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Abstract
Automated deception detection systems can enhance health, justice,
and security in society by helping humans detect deceivers in high-
stakes situations across medical and legal domains, among others.
Existing machine learning approaches for deception detection have
not leveraged dimensional representations of facial a�ect: valence
and arousal. This paper presents a novel analysis of the discrimina-
tive power of facial a�ect for automated deception detection, along
with interpretable features from visual, vocal, and verbal modalities.
We used a video dataset of people communicating truthfully or de-
ceptively in real-world, high-stakes courtroom situations. We lever-
aged recent advances in automated emotion recognition in-the-wild
by implementing a state-of-the-art deep neural network trained
on the A�-Wild database to extract continuous representations of
facial valence and facial arousal from speakers. We experimented
with unimodal Support Vector Machines (SVM) and SVM-based
multimodal fusion methods to identify e�ective features, modali-
ties, and modeling approaches for detecting deception. Unimodal
models trained on facial a�ect achieved an AUC of 80%, and facial
a�ect contributed towards the highest-performing multimodal ap-
proach (adaptive boosting) that achieved an AUC of 91% when tested
on speakers who were not part of training sets. This approach achieved
a higher AUC than existing automated machine learning approaches
that used interpretable visual, vocal, and verbal features to detect de-
ception in this dataset, but did not use facial a�ect. Across all videos,
deceptive and truthful speakers exhibited signi�cant di�erences
in facial valence and facial arousal, contributing computational
support to existing psychological theories on relationships between
a�ect and deception. The demonstrated importance of facial a�ect
in our models informs and motivates the future development of
automated, a�ect-aware machine learning approaches for modeling
and detecting deception and other social behaviors in-the-wild.
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1 Introduction
Advances in social signal processing and multimodal machine learn-
ing are enabling the development of machines that can automati-
cally detect and recognize human behaviors, including the social
behavior of deception [5, 60]. Deception involves the intentional
communication of false or misleading information and is often
categorized as occurring in either high-stakes or low-stakes situa-
tions [23], with deceivers in high-stakes contexts facing substantial
consequences if their deception is discovered. To create a more
healthy, secure, and just society, psychologists, social workers, gov-
ernment agencies, and law enforcement groups have fostered a
growing interest in detecting deception in high-stakes situations
such as therapist-client communications (e.g., during self-disclosure
of abuse or mental health issues) [12], courtroom testimonies [10],
and forensic investigations [50]. Humans, even experts trained in lie
detection, experience di�culty in accurately and precisely detecting
deception in social situations. Meta-analysis of human deception
detection abilities �nds them close to chance level [8], motivating
the development of automated approaches that can support humans
in this challenging task.

Recent approaches for automated deception detection have fo-
cused on developing machine learning models that exploit discrim-
inative patterns in behavioral cues to distinguish deceptive and
truthful communication. Video-based deception detection is a cur-
rent priority in deception research, because behavioral cues can be
extracted from videos in a cheaper, faster, and non-invasive man-
ner [10], which is preferable to invasive approaches that extract
cues through devices attached to human bodies (e.g., polygraphs).
Another priority is leveraging more interpretable features and ma-
chine learning approaches for deception detection [31], since inter-
pretability is an important aspect of automated systems deployed
to help humans in real-world, high-stakes situations. Current meth-
ods for video-based deception detection have combined and used
interpretable features from human behavioral cues in visual (e.g.,
facial movements), vocal (e.g., pitch), verbal (e.g., word choice), and
physiological (e.g., thermal imaging) modalities [10].



Existing machine learning approaches for automated deception
detection in videos have not included continuous representations of
a�ect, neurophysiological states (e.g., "pleasure") that can be com-
ponents of emotions or moods [53]. A�ect is a fundamental aspect
of human communication that interacts with cognition to guide
social behaviors in human-human [22, 57], human-computer [41],
and human-robot [26] interactions. Since the face is a key channel
through which a�ect is expressed [3], facial a�ect is a promising
modality to consider when developing automated systems for de-
tecting social behaviors such as deception. The 2-D valence and
arousal space [53] is a standard model for representing the subtle
and complex nature of a�ective states by capturing how pleasant
or unpleasant each state is (valence) and how passive or active each
state is (arousal) [27]. Psychological studies of a�ect and deception
have theorized that deceivers in high-stakes situations are likely
to exhibit a�ective states with lower valence and higher arousal,
relative to truthful speakers, expressed through temporal patterns
of involuntary nonverbal cues [18, 65].We hypothesized that tem-
poral patterns in representations of facial valence and facial arousal
could be e�ectively leveraged to automatically detect deception in
real-world, high-stakes situations.

