec, KeyStore, Cipher, MessageDigest, and Signature were at
most 10%. In contrast, developers had a promising performance in
using the SecretKey, Mac, SecureRandom and KeyPair APIs, i.e.,
at least 90% uses were correct.

Various misuse types may pose threat with di�erent levels of
severity depending on a project is intended to be used, e.g., se-
lecting a wrong constraint MD5 versus skipping to dispose of a
crypto object. Table 2 gives information about the distribution
of crypto misuse types in the top six most misused APIs. Most
of the misuses were of the ConstraintError type followed by
RequiredPredicateError and TypestateError. �e ConstraintError

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AlgorithmParameters (6)
SecretKeySpec (176)

Signature (172)
Cipher (323)

KeyStore (421)
MessageDigest (992)

IvParameterSpec (35)
GCMParameterSpec (2)

KeyGenerator (32)
KeyPairGenerator (45)

Mac (203)
SecureRandom (149)

KeyPair (36)
DHParameterSpec (1)

SecretKey (26)

API use API misuse

Figure 1: �e misuses vs. uses of each API in percentage

type made up the largest proportion of misuses, showing that de-
velopers struggle with choosing correct parameters for crypto APIs.
�e second most common misuse is the RequiredPredicateError
type, which means an insecure object is passed to other objects as an
arguments. �e NeverTypeOfError and IncompleteOperationError
types account for nearly 23% of the total misuse types that exist in
all analyzed projects.

�e complete analysis results are publicly available via the Cryp-
toMine dataset,2 which facilitates investigation of the following
research questions: (1) What are the most common crypto mistakes,
and what should we do to improve learnability in this domain?
(2) How do crypto uses evolve in a project? (3) How do the qual-
ity characteristics of a project correlate with crypto uses in that
project? (4) In what context are crypto APIs commonly used? (5)
Why do some developers perform be�er in using cryptography?
(6) What is the performance of the static analysis tool in detecting
crypto misuses? (7) What is the benchmark result of comparing
several static analysis tools in detecting crypto uses of the dataset’s
projects?

3.2 Developer feedback
Out of 216 repository maintainers, 76 did not respond, and 140
reacted to the issues within 20 days. Among all the reported misused
APIs, MessageDigest had the greatest number of submi�ed and
received responses. KeyStore and SecretKeySpec are respectively
in the second and third place with 22 and 15 received responses from
32 and 31 submi�ed issues. Following that, Cipher and Signature
were the last two APIs that had been reported in more than 10
submissions. �e rest of the APIs had only a few submission and
received responses.

We evaluated all of the responses for 140 repositories in order
to identify developer perceptions concerning cryptographic APIs.
�is widens our views on how knowledgeable developers are when
they misuse a crypto API in their code.

We realized that only a tiny fraction of repository maintainers
(i.e., of seven repositories) agreed to �x the issues, and a large
number of maintainers (i.e., of 46 repositories) disagreed since
the context where the misuse occurred was not considered to be
2h�p://crypto-explorer.com/cryptomine

http://crypto-explorer.com/cryptomine


ESEM, 2020, ACM Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nierstrasz

Table 2: Mostly misused APIs with more than 10 misuse types

JCA API IncompleteOperationError NeverTypeOfError TypestateError RequiredPredicateError ConstraintError
SecretKeySpec 170
Signature 5 1 49 26
Cipher 42 83 52
KeyStore 32 160 16
MessageDigest 72 178 400
IvParameterSpec 30

security-sensitive. Fortunately, 32 repository maintainers were
interested in starting a dialogue about exactly why a given issue
can cause problems, and whether the associated risks can arise
in practice. We present nine main categories of responses in the
following and highlight the key �ndings of each category in a box.

Personal repository. We received three responses indicating
that the target repository is for a personal use. A contributor said
that “the project is meant to be used for educational purposes and
intentionally contains some vulnerable examples.” Another men-
tioned that “the project is created for internal use and no issue will be
addressed.”