Inspired by other high-stakes deception detection studies [4,
47, 48, 51, 61], we conducted experiments with a real-world video
dataset of people speaking truthfully or deceptively in courtrooms
[47]. We leveraged recent advances in a�ective computing in-the-
wild to automatically extract continuous representations of facial
valence and facial arousal from speakers in the videos. Since decep-
tion is communicated through verbal and nonverbal cues, and a�ect
can in�uence these cues [22], our goal was to analyze the discrim-
inative power of facial a�ect for automated deception detection,
along with interpretable features from human verbal and nonverbal
communication. We experimented with unimodal and multimodal
SVM-based machine learning approaches that used facial a�ect (va-
lence, arousal), visual (face, head, eye movements), vocal (spectral,
cepstral, prosodic, voice quality), and verbal (psychometric) cues to
detect deception. This paper, to the best of our knowledge, presents
the �rst use and evaluation of continuously-valued facial a�ect for
automated deception detection in videos.

Our results demonstrate the discriminative power of facial af-
fect for automated deception detection in videos. Unimodal models
trained on facial a�ect features achieved an AUC of 80%, and facial
a�ect contributed towards the highest performing multimodal ap-
proach, which obtained an AUC of 91% through adaptive boosting
trained on facial a�ect, visual, and vocal features. This multimodal
approach outperformed existing automated machine learning ap-
proaches that have used interpretable visual, vocal, and verbal fea-
tures with this dataset, but have not used facial a�ect [4, 47, 51, 61].
Across all videos, deceptive and truthful speakers exhibited signi�-
cant di�erences in mean, median, and standard deviation of facial
valence and facial arousal, contributing computational support to
psychological theories on a�ect and deception. Our results aim to
inform and motivate the development of a�ect-aware approaches
for automated deception detection in-the-wild.

This work makes the following contributions:
• Development of a novel, automated approach for video-based
deception detection that uses continuous representations of

facial a�ect, along with interpretable visual, vocal, and verbal
features from human communication.

• Evaluation of unimodal and multimodal SVM-based machine
learning approaches to identify e�ective features, modalities,
combinations of modalities, and modeling approaches for
a�ect-aware automated deception detection.

• Novel analysis of the computational relationship between
facial a�ect and deception observed in this real-world high-
stakes dataset, contributing support to psychological theo-
ries on relationships between a�ect and deceptive behavior.

Section 2 of this paper describes the related works that inform
this research. Section 3 details the experimental methodology. Sec-
tion 4 presents an analysis of relationships between facial a�ect
and deception in the dataset. Section 5 contains the results and
discussion of the unimodal and multimodal deception detection
models. Section 6 concludes the paper.

2 Related Works
This section provides an overview of key areas that contribute to
this research: (1) deception detection, with a focus on video-based
deception detection in high-stakes situations, (2) psychological
theories on the relationship between a�ect and deception, and (3)
automated facial a�ect recognition from videos in-the-wild.

2.1 Deception Detection
Early systems for detecting deception relied on polygraph tests,
an invasive approach that requires attaching devices to the human
body to collect physiological data (e.g., skin conductance) [10] that
human experts would interpret in order to detect deception. The
deception research community has recently shifted focus to more
reliable and non-invasive approaches that remotely extract and use
verbal and nonverbal behavioral cues to detect deception [10, 31, 51,
61]. Video-based deception detection approaches are of particular
interest because they can remotely sense behavioral cues and can
be deployed at a large-scale in real-world situations [10].

Decades of research in psychology, forensics, and deception de-
tection have documented verbal and nonverbal behavioral cues
indicative of deceptive communication. These insights can and
have been leveraged when choosing features to use in automated
deception detection systems. Visual cues such as the frequency
and duration of eye blinks [7, 24, 42, 45], dilation of pupils [16, 40],
head movements [39], and facial muscle movements [28, 49] have
been found to distinguish between deceptive and truthful behavior.
Vocal cues can be indicative of deception, with deceptive speakers
tending to speak with higher and more varied pitch [14, 65], shorter
utterances, and less �uency [52, 56] than truthful speakers. Rep-
resentations of vocal a�ect (valence and arousal) have been used
to detect deceptive speech by using models trained on emotional
speech databases to generate emotional features used in deception
classi�cation [2]. Deception also correlates with verbal attributes of
speech, with deceivers tending to communicate with less cognitive
complexity, fewer self-references, and more words indicative of
negative emotions [44, 64]. To the best of our knowledge, represen-
tations of facial a�ect (valence and arousal) have not previously
been used for automated deception detection.



Recent research in video-based deception detection focuses on
detecting deception in real-world, high-stakes situations. Pérez-
Rosas et al. [47] developed the �rst publicly-available, high-stakes
deception video dataset (60 truthful videos, 61 deceptive videos, ⇠28
seconds per video) of people speaking in real-world courtrooms.
This dataset is the current benchmark for multimodal high-stakes
deception detection in videos and was used for the work in this
paper. Benchmark accuracies using manually-annotated hand ges-
tures, facial displays, and head movements, as well as automatically-
extracted transcript unigrams and bigrams, range from 60-75% with
decision-trees (DT) [47]. While some approaches for deception de-
tection in this dataset have used deep learning [15, 25, 35], deep
learning approaches for deception detection have been considered
inadvisable in this dataset due to its small size [15, 31, 61]. In this pa-
per, we evaluate the e�ectiveness of our models by comparing our
results to those of existing automated machine learning approaches
(performances summarized in Table 1) that have used classi�ers
such as SVM, Decision Trees, Random Forests, Logistic Regression,
and AdaBoost to detect deception in this dataset [4, 29, 47, 51, 61].
We examined papers that have cited the Pérez-Rosas et al. dataset
[47] in order to compile the performances of existing automated
approaches for deception detection. The highest-performing au-
tomated approach [61] achieved an AUC of 87.7% by using the
following interpretable visual, vocal, and verbal features in late
fusion with a Linear SVM: (1) head, face, and eye movements, (2)
MFCC coe�cients, and (3) transcript GloVe word embeddings.

Table 1: Highest-performing machine learning approaches
from existing automated video-based deception detection
with the Pérez-Rosas et al. [47] courtroom dataset.

Modality Model AUC ACC
Visual + Verbal [47]† DT early fusion — 75%
Visual + Vocal + Verbal [29] SVM early fusion — 79%
Visual + Vocal + Verbal [61] SVM late fusion 88% —
Visual [4] SVM unimodal — 77%
Visual, Vocal (tie) [51] SVM unimodal 70% —

†Benchmark (visual features not automatically extracted)

2.2 A�ect and Deception
Psychologists have developed theories regarding the relationship
between a�ect and deception. Ekman and Friesen [18] proposed
the leakage hypothesis, which posits that deceivers experience and
exhibit negative and aroused physiological states that involuntarily
"leak" into themovements of their faces and bodies. Zuckerman et al.
[65] developed the prominent four-factor theory of deception, which
attempts to explain this involuntary "leakage" as a result of four
interacting causes: (1) general physiological arousal, (2) negative
a�ective states, (3) increased cognitive e�ort, and (4) unsuccessful
attempts at controlling behavioral cues. Deceivers in high-stakes
situations are likely to experience and exhibit a�ective states with
lower valence and higher arousal, associated with anxiety and fear
at the possibility of their deception being revealed, as well as guilt at
engaging in deception [18, 37, 65]. It is worth noting that deceivers
do not universally emit observable negative and aroused a�ective
states, due to di�erences in their situations, reactions to situations

[38], ability to conceal internal a�ective states, and behavioral cues
when leaking internal a�ective states. These insights from four-
factor theory motivated our incorporation of facial a�ect in models
for automated high-stakes deception detection.

2.3 Facial A�ect Recognition In-the-Wild
Since humans express emotions di�erently in naturalistic real-
world situations compared to laboratory or controlled contexts,
current research in automated facial a�ect recognition focuses on
detecting facial a�ect in-the-wild. Kollias et al. [33, 34, 63] collected
the �rst large video dataset of facial a�ect in-the-wild (A�-Wild)
that spans diverse environments, a�ective states, ethnicities, and
recording conditions (e.g., varied poses, illuminations, and occlu-
sions). This benchmark dataset contains 298 videos, 200 subjects,
and over 30 hours of data, with facial valence and facial arousal
continuously annotated between -1 and 1 at each frame by 8 experts.
Kollias et al. also developed the A�WildNet [34], a benchmark and
state-of-the-art deep neural network that leverages a CNN and RNN
architecture to predict facial valence and facial arousal in-the-wild
in this dataset. A�WildNet learns rich representations of valence
and arousal and has been demonstrated as capable of generalizing
its knowledge in other contexts outside of the A�-Wild dataset [34].
Our research used A�WildNet to extract representations of facial
valence and facial arousal from videos of people speaking truthfully
and deceptively in courtrooms in-the-wild.

3 Methodology
Our approach for automated deception detection in videos contains
the following three steps: (1) multimodal feature extraction, (2)
feature selection, and (3) classi�cation experiments.

3.1 Video Dataset
A deception dataset of people speaking truthfully or deceptively
in 121 real-world trial videos [47] (60 truthful videos, 61 deceptive
videos, ⇠28 seconds per video) was used for our experiments. This
dataset was collected under unconstrained situations in-the-wild
during courtroom testimonies and contains speakers of diverse
genders and ethnicities. Creators of this dataset labeled videos as
"truthful" or "deceptive" per testimony veri�ed by police investi-
gations; we used these labels as ground truth. While each video
primarily focuses on one speaker, the following challenges exist in
this dataset: some videos brie�y switch focus among faces in the
courtroom, and there are variations in video illumination, camera
angles, and face sizes, as well as the occasional obstruction of faces
behind objects. Similar to [51, 61], we identi�ed a subset of videos
as unusable for processing facial information, discarding those that
contained a sideways pro�le view of the speaker’s face, objects ob-
structing the speaker’s face, or unreasonably grainy video quality.
Our criteria rendered a usable dataset of 108 videos (53 truthful
videos, 55 deceptive videos). There are 47 unique individuals in the
subset of videos used in our experiments.