People are not aware of the impact these issues could have on
those who rely on online examples, as their repositories are pub-
licly accessible. Another facet could be that they are not concerned
about security when a program is being used on a very small
scale.

Will �x later. Developers of seven repositories replied that they
will �x the reported crypto misuses later without asking for any
further explanation. �ree of them replied that those misuses do
not a�ect the functionality of the program and are not urgent to be
�xed.

Developers o�en underestimate the impact of a crypto misuse.

Request for pull. Developers of 17 repositories suggested to
create a pull request. For instance, a contributor responded that
“I’m not sure if I understand the problem. I am not a cryptologist.”
We believe a lack of knowledge in this area exists that may cause
developers to blindly accept a pull request. �e inevitable conse-
quence of blindly accepting a pull request could adversely a�ect the
security of the �nal so�ware, for instance, an adversary may submit
a downgrade to the existing security mechanisms in a project.

�ere is a risk that developers who lack security knowledge
blindly accept security-related pull requests.

Refer to the main library. In �ve cases developers used an
open-source library, and asked us to report the issue to the library’s
repository.

Unfortunately, developers seem not to be concerned about security
risks associated with external libraries.

Repo is not maintained. We learned from the responses that
15 repositories are not maintained anymore.

Inactive projects are common in the open source community, for
example due to a lack of �nancial support. However, as long
as the code is available online, novice developers may rely on
open-source projects irrespective of how active the projects are.

Consult documentation. Developers of 10 repositories were
not completely certain about how the APIs should be used securely.
�ey either asked us to read the API documentation or quoted a
relevant part of the documentation in their responses. For instance,
we suggested not to use java.lang.String as the second parameter
of KeyStore, which is the password parameter. �ey replied that
“according to the documentation, the parameter is a String, so why
should it never be?” One responded that “MD5 is still supported
by java according to the Java documentation.” Another one asked
us to provide him with the correct use of Signature API as he
did not know how to �x it. A developer referred to the o�cial
Java documentation to express his trust in using the SHA1withRSA
algorithm in the Signature API. Developers of two repositories
were not convinced to stop using NoPadding in the Cipher API.
�ey noted that using an empty string in Java 8 can cause a run-time
error and they cited Cipher’s page in Java documentation.

Developers have con�dence in o�cial documentation, but secu-
rity concerns are mainly absent in such resources.

Uncertainty. We found that many developers (i.e., of 32 reposi-
tories) asked us to provide a clari�cation. Some developers referred
to blog posts where the KeyStore API was misused by converting a
string variable to an array of characters, i.e., password.toCharArray(),
and passing it as the second parameter to the API. A common skep-
ticism was about which algorithm is safe to use in SecretKeySpec
and KeyPairGenerator.

A few developers asked how the misuses can be exploited in
real life. For instance, a contributor was not convinced about the
nature of the “misuse” as it was not clear to him how a wrong
transformation mode in the Cipher API can be exploited in his
application.

As expected, developer uncertainty regarding the correct way of
using an API securely is related to either the right method call or
the secure algorithm name

Consider the context and disagreement. �e majority of re-
sponses (46) are connected with the context of the code. A large
number of these responses were mainly related to the MessageDigest
API since MessageDigest was used more frequently than any other
crypto API in the analyzed projects. �is is because MessageDigest



Java Cryptography Uses in the Wild ESEM, 2020, ACM

can be used in many di�erent scenarios such as authentication,
checksumming, archiving, or in combination with other algorithms.

One common complaint was that MD5 or SHA1 were not being
used for security purposes. �ey had been used for archiving or
producing hashes for non-security use-cases. For instance, one
developer mentioned that the Redis API needs to generate check-
sums using SHA1. As another example of non-security usage, one
repository used SHA1 for opening a handshake in WebSocket and
the contributor referred to the RFC 6455 section 1.3 for further
information. Moreover, three repository maintainers replied that
instead of using String.hashCode(), they used SHA1/MD5 as an
internal identi�er, i.e., generating a normalized document ID based
on the URL of the given document. Another developer stressed
that they use MD5 in order to track if the template source has been
changed or not. A group of developers used MD5 to get a hash
of an email address to produce the avatar URL of the user. SHA1
was also used in a for loop to generate fake data to be stored in a
�le in a repository. Contributors to a repository pointed to a code
comment preceding the SHA1 usage that clearly says that SHA1
was used only to generate a single hash for the entire contents of a
folder and it is absolutely su�cient.