3.2 Multimodal Feature Extraction
To capture speakers’ verbal and nonverbal behaviors from videos
in the dataset, we extracted 191 interpretable features that span
four channels of information: a speaker’s facial a�ect, visual, vocal,
and verbal cues. We focused on extracting interpretable features,



Figure 1: Multimodal Automated Feature Extraction Process.

instead of deep representations, in order to more e�ectively iden-
tify and analyze verbal and nonverbal behavioral cues associated
with deception, similar to feature analysis conducted in [58]. The
multimodal feature extraction process is visualized in Figure 1.

3.2.1 Facial A�ect A state-of-the-art A�WildNet model trained
on the A�-Wild database [34] was used to extract facial a�ect repre-
sentations of valence and arousal from the videos. We implemented
A�WildNet in TensorFlow [1], with model weights available from
the developers. To prepare facial frames as input for A�WildNet, we
tracked the face of the primary speaker from each video, extracted
images of the facial bounding boxes at each frame, resized images to
96x96x3, and normalized the images’ pixel intensity values between
-1 and 1. Facial frames were prepared as Tensors with sequences
of 80 consecutive images (per A�WildNet hyperparameters) and
fed through A�WildNet to extract continuous valence and arousal
predictions between -1 and 1. The graphs in Figure 2 illustrate the
continuous format of facial valence and facial arousal features that
were extracted from a person speaking truthfully and deceptively
in 100-frame intervals of di�erent videos in the dataset. A total of
2 facial a�ect features were extracted from each video frame.

3.2.2 Visual The OpenFace 2.2.0 toolkit [6] was used to extract
visual features capturing facial action units (FAUs), eye gaze, and
head pose from each facial frame of each video. The following
OpenFace feature sets were computed: the intensities of 17 FAUs,
eye gaze direction, and head pose. A total of 31 visual features were
extracted from each video frame.

3.2.3 Vocal The OpenSMILE 2.0 toolkit [20, 41] was used to extract
vocal features capturing cepstral, spectral, prosodic, and voice qual-
ity information from the audio associated with each video. The fol-
lowing three standard OpenSMILE feature sets were computed: the
extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)

[19], MFCC, and Prosody. eGeMAPS contains 23 features includ-
ing frequency, energy, spectral, and cepstral information, which
have been identi�ed by experts for their potential to index a�ective
and prosodic content in speech [19]. MFCC contains 39 features
including 13 mel-frequency cepstral coe�cients, and their �rst and
second derivatives. Prosody contains 3 additional features related
to fundamental frequency, loudness, and voicing. The eGEMAPs
feature set contains some overlap with MFCC and Prosody sets.
While we extracted all three sets, we did not include duplicate fea-
tures in our feature selection and classi�cation process. A total of
65 vocal features were extracted from each audio frame.

3.2.4 Verbal The Linguistic Inquiry andWordCount (LIWC) toolkit
[23] was used to extract verbal features capturing psycholinguistic

Figure 2: Sample graphs of continuous facial valence and fa-
cial arousal during 100-frame intervals of a person speaking
truthfully (left) and deceptively (right) in di�erent videos.



information from the transcript associated with each video. LIWC
maps words in a transcript to a dictionary of 93 psychometric con-
structs and calculates the percentage of words in each category. Psy-
chometric constructs include the attentional focus (e.g., pronouns,
verb tense), emotions, social relationships (e.g., the speaker’s level
of dominance), and cognitive mechanisms (e.g., use of causal words)
embedded in language. A total of 93 verbal features were extracted
from each video transcript.

3.2.5 Computing Fixed-Length Feature Vectors for Each Video Fea-
tures extracted from the facial a�ect, visual, and vocal modalities in
each video are frame-by-frame and depend on the length of videos.
In order to prepare these features for use in binary deception clas-
si�cation models, we represented each feature as a �xed-length
vector of statistical attributes that captured the feature’s tempo-
ral behavior and distribution during the variable-length videos,
similar to [43, 51]. For each of the facial a�ect, visual, and vocal
features, we used the TsFresh toolkit [11] to compute 130 time-
series attributes, including the following statistical measures: mean,
median, standard deviation, skew, kurtosis, maximum, minimum,
sum of values, linear trends, autocorrelation with di�erent lags,
and the changes among values within di�erent quantile ranges.
Details regarding all of the computed functions are documented in
the E�cientFCParameters class of TsFresh.

Features extracted from the verbal modality are contained in
�xed 93-dimensional vectors for each video transcript, independent
of video length. The �nal �xed-length feature vectors created with
this process were of length 12833 representing each video with 260
facial a�ect features (2 x 130), 4030 visual features (31 x 130), 8450
vocal features (65 x 130), and 93 verbal features.

3.3 Feature Selection
In order to identify all relevant features for classi�cation, we chose
the Boruta algorithm [36] for feature selection; Boruta generates
copies of original features with randomly mixed values, called
shadow features, and then iteratively removes features that are
less relevant (U < 0.05) than their corresponding shadow features.
We removed null and constant features across videos on training
sets and performed feature selection through the Boruta algorithm
(500 iterations). This process identi�ed 30 facial a�ect features, 35
visual features, 38 vocal features, and 7 verbal features as useful
for deception detection. The behavioral cues underlying these 110
selected features are summarized in Table 2.

3.4 Classi�cation Experiments
Deception detectionwas formulated as a binary classi�cation task to
classify videos as truthful or deceptive. We conducted experiments
with unimodal and multimodal linear SVM-based approaches to
classify videos as truthful or deceptive, consistent with previous
experiments with this dataset (summarized in Table 1).

3.4.1 Experimental Setup All training, hyperparameter tuning, and
testing were conducted in the scikit-learn framework [46] with the
Support Vector Classi�er implementation of SVMs with a linear
kernel. SVM hyperparameters C and W were each tuned on training
sets with a grid-search in the discrete range [0.001, 0.01, 0.1, 1, 10,
100, 1000] during 5-fold strati�ed cross-validation. All features in
the training and testing sets of each fold were standardized per

Table 2: Behavioral Cues Underlying the Selected Features.

Modality Behavioral Cues
Facial A�ect Valence

Arousal
Visual [6] Eye gaze direction: x, y, and z coordinates

Eye gaze angle: x coordinates
Head pose: y coordinates of location, rotation
Facial Action Units: 1, 2, 5, 15, 17, 26, 45

Vocal [20, 21] Fundamental frequency (F0)
Voicing probability of F0
MFCC: 2, 3, 4, 9, 12
MFCC �rst derivatives: 4, 10, 11
MFCC second derivatives: 0, 12

Verbal [30] Cognitive processes (e.g., use of causal words)
Personal pronouns
Di�erentiation (e.g., use of "hasn’t" or "but")
Numbers
Negations
Clout
Authenticity

the distribution of the training set, to prevent information leaking
into the testing sets. Most of the 47 unique people in the dataset
are only present in either deceptive or truthful videos. To account
for this aspect of the dataset and avoid classi�cation becoming
a case of person-identi�cation, we trained and tested models on
distinct, randomly formed groups to ensure that the same person
was not present in both the training and testing sets, consistent with
previous experiments with this dataset [15, 51, 61]. All unimodal
and multimodal classi�cation experiments described below were
conducted with 5-fold strati�ed cross-validation, split across 47
speaker identities, and repeated 10 times, maintaining the same
proportion of truthful and deceptive speakers in each fold.

3.4.2 Evaluation Metrics For each cross-validation fold, three met-
rics were computed: (1) AUC, area under the precision-recall curve,
representing the probability of the classi�er ranking a randomly
chosen deceptive sample higher than a randomly chosen truthful
one; (2) ACC, classi�cation accuracy over the videos in the test set;
(3) F1-score, weighted average of precision and recall. We computed
the average AUC, ACC, and F1-score across all folds in order to eval-
uate each model’s performance. Consistent with previous deception
detection studies with this dataset, we used AUC as the primary
metric for comparing the e�ectiveness of di�erent approaches.

3.4.3 Unimodal Models We trained unimodal SVMs on the re-
spective features of each modality to assess the e�ectiveness of
individual modalities for deception detection.

3.4.4 Early Fusion Models We experimented with early fusion,
which concatenates features from di�erent modalities to form a
single feature vector that is used in a classi�er. Early fusion SVMs
were trained on each of the 11 possible combinations of the 4 modal-
ities. We used results from early fusion to assess the e�ectiveness
of single classi�ers in exploiting low-level interactions of features
across modalities for deception detection.



3.4.5 Non-Generative Ensembles We experimented with 6 non-
generative ensemble approaches [59], each with a di�erent method
of combining the decisions of unimodal classi�ers to produce �nal
predictions: (1) hard and soft majority voting, (2) hard and soft stack-
ing, and (3) hard and soft hybrid fusion. In majority voting, the �nal
classi�er decision is either the class label predicted most frequently
by the unimodal classi�ers (hard majority voting) or the class la-
bel with the highest average predicted class probability across the
unimodal classi�ers (soft majority voting). In stacking, a �nal clas-
si�er is trained on either the predicted class labels of the unimodal
classi�ers (hard stacking) or the predicted class probabilities of the
unimodal classi�ers (soft stacking). In hybrid fusion, an early fusion
vector with features from a set of modalities is concatenated with ei-
ther the predicted class labels of the set of corresponding unimodal
classi�ers (hard hybrid fusion) or the predicted class probabilities of
the set of corresponding unimodal classi�ers (soft hybrid fusion), in
order to create �nal feature vectors that are used in a classi�er. All
6 approaches were trained on each of the 11 possible combinations
of the 4 modalities. We used results from non-generative ensembles
to assess the e�ectiveness of di�erent approaches for combining
the outputs of unimodal classi�ers for deception detection.