Some contributors complained that the critiqued code is very
old and the context is not security-focused, i.e., a decade old, and
running a static analysis is not a good measure to �nd misuses. In
some responses, they did not exactly mention what the context
was and only replied that the context is not security-sensitive. For
example, we manually checked the codes of the repositories and
found that MessageDigest was used for purposes such as hashing
parameters, i.e., album name, in the URL or to cache the unpacked
ZIP �le and avoid multiple extractions.

In one repository, developers indicated that there was a code com-
ment explaining why the Signature API had been used in an inse-
cure way. A developer mentioned that although KeyPairGenerator
accepts many algorithms such as RSA, DSA, and Di�e-Hellman,
in this project the APNs protocol demands KeyPairGenerator to
generate key pairs for the Elliptic Curve algorithm.

One contributor cited a blog post where the blogger discussed
that SHA1 is still usable regardless of the existing collision vulnera-
bility. He insisted that they will continue using the algorithm until
a serious security problem is raised by using SHA1. Another devel-
oper stressed that MySQL authentication plugins do not support the
usage of SHA-256 and accordingly, SHA1 was used in their project.
In contrast, o�cial MySQL documentation added that since MySQL
5.6, the sha256 password authentication plugin is supported. With
regard to the misuse of MD5, a developer replied that he cannot
change the algorithm name as the remote endpoint requires an
MD5 hash and he is not able to change it on the remote endpoint.

Developers mainly argued that their context is not related to
security. �e use of security APIs to produce hashes was the most
common non-security related usage.

We witnessed that some APIs were more prevalent compared to
others in our reports. For example, the MessageDigest API was
seen more than other APIs in all response categories except for
“Personal repository.” In MessageDigest, the most common misuse
type is constraint error in which developers used the MD5 or SHA1

algorithms to compute hashes. As hashing algorithms could be
used for non-security purposes, many maintainers were expected
to note that the context is not relevant. KeyStore and Cipher are
the second most frequently seen APIs in the responses. Reposi-
tory maintainers mostly asked for clari�cation or referred to the
documentation of Java for the misuses of KeyStore. �e Cipher
API had the majority of misuses linked to its �rst argument. �is
occurred due to the diversity of options in the transformation string.
A transformation string includes the name of a cryptographic al-
gorithm (e.g., AES or DES), and may be followed by a feedback
mode and padding scheme, e.g., ”algorithm/mode/padding”. On the
whole, developers had di�culty in understanding what constraint
they should pass to the crypto APIs or how to create an object
securely in order to pass it to another crypto API.

�e responses of maintainers highlight the fact that some devel-
opers are fully aware of what they are doing, whereas others have
doubts concerning the correct way of using such APIs. As a result,
blaming only developers for the found crypto API misuses cannot
be correct. To highlight the leading causes of crypto misuses, we
identify various in�uential factors that must be taken into account.
�e age of a project can be an essential factor as security standards
can evolve over time. Another factor is to blindly rely on the use of
third-party libraries. Developers need to spend more time and select
libraries with higher credibility and support. O�cial documentation
and uno�cial online documentation, such as Stack Over�ow, can
have pernicious e�ects on developer choice. �is impact can be
ruinous when the developer lacks the minimum knowledge in the
domain of cryptography, e.g., choosing ECB mode from the exam-
ples provided by the o�cial documentation. Furthermore, such
developers may not be able to make a good use of static analysis
tools to resolve their crypto problems. On the other hand, stati-
cally checking the developer’s code without considering the context
yields misleading results and could not be a dependable measure
for developer performance in this domain. For instance, recent
program analysis tools consider SHA-1 to be insecure. Such tools
produce alerts if a developer cautiously uses three nested SHA-1
to produce a hash while the application is not, indeed, exposed to
security threats. Lastly, even though some developers were aware
of the right crypto usage, the widespread of such examples on open-
source projects may have profound implications on inexperience
developers.