3.4.6 Generative Ensembles We experimented with 2 generative
ensemble approaches [59] that generate and train multiple classi-
�ers on di�erent subsets of multimodal input data: (1) bagging and
(2) boosting. In bagging [32], random subsets of the training set are
generated and used to train di�erent classi�ers, and the outputs of
thesemodels are combined into a �nal prediction bymajority voting.
Inspired by SVM boosting implemented on this dataset by [51] and
for deception detection by [62], we experimented with AdaBoost
(built from 50 estimators), with later classi�ers focusing more on
misclassi�ed examples. The outputs of all classi�ers are combined
into a �nal prediction through weighted voting that assigns more
accurate models a higher weight. Both generative ensemble ap-
proaches were trained on each of the 11 possible combinations of
the 4 modalities. We used results from generative ensembles to
assess the e�ectiveness of training multiple classi�ers on di�erent
subsets of multimodal data for deception detection.

4 Analysis of Facial A�ect and Deception
Since this paper introduces facial a�ect as a novel feature set in
automated deception detection, this section analyzes the computa-
tional relationships observed between facial a�ect and deception in
the high-stakes deception dataset used. We examined the distribu-
tion of facial a�ect across truthful and deceptive speakers, as well
as the statistical signi�cance of observed di�erences. A two-tail
independent sample Welch’s t-test [13] was used to determine sig-
ni�cance levels of di�erences between the deceptive and truthful
groups to account for di�erences in video lengths and not assume
equal variances in feature distributions.

Across the videos, deceptive speakers exhibited signi�cantly
lower mean valence, median valence, and minimum valence than
truthful speakers (p<0.001 for all) and signi�cantly higher mean
arousal, median arousal, and maximum arousal than truthful speak-
ers (p<0.002 for all). Figure 3 graphs the probability density of the
means of facial valence and facial arousal across all videos for decep-
tive and truthful speakers, computed with kernel density estimation

(Gaussian kernel) [54]. The mean of facial valence for deceptive
speakers was -0.07 and for truthful speakers was 0.06 (Figure 3).
The mean of facial arousal for deceptive speakers was 0.21 and for
truthful speakers was 0.13 (Figure 3).

Across the videos, deceptive speakers exhibited higher standard
deviation in facial valence (p<0.005) and facial arousal (p<0.002)
than truthful speakers. Figure 4 graphs the probability density of the
standard deviation of facial valence and standard deviation of facial
arousal for deceptive and truthful speakers, computed with kernel
density estimation. Across videos, the mean standard deviation
of facial valence for deceptive speakers was 0.14 and for truthful
speakers was 0.11 (Figure 4). The mean standard deviation of facial
arousal for deceptive speakers was 0.12 and for truthful speakers
was 0.09 (Figure 4).

Figure 3: Probability density distributions of the mean va-
lence and mean arousal of deceptive (orange) and truthful
(blue) speakers across all videos in the dataset.

Figure 4: Probability density distributions of the standard
deviation of valence and the standard deviation of arousal
of deceptive (orange) and truthful (blue) speakers across all
videos in the dataset.

The facial a�ect patterns seen in this dataset support the leakage
hypothesis [18] and four-factor theory of deception [65], which pro-
posed that deceivers, particularly those in high-stakes situations
[50], experience and exhibit a�ective states with lower valence
and higher arousal, possibly due to emotions such as anxiety, fear,
and guilt. The high-stakes nature of the deception in this dataset
may have contributed towards the signi�cantly more negative and
aroused a�ective states observed in deceptive speakers, given the
serious consequences of communicating deceptively under oath



in a courtroom. The signi�cantly higher standard deviation of fa-
cial valence and facial arousal in the videos of deceptive speakers
indicates that deceptive speakers exhibited more variation in af-
fective states than truthful speakers in this dataset. The signi�cant
di�erences observed in the facial valence and facial arousal of truthful
and deceptive speakers in our research illustrate the discriminative
potential of facial a�ect for detecting deception, making a case for
using facial a�ect features in automated deception detection systems.

5 Results and Discussion
Modeling results from the classi�cation experiments discussed in
Section 3.4 are presented in Table 3 and visualized in Figure 5. These
results indicate the discriminative power of facial a�ect for auto-
mated deception detection in videos. Unimodal models trained on
facial a�ect features achieved an AUC of 80% (Table 3). Facial a�ect
contributed towards the highest-performing multimodal approach,
which obtained an AUC of 91% through adaptive boosting (Ad-
aBoost) across facial a�ect, visual, and vocal modalities (Table 3).
This multimodal approach achieved an 84% accuracy, higher than
the dataset benchmark (75% accuracy) [47] (Table 1). The 91% AUC
achieved by our multimodal approach was also higher than the
AUC of the best-performing automated approach on this dataset
(88% AUC) (Table 1) that used interpretable visual, vocal, and verbal
features with an SVM [61], but did not use a�ect.