4 THREATS TO VALIDITY
It is infeasible to manually identify crypto (mis)uses in source code
at large-scale. Adoption of static code analysis tools can consider-
ably help developers to automatically detect crypto misuses and
write more secure code. �erefore, we employed a static analysis
tool, i.e., CogniCrypt, in order to assess the status of crypto uses
in hundreds of Java projects. �e primary reason for this choice is
that the tool is open-source and supports a wide range of crypto
rules for di�erent APIs, which are easily extendable. However, the
CryptoMine dataset does not represent all the JCA APIs and their
various usages, e.g., di�erent parameters or method calls. �is can
be addressed by increasing the number of analyzed projects which
contain di�erent usages of crypto APIs. To provide a be�er level
of reliability, we have manually cross-checked 48% of the results



ESEM, 2020, ACM Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nierstrasz

in the CryptoMine dataset. Nevertheless, the manual analysis of a
large dataset is a non-trivial task and to accelerate the process we
invite interested researchers to join us. Moreover, security assump-
tions may change over a period of time. For instance SHA1, which
was judged to be secure in the past, is considered insecure now.
Further work is needed to add an extensive range of API usages
and to contact more repositories to collect more evidence for the
corresponding API misuses.

5 RELATEDWORK
A series of recent studies have indicated that developers need more
security support from di�erent aspects, e.g., secure documentation,
secure sample code, to write secure code. Nadi et al. surveyed two
groups of developers, i.e., 11 developers who had crypto-related
questions on Stack Over�ow, and 37 developers who used Java’s
cryptography APIs. �e authors realized that developers are certain
in choosing the proper cryptography concepts, but problems still ex-
ist in using certain cryptographic algorithms correctly. �ey arrived
at the conclusion that crypto APIs are generally regarded to be too
low-level, and developers choose more task-based solutions [10].
In a study, Acar et al. asked 54 participants to solve pre-de�ned
challenges in which the participants had to write security- and
privacy-relevant code under time limitations [1]. �e authors no-
ticed that many of the security problems made by their participants
also can be found on online sources, e.g., Stack Over�ow. Con-
ducting a controlled experiment with 53 participants, Gorski et
al. showed the e�ectiveness of API-integrated security advice can
signi�cantly help (i.e., 73%) to produce more secure code [4].

Previous studies have emphasized that developers commonly
misused crypto APIs. Rahman et al. used their static analysis
tool, named CHIRON, to evaluate 46 large-scale Apache projects
[11]. �ey found a total of 2,009 alerts in the projects. Egele et
al. developed a static analysis tool, i.e., CryptoLint, and tested on
11,748 applications using cryptographic APIs [2]. �eir results indi-
cated that 88% of the applications used crypto APIs inappropriately.
Krüger et al. introduced a tool called CogniCrypt, an Eclipse plu-
gin that assists developers to securely use cryptographic API [8].
CogniCrypt also presents secure code templates so as to reduce
the hassle of searching for secure API usages. Besides, CogniCrypt
employs CrySL that empowers cryptographic specialists to expand
the rules for other APIs[7]. Gao et al. made an assumption that
developers update API usage instances to �x misuses, and accord-
ingly, conducted a large scale analysis on nearly 40 000 real-world
app lineages to trace API usage rules [3]. �ey failed to con�rm
their assumption that API usage updates tend to �x misuses.