Results from all unimodal classi�cation experiments are dis-
cussed in Section 5.1. Results from the highest-performing early
fusion, non-generative ensemble (soft hybrid fusion), and genera-
tive ensemble (AdaBoost) are discussed in Section 5.2. All statistical
signi�cance values of di�erences in model performance across clas-
si�ers and feature sets were computed with McNemar’s chi-squared
test (U=0.05) with continuity correction, as described in [17]. Impor-
tant features contributing towards the highest-performing model
are discussed in Section 5.3 and listed in Table 4. Figure 5 visualizes
the ROC curves of all 4 unimodal models and the best-performing
multimodal models. A baseline model for deception detection (a
classi�er that always predicted "deceptive") would achieve 51% ac-
curacy (55 deceptive videos out of 108 videos). We use this baseline
when evaluating whether our models perform better than chance.

Figure 5: ROC curves for unimodal models and the best mul-
timodalmodels from early fusion, non-generative ensemble
(soft hybrid fusion), and generative ensemble (AdaBoost).

Table 3: Classi�cation Results.

Modality AUC ACC F1
Unimodal Models

Facial A�ect 0.80 0.72 0.67
Visual 0.83 0.76 0.72
Vocal 0.79 0.72 0.68
Verbal 0.66 0.63 0.58

Early Fusion
Facial A�ect + Visual 0.86 0.74 0.71
Facial A�ect + Vocal 0.85 0.76 0.73
Facial A�ect + Verbal 0.81 0.76 0.72
Visual + Vocal 0.83 0.76 0.72
Visual + Verbal 0.85 0.73 0.65
Vocal + Verbal 0.77 0.67 0.63
Facial A�ect + Visual + Vocal 0.86 0.79 0.78
Facial A�ect + Visual + Verbal 0.83 0.68 0.54
Facial A�ect + Vocal + Verbal 0.82 0.76 0.71
Visual + Vocal + Verbal 0.80 0.75 0.72
Facial A�ect + Visual + Vocal + Verbal 0.85 0.78 0.75

Non-Generative Ensemble (Soft Hybrid Fusion)
Facial A�ect + Visual 0.83 0.74 0.72
Facial A�ect + Vocal 0.83 0.74 0.70
Facial A�ect + Verbal 0.77 0.69 0.64
Visual + Vocal 0.82 0.76 0.74
Visual + Verbal 0.78 0.71 0.68
Vocal + Verbal 0.77 0.67 0.63
Facial A�ect + Visual + Vocal 0.88 0.81 0.80
Facial A�ect + Visual + Verbal 0.79 0.72 0.70
Facial A�ect + Vocal + Verbal 0.82 0.76 0.74
Visual + Vocal + Verbal 0.81 0.75 0.73
Facial A�ect + Visual + Vocal + Verbal 0.85 0.80 0.78

Generative Ensemble (AdaBoost)
Facial A�ect + Visual 0.87 0.74 0.73
Facial A�ect + Vocal 0.86 0.76 0.76
Facial A�ect + Verbal 0.80 0.50 0.56
Visual + Vocal 0.87 0.78 0.78
Visual + Verbal 0.82 0.54 0.62
Vocal + Verbal 0.81 0.65 0.68
Facial A�ect + Visual + Vocal 0.91 0.84 0.84
Facial A�ect + Visual + Verbal 0.86 0.72 0.70
Facial A�ect + Vocal + Verbal 0.86 0.78 0.77
Visual + Vocal + Verbal 0.86 0.78 0.77
Facial A�ect + Visual + Vocal + Verbal 0.90 0.82 0.81

5.1 Performance of Unimodal Classi�ers
Unimodal classi�cation results revealed that unimodalmodels trained
on facial a�ect, visual, and vocal features have signi�cantly higher
predictive power for deception detection, compared to those trained
on the verbal modality, with p<0.001 for all pairwise comparisons.
The AUCs achieved by unimodal facial a�ect, visual, and vocal
classi�ers were 80%, 83%, and 79%, respectively. Pairwise compari-
son revealed no signi�cant di�erences in model predictions among
these three modalities, demonstrating that a classi�er trained on fa-
cial a�ect features, alone, is as discriminative as unimodal classi�ers



trained on visual and vocal modalities for deception detection. These
results support our hypothesis, suggesting that temporal patterns in
facial a�ect can be used by machine learning models to e�ectively
detect deception in high-stakes situations. All unimodal models had
a predictive power higher than chance, outperforming the baseline
51% accuracy. The low relative performance of the verbal modality
indicates that the chosen verbal psychometric features (Table 2)
were not as discriminative for detecting deception in this dataset,
compared to other modalities, although it is worth noting that most
of these cues (self-references, cognitive processes, negations) have
been useful for detecting deception in other contexts [64, 65].