6 CONCLUSION
We analyzed hundreds of projects in which JCA APIs were used,
to observe the status of API use in open-source projects, to learn
what crypto misuse types exist, and to investigate the in�uential
factors in misusing such APIs. We found that 85% of the crypto APIs
su�ered from at least one misuse, though not all misuses were at the
same level of severity. We contacted the maintainers of the projects
to understand the reasons behind the misuse of crypto APIs, and
we classi�ed their responses into nine main categories. �e results
demonstrate that security hints in API documentation are scarce,

misuses are rooted in third-party libraries, or the code context plays
a crucial role in using crypto APIs incorrectly. Finally, to support
the research community, we publicly share the CryptoMine dataset,
including the analysis results, and information about each project
such as its metadata information, the precise locations of API use,
and the safety status of these APIs, to name but a few.

ACKNOWLEDGMENT
We gratefully acknowledge the �nancial support of the Swiss Na-
tional Science Foundation for the project “Agile So�ware Assistance”
(SNSF project No. 200020-181973, Feb. 1, 2019 – April 30, 2022).

REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,

and Christian Stransky. 2016. You get where you’re looking for: �e impact of
information sources on code security. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 289–305.

[2] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
2013. An Empirical Study of Cryptographic Misuse in Android Applications. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security (Berlin, Germany) (CCS ’13). ACM, New York, NY, USA, 73–84. h�ps:
//doi.org/10.1145/2508859.2516693

[3] Jun Gao, Pingfan Kong, Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2019.
Negative results on mining crypto-API usage rules in Android apps. In Proceed-
ings of the 16th International Conference on Mining So�ware Repositories. IEEE
Press, 388–398.

[4] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stransky, Sebas-
tian Möller, Yasemin Acar, and Sascha Fahl. 2018. Developers Deserve Security
Warnings, Too: On the E�ect of Integrated Security Advice on Cryptographic
API Misuse. In Fourteenth Symposium on Usable Privacy and Security SOUPS 2018).
265–281.

[5] Mohammadreza Hazhirpasand, Mohammad Ghafari, Stefan Krüger, Eric Bodden,
and Oscar Nierstrasz. 2019. �e Impact of Developer Experience in Using Java
Cryptography. In the International Symposium on Empirical So�ware Engineering
and Measurement, ESEM 2019.

[6] Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nierstrasz. 2020.
CryptoExplorer: An Interactive Web Platform Supporting Secure Use of Cryptog-
raphy APIs. In 27th IEEE International Conference on So�ware Analysis, Evolution
and Reengineering SANER 2020.

[7] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. 2018.
CrySL: An Extensible Approach to Validating the Correct Usage of Cryptographic
APIs. In 32nd European Conference on Object-Oriented Programming, ECOOP 2018,
July 16-21, 2018, Amsterdam, �e Netherlands. 10:1–10:27.

[8] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. 2019.
Crysl: An extensible approach to validating the correct usage of cryptographic
apis. IEEE Transactions on So�ware Engineering (2019).

[9] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo Arango
Argoty. 2018. Secure coding practices in java: Challenges and vulnerabilities. In
Proceedings of the 40th International Conference on So�ware Engineering. 372–383.

[10] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping through
hoops: Why do Java developers struggle with cryptography APIs?. In Proceedings
of the 38th International Conference on So�ware Engineering. 935–946.

[11] Sazzadur Rahaman, Ya Xiao, Ke Tian, Fahad Shaon, Murat Kantarcioglu, and Dan-
feng Yao. 2018. CHIRON: Deployment-quality Detection of Java Cryptographic
Vulnerabilities. arXiv preprint arXiv:1806.06881 (2018).

[12] Meltem Sönmez Turan, Elaine Barker, William Burr, and Lily Chen. 2010. Rec-
ommendation for password-based key derivation. NIST special publication 800
(2010), 132.

https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2508859.2516693

	Abstract
	1 Introduction
	2 Methodology
	2.1 Searching, downloading, and compiling
	2.2 Analysis
	2.3 Contacting the developers

	3 Results
	3.1 The state of crypto uses
	3.2 Developer feedback

	4 Threats to Validity
	5 Related Work
	6 Conclusion
	References