5.2 Performance of Multimodal Classi�ers
As expected from past deception detection experiments [4, 10, 47,
51], unimodal models did not perform as well as multimodal ap-
proaches that have the advantage of integrating complementary
and supplementary information across modalities [5] to detect the
multimodal behavior of deception. The generative ensemble ap-
proach of AdaBoost with facial a�ect, visual, and vocal features
outperformed other unimodal and multimodal approaches, as seen
in Table 3. This approach attained an AUC of 91%, ACC of 84%, and
F1-score of 84% and had signi�cantly higher predictive power com-
pared to boosting with the other 10 modality combinations (p<0.02
for all pairwise comparisons). Boosting was found to be more e�ec-
tive for deception detection in this dataset than feature-level and
other decision-level multimodal fusion methods.

To better determine the contributions of each individual modal-
ity in our highest-performing multimodal approach, we conducted
an ablation analysis. We examined the performance of the model,
removing one modality at a time. Removing facial a�ect reduced
model AUC by 4.1%. Removing visual reduced model AUC by 5.1%.
Removing vocal reduced model AUC by 3.7%. These results suggest
that facial a�ect makes an e�ective contribution towards deception de-
tection and merits consideration, along with visual and vocal features,
when choosing modalities and feature sets to include in automated
deception detection systems.

5.3 Important Features
To identify important individual features that contributed towards
the highest-performing multimodal approach, we examined the
weights of each feature across the estimators. As noted in [9, 55],
linear SVMs have an advantage of interpretability, because the
trained model weights can be used for determining feature impor-
tance. The magnitude [wi] of each weightwi indicates the in�uence
of the ith feature on the classi�er’s predictions. Table 5 lists the top
25 features used, which included 9 facial a�ect features, 2 visual
features, and 14 vocal features, each representing statistical and
time-series attributes of behavioral cues during speakers’ commu-
nications. The 9 facial a�ect features identi�ed as top contributors
to the highest-performing multimodal model included the autocor-
relation of arousal, properties of the distribution of arousal (e.g.,
standard deviation), and properties of the distribution of valence
(e.g., kurtosis). The 2 visual features and 14 vocal features identi�ed
as top contributors to the highest-performing multimodal model
included patterns in FAUs (inner brow raising and blinking), funda-
mental frequency, and MFCC coe�cients. These results suggest that
temporal patterns in facial a�ect features can be used in multimodal

Table 4: Top 25 features used by the highest-performingmul-
timodal model, per SVM feature weights.

Modality Feature
Facial A�ect Arousal: agg autocorrelation (lag 40)

Arousal: CIQ †[0.4,0.6], [0.6,1]
Arousal: longest strike below mean
Arousal: standard deviation
Valence: kurtosis
Valence: CIQ [0, 0.1], [0,1]
Valence: sum of values

Visual FAU 1: partial autocorrelaton (lag 6)
FAU 45: longest strike below mean

Vocal F0: CIQ [0, 0.9], [0, 1]
MFCC 0 2nd deriv: mean change
MFCC 4: kurtosis
MFCC 4 1st deriv: CIQ [0.6, 1]
MFCC 9: partial autocorrelation (lag 6)
MFCC 10 1st deriv: median, CIQ [0, 0.6]
MFCC 10 2nd deriv: mean change
MFCC 11 1st deriv: CIQ [0.2, 0.4]
MFCC 12: CIQ [0, 0.1], [0.2, 0.4], [0.2, 1], [0.4, 1]

† CIQ = change in quantiles

models, along with visual and vocal features, to e�ectively detect
deception in high-stakes situations.

6 Conclusion
This paper presents a novel analysis of the discriminative power of
facial a�ect for automated deception detection, along with inter-
pretable features from visual, vocal, and verbal modalities, in real-
world high-stakes courtroom situations in-the-wild. Facial a�ect
contributed towards the highest-performing multimodal approach,
which achieved an AUC of 91% through adaptive boosting trained
on facial a�ect, visual, and vocal features. Our results indicate that
temporal patterns in facial valence and facial arousal have potential
as features in automated deception detection. We found signi�-
cant di�erences in distributions of facial valence and facial arousal
between truthful and deceptive speakers, contributing computa-
tional support to the leakage hypothesis and four-factor theory from
psychological research on relationships between a�ective states in
deceptive behavior.

This paper demonstrates the potential for developing automated
deception detection approaches that leverage deep neural networks
trained on large emotion datasets collected in-the-wild (in our
case, A�WildNet trained on the A�-Wild dataset) to extract facial
valence and facial arousal as features for deception detection. Our
research provides a proof-of-concept and motivation for future
work towards developing a�ect-aware systems for automatically
detecting deception and other social behaviors, particularly those
occurring in unconstrained situations in-the-wild.
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